TLK10081CTR [TI]

10Gbps 1 至 8 通道多速率冗余链路聚合器 | CTR | 144 | -40 to 85;
TLK10081CTR
型号: TLK10081CTR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10Gbps 1 至 8 通道多速率冗余链路聚合器 | CTR | 144 | -40 to 85

电信 电信集成电路
文件: 总62页 (文件大小:734K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
10Gbps 1-8 CHANNEL MULTI-RATE SERIAL LINK AGGREGATOR  
Check for Samples: TLK10081  
1 INTRODUCTION  
1.1 Features  
1
• Automatic Digital Multiplexing/De-Multiplexing  
of 1 to 8 Independent Lower Speed Gigabit  
Serial Lines into a Single Higher Speed Gigabit  
Serial Line with Extensive Media Transmission  
Capabilities.  
• 1~8 x (0.25 to 1.25 Gbps) to 1 x (2 to 10 Gbps)  
Multiplexing  
• 1 x (0.5 to 2.5 Gbps) to 1 x (0.5 to 2.5 Gbps)  
• Dynamic Port Aggregation Supported  
• Programmable High Speed Redundant  
Switching  
• Wide Data Rate Range for Multiple Application  
Support  
• Transmit De-Emphasis and Adaptive Receiver  
Equalization on Both Low Speed and High  
Speed Sides  
• MDIO Clause 22 control interface  
• 8B/10B ENDEC Coding Support  
• Raw (Unencoded) Data Support  
• Core Supply 1V; I/O: 1.5V/1.8V  
• Superior Signal Integrity Performance  
• Low Power Operation: < 800 mW per channel  
(typ)  
• Rate Matching Support (For compatible data  
protocols like GE PCS)  
• Full Non-Blocking Receiver Crosspoint  
Mapping Capability  
• Flexible Clocking  
• Multi Drive Capability (SFP+, backplane, cable)  
• Support for Programmable High Speed Lane  
Alignment Characters  
• Support for Programmable HS/LS 10-Bit  
Alignment Characters  
• Wide Range of Built-in Test Patterns  
• 144-pin, 13mmx13mm FCBGA Package  
1.2 Applications  
• Gigabit Serial Link Aggregation  
• Machine Vision  
• Communications System Backplanes  
spacing  
• Video/Image Data Processing  
1.25GBPS  
1.25GBPS  
1.25GBPS  
1.25GBPS  
1.25GBPS  
1.25GBPS  
1.25GBPS  
1.25GBPS  
1.25GBPS  
1.25GBPS  
ASP 9  
1.25GBPS  
ASP 1  
1.25GBPS  
1.25GBPS  
1.25GBPS  
ASP 10  
1.25GBPS  
ASP 2  
1.25GBPS  
1.25GBPS  
1.25GBPS  
ASP 11  
1.25GBPS  
ASP 3  
1.25GBPS  
1.25GBPS  
1.25GBPS  
ASP 12  
1.25GBPS  
1.25GBPS  
Backplane  
Optical  
ASP 4  
EQ  
Buffer  
X PT  
1.25GBPS  
1.25GBPS  
1.25GBPS  
ASP 13  
1.25GBPS  
1.25GBPS  
ASP 5  
1.25GBPS  
1.25GBPS  
1.25GBPS  
1.25GBPS  
1.25GBPS  
1.25GBPS  
1.25GBPS  
1.25GBPS  
1.25GBPS  
1.25GBPS  
ASP 14  
1.25GBPS  
ASP 6  
1.25GBPS  
1.25GBPS  
1.25GBPS  
ASP 15  
1.25GBPS  
ASP 7  
1.25GBPS  
1.25GBPS  
1.25GBPS  
ASP 16  
1.25GBPS  
ASP 8  
ASP 9  
ASP 1  
ASP 2  
ASP 3  
ASP 4  
ASP 10  
BACKPLANE  
OPTICAL  
ASP 11  
ASP 12  
ASP 13  
ASP 14  
ASP 15  
ASP 16  
10GBPS  
10GBPS  
TLK10081  
TLK10081  
10GBPS  
10GBPS  
ASP 5  
10GBPS  
10GBPS  
ASP 6  
ASP 7  
Optional  
FANOUT or  
REDUNDANT  
TLK10081  
ASP 8  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date. Products conform to  
specifications per the terms of the Texas Instruments standard warranty. Production  
processing does not necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
1.3 Description  
The TLK10081 is a multi-rate link aggregator intended for use in high-speed bi-directional point-to-point  
data transmission systems. The device allows for a reduction in the number of physical links required for a  
certain data throughput by multiplexing multiple lower-rate serial links into higher-rate serial links.  
The TLK10081 has a low-speed interface which can accommodate one to eight bidirectional serial links  
running at rates from 250 Mbps to 1.25 Gbps (maximum of 10 Gbps total throughput). The device’s high  
speed interfaces can operate at rates from 1 Gbps to 10 Gbps. The high speed interface is designed to  
run at 8 x the low speed serial rate regardless of the number of lanes connected. Filler data will be placed  
on any unused lanes in order to keep the interleaved lane ordering constant. This allows for low speed  
lanes to be hot swapped during normal operation without requiring a change in configuration.  
A 1:1 mode is also supported for data rates ranging from 0.5 Gbps to 2.5 Gbps, whereby both low speed  
and high speed are rate matched. The TX and RX datapaths are also independent, so TX may operate in  
8:1 mode while RX operates in 1:1 mode. This independence is restricted to using the same low speed  
line rate. For example, the TX can operate at 8 x 1.25 Gbps while RX operates at 1 x 1.25 Gbps.  
The individual Low Speed lanes may also operate at independent rates in byte interleave mode, provided  
they are operating at integer multiples. The High Speed line rate must be configured based on the fastest  
Low Speed line rate.  
The device has multiple interleaving/de-interleaving schemes that may be used depending on the data  
type. These schemes allow for the low speed lane ordering to be recovered after the lanes are transmitted  
over a single high-speed link. There is also a programmable scrambling/de-scrambling function available  
to help ensure that the high-speed data has suitable properties for transmission (i.e., sufficient transition  
density for clock recovery and DC balance over time) even for non-ideal input data.  
The TLK10081 has the ability to perform lane alignment on 2, 3, or 4 lanes with up to four bytes of lane  
de-skew.  
Both the low speed and high speed side interfaces (transmitters and receivers) use CML signaling with  
integrated termination resistors and feature programmable transmitter de-emphasis levels and adaptive  
receive equalization to help compensate for media impairments at higher frequencies. The device’s serial  
transceivers used are capable of interfacing to optical modules as well as higher-loss connections such as  
PCB backplanes and controlled-impedance copper cabling.  
To aid in system synchronization, the TLK10081 is capable of extracting clocking information from the  
serial input data streams and outputting a recovered clock signal. This recovered clock can be input to a  
jitter cleaner in order to provide a synchronized system clock. The device also has two reference clock  
input ports and a flexible internal PLL, allowing for various serial rates to be supported with a single  
reference clock input frequency.  
The device has various built-in self-test features to aid with system validation and debugging. Among  
these are pattern generation and verification on all serial lanes as well as internal data loopback paths.  
2
INTRODUCTION  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
2 PHYSICAL CHARACTERISTICS  
2.1 Block Diagram  
A simplified block diagram of the TLK10081 device for 8:1 mode is shown in Figure 2-1 and Figure 2-2.  
This low-power transceiver consists of two serializer/deserializer (SERDES) blocks, one on the low speed  
side and the other on the high speed side. The core logic block that lies between the two SERDES blocks  
carries out all the logic functions including test pattern generation and verification.  
The TLK10081 provides a management data input/output (MDIO) control interface as well as a JTAG  
interface for device configuration, control, and monitoring. Detailed descriptions of the TLK10081 pin  
functions are provided in Figure 2-1.  
TLK10081 TX  
Read  
Controller  
M
U
X
FIFO  
CH  
8b/10b  
SYNC  
M
U
X
M
U
X
0
8b/10b  
SCR  
FIFO  
FIFO  
CH  
8b/10b  
8b/10b  
8b/10b  
8b/10b  
8b/10b  
8b/10b  
8b/10b  
SYNC  
M
U
X
M
U
X
CH  
SYNC  
M
U
X
M
U
X
1
FIFO  
CH  
SYNC  
M
U
X
LN0  
MARK  
M
U
X
2
FIFO  
FIFO  
CH  
SYNC  
M
U
X
M
U
X
8b/10b  
SCR  
CH  
SYNC  
M
U
X
M
U
X
FIFO  
FIFO  
3
CH  
SYNC  
M
U
X
M
U
X
CH  
SYNC  
Figure 2-1. A Simplified Block Diagram of the TLK10081 (TX)  
Copyright © 2013, Texas Instruments Incorporated  
PHYSICAL CHARACTERISTICS  
3
Submit Documentation Feedback  
Product Folder Links: TLK10081  
 
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
TLK10081 RX  
M
U
X
8b/10b  
SKEW  
FIFO  
M
U
X
8b/10b  
8b/10b  
SKEW  
SKEW  
FIFO  
FIFO  
M
U
X
M
U
X
M
U
X
8b/10b  
DSCR  
8b/10b  
8b/10b  
SKEW  
SKEW  
FIFO  
FIFO  
MARKER  
D
REPLACE  
E
M
U
X
Ch_sync  
JOG  
M
U
X
LANE  
ORDERING  
M
U
X
M
U
X
M
U
X
FIFO  
FIFO  
8b/10b  
8b/10b  
SKEW  
SKEW  
M
U
X
M
U
X
FIFO  
8b/10b  
SKEW  
Figure 2-2. A Simplified Block Diagram of the TLK10081 (RX)  
2.2 Package  
A 13-mm x 13-mm, 144-pin PBGA package with a ball pitch of 1 mm is used. The device pin-out is as  
shown in Figure 2-3 and is described in detail in Table 2-1 and Table 2-2.  
Figure 2-3. The Pin-Out of the TLK10081  
4
PHYSICAL CHARACTERISTICS  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
 
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
2.3 Terminal Functions  
The details of the terminal functions of the TLK10081 device are provided in Table 2-1 and Table 2-2.  
Table 2-1. Pin Description - Signal Pins  
TERMINAL  
SIGNAL  
DIRECTION  
TYPE  
SUPPLY  
DESCRIPTION  
BGA  
CHANNEL A  
Output  
CML  
VDDA_HS  
High Speed Transmit Channel A Output. HSTXAP and HSTXAN comprise the high speed side  
transmit direction Channel A differential serial output signal. During device reset (RESET_N  
asserted low) these pins are driven differential zero. These CML outputs must be AC coupled.  
HSTXAP  
HSTXAN  
D12  
E12  
Input  
CML  
VDDA_HS  
High Speed Receive Channel A Input. HSRXAP and HSRXAN comprise the high speed side  
receive direction Channel A differential serial input signal. These CML input signals must be AC  
coupled.  
HSRXAP  
HSRXAN  
B12  
A12  
M3/M4  
L1/M1  
K2/L2  
H1/J1  
D1/E1  
B2/C2  
A1/B1  
A4/A3  
Input  
CML  
VDDA_LS  
Low Speed Channel A Inputs. INAP and INAN comprise the low speed side transmit direction  
differential input signals. These signals must be AC coupled.  
INA[7:0]P/N  
M7/M6  
L6/L5  
K5/K4  
J3/H3  
F3/E3  
C4/C5  
B5/B6  
A6/A7  
Output  
CML  
VDDA_LS  
Low Speed Channel A Outputs. OUTAP and OUTAN comprise the low speed side receive  
direction differential output signals. During device reset (RESET_N asserted low) these pins are  
driven differential zero. These signals must be AC coupled.  
OUTA[7:0]P/N  
Channel A Receive Loss Of Signal (LOS) Indicator.  
LOSA=0: Signal detected.  
LOSA=1: Loss of signal.  
Loss of signal detection is based on the input signal level. When HSRXAP/N has a differential  
input signal swing of 75 mVpp, LOSA will be asserted (if enabled). If the input signal is greater  
than 150 mVp-p, LOS will be deasserted. Outside of these ranges, the LOS indication is undefined.  
Output LVCMOS  
1.5V/1.8V  
LOSA  
E9  
Other functions can be observed on LOSA real-time, configured via MDIO  
VDDO0  
40Ω Driver  
During device reset (RESET_N asserted low) this pin is driven low. During pin based power down  
(PDTRXA_N asserted low), this pin is floating. During register based power down, this pin is  
floating.  
It is highly recommended that LOSA be brought to an easily accessible point on the application  
board (header) in the event that debug is required.  
Input  
Channel A Bit Interleave Lane Rotation Jog.  
A toggle of this pin, either from high to low or from low to high, causes a lane rotation of the  
HSRXAP/N source data.  
LVCMOS  
1.5V/1.8V  
VDDO0  
RXCTRL_0  
GPO0  
B10  
D9  
Output  
LVCMOS  
1.5V/1.8V  
VDDO0  
Channel A Multi-purpose Status Indicator.  
This pin should be left unconnected in the device application.  
40Ω Driver  
Input  
Transceiver Power Down.  
LVCMOS  
1.5V/1.8V  
VDDO0  
When this pin is held low (asserted), the device is placed in power down mode. When deasserted,  
the device operates normally. After deassertion, a software data path reset should be issued  
through the MDIO interface.  
PDTRXA_N  
A8  
CHANNEL B (High Speed Interface Only)  
Output  
CML  
VDDA_HS  
Serial Transmit Channel B Output. HSTXBP and HSTXBN comprise the high speed side  
transmit direction Channel B differential serial output signal. During device reset (RESET_N  
asserted low) these pins are driven differential zero. These CML outputs must be AC coupled.  
HSTXBP  
HSTXBN  
K12  
L12  
Input  
CML  
VDDA_HS  
HSRXBP  
HSRXBN  
H12  
G12  
Serial Receive Channel B Input. HSRXBP and HSRXBN comprise the high speed side receive  
direction Channel B differential serial input signal. These CML input signals must be AC coupled.  
Copyright © 2013, Texas Instruments Incorporated  
PHYSICAL CHARACTERISTICS  
5
Submit Documentation Feedback  
Product Folder Links: TLK10081  
 
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
Table 2-1. Pin Description - Signal Pins (continued)  
TERMINAL  
DIRECTION  
TYPE  
SUPPLY  
DESCRIPTION  
SIGNAL  
BGA  
Channel B Receive Loss of Signal (LOS) Indicator.  
LOSB=0: Signal detected.  
LOSB=1: Loss of signal.  
Loss of signal detection is based on the input signal level. When HSRXBP/N has a differential  
input signal swing of 75 mVpp, LOSB will be asserted (if enabled). If the input signal is greater  
than 150 mVp-p, LOS will be deasserted. Outside of these ranges, the LOS indication is  
undefined.  
Output  
LVCMOS  
1.5V/1.8V  
VDDO1  
LOSB  
K8  
Other functions can be observed on LOSB real-time, configured via MDIO.  
40Ω Driver  
During device reset (RESET_N asserted low) this pin is driven low. During pin based power down  
(PDTRXB_N asserted low), this pin is floating. During register based power down, this pin is  
floating.  
It is highly recommended that LOSB be brought to an easily accessible point on the application  
board (header) in the event that debug is required.  
Input  
Channel B Bit Interleave Lane Rotation Jog.  
A toggle of this pin, either from high to low or from low to high, causes a lane rotation of the  
HSRXBP/N source data.  
LVCMOS  
1.5V/1.8V  
VDDO1  
RXCTRL_1  
GPO1  
L8  
H9  
J4  
Output  
LVCMOS  
1.5V/1.8V  
VDDO1  
Channel B General Purpose Output.  
This pin should be left unconnected in the device application.  
40Ω Driver  
Input  
Transceiver Power Down. When this pin is held low (asserted), Channel B is placed in power  
down mode. When deasserted, Channel B operates normally. After deassertion, a software data  
path reset should be issued through the MDIO interface.  
LVCMOS  
1.5V/1.8V  
VDDO1  
PDTRXB_N  
REFERENCE CLOCKS AND CONTROL AND MONITORING SIGNALS  
Reference Clock Input Zero. This differential input is a clock signal used as a reference to one or  
Input  
LVDS/LVPECL  
DVDD  
both channels.The reference clock selection is done through MDIO or REFCLKA_SEL and  
REFCLKB_SEL pins. This input signal must be AC coupled. If unused, REFCLK0P/N should be  
pulled down to GND through a shared 100 ohm resistor.  
REFCLK0P/N  
REFCLK1P/N  
REFCLK_SEL  
M10 / M11  
K9 / K10  
H10  
Reference Clock Input One. This differential input is a clock signal used as a reference to one or  
both channels. The reference clock selection is done through MDIO. This input signal must be AC  
coupled. If unused, REFCLK1P/N should be pulled down to GND through a shared 100 ohm  
resistor.  
Input  
LVDS/LVPECL  
DVDD  
Input  
Reference Clock Select. This input, when low, selects REFCLK0P/N as the clock reference to  
Channel A/B SERDES. When high, REFCLK1P/N is selected as the clock reference to Channel  
A/B SERDES. If software control is desired, this input signal should be tied low. Default reference  
clock for Channel A/B is REFCLK0P/N.  
LVCMOS  
1.5V/1.8V  
VDDO0  
Channel A/B Output Clock. By default, this output is enabled and outputs the high speed side  
Channel A recovered byte clock (high speed line rate divided by 20). Optionally it can be  
configured to output the VCO clock divided by 2. Additional MDIO-selectable divide ratios of 1, 2,  
4, 5, 8, 10, 16, 20, and 25 are available. See Figure 5-1.  
Output  
CML  
DVDD  
These CML outputs must be AC coupled.  
CLKOUTAP/N  
CLKOUTBP/N  
C9/C10  
A9/A10  
During device reset (RESET_N asserted low) these pins are driven differential zero.  
During pin based power down (PDTRXA_N and PDTRXB_N asserted low), these pins are  
floating.  
During register based power down, these pins are floating.  
Enable PRBS: When this pin is asserted high, the internal PRBS generator and verifier circuits  
are enabled on both transmit and receive data paths on high speed and low speed sides of both  
channels.  
Input  
LVCMOS  
1.5V/1.8V  
VDDO0  
PRBSEN  
B9  
This signal is logically OR’d with MDIO register bits A.13:12, and B.13:12.  
PRBS 231-1 is selected by default, and can be changed through MDIO.  
Receive PRBS Error Free (Pass) Indicator.  
When PRBS test is enabled (PRBSEN=1):  
PRBS_PASS=1 indicates that PRBS pattern reception is error free.  
PRBS_PASS=0 indicates that a PRBS error is detected. The channel, high speed or low speed  
side, and lane (for low speed side) that this signal refers to is chosen through MDIO register bits  
0.3:0.  
Output  
LVCMOS  
/1.8V  
PRBS_PASS  
J9  
VDDO1  
40Ω Driver  
During device reset (RESET_N asserted low) this pin is driven low.  
During pin based power down (PDTRXA_N and PDTRXB_N asserted low), this pin is floating.  
During register based power down, this pin is floating.  
It is highly recommended that PRBS_PASS be brought to easily accessible point on the  
application board (header), in the event that debug is required.  
6
PHYSICAL CHARACTERISTICS  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
Table 2-1. Pin Description - Signal Pins (continued)  
TERMINAL  
DIRECTION  
TYPE  
SUPPLY  
DESCRIPTION  
SIGNAL  
BGA  
M8  
J6  
L9  
G9  
E10  
MDIO Port Address. Used to select the MDIO port address.  
Input  
LVCMOS  
1.5V/1.8V  
VDDO[1:0]  
PRTAD[4:0]  
The TLK10081 will respond if the port address field on MDIO protocol (PA[4:0]) matches  
PRTAD[4:0].)  
Input  
LVCMOS  
1.5V/1.8V  
VDDO01  
Low True Device Reset. RESET_N must be held asserted (low logic level) for at least 10µs after  
device power stabilization.  
RESET_N  
MDC  
H5  
J8  
Input  
LVCMOS  
with Hysteresis  
1.5V/1.8V  
VDDO1  
MDIO Clock Input. Clock input for the Clause 22 MDIO interface.  
Note that an external pullup is generally not required on MDC.  
MDIO Data I/O. MDIO interface data input/output signal for the Clause 22 MDIO interface. This  
signal must be externally pulled up to VDDO using a 2kΩ resistor.  
Input/Output  
LVCMOS  
1.5V/1.8V  
VDDO1  
During device reset (RESET_N asserted low) this pin is floating. During software initiated power  
down the management interface remains active for control register writes and reads. Certain  
status bits are not deterministic as their generating clock source may be disabled as a result of  
asserting either power down input signal. During pin based power down (PDTRXA_N and  
PDTRXB_N asserted low), this pin is floating. During register based power down (1.15 asserted  
high both channels), this pin is driven normally.  
MDIO  
J7  
25Ω Driver  
JTAG Input Data. TDI is used to serially shift test data and test instructions into the device during  
the operation of the test port. In system applications where JTAG is not implemented, this input  
signal may be left floating.  
During pin based power down (PDTRXA_N and PDTRXB_N asserted low), this pin is not pulled  
up. During register based power down, (1.15 asserted high both channels), this pin is pulled up  
normally.  
Input LVCMOS  
1.5V/1.8V VDDO0  
(Internal Pullup)  
TDI  
C8  
D6  
TDO  
Output LVCMOS  
1.5V/1.8V VDDO0  
50Ω Driver  
JTAG Output Data. TDO is used to serially shift test data and test instructions out of the device  
during the operation of the test port. When the test port is not in use, TDO is in a high impedance  
state.  
During device reset (RESET_N asserted low) this pin is floating. During pin based power down  
(PDTRXA_N and PDTRXB_N asserted low), this pin is not pulled up. During register based power  
down, (1.15 asserted high both channels), this pin is pulled up normally.  
JTAG Mode Select. TMS is used to control the state of the internal test-port controller. In system  
applications where JTAG is not implemented, this input signal can be left unconnected.  
During pin based power down (PDTRXA_N and PDTRXB_N asserted low), this pin is not pulled  
up. During register based power down, (1.15 aserted high both channels), this pin is pulled up  
normally.  
Input LVCMOS  
1.5V/1.8V VDDO0  
(Internal Pullup)  
TMS  
TCK  
B8  
D8  
Input LVCMOS  
with Hysteresis  
1.5V/1.8V VDDO0  
JTAG Clock. TCK is used to clock state information and test data into and out of the device  
during boundary scan operation. In system applications where JTAG is not implemented, this  
input signal should be grounded.  
JTAG Test Reset. TRST_N is used to reset the JTAG logic into system operational mode. This  
input can be left unconnected in the application and is pulled down internally, disabling the JTAG  
circuitry. If JTAG is implemented on the application board, this signal should be deasserted (high)  
during JTAG system testing, and otherwise asserted (low) during normal operation mode.  
During pin based power down (PDTRXA_N and PDTRXB_N asserted low), this pin is not pulled  
down. During register based power down (1.15 asserted high both channels), this pin is pulled  
down normally.  
Input LVCMOS  
1.5V/1.8V VDDO0  
(Internal Pulldown)  
TRST_N  
E5  
Input LVCMOS  
1.5V/1.8V VDDO1  
Test Enable. This signal is used during the device manufacturing process. It should be grounded  
through a resistor in the device application board.  
TESTEN  
GPI0  
L10  
J10  
M9  
Input LVCMOS  
1.5V/1.8V VDDO1  
General Purpose Input Zero. This signal is used during the device manufacturing process. It  
should be grounded through a resistor on the device application board.  
Input LVCMOS  
1.5V/1.8V VDDO1  
General Purpose Input One. This signal is used during the device manufacturing process. It  
should be grounded through a resistor on the device application board.  
GPI1  
SERDES Channel A Analog Testability I/O. This signal is used during the device manufacturing  
process. It should be left unconnected in the device application.  
AMUXA  
AMUXB  
C11  
D4  
Analog I/O  
Analog I/O  
SERDES Channel B Analog Testability I/O. This signal is used during the device manufacturing  
process. It should be left unconnected in the device application.  
Copyright © 2013, Texas Instruments Incorporated  
PHYSICAL CHARACTERISTICS  
7
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
Table 2-2. Pin Description - Power Pins  
TERMINAL  
SIGNAL  
TYPE  
DESCRIPTION  
BGA  
SERDES Analog Power.  
VDDA_LS and VDDA_HS provide supply voltage for the analog circuits on the  
low-speed and high-speed sides respectively. 1.0V nominal. Can be tied  
together on the application board.  
VDDA_LS/HS  
VDDT_LS/HS  
D2, F2, G2, J2, F11, G10  
F4, G4, F9  
Power  
SERDES Analog Power.  
VDDT_LS and VDDT_HS provide termination and supply voltage for the analog  
circuits on the low-speed and high-speed sides respectively. 1.0V nominal. Can  
be tied together on the application board.  
Power  
SERDES Digital Power.  
VDDD  
DVDD  
E6, E8, F6, H6, H8  
E7, F7, G6, G8, H7  
C3, K3  
Power  
Power  
Power  
VDDD provides supply voltage for the digital circuits internal to the SERDES.  
1.0V nominal.  
Digital Core Power.  
DVDD provides supply voltage to the digital core. 1.0V nominal.  
SERDES Analog Regulator Power.  
VDDRA_LS and VDDRB_LS provide supply voltage for the internal PLL  
regulator for the low speed side. 1.5V or 1.8V nominal.  
VDDRA_LS,  
VDDRB_LS  
SERDES Analog Regulator Power.  
VDDRA_HS  
VDDRB_HS  
VDDO[1:0]  
VPP  
E11  
J11  
Power  
Power  
Power  
Power  
VDDRA_HS provides supply voltage for the internal PLL regulator for high  
speed Channel A. 1.5V or 1.8V nominal.  
SERDES Analog Regulator Power  
VDDRB_HS provides supply voltage for the internal PLL regulator for high  
speed Channel B. 1.5V or 1.8V nominal.  
LVCMOS I/O Power.  
VDDO0 and VDDO1 provide supply voltage for the LVCMOS inputs and  
outputs. 1.5V or 1.8V nominal. Can be tied together on the application board.  
K7, C7  
D7  
Factory Program Voltage.  
Used during device manufacturing. The application must connect this power  
supply directly to DVDD.  
A2, A5, A11, B3, B4, B7,  
B11, C1, C6, C12, D3,  
D5, D10, D11, E2, E4, F1,  
F5, F8, F10, F12, G1, G3,  
G5, G7, G11, H2, H4,  
H11, J5, J12, K1, K6,  
K11, L3, L4, L7, L11, M2,  
M5, M12  
Ground.  
VSS  
Ground  
Common analog and digital ground.  
8
PHYSICAL CHARACTERISTICS  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
3 FUNCTIONAL DESCRIPTION  
The TLK10081 allows for high-speed interleaving/de-interleaving of 1 to 8 serial data streams to aggregate  
them into a single physical link. The data processing required to support this functionality is detailed in the  
following subsections.  
3.1 Transmit (Interleaving) Direction  
Two configurations for TLK10081 transmit data path with the device configured to operate in the normal  
transceiver (mission) mode are shown in Figure 3-1 and Figure 3-2.  
In the transmit direction, the lower-rate serial lanes to be interleaved are first received by a deserializer  
(one per lane) capable of resolving data at up to 5 Gbps. This deserialized data can be optionally aligned  
to 10-bit word boundaries (based on a user-defined 10-bit alignment character) and optionally 8b/10b  
decoded. If these functions are not relevant to the data being received, they can be bypassed. The  
received data on each is input to a FIFO in order to compensate for phase differences between the low  
speed serial links and the high speed side of the chip. This FIFO is also capable of clock tolerance  
compensation if needed.  
The high speed side can then aggregate the data in one of two ways – (1) word interleaving or (2) bit  
interleaving. If word interleaving is chosen, the low speed data streams are interleaved in a round-robin  
fashion 10 bits at a time. If bit interleaving is chosen, the interleaving is performed on a bit-by-bit basis. In  
either case, provisions need to be taken so that the far-end receiver is able to correctly identify the lane  
assignments. This is handled by the device’s lane ordering logic, described in Section 3.3.  
The high-speed aggregate data stream can then be optionally 8b/10b encoded and optionally scrambled  
by a polynomial scrambling function. These functions provide different ways of ensuring the high speed  
serial output can be received properly by a device at the other end of the link (by increasing the transition  
density and by giving a more even distribution of high and low levels). Note that if both the encoding and  
scrambling functions are used, the user can determine whether to first encode the data and then scramble  
or to first scramble the data and then encode. If the latter option is chosen, scrambling is not performed on  
control codes (Kx.x). The resulting data is then output by a serializer capable of data rates up to 10 Gbps.  
Copyright © 2013, Texas Instruments Incorporated  
FUNCTIONAL DESCRIPTION  
9
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
TLK10081 TX  
Read  
Controller  
M
U
FIFO  
CH  
8b/10
8b/10
8b/10b  
8b/10b  
8b/10b  
8b/10b  
8b/10b  
M
U
X
M
U
0
8b/10b  
FF
CH  
SYNC  
M
U
X
M
X
SYNC  
M
U
X
SCR  
M
X
1
FIFO  
CH  
SYNC  
M
LN
MARK  
X
U
X
2
FIFO  
FIFO  
CH  
SYNC  
M
U
X
U
X
8b/10b  
CH  
SYNC  
M
U
X
U
X
FIFO  
FIFO  
3
CH  
M
U
X
SCR  
SYNC  
M
U
X
SYNC  
Figure 3-1. Transmit Datapath, 10-Bit Mode  
10  
FUNCTIONAL DESCRIPTION  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
TLK10081 TX  
Read  
Controlle  
r
M
U
X
FIFO  
CH  
8b/10b  
8b/10b  
8b/10b  
8b/10b  
8b/10b  
8b/10b  
8b/10b  
8b/10b  
SYNC  
M
U
X
M
U
X
8b/10b  
FIFO  
CH  
SYNC  
M
U
X
M
U
X
CH  
SYNC  
M
U
X
SCR  
M
U
X
FIFO  
CH  
SYNC  
M
U
X
LN0  
MARK  
M
U
X
CH  
SYNC  
M
U
X
M
U
X
8b/10b  
CH  
SYNC  
M
U
X
M
U
X
FIFO  
CH  
M
U
X
SCR  
SYNC  
M
U
X
CH  
SYNC  
Figure 3-2. Transmit Datapath, Raw Serial Data (Bit Interleave)  
3.2 Receive (De-Interleaving) Direction  
With the device configured to operate in the normal transceiver (mission) mode, the receive data paths are  
as shown in Figure 3-2, Receive data path (10-bit mode), and Figure 3-3, Receive data path (raw serial  
mode).  
In the receive direction, the high speed aggregate stream is received by a deserializer capable of data  
rates up to 10 Gbps. The deserialized data is then aligned to 20-bit boundaries by the device’s channel  
synchronization logic. This alignment can be based on a user-defined 10-bit alignment code (in the case  
of 8b/10b or otherwise 10-bit delineated data) or can be done arbitrarily (for cases where 10-bit delineation  
is not meaningful). In either case, the chosen word boundaries can be adjusted manually if necessary to  
adjust the bit assignments.  
Once the data is aligned, it can be optionally 8b/10b decoded or descrambled as needed before being  
input to the device’s receive lane ordering logic (discussed in detail in Section 3.3). After lane assignments  
are determined, the de-aggregated serial data streams are input to independent FIFOs in order to absorb  
phase variations between the high-speed and low-speed clock domains and to compensate for clock rate  
differences if desired.  
Each low speed data stream will pass through a programmable skew buffer (in case delays need to be  
added to certain lanes in order to meet system-level skew requirements) and optionally 8b/10b encoded  
before being output by a serializer capable of rates up to 1.25 Gbps.  
Copyright © 2013, Texas Instruments Incorporated  
FUNCTIONAL DESCRIPTION  
11  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
 
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
TLK10081 RX  
M
U
X
8b/10b  
SKEW  
FIFO  
M
U
X
8b/10b  
8b/10b  
SKEW  
SKEW  
FIFO  
FIFO  
M
U
X
U
X
M
U
X
8b/10b  
8b/10b  
8b/10b  
SKEW  
SKEW  
FIFO  
FIFO  
MARKER  
REPLACE  
M
U
X
E
M
Ch_sync  
JOG  
U
LANE  
ORDERING  
M
U
X
M
U
X
DSCR  
M
U
X
FIFO  
FIFO  
8b/10b  
8b/10b  
SKEW  
SKEW  
M
U
X
M
U
X
FIFO  
8b/10b  
SKEW  
Figure 3-3. Receive Datapath, 10-Bit Mode  
TLK10081 RX  
M
X
8b/10b  
SKEW  
FIFO  
M
U
X
8b/10b  
8b/10b  
SKEW  
SKEW  
FIFO  
FIFO  
M
X
M
U
X
M
U
X
8b/10b  
8b/10b  
8b/10b  
SKEW  
FIFO  
MARKER  
REPLACE  
D
E
M
Ch_sync  
JOG  
M
U
LANE  
ORDERING  
M
X
M
U
X
DSCR  
U
X
FIFO  
8b/10b  
8b/10b  
SKEW  
U
X
U
X
FIFO  
8b/10b  
SKEW  
Figure 3-4. Receive Datapath, Raw Serial Data  
In 1:1 mode, the receive datapath is similar to 8:1 mode, but does not have a skew buffer or a  
programmable descrambler. Lanes 1-7 are not used.  
12  
FUNCTIONAL DESCRIPTION  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
3.3 Lane Ordering  
When multiple serial data links are multiplexed into a single physical link, special provisions need to be  
taken in order for the original lane assignments to be recovered at the far end of the link. The TLK10081  
provides several methods to accomplish this.  
3.3.1 Reserved Lane Marker Characters  
If the data to be aggregated can be deserialized into 10-bit words, then it is possible to identify certain  
reserved codes that can be used to keep track of lane assignments. In the TX direction, the TLK10081  
can be configured to identify a programmable “search” character (one that is expected to occur in the data  
stream) and replace it with another programmable “replace” character (one that is not expected to occur in  
the data stream). In the RX direction, the device can search for this reserved code in the high speed data  
it is receiving and use the position of the code in the aggregated data stream to determine the correct lane  
assignments. This code can then be replaced with another programmable character before being output  
on the low speed side. This allows for the lane marking process to be transparent to systems interfacing to  
the TLK10081’s low speed side.  
3.3.2 Training Sequence  
If it not possible to define reserved lane marking codes (for example, if the low-speed serial data does not  
have 10-bit delineation or unused codes), then it is possible to configure the TLK10081 so that lane  
ordering is determined at link start-up (prior to normal data transmission). This is accomplished via a  
training sequence sent over the high speed link from the transmitting device to the receiving device. Once  
the receiver has detected the training sequence and has determined lane ordering (as indicated through  
MDIO registers), then the transmitter can transition into normal operation.  
3.3.3 Manual Lane Rotation  
If the application allows for lane ordering to be determined at a system level instead, the TLK10081  
provides a manual method for cycling through the possible lane order rotations. If manual rotation is used,  
then the device will iterate through different rotations as controlled by either MDIO registers or the  
RXCTRL pins.  
3.3.4 Reserved Lane  
If fewer than eight low speed lanes are required by the application, one lane can be used to continuously  
send lane ordering information. This allows for continual monitoring of lane ordering so that the  
assignments can be quickly re-established in the event of a link disruption.  
Copyright © 2013, Texas Instruments Incorporated  
FUNCTIONAL DESCRIPTION  
13  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
10-Bit Programmable Marker  
Replacement  
10-Bit Programmable Marker ID  
and Replacement  
10-Bit Programmable byte  
boundary framer  
A1  
M0  
M0  
A1  
TLK10081 RX  
TLK081 TX  
MARKER  
REPLACE +  
LANE  
1.25Gbps  
A2  
A2  
CH  
SYNC  
FIFO +  
A2 A1  
A2 A1  
A4 A3 A2 A1  
1.25Gbps  
FIFO  
FIFO  
SKEW  
SKEW  
A4 A3 A2 A1  
Marker M0  
A1  
ORDERING  
1.25Gbps  
B3  
B3  
B2  
CH  
SYNC  
B3 B2  
B3 B2  
B5 B4 B3 B2  
1.25Gbps  
FIFO  
B5 B4 B3 B2  
B2  
1.25Gbps  
C2  
FIFO  
CH  
SYNC  
C2  
C1  
C2 C1  
C2 C1  
C4 C3 C2 C1  
C4 C3 C2 C1  
FIFO  
SKEW  
C1  
G
1.25Gbps  
1.25Gbps  
D3  
FIFO  
CH  
SYNC  
D3  
D2  
D3 D2  
D3 D2  
D5 D4 D3 D2  
D5 D4 D3 D2  
10Gbps  
D
E
M
U
X
FIFO  
FIFO  
SKEW  
SKEW  
D2  
M
U
X
1.25Gbps  
CH  
SYNC  
H2 G4 F0 E3 D2 C1 B2 M0  
1.25Gbps  
E4  
E4  
E3  
CH  
SYNC  
E4 E3  
E4 E3  
FIFO  
E6 E5 E4 E3  
1.25Gbps  
E6 E5 E4 E3  
E3  
1.25Gbps  
F1  
F1  
F0  
CH  
SYNC  
F1 F0  
F1 F0  
F3 F2 F1 F0  
1.25Gbps  
FIFO  
F3 F2 F1 F0  
FIFO  
SKEW  
F0  
1.25Gbps  
G5  
FIFO  
CH  
SYNC  
G5  
G4  
G5 G4  
G5 G4  
G7 G6 G5 G4  
G7 G6 G5 G4  
FIFO  
FIFO  
SKEW  
SKEW  
G4  
1.25Gbps  
1.25Gbps  
H3  
FIFO  
CH  
SYNC  
H3  
H2  
H3 H2  
H3 H2  
H5 H4 H3 H2  
H5 H4 H3 H2  
H2  
1.25Gbps  
Sn  
Symbol ± 10 bits  
M0  
Lane 0 Marker ± 10 bits ± Programmable char identified is replaced with programmable Marker  
Figure 3-5. Block Diagram of the Interleave/De-interleave Scheme  
3.4 Additional Functionality  
3.4.1 1:1 Mode  
The TLK10081 also supports a 1:1 mode for data retiming. The data path for this mode is shown below. In  
the transmit direction, data is received by the low-speed deserializer on Lane 0 of the selected channel,  
aligned to word boundaries (if applicable), 8b/10b decoded (if applicable), input to a phase-correction  
FIFO capable of clock tolerance compensation, optionally 8b/10b encoded, and transmitted out the high  
speed serial ports. The receive direction operates similarly, but in the opposite direction (eventually  
outputting the serial data on low speed Lane 0).  
1:1 Mode TX  
Ch_sync  
JOG  
8b/10b  
Decoder  
8b/10b  
Encoder  
FIFO  
1:1 Mode RX  
Ch_sync  
JOG  
8b/10b  
Encoder  
8b/10b  
Decoder  
FIFO  
Figure 3-6. 1:1 Mode Datapath  
14  
FUNCTIONAL DESCRIPTION  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
Note that it is possible to operate one direction (transmit or receive) of a particular channel in 1:1 mode  
while the other direction operates in 8:1 mode.  
3.4.2 Clock Tolerance Compensation  
The phase-correction FIFOs used to interface between the low speed and high speed clock domains  
within the device are also capable of clock tolerance compensation (CTC). If enabled, the CTC function  
will correct for clock rate mismatches by periodically inserting or deleting a user-defined reserved “idle”  
character. Note that character insertion only occurs immediately following detection of an existing “idle”  
character, so these should occur regularly in the data stream to ensure that compensation can be  
performed frequently enough to avoid FIFO collisions.  
3.4.3 Crosspoint Switch  
The TLK10081’s default lane ordering passes through low speed input lanes (0 through 7) into fixed  
positions in the outputted high speed aggregate link. The high speed receiver will then identify which  
positions correspond to which lanes and output them accordingly on its low speed outputs. However, it is  
possible to reconfigure the data sources that are associated with each output lane/position through MDIO.  
For each HS transmit output, the source can be selected from the low speed input of the same channel or  
from either channel's high speed input. For the LS transmit output, data can be sourced from the low  
speed input or either channel's high speed input.Since the data source (input) assigned to each output is  
configured independently, a broadcast/fan-out function can be supported.  
3.4.4 Unused Lanes  
Some lanes may not be used all the time. When they are disconnected, data stuffing must occur to fill in  
the void left by the missing input data. In TLK10081, the data pattern sent to represent lane down should  
not alias with actual data; therefore, a repeated fill data sequence is used. The active/not active status of  
all lanes can be monitored through MDIO.  
To implement the lane down function on the RX side, eight separate state machines will monitor the high  
speed data for the fill sequence and indicate the status of each lane through the low speed status register  
0x13.  
3.4.5 Test Pattern Generationa and Verification  
The TLK10081 has an extensive suite of built in test functions to support system diagnostic requirements.  
Each channel has sets of internal test pattern generators and verifiers.  
Several patterns can be selected via the MDIO interface that offer extensive test coverage. The low speed  
side supports generation and verification of pseudo-random bit sequence (PRBS) 27-1, 223-1, and 231-1  
patterns. In addition to those PRBS patterns, the high speed side supports High-frequency (HF), Low-  
frequency (LF), Mixed-frequency (MF), and continuous random test pattern (CRPAT) long/short pattern  
generation and verification as defined in IEEE Standard 802.3.  
The TLK10081 provides two pins: PRBSEN and PRBS_PASS, for additional and easy control and  
monitoring of PRBS pattern generation and verification. When the PRBSEN is asserted high, the internal  
PRBS generator and verifier circuits are enabled on both transmit and receive data paths on high speed  
and low speed sides of both channels. This signal is logically OR’d with an MDIO register bits A.13:12 and  
B.13:12.  
PRBS 231-1 is selected by default, and can be changed through MDIO.  
When PRBS test is enabled (PRBSEN=1):  
PRBS_PASS=1 indicates that PRBS pattern reception is error free.  
PRBS_PASS=0 indicates that a PRBS error is detected. The channel, the side (high speed or low speed),  
and the lane (for low speed side) that this signal refers to is chosen through MDIO register bit 0.3:0.  
Copyright © 2013, Texas Instruments Incorporated  
FUNCTIONAL DESCRIPTION  
15  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
3.4.6 Power Down Mode  
The TLK10081 can be put in power down either through device inputs pins or through MDIO control  
register (1.15). PDTRXA_N: Active low, powers down the channel.  
The MDIO management serial interface remains operational when in register based power down mode  
(1.15 asserted for both channels), but status bits may not be valid since the clocks are disabled. The low  
speed side and high speed side SERDES outputs are high impedance when in power down mode. Please  
see the detailed per pin description for the behavior of each device I/O signal during pin based and  
register based power down.  
3.4.7 Transmit / Receive Latency  
The latency through the TLK10081 is shown in Figure 3-7. Note that the latency ranges shown indicate  
static rather than dynamic latency variance, i.e., the range of possible latencies when the serial link is  
initially established. During normal operation, the latency through the device is fixed.  
Figure 3-7. TLK10081 Transmit / Receive Latency  
16  
FUNCTIONAL DESCRIPTION  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
 
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
4 SERDES INTERFACES  
4.1 High Speed CML Output  
The high speed data output driver is implemented using Current Mode Logic (CML) with integrated pull up  
resistors, requiring no external components. The transmit outputs must be AC coupled.  
HSTXAP  
HSRXAP  
50 ohm transmission line  
50  
V
TERM  
50  
GND  
50 ohm transmission line  
HSTXAN  
HSRXAN  
TRANSMITTER  
MEDIA  
RECEIVER  
Figure 4-1. Example of High Speed I/O AC Coupled Mode (Channel A HS side is shown)  
Current Mode Logic (CML) drivers often require external components. The disadvantage of the external  
component is a limited edge rate due to package and line parasitic. The CML driver on TLK10081 has on-  
chip 50Ω termination resistors terminated to VDDT, providing optimum performance for increased speed  
requirements. The transmitter output driver is highly configurable allowing output amplitude and de-  
emphasis to be tuned to a channel's individual requirements. Software programmability allows for very  
flexible output amplitude control. Only AC coupled output mode is supported.  
When transmitting data across long lengths of PCB trace or cable, the high frequency content of the signal  
is attenuated due to the skin effect of the media. This causes a “smearing” of the data eye when viewed  
on an oscilloscope. The net result is reduced timing margins for the receiver and clock recovery circuits. In  
order to provide equalization for the high frequency loss, 4-tap finite impulse response (FIR) transmit de-  
emphasis is implemented. A highly configurable output driver maximizes flexibility in the end system by  
allowing de-emphasis and output amplitude to be tuned to a channel’s individual requirements. Output  
swing control is via MDIO.  
See Figure 7-2 for output waveform flexibility. The level of de-emphasis is programmable via the MDIO  
interface through control registers (5.7:4 and 5.12:8) through pre-cursor and post-cursor settings. Users  
can control the strength of the de-emphasis to optimize for a specific system requirement.  
4.2 High Speed Receiver  
The high speed receiver is differential CML with internal termination resistors. The receiver requires AC  
coupling. The termination impedances of the receivers are configured as 100 Ohms with the center tap  
weakly tied to 0.8*VDDT with a capacitor to create an AC ground.  
TLK10081 serial receivers incorporate adaptive equalizers. This circuit compensates for channel insertion  
loss by amplifying the high frequency components of the signal, reducing inter-symbol interference.  
Equalization can be enabled or disabled per register settings. Both the gain and bandwidth of the  
equalizer are controlled by the receiver equalization logic.  
4.3 Loss of Signal Output Generation (LOS)  
Loss of input signal detection is based on the voltage level of each serial input signal INA*P/N,  
HSRXAP/N, and HSRXBP/N. Anytime the serial receive input differential signal peak to peak voltage level  
is 75 mVpp for High Speed side or 65mVpp for Low Speed side, LOSA or LOSB are asserted (high true)  
respectively for Channel A and Channel B (if enabled, disabled by default). Note that an input signal 150  
mVpp for High Speed side and 175 mVpp for Low Speed side is required for reliable operation of the loss  
of signal detection circuits. If the input signal is between these two ranges, the SERDES will operate  
properly, but the LOS indication will not be valid (or robust). The LOS indications are also directly readable  
through the MDIO interface in respective registers.  
Copyright © 2013, Texas Instruments Incorporated  
SERDES INTERFACES  
17  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
The following additional critical status conditions can be combined with the loss of signal condition  
enabling additional real-time status signal visibility on the LOSA and LOSB outputs per channel:  
1. Loss of Channel Synchronization Status – Logically OR’d with LOS condition(s) when enabled. Loss of  
channel synchronization can be optionally logically OR’d (disabled by default) with the internally  
generated LOS condition (per channel).  
2. Loss of PLL Lock Status on LS and HS sides – Logically OR’d with LOS condition(s) when enabled.  
The internal PLL loss of lock status bit is optionally OR’d (disabled by default) with the other internally  
generated loss of signal conditions (per channel).  
3. Receive 8B/10B Decode Error (Invalid Code Word or Running Disparity Error) – Logically OR’d with  
LOS condition(s) when enabled. The occurrence of an 8B/10B decode error (invalid code word or  
disparity error) is optionally OR’d (disabled by default) with the other internally generated loss of signal  
conditions (per channel).  
4. AGCLOCK (Active Gain Control Currently Locked) – Inverted and Logically OR’d with LOS condition(s)  
when enabled. HS RX SERDES adaptive gain control unlocked indication is optionally OR’d (disabled  
by default) with the other internally generated loss of signal conditions (per channel).  
5. AZDONE (Auto Zero Calibration Done) - Inverted and Logically OR’d with LOS conditions(s) when  
enabled. HS RX SERDES auto-zero not done indication is optionally OR’d (disabled by default) with  
the other internally generated loss of signal conditions (per channel).  
18  
SERDES INTERFACES  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
5 CLOCKING  
5.1 Configuring PLL and Line Rates  
The TLK10081 includes internal low-jitter high quality oscillators that are used as frequency multipliers for  
the low speed and high speed SERDES and other internal circuits of the device. Specific MDIO registers  
are available for SERDES rate and PLL multiplier selection to match line rates and reference clock  
(REFCLK0/1) frequencies for various applications. Some examples are detailed below on how to select  
and configure.  
The external differential reference clock has a large operating frequency range allowing support for many  
different applications. The reference clock frequency must be within ± 200 PPM of the incoming serial data  
rate (± 100 PPM of nominal data rate).  
Table 5-1. Line Rate and Reference Clock Selection for the 1:1 Mode  
LOW SPEED SIDE  
HIGH SPEED SIDE  
SERDES PLL  
MULTIPLIER  
LINE RATE  
(Mbps)  
SERDES PLL  
REFCLKP/N  
(MHz)  
LINE RATE  
(Mbps(1)  
REFCLKP/N  
(MHz)  
RATE  
RATE  
MULTIPLIER  
)
1000-1250  
1000-1250  
1000-1250  
10  
8
Half  
Half  
100-125  
125-156.25  
250-312.5  
1000-1250  
1000-1250  
1000-1250  
20  
16  
8
Quarter  
Quarter  
Quarter  
100-125  
125-156.25  
250-312.5  
8
Quarter  
(1) High Speed Side SERDES runs at 2x effective data rate.  
For other line rates in 8:1 mode, valid reference clock frequencies can be selected with the help of the  
information provided in Table 5-2 and Table 5-3 for the low speed side and high speed side SERDES. The  
reference clock frequency has to be the same for the two SERDES and must be within the specified valid  
ranges for different PLL multipliers.  
Table 5-2. Line Rate and Reference Clock Frequency Ranges for the Low Speed Side SERDES  
REFERENCE CLOCK (MHz)  
HALF RATE (Gbps)  
MIN  
MAX(1)  
QUARTER RATE (Gbps)  
SERDES PLL  
MULTIPLIER (MPY)  
MIN  
250  
MAX  
425  
MIN  
0.5  
MAX  
0.85  
4
5
1
1.25  
1.25  
1.25  
1.25  
1.25  
200  
425  
1
0.5  
1.0625  
1.25  
6
166.667  
125  
416.667  
312.5  
250  
1
1
0.5  
8
0.5  
1.25  
10  
122.88  
1.2288  
0.6144  
1.25  
(1) Reference Clock is lower than Max Reference Clock RateScale: Half Rate = 1, Quarter Rate = 2  
Table 5-3. Line Rate and Reference Clock Frequency Ranges for the High Speed Side SERDES  
REFERENCE CLOCK (MHz)  
FULL RATE (Gbps)  
HALF RATE (Gbps)  
QUARTER RATE (Gbps)  
SERDES PLL  
MULTIPLIER (MPY)  
MIN  
375  
MAX  
425  
MIN  
MAX  
6.8  
8.5  
10  
MIN  
MAX  
MIN  
MAX  
4
5
6
300  
425  
6
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4.25  
5
2(1)  
2(1)  
2(1)  
2(1)  
2(1)  
2.125  
2.5  
6
250  
416.667  
312.5  
250  
6
6
8
187.5  
150  
10  
5
2.5  
10  
12  
15  
16  
20  
6
10  
5
2.5  
125  
208.333  
166.667  
156.25  
125  
6
10  
5
2.5  
122.88  
122.88  
122.88  
7.3728  
7.864  
9.8304  
10  
4(1)  
4(1)  
5
2(1)  
2(1)  
2.5  
10  
5
2.5  
10  
4.9152  
5
2.4576  
2.5  
(1) Reference Clock is higher than Min Reference Clock  
RateScale: Full Rate = 0.25, Half Rate = 0.5, Quarter Rate = 1  
Copyright © 2013, Texas Instruments Incorporated  
CLOCKING  
19  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
 
 
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
5.1.1 Refclk Frequency Selection Example  
If the low speed side line rate is 0.6Gbps, the high-speed side line rate will be 4.8Gbps. The following  
steps can be taken to make a reference clock frequency selection:  
1. Determine the appropriate SERDES rate modes that support the required line rates. Table 5-2 shows  
that the 0.6Gbps line rate on the low speed side is only supported in the quarter rate mode (RateScale  
= 2). Table 5-3 shows that the 4.8Gbps line rate on the high speed side is only supported in the half  
rate mode (RateScale = 0.5).  
2. For each SERDES side, and for all available PLL multipliers (MPY), compute the corresponding  
reference clock frequencies using the formula:  
Reference Clock Frequency = (LineRate x RateScale)/MPY  
The computed reference clock frequencies are shown in Table 5-4 along with the valid minimum and  
maximum frequency values.  
3. Mark all the common frequencies that appear on both SERDES sides. Note and discard all those that  
fall outside the allowed range. In this example, the common frequencies are highlighted in Table 5-4 .  
4. Select any of the remaining marked common reference clock frequencies. The higher the reference  
clock frequency usually the better. In this example, any of the following reference clock frequencies  
can be selected: 150MHz, 200MHz, 240MHz, and 300MHz.  
Note that for Low Speed side rates of at least 500Mbps, a general rule to follow is that half rate on the  
Low Speed side will correspond to full rate on the High Speed side, and quarter rate on the Low Speed  
side will correspond to half rate on the High Speed side. And, the high speed PLL multiplier will be 2x of  
low speed.  
Table 5-4. Reference Clock Frequency Selection Example  
LOW SPEED SIDE SERDES  
HIGH SPEED SIDE SERDES  
REFERENCE CLOCK FREQUENCY (MHz)  
REFERENCE CLOCK FREQUENCY (MHz)  
SERDES PLL  
MULTIPLIER  
SERDES PLL  
MULTIPLIER  
COMPUTED  
300  
MIN  
250  
MAX  
425  
COMPUTED  
600  
MIN  
375  
MAX  
425  
4
5
4
5
240  
200  
425  
480  
300  
425  
6
200  
166.667  
125  
416.667  
312.5  
250  
6
400  
250  
425  
8
150  
8
300  
187.5  
150  
390.625  
312.5  
10  
120  
122.88  
10  
12  
15  
16  
20  
240  
200  
125  
260.417  
208.333  
195.3125  
156.25  
160  
122.88  
122.88  
122.88  
150  
120  
5.1.2 Low Speed Side Rates Below 500Mbps  
For serial links below 500Mbps, the Low Speed Side SERDES must be configured using twice the desired  
data rate. For instance, 270Mbps data must be configured for 540Mbps. In addition, the device must be  
configured through MDIO to run at half speed (register TBD). This enables over-sampling of data to  
support data rates lower than the Low Speed side SERDES IP allows. Note that the High Speed SERDES  
should be configured for the actual data rate, and not 2x. Using the same 270Mbps example, the high  
speed side should be configured for 0.27x8 = 2.16Gbps.  
Also note the Low Speed side and High Speed side will have the same rate, and the High Speed PLL  
multiplier will be 2x of Low Speed. For 270Mbps/2.16Gbps and a REFCLK of 135Mhz, the Low Speed  
side will be set to 8x, Quarter Rate (540Mhz) and the High Speed side will be set to 16x, Quarter Rate  
(2.16Gbps).  
20  
CLOCKING  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
 
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
5.2 Clocking Architecture  
A simplified clocking architecture for the TLK10081 is captured in Figure 5-1. Each channel (Channel A or  
Channel B) has an option of operating with a differential reference clock provided either on pins  
REFCLK0P/N or REFCLK1P/N. The choice is made either through MDIO or through REFCLK_SEL pins.  
The reference clock frequencies for those two clock inputs can be different as long as they fall under the  
valid ranges shown in Table 5-3. For each channel, the low speed side SERDES, high speed side  
SERDES and the associated part of the digital core operate from the same reference clock.  
The clock and data recovery (CDR) function of the high speed side receiver recovers the clock from the  
incoming serial data. The high speed side SERDES makes available two versions of clocks for further  
processing:  
1. HS_RXBCLK_A/B: recovered byte clock synchronous with incoming serial data and with a frequency  
matching the incoming line rate divided by 20.  
2. VCO_CLOCK_A/B_DIV2: VCO frequency divided by 2. (VCO frequency = REFCLK x PLL Multiplier).  
The above-mentioned clocks can be output through the differential pins, CLKOUTAP/N and  
CLKOUTBP/N, with optional frequency division ratios of 1, 2, 4, 5, 8, 10, 16, 20, or 25. The clock output  
options are software controlled through the MDIO interface register 0x15. The maximum CLKOUT  
frequency is 500MHz.  
Low  
Speed  
Side  
High  
Speed  
Side  
HS_RXBCLK_A  
INA[7:0]P/N  
HSTXAP/N  
HSRXAP/N  
VCO_CLOCK_A_DIV2  
SERDES  
SERDES  
Channel A  
OUTA[7:0]P/N  
A S/W  
Reg: 1.3:2  
Reg: 1.7:4  
2
REFCLKA_SEL  
4
Divide by N  
(N=1,2,4,5,8,  
10,16,20,25)  
+
_
CLKOUTAP/N  
CLKOUTBP/N  
+
_
REFCLK0P/N  
REFCLK1P/N  
Divide by N  
(N=1,2,4,5,8,  
10,16,20,25)  
+
_
+
_
4
2
B S/W  
Reg: 1.3:2  
Reg: 1.7:4  
REFCLKB_SEL  
High  
Speed  
Side  
HSTXBP/N  
HSRXBP/N  
VCO_CLOCK_B_DIV2  
HS_RXBCLK_B  
SERDES  
Channel B  
Figure 5-1. Clocking Architecture  
Copyright © 2013, Texas Instruments Incorporated  
CLOCKING  
21  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
 
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
6 PROGRAMMERS REFERENCE  
PRTAD[4:0] determine the device port address. In this mode, TLK10081 will respond if the PHY address  
field on the MDIO protocol (PA[4:0]) matches PRTAD[4:0] pin value).  
6.1 MDIO Management Interface  
The TLK10081 supports the Management Data Input/Output (MDIO) Interface as defined in Clause 22 of  
the IEEE 802.3 Ethernet specification. The MDIO allows register-based management and control of the  
serial links. Normal operation of the TLK10081 is possible without use of this interface. However, some  
features are accessible only through the MDIO.  
The MDIO Management Interface consists of a bi-directional data path (MDIO) and a clock reference  
(MDC). The port address is determined by control pins PRTAD[4:0] as described in Table 2-1).  
In Clause 22, the control pins PRTAD[4:0] determine the device port address.  
TLK10081 will respond if the 5 bits of PHY address field on MDIO protocol (PA[4:0] match PRTAD[4:0]).  
The MACRO_ACCESS bit in Register 0x00 determines which high speed channel/port within the  
TLK10081 is controlled by the high speed registers. A value of 0 selects High Speed Channel A and 1  
selects High Speed Channel B. The GLOBAL_WRITE bit can be set to 1 to apply the same settings to  
both high speed channels.  
Write transactions which address an invalid register or device or a read only register will be ignored. Read  
transactions which address an invalid register will return a 0.  
MDIO Protocol Timing:The Clause 22 timing required to read from the internal registers is shown in  
Figure 6-1. The Clause 22 timing required to write to the internal registers is shown in Figure 6-2.  
MDC  
1
MDIO  
1
1
PA[4:0]  
Z
0
0
RA4 RA0  
0
D15 D0  
Data  
> 32 "1's"  
Preamble  
Read  
Code  
PHY  
Addr  
REG  
Addr  
Turn  
Around  
Start  
Idle  
Note that the 1 in the Turn Around section is externally pulled up, and driven to Z by TLK10081.  
Figure 6-1. CL22 - Management Interface Read Timing  
MDC  
MDIO  
1
PA[4:0]  
1
0
1
0
1
RA4 RA0  
0
D15 D0  
Data  
> 32 "1's"  
Preamble  
Write  
Code  
PHY  
Addr  
REG  
Addr  
Turn  
Around  
Start  
Idle  
Figure 6-2. CL22 - Management Interface Write Timing  
Clause 22 Indirect Addressing:The TLK10081 Register space is divided into two register groups. One  
register group can be addressed directly through Clause 22, and one register group can be addressed  
indirectly through Clause 22. The register group which can be addressed through Clause 22 indirectly is  
implemented in vendor specific register space (16’h8000 onwards). Due to clause 22 register space  
limitations, an indirect addressing method is implemented so that this extended register space can be  
accessed through clause 22. To access this register space (16’h8000 onwards), an address control  
register (Reg 30, 5’h1E) should be written with the register address followed by a read/write transaction to  
address data register (Reg 31, 5’h1F) to access the contents of the address specified in address control  
register.  
22  
PROGRAMMERS REFERENCE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
 
 
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
The following timing diagrams illustrate an example write transaction to Register 16’h8000 using indirect  
addressing in Clause 22.  
MDC  
1
MDIO  
PA[4:0]  
1
5'h1E  
0
1
0
1
0
16'h9000  
Data  
> 32 "1's"  
Preamble  
Write  
Code  
PHY  
Addr  
REG  
Addr  
Turn  
Around  
Start  
Idle  
Figure 6-3. CL22 – Indirect Address Method – Address Write  
MDC  
1
MDIO  
PA[4:0]  
1
5'h1F  
0
1
0
1
0
DATA  
Data  
> 32 "1's"  
Preamble  
Write  
Code  
PHY  
Addr  
REG  
Addr  
Turn  
Around  
Start  
Idle  
Figure 6-4. CL22 - Indirect Address Method – Data Write  
The following timing diagrams illustrate an example read transaction to read contents of Register 16’h8000  
using indirect addressing in Clause 22.  
MDC  
1
MDIO  
PA[4:0]  
1
5'h1E  
0
1
0
1
0
16'h9000  
Data  
> 32 "1's"  
Preamble  
Write  
Code  
PHY  
Addr  
REG  
Addr  
Turn  
Around  
Start  
Idle  
Figure 6-5. CL22 - Indirect Address Method – Address Write  
MDC  
1
MDIO  
1
1
PA[4:0]  
Z
5'h1F  
0
0
0
D15 D0  
Data  
> 32 "1's"  
Preamble  
Read  
Code  
PHY  
Addr  
REG  
Addr  
Turn  
Around  
Start  
Idle  
Note that the 1 in the Turn Around section is externally pulled up, and driven to Zero by TLK10081.  
Figure 6-6. CL22 - Indirect Address Method – Data Read  
Copyright © 2013, Texas Instruments Incorporated  
PROGRAMMERS REFERENCE  
23  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
6.2 Register Bit Definitions  
RW: Read-Write  
User can write 0 or 1 to this register bit. Reading this register bit returns the same value that has been  
written.  
RW/SC: Read-Write Self-Clearing  
User can write 0 or 1 to this register bit. Writing a "1" to this register creates a high pulse. Reading this  
register bit always returns 0.  
RO: Read-Only  
This register can only be read. Writing to this register bit has no effect. Reading from this register bit  
returns its current value.  
RO/LH: Read-Only Latched High  
This register can only be read. Writing to this register bit has no effect. Reading a "1" from this register bit  
indicates that either the condition is occurring or it has occurred since the last time it was read. Reading a  
"0" from this register bit indicates that the condition is not occurring presently, and it has not occurred  
since the last time the register was read. A latched high register, when read high, should be read again to  
distinguish if a condition occurred previously or is still occurring. If it occurred previously, the second read  
will read low. If it is still occurring, the second read will read high. Reading this register bit automatically  
resets its value to 0.  
RO/LL: Read-Only Latched Low  
This register can only be read. Writing to this register bit has no effect. Reading a "0" from this register bit  
indicates that either the condition is occurring or it has occurred since the last time it was read. Reading a  
"1" from this register bit indicates that the condition is not occurring presently, and it has not occurred  
since the last time the register was read. A latched low register, when read low, should be read again to  
distinguish if a condition occurred previously or is still occurring. If it occurred previously, the second read  
will read high. If it is still occurring, the second read will read low. Reading this register bit automatically  
sets its value to 1.  
COR: Clear-On-Read counter  
This register can only be read. Writing to this register bit has no effect. Reading from this register bit  
returns its current value, then resets its value to 0. Counter value freezes at Max.  
24  
PROGRAMMERS REFERENCE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
Table 6-1. GLOBAL_CONTROL_1(1)  
Register Address:0x00 SPACER Default: 0x0610  
Bit(s)  
Name  
Description  
Access  
15  
GLOBAL_RESET  
Global reset.  
0 = Normal operation (Default 1’b0)  
RW  
SC(2)  
1 = Resets TX and RX data path including MDIO registers. Equivalent to asserting  
RESET_N.  
14:13  
12  
RESERVED  
For TI use only. Always reads 0.  
RW  
RW  
MACRO_ACCESS  
0 = Access HS/LT Control/status specific to HS macro A (Default 1’b0)  
1 = Access HS /LT Control/status specific to alternate HS macro  
11  
GLOBAL_WRITE  
0 = HS/LT Control settings are applied to HS macro specified in MACRO_ACCESS  
(Default 1’b0)  
RW  
1 = HS/LT Control settings are applied to both HS 0/1 macros  
10:7  
6:5  
RESERVED  
RESERVED  
For TI use only (Default 4’b1100)  
For TI use only. Always reads 0.  
RW  
RW  
RW  
4:0  
PRBS_PASS_OVERLAY[4:0] PRBS_PASS pin status selection. Applicable only when PRBS test pattern  
verification is enabled on HS side or LS side.  
PRBS_PASS pin reflects PRBS verification status on selected HS macro/ LS lane  
1xx00 = PRBS_PASS reflects combined status of Macro A/B HS serdes PRBS  
verification. If PRBS verification fails on any channel HS serdes, PRBS_PASS will be  
asserted low. (Default 5’b10000)  
00000 = Status from macro A HS Serdes side  
00001 = Reserved status from macro A HS core side  
0001x = Reserved  
00100 = Status from LS Serdes side Lane 0  
00101 = Status from LS Serdes side Lane 1  
00110 = Status from LS Serdes side Lane 2  
00111 = Status from LS Serdes side Lane 3  
01000 = Status from macro B HS Serdes side  
01001 = Reserved  
0101x = Reserved  
01100 = Status from LS Serdes side Lane 4  
01101 = Status from LS Serdes side Lane 5  
01110 = Status from LS Serdes side Lane 6  
01111 = Status from LS Serdes side Lane 7  
(1) This global register is channel independent.  
(2) After reset bit is set to one, it automatically sets itself back to zero on the next MDC clock cycle.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
PROGRAMMERS REFERENCE  
25  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
Table 6-2. CHANNEL_CONTROL_1  
Register Address:0x01 SPACER Default: 0x4000  
Bit(s)  
Name  
Description  
Access  
15  
POWERDOWN  
Setting this bit high powers down entire data path with exception that MDIO interface stays  
RW  
active.  
0 = Normal operation (Default 1’b0)  
1 = Power Down mode is enabled.  
14  
LT_ENABLE  
1 = Enable link training (Default 1’b1)  
RW  
0 = Disable link training  
This bit should be set to HIGH for auto train mode to function correctly  
13:10  
9
RESERVED  
For TI use only (Default 4’b0000)  
RW  
RW  
RX_BIT_INTERLEAVE  
0 = Normal operation. (Default 1’b0)  
1 = Enable bit interleave on receive path  
8
TX_BIT_INTERLEAVE  
0 = Normal operation. (Default 1’b0)  
RW  
1 = Enable bit interleave on transmit path  
7:4  
3
RESERVED  
For TI use only (Default 4’b0000)  
RW  
RW  
RX_1LN_MODE_SEL  
0 = Enable 8ln mode on receive path(Default 1’b0)  
1 = Enable 1ln mode on receive datapath  
2
1
TX_1LN_MODE_SEL  
REFCLK_SW_SEL  
1 = Enable 8ln mode on transmit datapath(Default 1’b0)  
1 = Enable 1ln mode on transmit datapath  
RW  
RW  
Channel HS Reference clock selection. Applicable only when REFCLK_SEL pin is LOW.  
0 = Selects REFCLK_0_P/N as clock reference to HS side serdes macro x (Default 1’b0)  
1 = Selects REFCLK_1_P/N as clock reference to HS side serdes macro x  
0
LS_REFCLK_SEL  
Channel LS Reference clock selection.  
RW  
0 = LS side serdes reference clock is same as HS side serdes reference clock (E.g. If  
REFCLK_0_P/N is selected as HS side serdes macro reference clock, REFCLK_0_P/N is  
selected as LS side serdes reference clock and vice versa) (Default 1’b0)  
1 = Alternate reference clock is selected as clock reference to LS side serdes (E.g. If  
REFCLK_0_P/N is selected as HS side serdes macro reference clock, REFCLK_1_P/N is  
selected as LS side serdes reference clock and vice versa)  
Table 6-3. HS_SERDES_CONTROL_1  
Register Address:0x02 SPACER Default: 0x831D  
Bit(s)  
15:10  
9:8  
Name  
Description  
Access  
RW  
RESERVED  
For TI use only (Default 6’b100000)  
HS_LOOP_BANDWIDTH[1:0] HS Serdes PLL Loop Bandwidth settings  
00 = Medium Bandwidth  
RW  
01 = Low Bandwidth  
10 = High Bandwidth  
11 = Ultra High Bandwidth. (Default 2'b11)  
7
6
RESERVED  
For TI use only (Default 1’b0)  
RW  
RW  
HS_VRANGE  
HS Serdes PLL VCO range selection.  
0 = VCO runs at higher end of frequency range (Default 1’b0)  
1 = VCO runs at lower end of frequency range  
This bit needs to be set HIGH if VCO frequency (REFCLK *HS_PLL_MULT) is below  
2.5 GHz.  
5
4
RESERVED  
HS_ENPLL  
For TI use only (Default 1’b0)  
RW  
RW  
HS Serdes PLL enable control. HS Serdes PLL is automatically disabled when  
PD_TRXx_N is asserted LOW or when register bit 1.15 is set HIGH.  
0 = Disables PLL in HS serdes  
1 = Enables PLL in HS serdes (Default 1’b1)  
3:0  
HS_PLL_MULT[3:0]  
HS Serdes PLL multiplier setting (Default 4’b1101).  
Refer to Table 6-4  
RW  
26  
PROGRAMMERS REFERENCE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
Table 6-4. HS PLL Multiplier Control  
2.3:0  
2.3:0  
PLL MULTIPLIER  
VALUE  
PLL MULTIPLIER  
VALUE  
FACTOR  
FACTOR  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Reserved  
Reserved  
4x  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
12x  
12.5x  
15x  
5x  
16x  
6x  
16.5x  
20x  
8x  
8.25x  
10x  
25x  
Reserved  
Table 6-5. HS_SERDES_CONTROL_2  
Register Address:0x03 SPACER Default:0xA848  
Bit(s)  
Name  
Description  
Access  
15:12  
HS_SWING[3:0]  
Transmitter Output swing control for HS Serdes. (Default 4’b1010)  
Refer Table 6-6.  
RW  
11  
HS_ENTX  
HS Serdes transmitter enable control. HS Serdes transmitter is automatically disabled  
when PD_TRXx_N is asserted LOW or when register bit 1.15 is set HIGH.  
0 = Disables HS serdes transmitter  
RW  
1 = Enables HS serdes transmitter (Default 1’b1)  
10  
HS_EQHLD  
HSRX Equalizer hold control.  
0 = Normal operation (Default 1’b0)  
1 = Holds equalizer and long tail correction in its current state  
RW  
RW  
9:8  
HS_RATE_TX [1:0] HS Serdes TX rate settings.  
00 = Full rate (Default 2’b00)  
01 = Half rate  
10 = Quarter rate  
11 = Eighth rate  
7:6  
HS_AGCCTRL[1:0] Adaptive gain control loop.  
RW  
00 = Attenuator will not change after lock has been achieved, even if AGC becomes  
unlocked  
01 = Attenuator will not change when in lock state, but could change when AGC  
becomes unlocked (Default 2’b01)  
10 = Force the attenuator off  
11 = Force the attenuator on  
5:4  
3
HS_AZCAL[1:0]  
HS_ENRX  
Auto zero calibration.  
00 = Auto zero calibration initiated when receiver is enabled (Default 2’b00)  
01 = Auto zero calibration disabled  
10 = Forced with automatic update.  
11 = Forced without automatic update  
RW  
RW  
RW  
HS Serdes receiver enable control.  
HS Serdes receiver is automatically disabled when PD_TRXx_N is asserted LOW or  
when register bit 1.15 is set HIGH.  
0 = Disables HS serdes receiver  
1 = Enables HS serdes receiver (Default 1’b1)  
2:0  
HS_RATE_RX [2:0] HS Serdes RX rate settings.  
000 = Full rate (Default 3’b000)  
101 = Half rate  
110 = Quarter rate  
111 = Eighth rate  
001 = Reserved  
01x = Reserved  
100 = Reserved  
Copyright © 2013, Texas Instruments Incorporated  
PROGRAMMERS REFERENCE  
27  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
Table 6-6. HSTX AC Mode Output Swing Control  
AC MODE  
VALUE  
3.15:12  
TYPICAL AMPLITUDE (mVdfpp)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
130  
220  
300  
390  
480  
570  
660  
750  
830  
930  
1020  
1110  
1180  
1270  
1340  
1400  
28  
PROGRAMMERS REFERENCE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
Table 6-7. HS_SERDES_CONTROL_3  
Register Address:0x04 SPACER Default:0x1500  
Bit(s)  
Name  
Description  
Access  
15  
HS_ENTRACK  
HSRX ADC Track mode.  
RW  
0 = Normal operation (Default 1’b0)  
1 = Forces ADC into track mode  
14:12  
HS_EQPRE[2:0]  
Serdes Rx precursor equalizer selection  
000 = 1/9 cursor amplitude  
001 = 3/9 cursor amplitude (Default 3’b001)  
010 = 5/9 cursor amplitude  
011 = 7/9 cursor amplitude  
100 = 9/9 cursor amplitude  
101 =11/9 cursor amplitude  
110 = 13/9 cursor amplitude  
111 = Disable  
RW  
11:10  
9:8  
HS_CDRFMULT[:10]  
HS_CDRTHR[1:0]  
Clock data recovery algorithm frequency multiplication selection (Default 2'b01)  
00 = First order. Frequency offset tracking disabled  
01 = Second order. 1x mode  
10 = Second order. 2x mode  
11 = Reserved  
RW  
RW  
Clock data recovery algorithm threshold selection (Default 2'b01)  
00 = Four vote threshold  
01 = Eight vote threshold  
10 = Sixteen vote threshold  
11 = Thirty two vote threshold  
7
6
RESERVED  
For TI use only (Default 1’b0)  
RW  
RW  
HS_PEAK_DISABLE  
HS Serdes PEAK_DISABLE control  
0 = Normal operation (Default 1’b0)  
1 = Disables high frequency peaking. Suitable for <6 Gbps operation  
5
HS_H1CDRMODE  
HS_TWCRF[4:0]  
HS_Serdes H1CDRMODE control  
0 = Normal operation (Default 1’b0)  
1 = Enables CDR mode suitable for short channel operation.  
RW  
RW  
4:0  
Cursor Reduction Factor (Default 5’b00000). Refer to Table 6-8.  
Table 6-8. HSTX Cursor Reduction Factor Weights  
4.4:0  
CURSOR REDUCTION  
4.4:0  
CURSOR REDUCTION  
VALUE  
VALUE  
(%)  
(%)  
17  
20  
22  
25  
27  
30  
32  
35  
37  
40  
42  
45  
47  
50  
52  
55  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
0
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
2.5  
5.0  
7.5  
10.0  
12  
15  
Reserved  
Copyright © 2013, Texas Instruments Incorporated  
PROGRAMMERS REFERENCE  
29  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
 
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
Table 6-9. HS_SERDES_CONTROL_4  
Register Address:0x05 SPACERDefault:0x2000  
Bit(s)  
Name  
Description  
Access  
15  
HS_RX_INVPAIR  
Receiver polarity.  
RW  
0 = Normal polarity. HSRXxP considered positive data. HSRXxN considered negative data  
(Default 1’b0)  
1 = Inverted polarity. HSRXxP considered negative data. HSRXxN considered positive data  
14  
HS_TX_INVPAIR  
Transmitter polarity.  
RW  
0 = Normal polarity. HSTXxP considered positive data and HSTXxN considered negative data  
(Default 1’b0)  
1 = Inverted polarity. HSTXxP considered negative data and HSTXxN considered positive data  
13  
RESERVED  
For TI use only (Default 1’b1)  
RW  
RW  
12:8  
HS_TWPOST1[4:0] Adjacent post cursor1 Tap weight. Selects TAP settings for TX waveform.  
(Default 5’b00000 ) Refer Table 6-10.  
7:4  
3:0  
HS_TWPRE[3:0]  
Precursor Tap weight. Selects TAP settings for TX waveform.  
(Default 4’b0000) Refer Table 6-12.  
RW  
RW  
HS_TWPOST2[3:0] Adjacent post cursor2 Tap weight. Selects TAP settings for TX waveform. (Default 4’b0000)  
Refer Table 6-11.  
Table 6-10. HSTX Post-Cursor1 Transmit Tap Weights  
5.12:8  
5.12:8  
VALUE  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
TAP WEIGHT (%)  
0
VALUE  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
TAP WEIGHT (%)  
0
+2.5  
–2.5  
+5.0  
–5.0  
+7.5  
–7.5  
+10.0  
+12.5  
+15.0  
+17.5  
+20.0  
+22.5  
+25.0  
+27.5  
+0  
–10.0  
–12.5  
–15.0  
–17.5  
–20.0  
–22.5  
–25.0  
–27.5  
–0  
+32.5  
+35.0  
+37.5  
–32.5  
–35.0  
-37.5  
Table 6-11. HSTX Post-Cursor2 Transmit Tap Weights  
5.3:0  
5.3:0  
VALUE  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
TAP WEIGHT (%)  
VALUE  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
TAP WEIGHT (%)  
0
0
+2.5  
–2.5  
+5.0  
–5.0  
+7.5  
–7.5  
+10.0  
+12.5  
+15.0  
+17.5  
–10.0  
–12.5  
–15.0  
–17.5  
30  
PROGRAMMERS REFERENCE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
 
 
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
Table 6-12. HSTX Pre-Cursor Transmit Tap Weights  
5.7:4  
5.7:4  
VALUE  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
TAP WEIGHT (%)  
VALUE  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
TAP WEIGHT (%)  
0
0
+2.5  
–2.5  
+5.0  
–5.0  
+7.5  
–7.5  
+10.0  
+12.5  
+15.0  
+17.5  
–10.0  
–12.5  
–15.0  
–17.5  
Table 6-13. LS_SERDES_CONTROL_1  
Register Address:0x06 SPACER Default:0x8115  
Bit(s)  
Name  
Description  
Access  
15  
GLOBAL_LN_WRITE  
Global lane write enable.  
RW  
0 = Control settings are specific to lane addressed. Lane can be specified through  
LS_LN_CFG_EN  
1 = Control settings written to lane specific registers are applied to all lanes (Default  
1’b1)  
Lane specific registers are LS_SERDES_CONTROL_2 & LS_SERDES_CONTROL_3  
& LS_TP_OVERLAY_CONTROL & LS_ALIGN_CODE_CONTROL &  
LS_LOS_TXFIFO_CONTROL & LN_DATA_SRC_CONTROL & LS_CH_CONTROL_1  
14:12  
LS_LN_CFG_EN[2:0]  
LS lane cfg control. Writes to lane specific control registers  
LS_SERDES_CONTROL_2 & LS_SERDES_CONTROL_3 &  
LS_TP_OVERLAY_CONTROL & LS_ALIGN_CODE_CONTROL &  
LS_LOS_TXFIFO_CONTROL & LN_DATA_SRC_CONTROL & LS_CH_CONTROL_1  
are applicable to lane selected (Applicable when GLOBAL_LN_WRITE is LOW). Selects  
selected lane status to be reflected in LS_LN_ERROR_COUNTER &  
LS_RXLOS_DET_ERR_COUNT & LS_STATUS_1  
000 = Lane 0 access (Default 3’b000)  
RW  
001 = Lane 1 access  
010 = Lane 2 access  
011 = Lane 3 access  
100 = Lane 4 access  
101 = Lane 5 access  
110 = Lane 6 access  
111 = Lane 7 access  
11:10  
9:8  
RESERVED  
For TI use only (Default 2’b00)  
RW  
RW  
LS_LOOP_  
BANDWIDTH[1:0]  
LS Serdes PLL Loop Bandwidth settings  
00 = Reserved  
01 = Applicable when external JC_PLL is NOT used (Default 2’b01)  
10 = Applicable when external JC_PLL is used  
11 = Reserved  
7:5  
4
RESERVED  
LS_ENPLL  
For TI use only (Default 3’b000)  
RW  
RW  
LS Serdes PLL enable control. LS Serdes PLL is automatically disabled when  
PD_TRXx_N is asserted LOW or when register bit 1.15 is set HIGH.  
0 = Disables PLL in LS serdes  
1 = Enables PLL in LS serdes (Default 1’b1)  
3:0  
LS_MPY[3:0]  
LS Serdes PLL multiplier setting (Default 4’b0101).  
Refer to Table 6-14.  
RW  
Table 6-14. LS PLL Multiplier Control  
6.3:0  
6.3:0  
VALUE  
0000  
PLL MULTIPLIER FACTOR  
VALUE  
1000  
PLL MULTIPLIER FACTOR  
4x  
5x  
6x  
15x  
20x  
25x  
0001  
1001  
0010  
1010  
Copyright © 2013, Texas Instruments Incorporated  
PROGRAMMERS REFERENCE  
31  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
 
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
Table 6-14. LS PLL Multiplier Control (continued)  
6.3:0  
6.3:0  
VALUE  
0011  
0100  
0101  
0110  
0111  
PLL MULTIPLIER FACTOR  
VALUE  
1011  
1100  
1101  
1110  
1111  
PLL MULTIPLIER FACTOR  
Reserved  
8x  
Reserved  
Reserved  
50x  
10x  
12x  
65x  
12.5x  
Reserved  
Table 6-15. LS_SERDES_CONTROL_2  
Register Address:0x07 SPACER Default:0xDD05  
Bit(s)  
15  
Name  
Description  
Access  
RW  
RESERVED  
LS_SWING[2:0]  
For TI use only.  
14:12  
Output swing control on LS Serdes side. (Default 3’b101)  
Refer to Table 6-16.  
RW  
11  
10  
LS_LOS  
LS Serdes LOS detector control  
0 = Disable Loss of signal detection on LS serdes lane inputs  
1 = Enable Loss of signal detection on LS serdes lane inputs (Default 1’b1)  
RW  
RW  
LS_TX_ENRX  
LS Serdes enable control on the transmit channel. LS Serdes per lane on transmitter  
channel is automatically disabled when PD_TRXx_N is asserted LOW or when  
register bit 1.15 is set HIGH.  
0 = Disables LS serdes lane  
1 = Enables LS serdes lane (Default 1’b1)  
9:8  
LS_TX_RATE [1:0]  
LS Serdes lane rate settings on transmit channel.  
00 = Full rate  
RW  
01 = Half rate (Default 2’b01)  
10 = Quarter rate  
11 = Reserved  
7:4  
3
LS_DE[3:0]  
LS Serdes De-emphasis settings. (Default 4’b0000)  
For TI use only .  
RW  
RW  
RW  
RESERVED  
LS_RX_ENTX  
2
LS Serdes lane enable control on receive channel. LS Serdes per lane on receiver  
channel is automatically disabled when PD_TRXx_N is asserted LOW or when  
register bit 1.15 is set HIGH.  
0 = Disables LS serdes lane  
1 = Enables LS serdes lane (Default 1’b1)  
1:0  
LS_RX_RATE [1:0]  
LS Serdes lane rate settings on receive channel.  
00 = Full rate  
RW  
01 = Half rate (Default 2’b01)  
10 = Quarter rate  
11 = Reserved  
Table 6-16. LSRX Output AC Mode Output Swing Control  
AC MODE  
VALUE  
7.14:12  
TYPICAL AMPLITUDE (mVdfpp)  
000  
001  
010  
011  
100  
101  
110  
111  
190  
380  
560  
710  
850  
950  
1010  
1050  
32  
PROGRAMMERS REFERENCE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
 
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
Table 6-17. LSRX Output De-emphasis  
7.7:4  
AMPLITUDE REDUCTION  
7.7:4  
AMPLITUDE REDUCTION  
VALUE  
VALUE  
(%)  
0
dB  
(%)  
dB  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
0
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
38.08  
42.85  
47.61  
52.38  
57.14  
61.9  
–4.16  
–4.86  
–5.61  
–6.44  
–7.35  
–8.38  
–9.54  
–10.87  
4.76  
9.52  
14.28  
19.04  
23.8  
28.56  
33.32  
–0.42  
–0.87  
–1.34  
–1.83  
–2.36  
–2.92  
–3.52  
66.66  
71.42  
Table 6-18. LS_SERDES_CONTROL_3  
Register Address:0x08 SPACER Default:0x000D  
Bit(s)  
Name  
Description  
Access  
15  
LS_RX_INVPAIR  
LS Serdes lane outputs polarity on the receive channel.  
RW  
0 = Normal polarity. OUTxyP considered positive data. OUTxyN considered negative data  
(Default 1’b0)  
1 = Inverted polarity. OUTxyP considered negative data. OUTxyN considered positive data  
14  
LS_TX_INVPAIR  
LS Serdes lane inputs polarity on the transmit channel.  
RW  
0 = Normal polarity. INxyP considered positive data and INxyN considered negative data  
(Default 1’b0)  
1 = Inverted polarity. INxyP considered negative data and INxyP considered positive data  
13:12  
11:8  
7:0  
RESERVED  
LS_EQ[3:0]  
RESERVED  
For TI use only (Default 2’b00)  
RW  
RW  
RW  
LS Serdes Equalization control (Default 4’b0000). Table 6-19  
For TI use only (Default 8'b00001101)  
Table 6-19. LS_EQ Serdes Equalization  
8.11:8  
8.11:8  
LOW FREQ  
GAIN  
LOW FREQ  
GAIN  
VALUE  
ZERO FREQ  
VALUE  
ZERO FREQ  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Maximum  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Adaptive  
365 MHz  
275 MHz  
195 MHz  
140 MHz  
105 MHz  
75 MHz  
Adaptive  
Reserved  
55 MHz  
50 MHz  
Table 6-20. HS_OVERLAY_CONTROL  
Register Address:0x09 SPACERDefault:0x0380  
Bit(s)  
15:8  
7
Name  
Description  
Access  
RW  
RESERVED  
HS_LOS_MASK  
For TI use only (Default 8’b00000011)  
0 = HS Serdes LOS status is used to generate HS channel synchronization status. If  
RW  
HS Serdes indicates LOS, channel synchronization indicates synchronization is not  
achieved  
1 = HS Serdes LOS status is not used to generate HS channel synchronization status  
(Default 1’b1)  
Copyright © 2013, Texas Instruments Incorporated  
PROGRAMMERS REFERENCE  
33  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
 
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
Table 6-20. HS_OVERLAY_CONTROL (continued)  
Register Address:0x09 SPACERDefault:0x0380  
Bit(s)  
Name  
Description  
Access  
6
LS_PLL_LOCK_OVERLAY 0 = LOSx pin does not reflect loss of LS SERDES PLL lock status (Default 1’b0)  
1 = Allows LS SERDES loss of PLL lock status to be reflected on LOSx pin  
RW  
5
HS_CH_SYNC_OVERLAY 0 = LOSx pin does not reflect receive channel loss of channel synchronization status  
RW  
or loss of block lock (Default 1’b0)  
1 = Allows channel loss of synchronization or loss of block lock to be reflected on  
LOSx pin  
4
3
2
HS_INVALID_CODE_  
OVERLAY  
0 = LOSx pin does not reflect receive channel invalid code word error (Default 1’b0)  
1 = Allows invalid code word error to be reflected on LOSx pin  
RW  
RW  
RW  
HS_AGCLOCK_OVERLAY 0 = LOSx pin does not reflect HS Serdes AGC unlock status (Default 1’b0)  
1 = Allows HS Serdes AGC unlock status to be reflected on LOSx pin  
HS_AZDONE_OVERLAY  
0 = LOSx pin does not reflect HS Serdes auto zero calibration not done status (Default  
1’b0)  
1 = Allows auto zero calibration not done status to be reflected on LOSx pin  
1
0
HS_PLL_LOCK_OVERLAY 0 = LOSx pin does not reflect loss of HS Serdes PLL lock status (Default 1’b0)  
1 = Allows HS Serdes loss of PLL lock status to be reflected on LOSx pin  
RW  
RW  
HS_LOS_OVERLAY  
0 = LOSx pin does not reflect HS Serdes Loss of signal condition (Default 1’b0)  
1 = Allows HS Serdes Loss of signal condition to be reflected on LOSx pin  
Table 6-21. LS_TP_OVERLAY_CONTROL  
Register Address:0x0A SPACER Default:0x0500  
Bit(s)  
Name  
Description  
Access  
15  
LS_RX_OVERSAMPLING  
0 = Disable LS lane oversampling on receive path (Default 1’b0)  
1 = Enable LS lane oversampling on receive path  
RW  
14  
13  
LS_TX_OVERSAMPLING  
LS_TP_GEN_EN  
0 = Disable LS lane oversampling on transmit path (Default 1’b0)  
1 = Enable LS lane oversampling on transmit path  
RW  
RW  
0 = Normal operation (Default 1’b0)  
1 = Activates test pattern generation selected by LS_TEST_PATT_SEL on the LS  
side  
12  
LS_TP_VERIFY_EN  
0 = Normal operation (Default 1’b0)  
1 = Activates PRBS/CRPAT test pattern verification selected by  
LS_TEST_PATT_SEL on the LS side  
RW  
RW  
10:8  
LS_TEST_PATT_SEL[2:0]  
LS Test Pattern Selection LS_TEST_PATT_SEL[2:0]. Refer Test pattern  
procedures section for more information.  
000 = High Frequency Test Pattern  
001 = Low Frequency Test Pattern  
010 = Mixed Frequency Test Pattern  
011 = CRPAT Long  
100 = CRPAT Short  
101, 11x = PRBS pattern selected by LS_PRBS_SEL (Default 3’b101)  
Errors can be checked by reading LS_LN_ERROR_COUNT register  
7
RESERVED  
For TI use only (Default 1’b0)  
RW  
RW  
6:4  
LS_TX_LANE_DELAY  
Manual delay (skew) for selected LS lane on transmit path (Default 3’b000).  
Applicable only when LS_TX_LANE_DELAY_EN is set.  
1 = Enable lane skew delay as specified in LS_TX_LANE_DELAY  
000 = 10 bits of lane skew  
001 = 20 bits of lane skew  
010 = 30 bits of lane skew  
011 = 40 bits of lane skew  
1xx = Reserved  
3
2
LS_TX_LANE_DELAY_EN  
LS_CH_SYNC_OVERLAY  
0 = Disable lane skew delay(Default 1’b0)  
1 = Overrides any settings from TX0_SKEW_CONFIG (0x16.2:0). Enables skew  
control through LS_TX_LANE_DELAY.  
RW  
RW  
0 = LOSx pin does not reflect LS Serdes lane loss of synchronization condition  
(Default 1’b0)  
1 = Allows LS serdes lane loss of synchronization condition to be reflected on LOSx  
pin  
1
LS_INVALID_CODE_OVERLAY 0 = LOSx pin does not reflect LS Serdes lane invalid code condition (Default 1’b0)  
1 = Allows LS serdes lane invalid code condition to be reflected on LOSx pin  
RW  
34  
PROGRAMMERS REFERENCE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
Table 6-21. LS_TP_OVERLAY_CONTROL (continued)  
Register Address:0x0A SPACER Default:0x0500  
Bit(s)  
Name  
Description  
Access  
0
LS_LOS_OVERLAY  
0 = LOSx pin does not reflect LS Serdes lane Loss of signal condition (Default 1’b0)  
1 = Allows LS serdes lane Loss of signal condition to be reflected on LOSx pin  
RW  
Table 6-22. HS_TP_CONTROL  
Register Address:0x0B SPACER Default:0x0520  
Bit(s)  
15:14  
13  
Name  
Description  
Access  
RW  
RESERVED  
HS_TP_GEN_EN  
For TI use only.  
0 = Normal operation (Default 1’b0)  
RW  
1 = Activates test pattern generation selected by bits 11.10:8  
12  
HS_TP_VERIFY_EN  
0 = Normal operation (Default 1’b0)  
1 = Activates test pattern verification selected by bits 11.10:8  
RW  
RW  
10:8  
HS_TEST_PATT_SEL[2:0]  
Test Pattern Selection. Refer Test pattern procedures section for more  
information.  
000 = High Frequency Test Pattern  
001 = Low Frequency Test Pattern  
010 = Mixed Frequency Test Pattern  
011 = CRPAT Long  
100 = CRPAT Short  
101 = 27 - 1 PRBS pattern (Default 3’b101)  
110 = 223 - 1 PRBS pattern  
111 = 231 - 1 PRBS pattern  
Errors can be checked by reading HS_ERROR_COUNT register.  
7:6  
5:4  
RESERVED  
For TI use only (Default 2’b00)  
RW  
RW  
LS_PRBS_SEL[2:0]  
Test Pattern Selection. Refer Test pattern procedures section for more  
information.  
00 = 231 - 1 PRBS pattern  
01 = Reserved.  
10 = 27 - 1 PRBS pattern (Default 2’b10)  
11 = 223 - 1 PRBS pattern  
3
DEEP_REMOTE_LPBK  
RESERVED  
0 = Normal functional mode (Default 1’b0)  
1 = Enable deep remote loopback mode  
RW  
RW  
2:0  
For TI use only (Default 3’b000)  
Table 6-23. CLK_SEL_CONTROL  
Register Address:0x0D SPACER Default:0x0000  
Bit(s)  
Name  
Description  
Access  
15:12  
LS_TX_FIFO_RESET[7:4]  
Reset control for LS lanes 7/6/5/4 FIFO on transmit path (Default 4’b0000)  
[7] for Lane 7, [6] for Lane 6, [5] for Lane 5, [4] for Lane 4.  
RW/SC  
11:8  
7:6  
LS_TX_FIFO_RESET[3:0]  
LANE7_CLK_SEL  
Reset control for LS lanes 3/2/1/0 FIFO on transmit path (Default 4’b0000)  
[3] for Lane 3, [2] for Lane 2, [1] for Lane 1, [0] for Lane 0.  
RW/SC  
RW  
00 = Selects LS lane 4 Tx Byteclk as clock for lane 7 (Default 2’b00)  
01 = Selects LS lane 6 Tx Byteclk as clock for lane 7  
1x = Selects LS lane 7 Tx Byteclk as clock for lane 7  
5
LANE6_CLK_SEL  
LANE5_CLK_SEL  
LANE3_CLK_SEL  
0 = Selects LS lane 4 Tx Byteclk as clock for lane 6 (Default 1’b0)  
1 = Selects LS lane 6 Tx Byteclk as clock for lane 6  
RW  
RW  
RW  
4
0 = Selects LS lane 4 Tx Byteclk as clock for lane 5 (Default 1’b0)  
1 = Selects LS lane 5 Tx Byteclk as clock for lane 5  
3:2  
00 = Selects LS lane 0 Tx Byteclk as clock for lane 3 (Default 2’b00)  
01 = Selects LS lane 2 Tx Byteclk as clock for lane 3  
1x = Selects LS lane 3 Tx Byteclk as clock for lane 3  
1
0
LANE2_CLK_SEL  
LANE1_CLK_SEL  
0 = Selects LS lane 0 Tx Byteclk as clock for lane 2 (Default 1’b0)  
1 = Selects LS lane 2 Tx Byteclk as clock for lane 2  
RW  
RW  
0 = Selects LS lane 0 Tx Byteclk as clock for lane 1 (Default 1’b0)  
1 = Selects LS lane 1 Tx Byteclk as clock for lane 1  
Copyright © 2013, Texas Instruments Incorporated  
PROGRAMMERS REFERENCE  
35  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
Access  
Table 6-24. RESET_CONTROL  
Register Address:0x0E SPACERDefault:0x0000  
Bit(s)  
Name  
Description  
15:12  
LS_RX_FIFO_RESET[7:4]  
Reset control for LS lanes 4-7 FIFO on receive path (Default 4’b0000)  
[7] for Lane 7, [6] for Lane 6, [5] for Lane 5, [4] for Lane 4.  
RW  
SC(1)  
11:8  
LS_RX_FIFO_RESET[3:0]  
Reset control for LS lanes 0-3 FIFO on receive path (Default 4’b0000)  
[3] for Lane 3, [2] for Lane 2, [1] for Lane 1, [0] for Lane 0.  
7
6
5
4
HS_TX_FIFO_RESET  
HS_RX1_FIFO_RESET  
HS_RX0_FIFO_RESET  
LT_RESTART_TRAINING  
Reset control for HS FIFO on transmit path (Default 1’b0)  
Reset control for HS RX1 FIFO (Default 1’b0)  
Reset control for HS RX0 FIFO (Default 1’b0)  
1 = Restart link/auto train  
0 = Normal operation (Default 1’b0)  
3
DATAPATH_RESET  
Channel datapath reset control. Required once the desired functional mode is  
configured.  
0 = Normal operation. (Default 1’b0)  
1 = Resets channel logic excluding MDIO registers. (Resets both Tx and Rx  
datapath)  
2:0  
RESERVED  
For TI use only (Default 3’b000)  
(1) After reset bit is set to one, it automatically sets itself back to zero on the next MDC clock cycle.  
Table 6-25. CHANNEL_STATUS_1  
Register Address:0x0F SPACER Default:0x0000  
Bit(s)  
Name  
Description  
Access  
15  
HS_TP_STATUS  
Test Pattern status for HS High/Low/Mixed/CRPAT test patterns.  
1 = Alignment has achieved and correct pattern has been received. Any bit errors  
are reflected in HS_ERROR_COUNTER register (0x10)  
0 = Alignment has not been determined  
RO  
14  
13  
LS_TRAINING_FAIL  
HS_LOS  
1 = Training failure has been detected  
0 = Training failure has not been detected  
RO/LH  
RO/LH  
Loss of Signal Indicator.  
When high, indicates that a loss of signal condition is detected on HS serial  
receive inputs  
12  
11  
10  
HS_AZ_DONE  
Auto zero complete indicator.  
When high, indicates auto zero calibration is complete  
RO/LL  
RO/LL  
RO/LL  
HS_AGC_LOCKED  
HS_CHANNEL_SYNC  
Adaptive gain control loop lock indicator.  
When high, indicates AGC loop is in locked state  
Channel synchronization status indicator.  
When high, indicates channel synchronization has achieved  
9
8
RESERVED  
For TI use only  
RO/LH  
RO/LH  
HS_DECODE_INVALID  
Valid when decoder is enabled and during CRPAT test pattern verification. When  
high, indicates decoder received an invalid code word, or a 8b/10b disparity error.  
In functional mode, number of DECODE_INVALID errors are reflected in  
HS_ERROR_COUNTER register (0x10)  
7
6
HS_TX0_FIFO_UNDERFLOW  
HS_TX0_FIFO_OVERFLOW  
When high, indicates overflow has occurred in the transmit datapath lane (CTC)  
FIFO.  
RO/LH  
RO/LH  
When high, indicates overflow has occurred in the transmit datapath lane (CTC)  
FIFO.  
5
4
RESERVED  
For TI use only  
RO/LH  
RO/LH  
BIT_LM_DONE  
Applicable only when HS_RX_BIT_INTERLEAVE is set to 1. When high,  
indicates lane marker detection state machine searched all possible LS lanes,  
and found valid marker pattern  
3
2
1
LT_FRAME_LOCK  
LT_RX_STATUS  
LS_PLL_LOCK  
1 = Training frame delineation detected  
0 = Training frame delineation not detected  
RO  
RO  
1 = Receiver trained and ready to receive data  
0 = Receiver training in progress  
LS Serdes PLL lock indicator  
RO/LL  
When high, indicates LS Serdes PLL achieved lock to the selected incoming  
REFCLK0/1_P/N  
36  
PROGRAMMERS REFERENCE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
Table 6-25. CHANNEL_STATUS_1 (continued)  
Register Address:0x0F SPACER Default:0x0000  
Bit(s)  
Name  
Description  
Access  
0
HS_PLL_LOCK  
HS Serdes PLL lock indicator  
RO/LL  
When high, indicates HS Serdes PLL achieved lock to the selected incoming  
REFCLK0/1_P/N  
Table 6-26. HS_ERROR_COUNTER  
Register Address:0x10 SPACER Default:0xFFFD  
Bit(s)  
Name  
Description  
Access  
15:0  
HS_ERR_COUNT[15:0]  
In functional mode, this counter reflects number of invalid code words (includes  
disparity errors) received by decoder.  
COR  
In HS test pattern verification mode , this counter reflects error count for the test  
pattern selected through 11.10:8  
When PRBS_EN pin is set, this counter reflects error count for selected PRBS  
pattern. Counter value cleared to 16’h0000 when read.  
Table 6-27. LS_LN_ERROR_COUNTER  
Register Address:0x11 SPACER Default:0xFFFD  
Bit(s)  
Name  
Description  
Access  
15:0  
LS_LN_ERR_COUNT[15:0]  
LS Lane Error counter. Lane can be selected through LS_LN_CFG_EN[2:0]  
(6.14:12)  
COR  
In functional mode, this counter reflects number of invalid code words (includes  
disparity errors) received by decoder.  
In LS test pattern verification mode , this counter reflects error count for the test  
pattern selected through 12.10:8  
Counter value cleared to 16’h0000 when read.  
Copyright © 2013, Texas Instruments Incorporated  
PROGRAMMERS REFERENCE  
37  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
Table 6-28. LS_STATUS_1(1)  
Register Address:0x13 SPACERDefault:0x0000  
Bit(s)  
Name  
Description  
Access  
15  
LS_TP_STATUS  
Test Pattern status for LS High/Low/Mixed/CRPAT test patterns.  
1 = Alignment has achieved and correct pattern has been received. Any bit errors  
are reflected in LS_LN_ERROR_COUNTER register  
RO  
0 = Alignment has not been determined  
14  
LS_RXLOS_DETECT  
When high, indicates LOS state machine successfully detected valid LOS pattern  
for the selected lane. This bit is raw status of LS_ RXLOS_DETECT_LH  
RO  
13:12  
11  
RESERVED  
For TI use only.  
RO  
LS_INVALID_DECODE  
LS Invalid decode error for selected lane. Error count for each lane can also be  
monitored through respective LS_LN_ERROR_COUNTER registers  
RO/LH  
10  
9
LS_LOS  
Loss of Signal Indicator. When high, indicates that a loss of signal condition is  
detected on LS serial receive inputs for selected lane.  
RO/LH  
RO/LH  
LS_RXLOS_DETECT_LH  
When high, indicates LOS state machine successfully detected valid LOS pattern  
for the selected lane.  
8
LS_CH_SYNC_STATUS  
RESERVED  
LS Channel sync status for selected lane.  
For TI use only.  
RO/LL  
RO  
7:4  
3
LS_TX_FIFO_UNDERFLOW When high, indicates underflow has occurred in the transmit datapath lane (CTC)  
FIFO.  
RO/LH  
2
1
0
LS_TX_FIFO_OVERFLOW  
When high, indicates overflow has occurred in the transmit datapath lane (CTC)  
FIFO.  
RO/LH  
RO/LH  
RO/LH  
LS_RX_FIFO_UNDERFLOW When high, indicates underflow has occurred in the receive datapath lane (CTC)  
FIFO.  
LS_RX_FIFO_OVERFLOW  
When high, indicates overflow has occurred in the receive datapath lane (CTC)  
FIFO.  
(1) This is per lane status register. Lane can be selected through LS_LN_CFG[14:12] (Register 0x06)  
Table 6-29. HS_STATUS_1  
Register Address:0x14 SPACER Default:0x0000  
Bit(s)  
15  
14  
13  
12  
11  
10  
9
Name  
Description  
Access  
RO/LH  
RO/LH  
RO/LH  
RO/LH  
RO/LH  
RO/LH  
RO/LH  
RO/LH  
RO  
RX3_LANE_ALIGN  
RX2_LANE_ALIGN  
TX3_LANE_ALIGN  
TX2_LANE_ALIGN  
RX1_LANE_ALIGN  
RX0_LANE_ALIGN  
TX1_LANE_ALIGN  
TX0_LANE_ALIGN  
RESERVED  
RX3 lane align status on receive path  
RX2 lane align status on receive path  
TX3 lane align status on transmit path  
TX2 lane align status on transmit path  
RX1 lane align status on receive path  
RX0 lane align status on receive path  
TX1 lane align status on transmit path  
TX0 lane align status on transmit path  
For TI use only.  
8
7:4  
3
HS_RX1_FIFO_UNDERFLOW When high, indicates underflow has occurred in the receive datapath lane FIFO  
when alternate macro HS Rx data is selected.  
RO/LH  
2
HS_RX1_FIFO_OVERFLOW  
When high, indicates overflow has occurred in the receive datapath lane FIFO  
when alternate macro HS Rx data is selected.  
RO/LH  
1
0
HS_RX0_FIFO_UNDERFLOW When high, indicates underflow has occurred in the receive datapath lane FIFO.  
RO/LH  
RO/LH  
HS_RX0_FIFO_OVERFLOW  
When high, indicates overflow has occurred in the receive datapath lane FIFO.  
38  
PROGRAMMERS REFERENCE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
Table 6-30. CLK_CONTROL  
Register Address:0x15 SPACER Default:0x0280  
Bit(s)  
15:10  
9
Name  
Description  
Access  
RW  
RESERVED  
CLKOUT_EN  
For TI use only. Always reads 0.  
Output clock enable.  
RW  
0 = Holds CLKOUTx_P/N output to a fixed value.  
1 = Allows CLKOUTx_P/N output to toggle normally (Default 1’b1)  
8
CLKOUT_POWERDOWN  
CLKOUT_DIV[3:0]  
0 = Normal operation (Default 1’b0)  
1 = Enable CLKOUTx_P/N Power Down.  
RW  
7:4  
Output clock divide setting. This value is used to divide selected clock (Selected  
RW  
using CLKOUT_SEL) before giving it out onto respective channel CLKOUTx_P/N.  
0000 = Divide by 1  
0001 = RESERVED  
0010 = RESERVED  
0011 = RESERVED  
0100 = Divide by 2  
0101 = RESERVED  
0110 = RESERVED  
0111 = RESERVED  
1000 = Divide by 4 (Default 4’b1000)  
1001 = Divide by 8  
1010 = Divide by 16  
1011 = RESERVED  
1100 = Divide by 5  
1101 = Divide by 10  
1110 = Divide by 20  
1111 = Divide by 25  
3:0  
CLKOUT_SEL[3:0]  
Output clock select. Selected Recovered clock sent out on CLKOUTxP/N pins  
(Default 4’b0000)  
RW  
00x0 = Selects Macro A HS recovered byte clock as output clock  
00x1 = Selects Macro A HS transmit byte clock as output clock  
010x = Selects Macro A HSRX VCO divide by 4 clock as output clock  
0110 = Selects Lane 0-3 LS recovered byte clock as output clock  
0111 = Selects Lane 0-3 LS transmit byte clock as output clock  
10x0 = Selects Macro B HS recovered byte clock as output clock  
10x1 = Selects Macro B HS transmit byte clock as output clock  
110x = Selects Macro B HSRX VCO divide by 4 clock as output clock  
1110 = Selects Lane 4-7 LS recovered byte clock as output clock  
1111 = Selects Lane 4-7 LS transmit byte clock as output clock  
Table 6-31. SKEW_CONFIG_CONTROL  
Register Address:0x16 SPACER Default:0x0000  
Bit(s)  
Name  
Description  
Access  
14:12  
RX1_SKEW_CONFIG[2:0]  
Skew config for lanes 4-7 on receive path (Default 3’b000)  
000 - No Skew  
RW  
001 - Align lanes 4,5  
010 - Align lanes 4,5,6  
X11- Align lanes 4,5,6,7  
100 - Align lanes 6,7  
101 - Align lanes 4,5 and 6,7  
110 - Reserved  
10:8  
TX1_SKEW_CONFIG[2:0]  
Skew config for lanes 4-7 on transmit path (Default 3’b000)  
000 - No Skew  
RW  
001 - Align lanes 4,5  
010 - Align lanes 4,5,6  
X11- Align lanes 4,5,6,7  
100 - Align lanes 6,7  
101 - Align lanes 4,5 and 6,7  
110 - Reserved  
Copyright © 2013, Texas Instruments Incorporated  
PROGRAMMERS REFERENCE  
39  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
Table 6-31. SKEW_CONFIG_CONTROL (continued)  
Register Address:0x16 SPACER Default:0x0000  
Bit(s)  
Name  
Description  
Access  
6:4  
RX0_SKEW_CONFIG[2:0]  
Skew config for lanes 0-3 on receive path (Default 3’b000)  
000 - No Skew  
RW  
001 - Align lanes 0,1  
010 - Align lanes 0,1,2  
X11- Align lanes 0,1,2,3  
100 - Align lanes 2,3  
101 - Align lanes 0,1 and 2,3  
110 - Reserved  
2:0  
TX0_SKEW_CONFIG[2:0]  
Skew config for lanes 0-3 on transmit path (Default 3’b000)  
000 - No Skew  
RW  
001 - Align lanes 0,1  
010 - Align lanes 0,1,2  
X11- Align lanes 0,1,2,3  
100 - Align lanes 2,3  
101 - Align lanes 0,1 and 2,3  
110 - Reserved  
Table 6-32. HS_ALIGN_CODE_CONTROL  
Register Address:0x17 SPACER Default:0x02BC  
Bit(s)  
15  
Name  
Description  
Access  
RW  
RESERVED  
For TI use only (Default 1’b0)  
Marker selection on transmit side (Default 3’b000)  
14:12  
11  
TX_LANE_MARKER[2:0]  
BIT_LM_EN  
RW  
0 = Normal operation (Default 1’b0)  
RW  
1 = Enable lane marker generation in selected LS TX lane through  
TX_LANE_MARKER  
When set to 1, lane marker message is generated (CRC field set to  
32’hFE00_00FE).  
When LS_LM_EN and LS_LOS_EN are set to 1, lane marker message is  
generated.  
10:0  
RESERVED  
For TI use only (Default 11’h2BC)  
RW  
Table 6-33. BIT_LM_CONTROL  
Register Address:0x18 SPACER Default:0x0CC8  
Bit(s)  
15  
Name  
Description  
Access  
RW  
RESERVED  
For TI use only (Default 1’b0)  
Marker selection on receive side (Default 3’b000)  
14:12  
11  
RX_LANE_MARKER[2:0]  
BIT_LM_PATT_DETECT_EN  
RW  
Applicable only when RX_BIT_INTERLEAVE is set to 1.  
0 = Normal operation  
RW  
1 = Enable marker detection (Default 1’b1)  
10:0  
RESERVED  
For TI use only (Default 11’h4C8)  
RW  
Table 6-34. LS_TXFIFO_CONTROL  
Register Address:0x19 SPACER Default:0x02BC  
Bit(s)  
15:13  
12:11  
10  
Name  
Description  
Access  
LS_TXFIFO_DEPTH_SEL[2:0]  
LS_TXFFIO_WMK_SEL[1:0]  
LS_CHSYNC_ALIGN_CODE_ EN  
TX FIFO depth select (Default 3’b000)  
TX FIFO Water mark select (Default 2’b00)  
RW  
Lane can be selected in LS_SERDES_CONTROL_1.  
0 = Normal operation (Default 1’b0)  
1 = Use align code specified in LS_CH_SYNC_ALIGN_CODE in LS ch  
sync SM  
9:0  
LS_CHSYNC_ALIGN_CODE[ 9:0]  
Lane can be selected in LS_SERDES_CONTROL_1.  
10 bit align code to use when LS_CHSYNC_ALIGN_CODE_EN is set  
(Default 10’h2BC)  
40  
PROGRAMMERS REFERENCE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
Table 6-35. LN_DATA_SRC_CONTROL  
Register Address:0x1B SPACER Default: 0x3020(1)  
Bit(s)  
Name  
Description  
Access  
15:14  
LN_RX_DIV_RATE[1:0]  
Divided rate control on the receive side (Default 2’b00)  
RW  
LS divided rate selection on receive path. Settings are applicable for the lanes  
selected through LS_LN_CFG_EN[3:0] (6.15:14)  
13  
LN_RX_CTC_EN  
LS CTC control on receive path. Settings are applicable for the lanes selected  
through LS_LN_CFG_EN[3:0] (6.15:14)  
0 = CTC disabled for the selected lane on receive path  
1 = CTC enabled for the selected lane on receive path (Default 1’b1)  
RW  
RW  
12:11  
LN_RX_DATA_SRC_SEL[1:0]  
Lane data source selection. Selects the data for selected lane that will be sent  
out on LS receive out. Settings are applicable for the lanes selected through  
LS_LN_CFG_EN[3:0] (6.15:14)  
0x = LS input  
10 = HS input of primary macro(Default 2’b10)  
11 = HS input of alternate macro  
10:8  
LN_RX_DATA_LANE_SEL[2:0] Lane selection for the data source selected through LN_RX_DATA_SRC_SEL.  
RW  
Selects the data for selected lane that will be sent out on LS receive out.  
Settings are applicable for the lanes selected through LS_LN_CFG_EN[3:0]  
(6.15:14)  
000 = LS Lane 0 input  
001 = LS Lane 1 input  
010 = LS Lane 2 input  
011 = LS Lane 3 input  
100 = LS Lane 4 input  
101 = LS Lane 5 input  
110 = LS Lane 6 input  
111 = LS Lane 7 input  
7:6  
5
LN_TX_DIV_RATE[1:0]  
LN_TX_CTC_EN  
Divided rate control on the receive side (Default 2’b00)  
LS divided rate selection on transmit path. Settings are applicable for the lanes  
selected through LS_LN_CFG_EN[3:0] (6.15:14) and MACRO_ACCESS(0.13)  
RW  
RW  
LS CTC control on transmit path. Settings are applicable for the lanes selected  
through LS_LN_CFG_EN[3:0] (6.15:14)  
0 = CTC disabled for the selected lane on transmit path  
1 = CTC enabled for the selected lane on transmit path (Default 1’b0)  
4:3  
2:0  
LN_TX_DATA_SRC_SEL[4:3]  
LN_TX_DATA_SRC_SEL[2:0]  
LS lane data source selection. Selects the data for selected lane that will be  
sent out on HS transmit out. Settings are applicable for the lanes selected  
through LS_LN_CFG_EN[3:0] (6.15:14)  
0x = LS input  
10 = HS input (Default 2’b10)  
RW  
RW  
11 = HS input of alternate macro  
Lane selection for the data source selected through  
LN_TX_DATA_SRC_SEL[4:3]. Selects the data for selected lane that will be  
sent out on HS transmit out. Settings are applicable for the lanes selected  
through LS_LN_CFG_EN[3:0] (6.15:14)  
000 = LS Lane 0 input  
001 = LS Lane 1 input  
010 = LS Lane 2 input  
011 = LS Lane 3 input  
100 = LS Lane 4 input  
101 = LS Lane 5 input  
110 = LS Lane 6 input  
111 = LS Lane 7 input  
(1) Default for ln0 is 0x3020, ln1 is 0x3121, ln2 is 0x3222, ln 3 is 0x3323. Default for ln4 is 0x3424, ln5 is 0x3525, ln6 is 0x3626, ln7 is  
0x3727.  
Copyright © 2013, Texas Instruments Incorporated  
PROGRAMMERS REFERENCE  
41  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
Table 6-36. LS_CH_CONTROL_1  
Register Address:0x1C SPACER Default: 0x0000  
Bit(s)  
15  
Name  
Description  
Access  
RW/SC  
RW  
RESERVED  
For TI use only (Default 1’b0)  
RX FIFO depth select (Default 3’b000)  
RX FIFO Water mark select (Default 2’b00)  
14:12  
11:10  
9
LS_RXFIFO_DEPTH_SEL[2:0]  
LS_RXFIFO_WMK_SEL[1:0]  
RX_GIGE_EN  
RW  
0 = Disable GIGE mode on receive path (Default 1’b0)  
1 = Enable GIGE mode on receive path  
RW  
8
TX_GIGE_EN  
0 = Disable GIGE mode on transmit path (Default 1’b0)  
1 = Enable GIGE mode on transmit path  
RW  
7:6  
5
RESERVED  
For TI use only (Default 2’b00)  
RW  
RW  
LS_CHSYNC_FORCE_SYNC  
Lane can be selected in LS_SERDES_CONTROL_1.  
0 = Keep byte alignment determined by ch sync state machine (Default 1’b0)  
1 = Force byte alignment to 9 unless LS_CHSYNC_JOG_EN is 1  
4
3
RESERVED  
For TI use only (Default 1'b0)  
RW  
RW  
LS_ENC_BYPASS  
1 = Disables Encoder on LS side on selected lane.  
0 = Normal operation (1’b0)  
2
LS_DEC_BYPASS  
1 = Disables Decoder on LS side on selected lane.  
0 = Normal operation (1’b0)  
RW  
RW  
1:0  
LS_CH_SYNC_HYS_SEL[1:0]  
LS Channel synchronization hysteresis selection for selected lane. Lane can be  
selected in LS_SERDES_CONTROL_1.  
00 = The channel synchronization, when in the synchronization state, performs  
the Ethernet standard specified hysteresis to return to the LOS state (Default  
2’b00)  
01 = A single 8b/10b invalid decode error or disparity error causes the channel  
synchronization state machine to immediately transition from sync to LOS  
10 = Two adjacent 8b/10b invalid decode errors or disparity errors cause the  
channel synchronization state machine to immediately transition from sync to LOS  
11 = Three adjacent 8b/10b invalid decode errors or disparity errors cause the  
channel synchronization state machine to immediately transition from sync to LOS  
Table 6-37. HS_CH_CONTROL_1  
Register Address:0x1D SPACER Default: 0x0880  
Bit(s)  
15  
Name  
Description  
Access  
RW/SC  
RW  
RESERVED  
For TI use only (Default 1’b0)  
14:12  
11  
HS_RXFIFO_DEPTH_SEL[2:0]  
RX_LANE_MARKER_EN  
FIFO depth select for both HS RX0/RX1 FIFO’s (Default 3’b000)  
Marker enable control on receive side (Default 1’b1)  
RW  
0 = Normal operation  
1 = Enable marker search/replacement. Marker search/replacement character  
RW can be selected in VS_RX_MARKER_SEARCH_CHARACTER  
(0x8002.9:0), VS_RX_MARKER_REPLACE_CHARACTER (0x8003.9:0)  
10:8  
7
HS_TXFIFO_DEPTH_SEL[2:0]  
TX_LANE_MARKER_EN  
HS TX FIFO depth select  
RW  
RW  
Marker enable control on transmit side (Default 1’b1)  
0 = Normal operation  
1 = Enable marker search/replacement. Marker search/replacement character  
RW can be selected in VS_TX_MARKER_SEARCH_CHARACTER  
(0x8000.9:0), VS_TX_MARKER_REPLACE_CHARACTER (0x8001.9:0)  
6
5
RESERVED  
For TI use only (Default 1’b0)  
RW  
RW  
HS_CHSYNC_FORCE_SYNC  
0 = Keep byte alignment determined by ch sync state machine (Default 1’b0)  
1 = Force byte alignment to 9 unless HS_CHSYNC_JOG_EN is 1  
4
3
2
HS_CHSYNC_JOG_EN  
HS_ENC_BYPASS  
HS_DEC_BYPASS  
0 = Disable manual jog function (Default 1’b0)  
1 = Enable manual jog function  
RW  
RW  
RW  
0 = Normal operation. (Default 1’b0)  
1 = Disables 8B/10B encoder on HS side.  
0 = Normal operation. (Default 1’b0)  
1 = Disables 8B/10B decoder on HS side.  
42  
PROGRAMMERS REFERENCE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
Table 6-37. HS_CH_CONTROL_1 (continued)  
Register Address:0x1D SPACER Default: 0x0880  
Bit(s)  
Name  
Description  
Access  
1:0  
HS_CH_SYNC_HYSTERESIS[1:0] Channel synchronization hysteresis control on the HS receive channel.  
00 = The channel synchronization, when in the synchronization state, performs  
the Ethernet standard specified hysteresis to return to the unsynchronized  
state (Default 2’b00)  
RW  
01 = A single 8b/10b invalid decode error or disparity error causes the channel  
synchronization state machine to immediately transition from sync to unsync  
10 = Two adjacent 8b/10b invalid decode errors or disparity errors cause the  
channel synchronization state machine to immediately transition from sync to  
unsync  
11 = Three adjacent 8b/10b invalid decode errors or disparity errors cause the  
channel synchronization state machine to immediately transition from sync to  
unsync  
Table 6-38. EXT_ADDRESS_CONTROL  
Register Address:0x1E SPACER Default: 0x0000  
Bit(s)  
Name  
Description  
Access  
15:0  
EXT_ADDR_CONTROL[15:0] Applicable in Clause 22 mode only. This register should be written with the  
extended register address to be written/read. Contents of address written in this  
register can be accessed from Reg 31 (0x1F). (Default 16’h0000)  
RW  
Table 6-39. EXT_ADDRESS_DATA  
Register Address:0x1F SPACER Default: 0x0000  
Bit(s)  
Name  
Description  
Access  
15:0  
EXT_ADDR_DATA[15:0]  
Applicable in Clause 22 mode only. This register contains the data associated with  
the register address written in Register 30 (0x1E)  
RW  
Table 6-40. VS_TX_MARKER_SEARCH_CHAR  
Register Address:0x8000 SPACER Default: 0x02BC  
Bit(s)  
Name  
Description  
Access  
9:0  
TX_SEARCH_MARKER[9:0]  
TX Search marker character (Default 10’h2BC)  
RW  
Table 6-41. VS_TX_MARKER_REPLACE_CHAR  
Register Address:0x8001 SPACER Default: 0x027C  
Bit(s)  
Name  
Description  
Access  
9:0  
TX_REPLACE_MARKER[9:0] TX Replace marker character (Default 10’h27C)  
RW  
Table 6-42. VS_RX_MARKER_SEARCH_CHAR  
Register Address:0x8002 SPACER Default: 0x027C  
Bit(s)  
Name  
Description  
Access  
9:0  
RX_SEARCH_MARKER[9:0]  
RX Search marker character (Default 10’h27C)  
RW  
Table 6-43. VS_RX_MARKER_REPLACE_CHAR  
Register Address:0x8003SPACER Default: 0x02BC  
Bit(s)  
Name  
Description  
Access  
9:0  
RX_REPLACE_MARKER[9:0] RX Replace marker character (Default 10’h2BC)  
RW  
Copyright © 2013, Texas Instruments Incorporated  
PROGRAMMERS REFERENCE  
43  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
Table 6-44. VS_TX_IDLE_P_CHAR  
Register Address:0x8004 SPACER Default: 0x02BC  
Bit(s)  
Name  
Description  
Access  
9:0  
TX_IDLE_P[9:0]  
TX Idle P character (Default 10’h2BC)  
RW  
Table 6-45. VS_TX_IDLE_N_CHAR  
Register Address:0x8005 SPACER Default: 0x02BC  
Bit(s)  
Name  
Description  
Access  
9:0  
TX_IDLE_N[9:0]  
TX Idle N character (Default 10’h2BC)  
RW  
Table 6-46. VS_RX_IDLE_P_CHAR  
Register Address:0x8006 SPACER Default: 0x02BC  
Bit(s)  
Name  
Description  
Access  
9:0  
RX_IDLE_P[9:0]  
RX Idle P character (Default 10’h2BC)  
RW  
Table 6-47. VS_RX_IDLE_N_CHAR  
Register Address:0x8007 SPACER Default: 0x02BC  
Bit(s)  
Name  
Description  
Access  
9:0  
RX_IDLE_N[9:0]  
RX Idle N character (Default 10’h2BC)  
RW  
Table 6-48. VS_TX_SCR_CONTROL  
Register Address:0x8009 SPACER Default: 0xFC00  
Bit(s)  
15:2  
1
Name  
Description  
Access  
RW  
RESERVED  
TX_SCR_20_EN  
For TI use only (Default 14'b11111100000000)  
1 = Enable 20 bit scrambler (post-encoder) on transmit side(Default 1’b0)  
0 = Disable 20 bit scrambler (post-encoder) on transmit side  
RW  
0
TX_SCR_16_EN  
1 = Enable 16 bit scrambler (pre-encoder) on transmit side. Seed can be set  
through 0x800C and 0x800D (Default 1’b0)  
RW  
0 = Disable 16 bit scrambler (pre-encoder) on transmit side  
Table 6-49. VS_TX_SEED_CONTROL_1  
Register Address:0x800C SPACER Default: 0x0000  
Bit(s)  
Name  
Description  
Access  
15:0  
TX_SCR_SEED[31:16]  
[31:16] bits of 32 bit Tx scrambler seed. TX_SCR_SEED[31:0] must be set to a  
non-zero value for scrambler to work properly (Default 16’h0000).  
RW  
Table 6-50. VS_TX_SEED_CONTROL_0  
Register Address:0x800D SPACER Default: 0x01FC  
Bit(s)  
Name  
Description  
Access  
15:0  
TX_SCR_SEED[31:16]  
[15:0] bits of 32 bit Tx scrambler seed. Bit 0 always set to 1’b0.  
TX_SCR_SEED[31:0] must be set to a non-zero value for scrambler to work  
properly (Default 16’h01FC).  
RW  
Table 6-51. VS_TX_POLY_CONTROL_1  
Register Address:0x800E SPACER Default: 0x0000  
Bit(s)  
Name  
Description  
Access  
15:0  
TX_SCR_SEED[31:16]  
[31:16] bits of 32 bit Tx scrambler polynomial (Default 16’h0000).  
RW  
44  
PROGRAMMERS REFERENCE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
Table 6-52. VS_TX_POLY_CONTROL_0  
Register Address:0x800F SPACER Default: 0x00C0  
Bit(s)  
Name  
Description  
Access  
15:0  
TX_SCR_SEED[31:16]  
[15:0] bits of 32 bit Tx scrambler polynomial. Bit 0 always set to 1’b0. (Default  
16’h00C0).  
RW  
Table 6-53. VS_RX_DESCR_CONTROL  
Register Address:0x8019 SPACER Default: 0xFC00  
Bit(s)  
15:2  
1
Name  
Description  
Access  
RW  
RESERVED  
RX_DESCR_20_EN  
For TI use only (Default 14'b11111100000000)  
1 = Enable 20 bit descrambler (pre-decoder) on transmit side(Default 1’b0)  
0 = Disable 20 bit descrambler (pre-decoder) on transmit side  
RW  
0
RX_DESCR_16_EN  
1 = Enable 16 bit descrambler (post-decoder) on transmit side. Seed can be set  
through 0x801C and 0x801D (Default 1’b0)  
RW  
0 = Disable 16 bit descrambler (post-decoder) on transmit side  
Table 6-54. VS_RX_DESCR_SEED_CONTROL_1  
Register Address:0x801C SPACER Default: 0x0000  
Bit(s)  
Name  
Description  
Access  
15:0  
RX_DESCR_SEED[31:16]  
[31:16] bits of 32 bit Rx descrambler seed. RX_DESCR_SEED[31:0] must be set to  
a non-zero value for descrambler to work properly (Default 16’h0000).  
RW  
Table 6-55. VS_RX_DESCR_SEED_CONTROL_0  
Register Address:0x801D SPACER Default: 0x01FC  
Bit(s)  
Name  
Description  
Access  
15:0  
RX_DESCR_SEED[15:0]  
[15:0] bits of 32 bit Rx descrambler seed. Bit 0 always set to 1’b0.  
RX_DESCR_SEED[31:0] must be set to a non-zero value for descrambler to work  
properly (Default 16’h01FC).  
RW  
Table 6-56. VS_RX_DESCR_POLY_CONTROL_1  
Register Address:0x801E SPACER Default: 0x0000  
Bit(s)  
Name  
Description  
Access  
15:0  
RX_DESCR_POLY[31:16]  
[31:16] bits of 32 bit Rx descrambler polynomial (Default 16’h0000).  
RW  
Table 6-57. VS_RX_DESCR_POLY_CONTROL_0  
Register Address:0x801F SPACER Default: 0x00C0  
Bit(s)  
Name  
Description  
Access  
15:0  
RX_DESCR_POLY[15:0]  
[15:0] bits of 32 bit Rx descrambler polynomial. Bit 0 always set to 1’b0. (Default  
16’h00C0).  
RW  
Copyright © 2013, Texas Instruments Incorporated  
PROGRAMMERS REFERENCE  
45  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
Table 6-58. TI_RESERVED_CONTROL  
Register Address:0x8021 SPACER Default: 0x000A  
Bit(s)  
15:7  
6
Name  
Description  
Access  
RW  
RESERVED  
For TI use only (Default 9'b000000000)  
HS_PLL_LOCK_CHECK_  
DISABLE  
1 = Disable auto HS pll lock status check.  
0 = Enable auto HS pll lock status check (Default 1’b0)  
RW  
5
HS_LOS_CHECK_DISABLE  
1 = Disable auto HS los status check  
RW  
0 = Enable auto HS los sync status check (Default 1’b0)  
4
3
RESERVED  
For TI use only (Default 1’b0)  
RW  
RW  
CLKOUT_EN_AUTO_DISABLE This bit controls the signal which flat lines CLKOUT and applicable only when  
CLKOUT is selected to have HS Recovered byte clock  
1 = CLKOUT clock flat lined if HS LOS is detected (Default 1’b1)  
0 = CLKOUT clock not flat lined if HS LOS is detected  
2:0  
RESERVED  
For TI use only (Default 3’b010)  
RW  
Table 6-59. VS_LS_TX_ERROR_CODE  
Register Address:0x8026 SPACER Default: 0x02FE  
Bit(s)  
Name  
Description  
Access  
9:0  
LS_TX_ERROR_CODE[9:0]  
Error code to be transmitted if LS TX FIFO has error (Default 10’h2FE)  
RW  
Table 6-60. VS_LS_RX_ERROR_CODE  
Register Address:0x8027 SPACER Default: 0x02FE  
Bit(s)  
Name  
Description  
Access  
9:0  
LS_RX_ERROR_CODE[9:0]  
Error code to be transmitted if LS RX FIFO has error (Default 10’h2FE)  
RW  
Table 6-61. VS_HS_RX_ERROR_CODE  
Register Address:0x8028 SPACER Default: 0x02FE  
Bit(s)  
Name  
Description  
Access  
9:0  
HS_RX_ERROR_CODE[9:0]  
Error code to be transmitted if HS RX FIFO has error (Default 10’h2FE)  
RW  
Table 6-62. VS_HS_TX_ERROR_CODE  
Register Address:0x8029 SPACER Default: 0x02FE  
Bit(s)  
Name  
Description  
Access  
9:0  
HS_TX_ERROR_CODE[9:0]  
Error code to be transmitted if HS TX FIFO has error (Default 10’h2FE)  
RW  
Table 6-63. TI_RESERVED_STATUS  
Register Address:0x9020 SPACER Default: 0x0000  
Bit(s)  
15:1  
0
Name  
Description  
Access  
RO  
RESERVED  
For TI use only.  
LT_START_PROTOCOL  
1 = Start up protocol in progress  
0 = Start up protocol complete  
RO  
Table 6-64. LT_LINK_PARTNER_CONTROL  
Register Address:0x9098 SPACER Default: 0x0000  
Bit(s)  
Name  
Description  
Access  
13  
LT_LP_PRESET  
1 = KR preset coefficients  
0 = Normal operation  
RO  
12  
LT_LP_INITIALIZE  
1 = Initialize KR coefficients  
0 = Normal operation  
RO  
46  
PROGRAMMERS REFERENCE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
Table 6-64. LT_LINK_PARTNER_CONTROL (continued)  
Register Address:0x9098 SPACER Default: 0x0000  
Bit(s)  
Name  
Description  
Access  
9:8  
LT_LP_COEFF_SWG  
Swing update  
11 = Reserved  
01 = Increment  
10 = Decrement  
00 = Hold  
RO  
7:6  
5:4  
3:2  
1:0  
LT_LP_COEFF_PS2  
LT_LP_COEFF_P1  
LT_LP_COEFF_0  
LT_LP_COEFF_M1  
Post2 tap control update  
11 = Reserved  
01 = Increment  
10 = Decrement  
00 = Hold  
RO  
RO  
RO  
RO  
Coefficient K(+1) update  
11 = Reserved  
01 = Increment  
10 = Decrement  
00 = Hold  
Coefficient K(0) update  
11 = Reserved  
01 = Increment  
10 = Decrement  
00 = Hold  
Coefficient K(-1) update  
11 = Reserved  
01 = Increment  
10 = Decrement  
00 = Hold (Default 2’b00)  
Table 6-65. LT_LINK_PARTNER_STATUS  
Register Address:0x9099 SPACER Default: 0x0000  
Bit(s)  
Name  
Description  
Access  
15  
LT_LP_RX_READY  
1 = LP receiver has determined that training is complete and prepared to receive  
RO  
data  
0 = LP receiver is requesting that training continue  
9:8  
7:6  
5:4  
3:2  
1:0  
LT_LP_COEFF_SWG_STAT  
LT_LP_COEFF_PS2_STAT  
LT_LP_COEFF_P1_STAT  
LT_LP_COEFF_0_STAT  
LT_LP_COEFF_M1_STAT  
Swing update  
11 = Maximum  
01 = Updated  
10 = Minimum  
00 = Not updated  
RO  
Post2 tap control update  
11 = Maximum  
01 = Updated  
10 = Minimum  
00 = Not udated  
RO  
RO  
RO  
RO  
Plus 1 update  
11 = Maximum  
01 = Updated  
10 = Minimum  
00 = Not updated  
0 update  
11 = Maximum  
01 = Updated  
10 = Minimum  
00 = Not updated  
Minus 1 update  
11 = Maximum  
01 = Updated  
10 = Minimum  
00 = Not updated  
Copyright © 2013, Texas Instruments Incorporated  
PROGRAMMERS REFERENCE  
Submit Documentation Feedback  
47  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
Table 6-66. LT_LOCAL_DEVICE_CONTROL  
Register Address:0x909A SPACER Default: 0x0000  
Bit(s)  
15:14  
13  
Name  
Description  
Access  
RO  
RESERVED  
LT_LD_PRESET  
For TI use only  
1 = KR preset coefficients  
RO  
0 = Normal operation (Default 1’b0)  
12  
LT_ LD_INITIALIZE  
1 = Initialize KR coefficients  
0 = Normal operation (Default 1’b0)  
RO  
RO  
9:8  
LT_LD_COEFF_SWG  
Swing update  
11 = Reserved  
01 = Increment  
10 = Decrement  
00 = Hold (Default 2’b00)  
7:6  
5:4  
3:2  
1:0  
LT_LD_COEFF_PS2  
LT_ LD_COEFF_P1  
LT_ LD_COEFF_0  
LT_ LD_COEFF_M1  
Post2 tap control update  
11 = Reserved  
01 = Increment  
10 = Decrement  
00 = Hold (Default 2’b00)  
RO  
RO  
RO  
RO  
Coefficient K(+1) update  
11 = Reserved  
01 = Increment  
10 = Decrement  
00 = Hold (Default 2’b00)  
Coefficient K(0) update  
11 = Reserved  
01 = Increment  
10 = Decrement  
00 = Hold (Default 2’b00)  
Coefficient K(-1) update  
11 = Reserved  
01 = Increment  
10 = Decrement  
00 = Hold (Default 2’b00)  
Table 6-67. LT_LOCAL_DEVICE_STATUS  
Register Address: 0x909B SPACER Default: 0x0000  
Bit(s)  
Name  
Description  
Access  
15  
LT_ LD_RX_READY  
1 = LD receiver has determined that training is complete and prepared to receive  
RO  
data  
0 = LD receiver is requesting that training continue  
5:4  
3:2  
1:0  
LT_ LD_COEFF_P1_STAT  
LT_ LD_COEFF_0_STAT  
LT_ LD_COEFF_M1_STAT  
Plus 1 update  
11 = Maximum  
01 = Updated  
10 = Minimum  
00 = Not updated  
RO  
RO  
RO  
0 update  
11 = Maximum  
01 = Updated  
10 = Minimum  
00 = Not updated  
Minus 1 update  
11 = Maximum  
01 = Updated  
10 = Minimum  
00 = Not updated  
48  
PROGRAMMERS REFERENCE  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
Table 6-68. TI_Reserved Control and Status Registers  
Register  
Address  
Default  
Value  
Register  
Default  
Value  
Register Name  
Access  
Register Name  
Access  
Address  
0x9003  
0x9004  
0x9005  
0x9006  
0x9007  
0x9008  
0x9009  
0x900A  
0x900B  
0x900C  
0x900D  
0x900E  
TI_RESERVED_CONTROL  
TI_RESERVED_STATUS  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
0x0C  
0x12  
0xFFFF  
0x0000  
0x03C8  
0x0115  
0xBC3C  
0x0000  
0xBC3C  
0x0200  
0x0000  
0x0190  
0x0000  
0xF000  
RW  
COR  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
0xAF14  
0x007F  
0x1C00  
0x0000  
0x4890  
0xC00C  
0xD333  
0x5E8F  
0xAFAF  
0x0800  
0x461A  
0x1723  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0x1A  
0x8008  
0x800A  
0x800B  
0x801A  
0x8020  
0x8022  
0x8023  
0x8024  
0x8025  
0x8030 -  
0x8033  
TI_RESERVED_STATUS  
0x0000  
RO  
TI_RESERVED_CONTROL  
0x900F  
0x7003  
RW  
TI_RESERVED_STATUS  
TI_RESERVED_CONTROL  
0x8035  
0x8050  
0x0000  
0x0000  
RO  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
0x9010  
0x9011  
0x0851  
0x1EFF  
RW  
RW  
RW  
0x8060 -  
0x8067  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
0xFFFD  
0xFFFD  
0xFFFD  
COR  
COR  
COR  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
TI_RESERVED_STATUS  
0x9021  
0x9022  
0x9023  
0xFFFD  
0x0000  
0x0000  
COR  
RO  
0x8068 -  
0x806F  
0x8070 -  
0x8077  
RO  
0x8078 -  
0x807F  
0x9024 -  
0x9029  
TI_RESERVED_STATUS  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
0xFFFD  
0x0000  
0xF280  
COR  
RW  
TI_RESERVED_STATUS  
TI_RESERVED_CONTROL  
TI_RESERVED_STATUS  
0x0000  
0x0000  
0x0000  
RO  
RW  
RO  
0x8100  
0x8102  
0xA000  
0xA010 -  
0xA018  
RW  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
0x8103  
0x9000  
0x0000  
0x0249  
RW  
RW  
TI_RESERVED_CONTROL  
TI_RESERVED_CONTROL  
0xA116  
0xA117  
0x0000  
0x0000  
RW  
RW  
0xA118 -  
0xA119  
TI_RESERVED_CONTROL  
0x9001  
0x0200  
RW  
TI_RESERVED_STATUS  
0x0000  
RO  
Copyright © 2013, Texas Instruments Incorporated  
PROGRAMMERS REFERENCE  
49  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
7 ELECTRICAL CHARACTERISTICS  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1) (2)  
VALUE  
UNIT  
MIN  
–0.3  
–0.3  
–0.3  
–65  
MAX  
DVDD, VDDA_LS/HS, VDDT_LS/HS, VPP, VDDD  
Supply voltage  
1.4  
2.2  
V
V
VDDRA/B_LS/HS, VDDO[1:0]  
Input Voltage, VI, (LVCMOS/CML/Analog)  
Storage temperature  
Supply + 0.3  
V
150  
105  
1
°C  
°C  
kV  
V
Operating junction temperature  
HBM  
CDM  
Electrostatic  
discharge:  
500  
85  
Characterized free-air operating temperature range  
–40  
°C  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to ground (VSS).  
7.2 Recommended Operating Conditions  
MIN NOM  
MAX UNIT  
Digital / analog supply  
voltages  
VDDD, VDDA_LS/HS, DVDD,  
VDDT_LS/HS, VPP  
0.95  
1.00  
1.05  
V
V
1.5V nominal  
1.8V nominal  
1.5V nominal  
1.8V nominal  
1.425  
1.71  
1.5  
1.8  
1.5  
1.8  
1.575  
1.89  
1.575  
1.89  
580  
600  
650  
600  
70  
SERDES PLL regulator  
voltage  
VDDRA_LS/HS,  
VDDRB_LS/HS  
1.425  
1.71  
LVCMOS I/O supply  
voltage  
VDDO[1:0]  
V
VDDD  
VDDA_LS/HS  
DVDD + VPP  
VDDT_LS/HS  
VDDRA/B_LS  
VDDRA/B_HS  
VDDO[1:0]  
IDD  
Supply current  
10 Gbps  
Nominal  
mA  
70  
10  
1.5  
Worst case supply voltage,  
temperature, and process at  
10Gbps with both channels  
active, default swing and  
Clkout settings.  
PD  
Power dissipation  
Shutdown current  
W
1.9  
VDDD  
210  
70  
VDDA  
DVDD + VPP  
VDDT  
150  
65  
ISD  
PD* Asserted  
mA  
VDDRA_HS/LS +  
VDDRB_HS/LS  
7
VDDO  
5
350  
1
TRISE REFCLK0P/N, REFCLK1P/N rise/fall time  
10% to 90%  
50  
ps  
ps  
JR  
REFCLK0P/N, REFCLK1P/N random jitter  
12kHz to 20MHz  
50  
ELECTRICAL CHARACTERISTICS  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
7.3 High Speed Side Serial Transmitter Characteristics  
PARAMETER  
TEST CONDITIONS  
SWING = 0000  
MIN  
50  
TYP  
130  
MAX UNIT  
220  
SWING = 0001  
SWING = 0010  
SWING = 0011  
SWING = 0100  
SWING = 0101  
SWING = 0110  
SWING = 0111  
SWING = 1000  
SWING = 1001  
SWING = 1010  
SWING = 1011  
SWING = 1100  
SWING = 1101  
SWING = 1110  
SWING = 1111  
Transmitter disabled  
110  
180  
250  
320  
390  
460  
530  
590  
660  
740  
820  
890  
970  
1060  
1090  
220  
320  
300  
430  
390  
540  
480  
650  
570  
770  
660  
880  
750  
1000  
1100 mVpp  
1220  
1320  
1430  
1520  
1610  
1680  
1740  
30  
TX output differential peak-to-peak  
voltage swing  
VOD(p-p)  
830  
930  
1020  
1110  
1180  
1270  
1340  
1400  
See register bits TWPOST1, TWPOST2,  
and TWPRE for de-emphasis settings.  
See Figure 7-2  
TX output pre/post cursor  
emphasis voltage  
–17.5/  
–37.5%  
+17.5/  
+37.5%  
Vpre/post  
100-Ω differential termination, DC-  
coupled  
VDDT – 0.25 ×  
VOD(p-p)  
VCMT  
TX output common mode voltage  
mV  
ps  
Differential output signal rise, fall  
time (20% to 80%),  
Tr, Tf  
24  
Differential load = 100Ω  
JT1  
Serial output total jitter  
0.28  
0.15  
UI  
UI  
JD1  
Serial output deterministic jitter  
Serial output random jitter  
Duty Cycle Distortion  
JR1  
0.15  
UI  
DCD  
PLL multiplier = 10  
0.035  
UI  
50 MHz < f < 2.5 GHz  
2.5 GHz < f < 7.5 GHz  
50 MHz < f < 2.5 GHz  
2.5 GHz < f < 7.5 GHz  
9
(1)  
dB  
dB  
dB  
dB  
SDD22  
SCC22  
Differential output return loss  
See  
6
(2)  
Common-mode output return loss  
See  
T(LATENCY) Transmit path latency  
See Figure 3-7  
(1) Common-mode output return loss, SDD22 = 9 – 12 log10(f / 2500MHz)) dB  
(2) Differential input return loss, SCC2 = 6 - 12 log10(f / 2500MHz)) dB  
0.5 * VDE  
VOD(pp)  
*
0.5 *  
VCMT  
VOD(pp)  
0.25 * VDE * VOD(pp)  
0.25 * VOD(pp)  
tr , tf  
bit  
time  
Figure 7-1. Transmit Output Waveform Parameter Definitions  
Copyright © 2013, Texas Instruments Incorporated  
ELECTRICAL CHARACTERISTICS  
51  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
+V 0/0  
+Vpst  
+Vpre  
+Vss  
0
-Vss  
-Vpre  
-Vpst  
-V0/0  
UI  
h-1 = TWPRE (0%  
h1 = TWPOST1 (0%  
h0 = 1 - |h1| - |h-1  
V0 /0 = Output Amplitude with TWPRE = 0%, TWPOST = 0%.  
Vss = Steady State Output Voltage = V0/0 * | h1 + h0 + h- 1  
Vpre = PreCursor Output Voltage = V0 /0 * | -h1 h0 + h-1  
Vpst = PostCursor Output Voltage = V0/0 * | -h1 + h0 + h- 1  
-17 .5% for typical application) setting  
-37.5% for typical application) setting  
|
|
|
|
Figure 7-2. Pre/Post Cursor Swing Definitions  
52  
ELECTRICAL CHARACTERISTICS  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
7.4 High Speed Side Serial Receiver Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
50  
TYP  
MAX UNIT  
Full rate, AC coupled  
600  
mV  
800  
VID  
RX input differential voltage, |RXP – RXN|  
Half/Quarter/Eighth rate, AC coupled  
Full rate, AC coupled  
50  
100  
100  
1200  
mVpp  
1600  
RX input differential peak-to-peak voltage  
swing, 2×|RXP – RXN|  
VID(pp)  
CI  
Half/Quarter/Eighth rate, AC coupled  
RX input capacitance  
2
0.115  
0.130  
0.035  
5.2  
pF  
Applied sinusoidal jitter  
Applied random jitter  
Jitter tolerance, PRBS 31 test pattern at 10  
Gbps (see Figure 7-3 for attenuation curve)  
JTOL  
mVRMS  
Applied duty cycle distortion  
Broadband noise amplitude (RMS)  
100 MHz < f < 0.75* [Serial BIt Rate]  
9
SDD11  
Differential input return loss  
dB  
0.75*[Serial BIt Rate] < f < [Serial Bit  
Rate]  
(1)  
See  
t(LATENCY) Receive path latency  
See Figure 3-7  
(1) Differential input return loss, SDD11 = 8 – 16.6 log10(f / 0.75*[Serial BIt Rate])) dB  
40  
35  
30  
25  
20  
15  
10  
5
0
1000  
2000  
3000  
4000  
5000  
6000  
Frequency (MHz)  
G001  
Figure 7-3. Fitted Channel Attenuation Limit  
7.5 Low Speed Side Serial Transmitter Characteristics  
PARAMETER  
TEST CONDITIONS  
SWING = 000  
MIN  
TYP  
190  
MAX UNIT  
280  
110  
280  
420  
560  
690  
760  
800  
830  
SWING = 001  
SWING = 010  
SWING = 011  
SWING = 100  
SWING = 101  
SWING = 110  
SWING = 111  
380  
490  
560  
700  
710  
870  
mVpp  
1020  
Transmitter output differential peak-to-peak voltage  
swing  
VOD(pp)  
850  
950  
1150  
1230  
1270  
1010  
1050  
Copyright © 2013, Texas Instruments Incorporated  
ELECTRICAL CHARACTERISTICS  
53  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
 
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
MAX UNIT  
Low Speed Side Serial Transmitter Characteristics (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0
DE = 0000  
DE = 0001  
DE = 0010  
DE = 0011  
DE = 0100  
DE = 0101  
DE = 0110  
DE = 0111  
DE = 1000  
DE = 1001  
DE = 1010  
DE = 1011  
DE = 1100  
DE = 1101  
DE = 1110  
DE = 1111  
0.42  
0.87  
1.34  
1.83  
2.36  
2.92  
3.52  
4.16  
4.86  
5.61  
6.44  
7.35  
8.38  
9.54  
10.87  
DE  
Transmitter output de-emphasis voltage swing reduction  
dB  
VDDT – 0.5  
×
100-Ω differential termination,  
DC-coupled  
VCMT  
Transmitter output common mode voltage  
mV  
ps  
VOD(p-p)  
Differential output signal rise, fall time (20% to 80%),  
Differential Load = 100Ω  
tR, tF  
30  
JT  
Serial output total jitter  
0.35  
0.17  
UI  
UI  
UI  
JD  
Serial output deterministic jitter  
Duty Cycle Distortion  
DCD  
0.035  
7.6 Low Speed Side Serial Receiver Characteristics  
PARAMETER  
TEST CONDITIONS  
Full rate, AC coupled  
MIN  
TYP  
MAX UNIT  
50  
50  
600  
mV  
800  
VID  
Receiver input differential voltage, |INP – INN|  
Half/Quarter rate, AC coupled  
Full rate, AC coupled  
100  
100  
1200  
Receiver input differential peak-to-peak voltage swing  
2×|INP – INN|  
VID(pp)  
CI  
mVdfpp  
1600  
Half/Quarter rate, AC coupled  
Receiver input capacitance  
2
0.66  
0.65  
0.50  
0.35  
30  
pF  
Zero crossing, Half/Quarter rate  
Zero crossing, Full rate  
Jitter tolerance, total jitter at serial input (DJ + RJ)  
JTOL  
UIp-p  
(BER 10-15  
)
Zero crossing, Half/Quarter rate  
Zero crossing, Full rate  
JDR  
Serial input deterministic jitter (BER 10-15  
)
UIp-p  
UI  
tlane-skew  
Lane-to-lane input skew  
54  
ELECTRICAL CHARACTERISTICS  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
7.7 Reference and Output Clock Characteristics (REFCLK0P/N, REFCLK1P/N)  
PARAMETER  
Frequency  
TEST CONDITIONS  
MIN  
122.88  
–100  
–200  
0
TYP  
MAX UNIT  
F
425  
100  
200  
0
MHz  
ppm  
ppm  
Relative to nominal HS serial data rate  
Relative to incoming HS serial data rate  
Synchronous (Multiple/Divide)  
High time  
FHSoffset Accuracy  
FLSoffset Accuracy to LS serial data  
0
DC  
VID  
CIN  
RIN  
Duty cycle  
45%  
250  
50%  
55%  
Differential input voltage  
Input capacitance  
2000 mVpp  
1
pF  
Differential input impedance  
100  
TYP  
50  
Ω
7.8 Differential Output Clock Characteristics (CLKOUTAP/CLKOUTBP/N)  
PARAMETER  
TEST CONDITIONS  
Peak to peak  
MIN  
MAX UNIT  
VOD  
Differential output voltage  
1000  
2000 mVpp  
10% to 90%, 2pF lumped capacitive load, AC-  
coupled  
TRISE  
Output rise time  
350  
500  
ps  
RTERM  
F
Output termination  
Output frequency  
CLKOUTA/BP/N to DVDD  
Ω
0
MHz  
7.9 LVCMOS Electrical Characteristics (VDDO)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VDDO –  
0.45  
IOH = 2 mA, Driver enabled (1.8V)  
VDDO  
V
VOH  
High-level output voltage  
0.75 ×  
VDDO  
IOH = 2 mA, Driver enabled (1.5V)  
IOL = –2 mA, Driver enabled (1.8V)  
IOL = –2 mA, Driver enabled (1.5V)  
VDDO  
0
0.45  
VOL  
Low-level output voltage  
V
V
0.25 ×  
VDDO  
0
0.65 ×  
VDDO  
VDDO +  
0.3  
VIH  
High-level input voltage  
Low-level input voltage  
0.35 ×  
VDDO  
VIL  
–0.3  
V
IIH, IIL  
Receiver only  
Driver only  
Low/High input current  
Driver disabled  
±170  
±25  
µA  
IOZ  
µA  
pF  
Driver disabled with Pull Up/Down  
enabled  
Driver/Receiver with Pullup/Pulldown  
Input capacitance  
±195  
3
CIN  
Copyright © 2013, Texas Instruments Incorporated  
ELECTRICAL CHARACTERISTICS  
55  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
7.10 MDIO Timing Requirements  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MDC period  
TEST CONDITIONS  
MIN  
100  
10  
TYP  
MAX UNIT  
tperiod  
tsetup  
thold  
ns  
ns  
ns  
MDIO setup to MDC  
MDIO hold to MDC  
MDIO valid from MDC ↑  
See Figure 7-4  
10  
Tvalid  
0
40  
ns  
MDC  
tPERIOD  
tSETUP  
tHOLD  
MDIO  
Figure 7-4. MDIO Read/Write Timing  
7.11 JTAG Timing Requirements  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TCK period  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
TPERIOD  
TSETUP  
THOLD  
66.67  
ns  
ns  
TDI/TMS/TRST_N setup to TCK  
TDI/TMS/TRST_N hold from TCK  
TDO delay from TCK Falling  
3
5
0
See Figure 7-5  
ns  
TVALID  
10 ns  
TCK  
tPERIOD  
tSETUP  
tHOLD  
TDI/TMS/  
TRST_N  
tVALID  
TDO  
Figure 7-5. JTAG Timing  
56  
ELECTRICAL CHARACTERISTICS  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
 
 
TLK10081  
www.ti.com  
SLLSEE9 NOVEMBER 2013  
7.12 Power Sequencing Guidelines  
The TLK10081 allows either the core or I/O power supply to be powered up for an indefinite period of time  
while the other supply is not powered up, if all of the following conditions are met:  
1. All maximum ratings and recommending operating conditions are followed.  
2. Bus contention while 1.5/1.8V power is applied (>0V) must be limited to 100 hours over the projected  
lifetime of the device.  
3. Junction temperature is less than 105°C during device operation. Note: Voltage stress up to the  
absolute maximum voltage values for up to 100 hours of lifetime operation at junction temperature of  
105°C or lower will minimally impact reliability.  
The TLK10081 LVCMOS inputs are not failsafe (i.e. cannot be driven with the I/O power disabled).  
TLK10081 inputs should not be driven high until their associated power supplies are active.  
Copyright © 2013, Texas Instruments Incorporated  
ELECTRICAL CHARACTERISTICS  
57  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
TLK10081  
SLLSEE9 NOVEMBER 2013  
www.ti.com  
8 MECHANICAL AND THERMAL DATA  
8.1 Package Thermal Dissipation Ratings  
Table 8-1 details the thermal characteristics of the TLK10081 package.  
Table 8-1. Package Thermal Characteristics  
JEDEC STANDARD BOARD  
PARAMETER  
Theta-JA  
VALUE  
25.5  
ΘJA  
ΨJT  
ΨJB  
Psi-JT  
Psi-JB  
1.8  
13.7  
CUSTOM TYPICAL APPLICATION BOARD(1)  
ΘJA  
ΨJT  
ΨJB  
Theta-JA  
Psi-JT  
24.5  
0.9  
11  
Psi-JB  
(1) Custom Typical Application Board Characteristics:  
10x15 inches  
12 layer  
8 power/ground layers – 95% copper (1oz)  
4 signal layers – 20% copper (1oz)  
SPACER  
ΨJB = (TJ – TB)/(Total Device Power Dissipation)  
ΨJB = (TJ TJ = Device Junction Temperature  
ΨJB = (TJ TB = Temperature of PCB 1 mm from device edge.  
SPACER  
ΨJT = (TJ – TC)/(Total Device Power Dissipation)  
ΨJB = (TJ TJ = Device Junction Temperature  
ΨJB = (TJ TC = Hottest temperature on the case of the package.  
58  
MECHANICAL AND THERMAL DATA  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TLK10081  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLK10081CTR  
ACTIVE  
FCBGA  
CTR  
144  
119  
RoHS & Green  
SNAGCU  
Level-4-260C-72 HR  
-40 to 85  
TLK10081  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
TLK10081CTR  
CTR  
FCBGA  
144  
119  
7x17  
150  
315 135.9 7620 18.1  
12.7  
12.9  
Pack Materials-Page 1  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

TLK100PHP

Industrial Temp, Single Port 10/100 Mb/s Ethernet Physical Layer Transceiver
TI

TLK100PHPR

Industrial Temp, Single Port 10/100 Mb/s Ethernet Physical Layer Transceiver
TI

TLK100_11

Industrial Temp, Single Port 10/100 Mb/s Ethernet Physical Layer Transceiver
TI

TLK10232

DUAL-CHANNEL XAUI/10GBASE-KR TRANSCEIVER WITH CROSSPOINT
TI

TLK10232CTR

具有交叉点开关的双通道 XAUI/10GBASE-KR 背板收发器 | CTR | 144 | -40 to 85
TI

TLK10232_14

DUAL-CHANNEL XAUI/10GBASE-KR TRANSCEIVER WITH CROSSPOINT
TI

TLK105

Industrial Temp, Single Port 10/100Mbs Ethernet Physical Layer Transceiver
TI

TLK106

Industrial Temp, Single Port 10/100Mbs Ethernet Physical Layer Transceiver
TI

TLK110

Industrial Temp, Single Port 10/100Mbs Ethernet Physical Layer
TI

TLK1101E

11.3-Gbps Cable and PC Board Equalizer
TI

TLK1101ERGPR

11.3-Gbps Cable and PC Board Equalizer
TI

TLK1101ERGPRG4

11.3-Gbps Cable and PC Board Equalizer
TI