TLV1544C_08 [TI]

LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS; 低电压10位模拟数字转换器与串行控制和4/8模拟输入
TLV1544C_08
型号: TLV1544C_08
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS
低电压10位模拟数字转换器与串行控制和4/8模拟输入

转换器 输入元件
文件: 总41页 (文件大小:774K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
D OR PW PACKAGE  
(TOP VIEW)  
Conversion Time 10 µs  
10-Bit-Resolution ADC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
Programmable Power-Down  
Mode . . . 1 µA  
DATA OUT  
DATA IN  
I/O CLK  
EOC  
CS  
REF+  
REF–  
FS  
INV CLK  
GND  
CSTART  
A3  
Wide Range Single-Supply Operation of  
2.7 V dc to 5.5 V dc  
V
CC  
A0  
Analog Input Range of 0 V to V  
CC  
Built-in Analog Multiplexer with 8 Analog  
Input Channels  
A1  
A2  
TMS320 DSP and Microprocessor SPI and  
QSPI Compatible Serial Interfaces  
DB OR J PACKAGE  
(TOP VIEW)  
End-of-Conversion (EOC) Flag  
Inherent Sample-and-Hold Function  
Built-In Self-Test Modes  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
V
CC  
EOC  
I/O CLK  
DATA IN  
DATA OUT  
CS  
REF+  
REF–  
FS  
INV CLK  
Programmable Power and Conversion Rate  
Asynchronous Start of Conversion for  
Extended Sampling  
Hardware I/O Clock Phase Adjust Input  
CSTART  
GND  
description  
The TLV1544 and TLV1548 are CMOS 10-bit  
switched-capacitor successive-approximation (SAR)  
analog-to-digital (A/D) converters. Each device  
has a chip select (CS), input-output clock (I/O  
CLK), data input (DATA IN) and serial data output  
(DATA OUT) that provide a direct 4-wire  
synchronous serial peripheral interface (SPI ,  
QSPI ) port of a host microprocessor. When  
interfacing with a TMS320 DSP, an additional  
frame sync signal (FS) indicates the start of a  
serial data frame. The devices allow high-speed  
data transfers from the host. The INV CLK input  
provides further timing flexibility for the serial  
interface.  
FK PACKAGE  
(TOP VIEW)  
3
2
1
20 19  
A3  
I/O CLK  
18  
4
5
6
7
8
A4  
A5  
A6  
A7  
DATA IN  
DATA OUT  
CS  
17  
16  
15  
14  
REF+  
9
10 11 12 13  
In addition to a high-speed converter andversatile  
control capability, the device has an on-chip  
11-channel multiplexer that can select any one of  
eight analog inputs or any one of three internal self-test voltages. The sample-and-hold function is automatic  
except for the extended sampling cycle, where the sampling cycle is started by the falling edge of asynchronous  
CSTART. At the end of the A/D conversion, the end-of-conversion (EOC) output goes high to indicate that the  
conversion is complete. The TLV1544 and TLV1548 are designed to operate with a wide range of supply  
voltages with very low power consumption. The power saving feature is further enhanced with a  
software-programmed power-down mode and conversion rate. The converter incorporated in the device  
features differential high-impedance reference inputs that facilitate ratiometric conversion, scaling, and  
isolation of analog circuitry from logic and supply noise. A switched-capacitor design allows low-error  
conversion over the full operating temperature range.  
SPI and QSPI are registered trademarks of Motorola, Inc.  
Copyright 1999, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
description (continued)  
The TLV1544 has four analog input channels while the TLV1548 has eight analog input channels. The  
TLV1544C and TLV1548C are characterized for operation from 0°C to 70°C. The TLV1544I and TLV1548I are  
characterized for operation over the full industrial temperature range of –40°C to 85°C. The TLV1548M is  
characterized for operation over the full military temperature range of –55°C to 125°C.  
functional block diagram  
Sample  
and  
Hold Function  
10-Bit ADC  
(Switch Capacitors)  
CLOCK  
1–8  
A0–A7  
Output Data Register  
14  
REF+  
Analog  
MUX  
10-to-1  
Data Selector  
16  
DATA OUT  
Self-Test  
Reference  
13  
17  
REF–  
Input  
Data  
Register  
19  
12  
15  
9
EOC  
FS  
DATA IN  
Control  
Logic  
and  
I/O  
Counters  
CS  
CSTART  
INV CLK  
I/O CLK  
11  
18  
Terminals shown are for the DB package.  
AVAILABLE OPTIONS  
PACKAGE  
T
A
SMALL OUTLINE  
(PW)  
(DB)  
(D)  
(J)  
(FK)  
0°C to 70°C  
40°C to 85°C  
55°C to 125°C  
TLV1548CDB  
TLV1548IDB  
TLV1544CD  
TLV1544ID  
TLV1544CPW  
TLV1544IPW  
TLV1548MJ  
TLV1548MFK  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
POWER RATING  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
A
DB  
D
PW  
J
785 mW  
799 mW  
604 mW  
1894 mW  
1375 mW  
8.7 mW/°C  
8.9 mW/°C  
6.7 mW/°C  
15.1 mW/°C  
11.0 mW/°C  
393 mW  
399 mW  
302 mW  
1212 mW  
880 mW  
261 mW  
266 mW  
201 mW  
985 mW  
715 mW  
379 mW  
275 mW  
FK  
This is the inverse of the traditional junction-to-ambient thermal resistance (RΘ ). RΘ values are derived from Texas Instruments  
characterization data. Thermal resistance is not production tested and values are given for informational purposes only.  
JA  
JA  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NO.  
NAME  
NO.  
A0–A3  
6–9  
1–4  
5–8  
I
Analog inputs. The analog inputs are internally multiplexed. (For a source impedance greater than  
1 k, the asynchronous start should be used to increase the sampling time.)  
A4–A7  
CS  
16  
15  
I
I
Chip select. A high-to-low transition on CS resets the internal counters and controls and enables DATA IN,  
DATA OUT, and I/O CLK within the maximum setup time. A low-to-high transition disables DATA IN, DATA  
OUT, and I/O CLK within the setup time.  
CSTART  
DATA IN  
10  
9
Sampling/conversion start control. CSTART controls the start of the sampling of an analog input from a  
selected multiplex channel. A high-to-low transition starts the sampling of the analog input signal. A  
low-to-high transition puts the sample-and-hold function in hold mode and starts the conversion. CSTART  
is independent from I/O CLK and works when CS is high. The low CSTART duration controls the duration  
of the sampling cycle for the switched capacitor array. CSTART is tied to V  
CC  
if not used.  
2
17  
I
Serialdata input. The 4-bit serial data selects the desired analog input and test voltage to be converted next  
in a normal cycle. These bits can also set the conversion rate and enable the power-down mode.  
When operating in the microprocessor mode, the input data is presented MSB first and is shifted in on the  
first four rising (INV CLK = V ) or falling (INV CLK = GND) edges of I/O CLK (after CS).  
CC  
When operating in the DSP mode, the input data is presented MSB first and is shifted in on the first four  
falling (INV CLK = V ) or rising (INV CLK = GND) edges of I/O CLK (after FS).  
CC  
Afterthefourinputdatabitshavebeenreadintotheinputdataregister,DATAINisignoredfortheremainder  
of the current conversion period.  
DATA OUT  
EOC  
1
4
16  
19  
O
Three-state serial output of the A/D conversion result. DATA OUT is in the high-impedance state when CS  
ishighandactivewhenCSisloworafterFS(inDSPmode). WithavalidCSsignal, DATAOUTisremoved  
from the high-impedance state and is driven to the logic level corresponding to the MSB or LSB value of  
the previous conversion result. DATA OUT changes on the falling (microprocessor mode) or rising (DSP  
mode) edge of I/O CLK.  
O
I
End of conversion. EOC goes from a high to a low logic level on the tenth rising (microprocessor mode)  
or tenth falling (DSP mode) edge of I/O CLK and remains low until the conversion is complete and data is  
ready for transfer. EOC can also indicate that the converter is busy.  
FS  
13  
11  
12  
12  
10  
11  
DSP frame synchronization input. FS indicates the start of a serial data frame into or out of the device. FS  
is tied to V  
when interfacing the device with a microprocessor.  
CC  
GND  
Ground return for internal circuitry. All voltage measurements are with respect to GND, unless otherwise  
noted.  
INV CLK  
I
Inverted clock input. INV CLK is tied to GND when an inverted I/O CLK is used as the source of the input  
clock. This affects both microprocessor and DSP interfaces. INV CLK is tied to V  
inverted. INV CLK can also invoke a built-in test mode.  
if I/O CLK is not  
CC  
Terminal numbers are for the D package.  
Terminal numbers are for the DB, J, and FK packages.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
Terminal Functions (Continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
NO.  
I/O CLK  
3
18  
I
Input/output clock. I/O CLK receives the serial I/O clock input in the two modes and performs the following  
four functions in each mode:  
Microprocessor mode  
When INVCLK = V , I/O CLK clocks the four input data bits into the input data register on the first four  
CC  
rising edges of I/O CLK after CSwith the multiplexer address available after the fourth rising edge.  
When INV CLK = GND, input data bits are clocked in on the first four falling edges instead.  
On the fourth falling edge of I/O CLK, the analog input voltage on the selected multiplex input begins  
charging the capacitor array and continues to do so until the tenth rising edge of I/O CLK except in the  
extended sampling cycle where the duration of CSTART determines when to end the sampling cycle.  
Output data bits change on the first ten falling I/O clock edges regardless of the condition of INV CLK.  
I/O CLK transfers control of the conversion to the internal state machine on the tenth rising edge of I/O  
CLK regardless of the condition of INV CLK.  
Digital signal processor (DSP) mode  
When INV CLK = V , I/O CLK clocks the four input data bits into the input data register on the first four  
CC  
falling edges of I/O CLK after FSwith the multiplexer address available after the fourth falling edges.  
When INV CLK = GND, input data bits are clocked in on the first four rising edges instead.  
On the fourth rising edge of I/O CLK, the analog input voltage on the selected multiplex input begins  
charging the capacitor array and continues to do so until the tenth falling edge of I/O CLK except in the  
extended sampling cycle where the duration of CSTART determines when to end the sampling cycle.  
Output data MSB shows after FSand the rest of the output data bits change on the first ten rising I/O  
CLK edges regarless of the condition of INV CLK.  
I/O CLK transfers control of the conversion to the internal state machine on the tenth falling edge of I/O  
CLK regardless of the condition of INV CLK.  
REF+  
REF–  
15  
14  
I
Upper reference voltage (nominally V  
). The maximum input voltage range is determined by the difference  
CC  
between the voltages applied to REF+ and REF–.  
Lower reference voltage (nominally ground)  
Positive supply voltage  
14  
5
13  
20  
I
I
V
CC  
Terminal numbers are for the D package.  
Terminal numbers are for the DB, J, and FK packages.  
detailed description  
Initially, with CS high (inactive), DATA IN and I/O CLK are disabled and DATA OUT is in the high-impedance  
state. When the serial interface takes CS low (active), the conversion sequence begins with the enabling of I/O  
CLK and DATA IN and the removal of DATA OUT from the high-impedance state. The host then provides the  
4-bit channel address to DATA IN and the I/O clock sequence to I/O CLK. During this transfer, the host serial  
interfacealsoreceivesthepreviousconversionresultfromDATAOUT. I/OCLKreceivesaninputsequencefrom  
the host that is from 10 to 16 clocks long. The first four valid I/O CLK cycles load the input data register with the  
4-bit input data on DATA IN that selects the desired analog channel. The next six clock cycles provide the control  
timing for sampling the analog input. Sampling of the analog input is held after the first valid I/O CLK sequence  
of ten clocks. The tenth clock edge also takes EOC low and begins the conversion. The exact locations of the  
I/O clock edges depend on the mode of operation.  
serial interface  
The TLV1548 is compatible with generic microprocessor serial interfaces such as SPI and QSPI, and a TMS320  
DSP serial interface. The internal latched flag If_mode is generated by sampling the state of FS at the falling  
edge of CS. If_mode is set to one (for microprocessor) when FS is high at the falling edge of CS, and If_mode  
is cleared to zero (for DSP) when FS is low at the falling edge of CS. This flag controls the multiplexing of I/O  
CLK and the state machine reset function. FS is pulled high when interfacing with a microprocessor.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
I/O CLK  
The I/O CLK can go up to 10 MHz for most of the voltage range when fast I/O is possible. The maximum I/O  
CLK is limited to 2.8 MHz for a supply voltage range from 2.7 V. Table 1 lists the maximum I/O CLK frequencies  
for all different supply voltage ranges. This also depends on input source impedance. For example, I/O CLK  
speed faster than 2.39 MHz is achievable if the input source impedance is less than 1 k.  
Table 1. Maximum I/O CLK Frequency  
MAXIMUM INPUT  
RESISTANCE (Max)  
V
CC  
SOURCE IMPEDANCE  
I/O CLK  
1 kΩ  
100 Ω  
1 kΩ  
2.39 MHz  
2.81 MHz  
7.18 MHz  
10 MHz  
2.7 V  
4.5 V  
5 K  
1 K  
100 Ω  
microprocessor serial interface  
Input data bits from DATA IN are clocked in on the first four rising edges of the I/O CLK sequence if INV CLK  
is held high when the device is in microprocessor interface mode. Input data bits are clocked in on the first four  
falling edges of the I/O CLK sequence if INV CLK is held low. The MSB of the previous conversion appears on  
DATA OUT on the falling edge of CS. The remaining nine bits are shifted out on the next nine edges (depending  
on the state of INV CLK) of I/O CLK. Ten bits of data are transmitted to the host through DATA OUT.  
A minimum of 9.5 clock pulses is required for the conversion to begin. On the tenth clock rising edge, the EOC  
output goes low and returns to the high logic level when the conversion is complete; then the result can be read  
by the host. On the tenth clock falling edge, the internal logic takes DATA OUT low to ensure that the remaining  
bit values are zero if the I/O CLK transfer is more than ten clocks long.  
CSisinactive(high)betweenserialI/OCLKtransfers. EachtransfertakesatleasttenI/OCLKcycles. Thefalling  
edge of CS begins the sequence by removing DATA OUT from the high-impedance state. The rising edge of  
CSendsthesequencebyreturningDATAOUTtothehigh-impedancestatewithinthespecifieddelaytime. Also,  
the rising edge of CS disables I/O CLK and DATA IN within a setup time. A conversion does not begin until the  
tenth I/O CLK rising edge.  
A high-to-low transition on CS within the specified time during an ongoing cycle aborts the cycle, and the device  
returns to the initial state (the output data register holds the previous conversion result). CS should not be taken  
low close to completion of conversion because the output data can be corrupted.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
DSP interface  
The TLV1544/1548 can also interface with a DSP, from the TMS320 family for example, through a serial port.  
The analog-to-digital converter (ADC) serves as a slave device where the DSP supplies FS and the serial I/O  
CLK. Transmit and receive operations are concurrent. The falling edge of FS must occur no later than seven  
I/O CLK periods after the falling edge of CS.  
DSP I/O cycles differ from microprocessor I/O cycles in the following ways:  
WheninterfacedwithaDSP, theoutputdataMSBisavailableafterFS. Theremainingoutputdatachanges  
on the rising edge of I/O CLK. The input data is sampled on the first four falling edges of I/O CLK after FS↓  
and when INV CLK is high, or the first four rising edges of I/O CLK after FSand when INV CLK is low. This  
operation is inverted when interfaced with a microprocessor.  
A new DSP I/O cycle is started on the rising edge of I/O CLK after the rising edge of FS. The internal state  
machineisresetoneachfallingedgeofI/OCLKwhenFSishigh. Thisoperationisoppositewheninterfaced  
with a microprocessor.  
The TLV1544/1548 supports a 16-clock cycle when interfaced with a DSP. The output data is padded with  
six trailing zeros when it is operated in DSP mode.  
Table 2. TLV1544/TLV1548 Serial Interface Modes  
INTERFACE MODE  
I/O  
MICROPROCESSOR ACTION  
Initializes counter  
Resets state machine and disable I/O  
DSP ACTION  
CS↓  
CS↑  
Samples state of FS  
Disables I/O  
Connects to DSP FSX output  
Initializes the state machine at each CLKafter FS↑  
Starts a new cycle at each CLKfollowing the initialization  
(initializes the counter)  
FS  
Connects to V  
CC  
Starts sampling of the analog input started at fourth I/O CLK↑  
Conversion started at tenth I/O CLK↑  
Starts sampling of the analog input at fourth I/O CLK↓  
Starts sampling of the analog input at tenth I/O CLK↓  
I/O CLK  
DATA IN  
Samples input data on I/O CLK(INV CLK high)  
Samples input data on I/O CLK(INV CLK low)  
Samples input data at I/O CLK(INV CLK high)  
Samples input data at I/O CLK(INV CLK low)  
Makes MSB available FS↓  
Changes remaining data at each following I/O CLKafter  
FS↓  
Makes MSB available on CS↓  
Changes remaining data on I/O CLK↓  
DATA OUT  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
input data bits  
DATA IN is internally connected to a 4-bit serial input data register. The input data selects a different mode or  
selects different analog input channels. The host provides the data word with the MSB first. Each data bit clocks  
in on the edge (rising or falling depending on the status of INV CLK and FS) of the I/O CLK sequence. The input  
clock can be inverted by grounding INV CLK (see Table 3 for the list of software programmed operations set  
by the input data).  
Table 3. TLV1544/1548 Software-Programmed Operation Modes  
INPUT DATA BYTE  
FUNCTION SELECT  
A3 – A0  
BINARY  
COMMENT  
HEX  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
Analog channel A0 for TLV1548 selected  
Analog channel A1 for TLV1548 selected  
Analog channel A2 for TLV1548 selected  
Analog channel A3 for TLV1548 selected  
Analog channel A4 for TLV1548 selected  
Analog channel A5 for TLV1548 selected  
Analog channel A6 for TLV1548 selected  
Analog channel A7 for TLV1548 selected  
Software power down set  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
1111b  
Channel 0 for TLV1544  
Channel 1 for TLV1544  
Channel 2 for TLV1544  
Channel 3 for TLV1544  
No conversion result (cleared by any access)  
No conversion result (cleared by setting to fast)  
No conversion result (cleared by setting to slow)  
Output result = 200h  
Fast conversion rate (10 µs) set  
Slow conversion rate (40 µs) set  
Self-test voltage (V  
ref  
– V )/2 selected  
ref–  
Self-test voltage V  
Self-test voltage V  
Reserved  
selected  
selected  
Output result = 000h  
ref  
Output result = 3FFh  
ref  
No conversion result  
Reserved  
No conversion result  
analog inputs and internal test voltages  
The eight analog inputs and the three internal test inputs are selected by the 11-channel multiplexer according  
to the input data bit as shown in Table 3. The input multiplexer is a break-before-make type to reduce  
input-to-input noise injection resulting from channel switching.  
The device can be operated in two distinct sampling modes: normal sampling mode (fixed sampling time) and  
extended sampling mode (flexible sampling time). When CSTART is held high, the device is operated in normal  
sampling mode. When operated in normal sampling mode, sampling of the analog input starts on the rising edge  
of the fourth I/O CLK pulse in the microprocessor interface mode (and on the fourth falling edge of I/O CLK in  
the DSP interface mode). Sampling continues for 6 I/O CLK periods. The sample is held on the falling edge of  
the tenth I/O CLK pulse in the microprocessor interface mode. The sample is held on the falling edge of the tenth  
I/O CLK pulse in the DSP interface mode.The three test inputs are applied to the multiplexer, then sampled and  
converted in the same manner as the external analog inputs.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
converter  
The CMOS threshold detector in the successive-approximation conversion system determines the value of  
each bit by examining the charge on a series of binary-weighted capacitors (see Figure 1). In the first phase  
of the conversion process, the analog input is sampled by closing the S switch and all S switches  
C
T
simultaneously. This action charges all of the capacitors to the input voltage.  
In the next phase of the conversion process, all S and S switches are opened and the threshold detector  
T
C
begins identifying bits by identifying the charge (voltage) on each capacitor relative to the reference (REF –)  
voltage. In the switching sequence, ten capacitors are examined separately until all ten bits are identified and  
then the charge-convert sequence is repeated. In the first step of the conversion phase, the threshold detector  
looks at the first capacitor (weight = 512). Node 512 of this capacitor is switched to the REF+ voltage, and the  
equivalent nodes of all the other capacitors on the ladder are switched to REF –. If the voltage at the summing  
node is greater than the trip point of the threshold detector (approximately one-half V ), a bit 0 is placed in the  
CC  
output register and the 512-weight capacitor is switched to REF –. If the voltage at the summing node is less  
than the trip point of the threshold detector, a bit 1 is placed in the register and the 512-weight capacitor remains  
connected to REF + through the remainder of the successive-approximation process. The process is repeated  
for the 256-weight capacitor, the 128-weight capacitor, and so forth down the line until all bits are counted.  
With each step of the successive-approximation process, the initial charge is redistributed among the  
capacitors. The conversion process relies on charge redistribution to count and weigh the bits from MSB to LSB.  
S
C
Threshold  
Detector  
To Output  
Latches  
512  
Node 512  
256  
128  
8
4
2
1
1
REF+  
REF+  
REF+  
REF+  
REF+  
REF+  
REF+  
REF–  
REF–  
REF–  
REF–  
REF–  
REF–  
REF–  
REF–  
S
S
S
S
S
S
S
S
T
T
T
T
T
T
T
T
V
I
Figure 1. Simplified Model of the Successive-Approximation System  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
extended sampling, asynchronous start of sampling: CSTART operation  
The extended sampling mode of operation programs the acquisition time (t  
) of the sample-and-hold circuit.  
ACQ  
This allows the analog inputs of the device to be directly interfaced to a wide range of input source impedances.  
The extended sampling mode consumes higher power depending on the duration of the sampling period  
chosen.  
CSTART controls the sampling period and starts the conversion. The falling edge of CSTART initiates the  
sampling period of a preset channel. The low time of CSTART controls the acquisition time of the input  
sample-and-hold circuit. The sample is held on the rising edge of CSTART. Asserting CSTART causes the  
converter to perform a new sample of the signal on the preset valid MUX channel (one of the eight) and discard  
the current conversion result ready for output. Sampling continues as long as CSTART is active (negative). The  
rising edge of CSTART ends the sampling cycle. The conversion cycle starts two internal system clocks after  
the rising edge of CSTART.  
Once the conversion is complete, the processor can initiate a normal I/O cycle to read the conversion result and  
set the MUX address for the next conversion. Since the internal flag AsyncFlag is set high, this flag setting  
indicatesthe cycle is an output cycle, so no conversion is performed during the cycle. The internal state machine  
tests the AsyncFlag on the falling edge of CS. AsyncFlag is set high at the rising edge of CSTART, and it is reset  
low at the rising edge of each CS. A conversion cycle follows a sampling cycle only if AsyncFlag is tested as  
low at the falling edge of CS. As shown in Figure 2, an asynchronous I/O cycle can be removed by two  
consecutive normal I/O cycles.  
Table 4. TLV1544/1548 Hardware Configuration for Different Operating Modes  
OPERATING MODES  
Normal sampling  
CS  
Low  
Low  
CSTART AsyncFlag at CS↓  
ACTION  
High  
High  
Low  
Fixed 6 I/O CLK sampling, synchronous conversion follows  
No sampling, no conversion  
Normal I/O (read out only)  
High  
Flexible sampling period controlled by CSTART,  
asynchronous conversion follows  
Extended sampling  
High  
Low  
N/A  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
Complete Extended  
Extended  
Sample  
Cycle  
Sample Cycle  
Read Out  
Cycle  
Extended  
Sample  
Cycle  
Normal  
Cycle  
Read Out  
Cycle  
Read Out  
Cycle  
Normal  
Cycle  
CS  
FS  
(DSP Mode)  
t
t
ACQ  
ACQ  
CSTART  
DATA IN  
Aa  
Ab  
Ab  
Ac  
Ad  
EOC  
Hi–Z  
Hi–Z  
Hi–Z  
Hi–Z  
Hi–Z  
Hi–Z  
DATA OUT  
X
Da  
Db  
Db  
Dc  
Async Flag  
NOTES: A. Aa = Address for input channel a.  
B. Da = Conversion result from channel a.  
Figure 2. Extended Sampling Operation  
reference voltage inputs  
There are two reference inputs used with the TLV1544/TLV1548, REF+ and REF–. These voltage values  
establish the upper and lower limits of the analog inputs to produce a full-scale and zero-scale reading  
respectively. The values of REF+, REF–, and the analog input should not exceed the positive supply or be lower  
than GND consistent with the specified absolute maximum ratings. The digital output is at full scale when the  
input signal is equal to or higher than REF+ and is at zero when the input signal is equal to or lower than REF–.  
programmable conversion rate  
The TLV1544/TLV1548 offers two conversion rates to maximize battery life when high-speed operation is not  
necessary. The conversion rate is programmable. Once the conversion rate has been selected, it takes effect  
immediately in the same cycle and stays at the same rate until the other rate is chosen. The conversion rate  
should be set at power up. Activation and deactivation of the power-down state (digital logic active) has no effect  
on the preset conversion rate.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
Table 5. Conversion Rate and Power Consumption Selection  
TYPICAL SUPPLY CURRENT, I  
CC  
CONVERSION TIME,  
AVAILABLE V  
RANGE  
CC  
CONVERSION RATE  
INPUT DATA  
POWER  
DOWN  
t
conv  
OPERATING  
Fast conversion speed  
Slow conversion speed  
7 µs typ  
5.5 V to 3.3 V  
5.5 V to 2.7 V  
9h  
Ah  
0.6 mA typ  
0.4 mA typ  
1.5 mA max  
1 mA max  
1 µA typ  
1 µA typ  
15 µs typ  
programmable power-down state  
The device is put into the power-down state by writing 8h to DATA IN. The power-up state is restored during  
the next active access by pulling CS low. The conversion rate selected before the device is put into the  
power-down state is not affected by the power-down mode. Power-down can be used to achieve even lower  
power consumption. This is because the sustaining power (when not converting) is only 1.3 mA maximum and  
standby power is only 1 µA maximum. (By averaging out the power consumption can be much lower than the  
1 mA peak when the conversion throughput is lower.)  
Power Down  
CS  
Hi-Z  
Hi-Z  
DATA IN  
EOC  
1 0 0 0  
Supply Current  
1 mA  
(Typical Peak Supply)  
0.3 mA  
I
(Typical Sustaining)  
CC  
0.0007 mA  
(Typical Power Down  
Supply)  
0
Figure 3. Typical Supply Current During Conversion/Power Down  
power up and initialization  
After power up, if operating in DSP mode, CS and FS must be taken from high to low to begin an I/O cycle. EOC  
is initially high, and the input data register is set to all zeroes. The content of the output data register is random,  
and the first conversion result should be ignored. For initialization during operation, CS is taken high and  
returned low to begin the next I/O cycle. The first conversion after the device has returned from the power-down  
state can be invalid and should be disregarded.  
When power is first applied to the device, the conversion rate must be programmed, and the internal Async Flag  
must be taken low once. The rising edge of CS of the same cycle then takes Async Flag low.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
First Cycle After Powerup  
MUX Address for Channel 0  
CS  
FS  
(For DSP Mode)  
Async Flag  
(Internal)  
DATA IN  
9h  
0h  
Ab  
Signal Channel 0 Converted  
EOC  
Hi–Z  
Hi–Z  
Hi–Z  
Hi–Z  
DATA OUT  
X
D0  
X
Conversion Result From Channel 0  
Conversion Rate Set to Fast  
AsyncFlag Reset Low  
Figure 4. Power Up Initialization  
input clock inversion – INV CLK  
The input data register uses I/O CLK as the source of the sampling clock. This clock can be inverted to provide  
more setup time. INV CLK can invert the clock. When INV CLK is grounded, the input clock for the input data  
register is inverted. This allows an additional one-half I/O CLK period for the input data setup time. This is useful  
for some serial interfaces. When the input sampling clock is inverted, the output data changes at the same time  
that the input data is sampled.  
Table 6. Function of INV CLK  
CONDITION  
I/O CLK ACTIVE EDGE  
CLOCK  
OUTPUT DATA  
CHANGES ON SAMPLED ON  
INPUT DATA  
INV CLK  
FS at CS↓  
High  
High  
Low  
Low  
High (MP mode)  
Low (DSP mode)  
High (MP mode)  
Low (DSP mode)  
MP = microprocessor mode  
DSP = digital signal processor mode  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
Threshold  
Detect  
REF+  
REF–  
EOC  
Sample-  
and-  
Hold  
Function  
A0–A7  
SAR Latch  
11-to-1  
Analog  
10-to-1 Select  
DATA OUT  
INV CLK  
TEST 0–2  
MUX  
Conversion  
Clock  
REF+  
REF–  
Output Shift Clock  
V
ref  
Invert  
CS  
FS  
If_mode  
If_mode  
OSC  
Input  
Data  
I/O CLK  
DATA IN  
Register  
Control  
State  
Machine  
SMCLK  
If_mode  
Input Shift Clock  
2-to-1  
Invert  
2-to-1  
§
DSP  
Microprocessor  
Successive approximation register  
§
If_mode = 1, microprocessor interface mode  
If_mode = 0, DSP interface mode  
Figure 5. Clock Scheme  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 6.5 V  
CC  
Input voltage range, V (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
+ 0.3 V  
+ 0.3 V  
+ 0.1 V  
I
CC  
CC  
CC  
Output voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
O
Positive reference voltage, V  
Negative reference voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
ref+  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1 V  
ref–  
Peak input current, I (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
I
Peak total input current (all inputs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
Operating free-air temperature range, T : TLV1544C, TLV1548C . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
TLV1544I, TLV1548I . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
TLV1548M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
Storage temperature range, T  
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to GND with REFand GND wired together (unless otherwise noted).  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
recommended operating conditions  
MIN NOM  
MAX  
UNIT  
V
Supply voltage, V  
2.7  
5.5  
CC  
Positive reference voltage, V  
(see Note 2)  
(see Note 2)  
– V (see Note 2)  
V
V
V
ref+  
Negative reference voltage, V  
CC  
0
V
ref–  
Differential reference voltage, V  
2.5  
0
V +0.2  
CC  
V
ref+  
ref–  
CC  
Analog input voltage, V  
(see Note 2)  
V
CC  
V
I (analog)  
High-level control input voltage, V  
2.1  
V
IH  
Low-level control input voltage, V  
0.6  
V
IL  
Setup time, input data bits valid before I/O CLK, t  
(see Figure 9)  
100  
5
ns  
ns  
ns  
ns  
su(A)  
(see Figure 9)  
Hold time, input data bits valid after I/O CLK, t  
30  
30  
h(A)  
Setup time, CSto I/O CLK, t  
See Figure 10  
See Figure 10  
5
su(CS)  
Hold time, I/O CLKto CS, t  
65  
h(CS)  
I/O CLK  
periods  
Pulse duration, FS high, t  
See Figure 12  
1
wH(FS)  
Source impedance 1 k,  
See Figure 14  
V
= 5.5 V,  
CC  
Pulse duration, CSTART, t  
0.84  
µs  
w(CSTART)  
Setup time, CSto CSTART, t  
See Figure 14  
10  
0.1  
0.1  
50  
ns  
su(CSTART)  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 5.5 V  
= 2.7 V  
= 5.5 V  
= 2.7 V  
= 5.5 V  
= 2.7 V  
6
2
10  
Clock frequency at I/O CLK, f  
MHz  
ns  
CLK  
2.81  
Pulse duration, I/O CLK high, t  
wH(I/O)  
wL(I/O)  
100  
50  
Pulse duration, I/O CLK low, t  
ns  
100  
Transition time, I/O CLK, t  
(see Figure 11 and Note 4)  
1
10  
µs  
µs  
µs  
µs  
µs  
t(I/O)  
Transition time, DATA IN, t  
(see Figure 9)  
t(DATA IN)  
Transition time, CS, t  
(see Figure 10)  
(see Figure 13)  
10  
t(CS)  
Transition time, FS, t  
10  
t(FS)  
Transition time, CSTART, t  
(see Figure 14)  
10  
t(CSTART)  
TLV1544C, TLV1548C  
TLV1544I, TLV1548I  
TLV1548M  
0
–40  
–55  
70  
Operating free-air temperature, T  
85  
°C  
°C  
A
125  
115  
115  
150  
TLV1544C, TLV1548C  
TLV1544I, TLV1548I  
TLV1548M  
Junction temperature, T  
J
NOTES: 2. Analog input voltages greater than the voltage applied to REF+ convert as all ones (111111111111), while input voltages less than  
the voltage applied to REF– convert as all zeros (000000000000). The device is functional with reference (V  
V; however, the electrical specifications are no longer applicable.  
– V ) down to 1  
ref–  
ref+  
3. To minimize errors caused by noise at CS, the internal circuitry waits for a setup time after CSbefore responding to control input  
signals. No attempt should be made to clock in an input dat until the minimum CS setup time has elapsed.  
4. This is the time required for the I/O CLK signal to fall from V max to V min or to rise from V max to V min. Inthevicinityofnormal  
IH  
IL  
IL  
IH  
room temperature, the devices function with an input clock transition time as slow as 1 µs for remote data-acquisition applications  
where the sensor and the A/D converter are placed several feet away from the controlling microprocessor.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
electrical characteristics over recommended operating free-air temperature range,  
V
= V  
= 2.7 V to 5.5 V, I/O CLK frequency = 2.2 MHz (unless otherwise noted)  
CC  
ref+  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
V
V
V
V
V
= 5.5 V,  
= 2.7 V,  
= 5.5 V,  
= 2.7 V,  
I
I
I
I
= –0.2 mA  
= –20 µA  
= 0.8 mA  
= 20 µA  
2.4  
CC  
CC  
CC  
CC  
OH  
OH  
OL  
OL  
V
High-level output voltage  
Low-level output voltage  
High-impedance output current  
V
OH  
V
CC–0.1  
0.4  
0.1  
V
OL  
V
= V  
,
CS = V  
CS = V  
1
2.5  
O
O
CC  
= 0,  
CC  
CC  
I
µA  
OZ  
–1  
0.005  
2.5  
2.5  
I
I
High-level input current  
Low-level input current  
V = V  
I CC  
µA  
µA  
IH  
V = 0  
I
0.005  
2.5  
IL  
Conversion speed = fast,  
For all digital inputs,  
V
CC  
= 3.3 V to 5.5 V  
0.6  
1.5  
0 V 0.3 V or  
I
V V  
– 0.3 V  
CC  
I
I
Operating supply current  
mA  
CC  
Conversion speed = slow,  
For all digital inputs,  
V
V
= 3.3 V to 5.5 V  
= 2.7 V to 3.3 V  
0.4  
1
CC  
0 V 0.3 V or  
I
0.35  
0.75  
CC  
V V  
– 0.3 V  
CC  
I
V
= 3.3 V to 5.5 V  
= 2.7 V to 3.3 V  
1.5  
1
mA  
mA  
Extended sampling mode  
operating current  
CC  
CC  
I
I
CC(ES)  
V
Conversion speed = slow,  
For all digital inputs,  
0 V 0.3 V or  
Sustaining supply current  
V
CC  
= 2.7 V to 3.3 V  
0.3  
1
mA  
CC(ST)  
I
V V  
– 0.3 V  
I
CC  
For all digital inputs,  
0 V 0.3 V or V V – 0.3 V  
CC  
I
I
Power-down supply current  
25  
µA  
CC(PD)  
I
I
Selected channel at V , unselected channel at 0 V  
CC  
Selected channel at 0 V, unselected channel at V  
1
µA  
µA  
Selected channel leakage current  
lkg  
–1  
CC  
Maximum static analog  
reference current into REF+  
V
ref+  
= V  
= 5.5 V,  
V = GND  
ref–  
1
µA  
CC  
Input capacitance, analog inputs  
Input capacitance, control inputs  
20  
20  
55  
15  
1
C ‡  
pF  
i
V
V
= 4.5 V  
= 2.7 V  
CC  
Z ‡  
i
Input multiplexer on resistance  
kΩ  
5
CC  
All typical values are at V  
Not production tested.  
= 5 V, T = 25°C.  
A
CC  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
operating characteristics over recommended operating free-air temperature range,  
V
= V  
= 2.7 V to 5.5 V, I/O CLK frequency = 2.2 MHz (unless otherwise noted)  
CC  
ref+  
TEST  
CONDITIONS  
PARAMETER  
MIN TYP  
MAX  
UNIT  
E
Linearity error (see Note 6)  
Differential linearity error  
Offset error (see Note 7)  
Gain error (see Note 7)  
±0.5  
±0.5  
±1  
±1  
LSB  
LSB  
LSB  
LSB  
LSB  
L
E
See Note 2  
See Note 2  
See Note 2  
D
O
G
T
E
E
E
±1.5  
±1  
Total unadjusted error (see Note 8)  
±1.75  
DATA IN = 1011  
DATA IN - 1100  
DATA IN = 1101  
512  
0
Self-test output code (see Table 3 and Note 9)  
1023  
7
Fast conversion speed  
10  
25  
µs  
µs  
See Figures 15  
through 17  
t
t
Conversion time  
conv  
Slow conversion speed  
15  
See Figures 15  
through 18 and  
Notes 10, 11, 12  
10.1 +  
10 I/O CLK  
Fast conversion speed  
Total cycle time (access,  
sample, conversion and EOC↑  
to CSdelay)  
µs  
c
See Figures 15  
Slow conversion speed through 18 and  
Notes 10 and 12  
40.1 +  
10 I/O CLK  
See Figures 15  
through 18 and  
Note 10  
I/O CLK  
periods  
t
Channel acquisition time (sample)  
6
acq  
t
t
t
Valid time, DATA OUT remains valid after I/O CLK↓  
Delay time, I/O CLK high to FS high  
See Figure 11  
See Figure 13  
See Figure 13  
50  
5
ns  
ns  
ns  
v
30  
30  
50  
60  
d1(FS)  
d2(FS)  
Delay time, I/O CLK high to FS low  
10  
See Figure 14  
and Note 5  
t
t
t
Delay time, EOCto CS low  
Delay time, CSto FS↑  
100  
1
ns  
d(EOC– CS)  
d(CS– FS)  
d(I/O -CS)  
See Figures 17  
and 18  
I/O CLK  
periods  
7
Delay time, 10th I/O CLK low to CS low to abort  
conversion (see Note 13)  
See Figure 10  
1.1  
µs  
All typical values are at T = 25°C.  
A
NOTES: 2. Analog input voltages greater than that applied to REF+ convert as all ones (111111111111), while input voltages less than that  
appliedtoREFconvertasallzeros(000000000000).Thedeviceisfunctionalwithreferencedownto1V(V +–V –1);however,  
ref ref  
the electrical specifications are no longer applicable.  
5. For all operating modes.  
6. Linearity error is the maximum deviation from the best straight line through the A/D transfer characteristics.  
7. Zero error is the difference between 0000000000 and the converted output for zero input voltage. Full-scale error is the difference  
between 1111111111 and the converted output for full-scale input voltage.  
8. Total unadjusted error comprises linearity, zero-scale, and full-scale errors.  
9. Both the input data and the output codes are expressed in positive logic.  
10. I/O CLK period = 1/(I/O CLK frequency) (see Figure 8).  
11. For 3.3 V to 5.5 V only  
12. For microprocessor mode  
13. Any transitions of CS are recognized as valid only when the level is maintained for a setup time after the transition.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
operating characteristics over recommended operating free-air temperature range,  
V
= V  
= 2.7 V to 5.5 V, I/O CLK frequency = 2.2 MHz (unless otherwise noted) (continued)  
CC  
ref+  
PARAMETER  
TEST CONDITIONS  
See Figure 11  
See Figure 12  
See Figure 8  
MIN TYP  
MAX  
50  
UNIT  
ns  
t
t
t
t
t
t
t
Delay time, I/O CLK low to DATA OUT valid  
Delay time, 10th I/O CLKto EOC low  
d(I/O-DATA)  
70  
0.7  
70  
15  
50  
50  
240  
1.3  
ns  
d(I/O-EOC)  
, t  
PZH PZL  
Enable time, CS low to DATA OUT valid (MSB driven)  
Disable time, CS high to DATA OUT invalid (high impedance)  
Fall time, EOC  
µs  
, t  
See Figure 8  
150  
50  
ns  
PHZ PLZ  
See Figure 12  
See Figure 11  
See Figure 11  
ns  
f(EOC)  
r(bus)  
f(bus)  
Rise time, output data bus at 2.2 MHz I/O CLK  
Fall time, output data bus at 2.2 MHz I/O CLK  
250  
250  
ns  
ns  
All typical values are at T = 25°C.  
A
PARAMETER MEASUREMENT INFORMATION  
15 V  
C1  
10 µF  
C2  
0.1 µF  
EOC  
TLV1544/48  
Ax  
_
U1  
+
V
I
D0  
15 V  
C1  
10 µF  
C2  
0.1 µF  
LOCATION  
DESCRIPTION  
PART NUMBER  
U1  
C1  
C2  
OP27  
10-µF 35-V tantalum capacitor  
0.1-µF ceramic NPO SMD capacitor  
AVX 12105C104KA105 or equivalent  
Figure 6. Analog Input Buffer to Analog Inputs  
V
CC  
V
CC  
Test Point  
Test Point  
R
= 2.18 kΩ  
R
= 2.18 kΩ  
L
L
EOC  
DATA OUT  
12 kΩ  
12 kΩ  
C
= 50 pF  
C = 100 pF  
L
L
Figure 7. Load Circuits  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
PARAMETER MEASUREMENT INFORMATION  
Address  
Valid  
V
V
IH  
90%  
10%  
90%  
10%  
DATA IN  
t
V
V
10%  
10%  
t
IH  
90%  
IL  
CS  
t
10%  
t
t (DATA IN)  
t (DATA IN)  
t
IL  
, t  
PZH PZL  
h(A)  
t
, t  
su(A)  
PHZ PLZ  
V
V
V
IH  
OH  
90%  
10%  
90%  
10%  
I/O CLK  
DATA  
OUT  
10%  
IL  
V
OL  
t
t(I/O)  
Figure 8. DATA OUT to Hi-Z Voltage Waveforms  
Figure 9. DATA IN Setup Voltage Waveforms  
t
t
t(CS)  
t(CS)  
V
V
IH  
90%  
90%  
CS  
10%  
10%  
IL  
t
h(CS)  
d(I/O-CS)  
10%  
t
su(CS)  
t
I/O CLK  
First  
Clock  
Last  
Clock  
10%  
V
IL  
Figure 10. CS and I/O CLK Voltage Waveforms  
t
t(I/O)  
t
t(I/O)  
V
V
IH  
90%  
10%  
I/O Clock Period  
90%  
10%  
I/O CLK  
10%  
IL  
t
d(I/O-DATA)  
t
v
V
V
OH  
90%  
10%  
90%  
10%  
DATA OUT  
VALID  
OL  
t
, t  
r(bus) f(bus)  
Figure 11. DATA OUT and I/O CLK Voltage Waveforms  
t
d(ES–FS  
CS  
FS  
Figure 12. CS Low to FS Low  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
PARAMETER MEASUREMENT INFORMATION  
10th  
Clock  
I/O CLK  
10%  
10%  
V
IL  
t
d(I/O-EOC)  
V
V
OH  
EOC  
(µp Mode)  
10%  
OL  
t
d(I/O-EOC)  
V
V
OH  
EOC  
(DSP Mode)  
90%  
10%  
OL  
t
f(EOC)  
Figure 13. I/O CLK and EOC Voltage Waveforms  
V
V
IH  
90%  
90%  
I/O CLK  
t
IL  
t
d2(FS)  
d1(FS)  
t
t(FS)  
t
t(FS)  
V
V
IH  
90%  
10%  
90%  
10%  
FS  
IL  
t
wH(FS)  
Figure 14. FS and I/O CLK Voltage Waveforms  
CS  
10%  
10%  
V
IL  
t
su(CSTART)  
t
t(CSTART)  
t
t(CSTART)  
t
w(CSTART)  
90%  
90%  
CSTART  
10%  
t
d(EOC-CS)  
t
d(I/O-EOC)  
EOC  
10%  
V
OL  
Figure 15. CSTART and CS Waveforms  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
PARAMETER MEASUREMENT INFORMATION  
Address Sampled  
Conversion Starts on 10th I/O CLK↑  
Rise After 10th I/O CLK↓  
Conversion  
t
d(EOC-CS)  
Access  
Sample  
(6 I/O CLKs)  
CS  
(see Note A)  
1
2
3
4
5
6
7
8
9
10  
I/O CLK  
DI  
A3  
A2  
D8  
A1  
D7  
A0  
D6  
A
D
3
MSB  
Hi-Z  
Hi-Z  
D9  
D5  
D4  
D3  
D2  
D1  
D0  
DO  
9
0s  
MSB  
LSB  
EOC  
Initialize State Machine  
and Counter  
NOTE A: To minimize errors caused by noise at CS, the internal circuitry waits for a setup time after CSbefore responding to control input  
signals. No attempt should be made to clock in input data until the minimum CS setup time elapses.  
Figure 16. Microprocessor Interface Timing (Normal Sample Mode, INV CLK = High)  
Address Sampled  
Conversion Starts on 10th I/O CLK↑  
Rise After 10th I/O CLK↓  
Conversion  
t
d(EOC-CS)  
Access  
Sample  
(5.5 I/O CLKs)  
CS  
(see Note A)  
1
2
3
4
5
6
7
8
9
10  
I/O CLK  
DI  
A3  
A2  
A1  
A0  
A
D
3
9
MSB  
Hi-Z  
Hi-Z  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DO  
0s  
MSB  
LSB  
EOC  
Initialize State Machine  
and Counter  
NOTE A: To minimize errors caused by noise at CS, the internal circuitry waits for a setup time after CSbefore responding to control input  
signals. No attempt should be made to clock in input data until the minimum CS setup time has elapsed.  
Figure 17. Microprocessor Interface Timing (Normal Sample Mode, INV CLK = Low)  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
PARAMETER MEASUREMENT INFORMATION  
Initialize Counter  
Address Sampled  
Conversion Starts on 10th I/O CLK↓  
CS Rise After 16th I/O CLK↓  
Initialize State Machine  
t
d(EOC-CS)  
7 I/O CLKs  
Maximum  
Access  
Sample  
Hold/Conversion  
(6 I/O CLKs)  
CS  
(see  
Note A)  
2
3
4
5
6
7
8
9
10  
1
11  
12 13  
14  
15  
16  
I/O CLK  
FS  
DI  
A3  
A2 A1  
A0  
D6  
MSB  
Hi-Z  
DO  
Hi-Z  
D9 D8  
MSB  
D7  
D5 D4  
D3  
D2 D1  
D0  
LSB  
0s  
EOC  
NOTE A: To minimize errors caused by noise at CS, the internal circuitry waits for a setup time after CSbefore responding to control input  
signals. No attempt should be made to clock in input data until the minimum CS setup time elapses.  
Figure 18. DSP Interface Timing (16-Clock Transfer, Normal Sample Mode, INV CLK = High)  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
PARAMETER MEASUREMENT INFORMATION  
Initialize Counter  
Address Sampled  
Conversion Starts on 10th I/O CLK↓  
CS Rise After 16th I/O CLK↓  
Initialize State Machine  
t
d(EOC-CS)  
7 I/O CLKs  
Maximum  
Access  
Sample  
Hold/Conversion  
(6 I/O CLKs)  
CS  
(see  
Note A)  
2
3
4
5
6
7
8
9
10  
1
11  
12 13  
14  
15  
16  
I/O CLK  
FS  
DI  
A3  
A2 A1  
A0  
D6  
MSB  
Hi-Z  
DO  
Hi-Z  
D9 D8  
MSB  
D7  
D5 D4  
D3  
D2 D1  
D0  
LSB  
0s  
EOC  
NOTE A: To minimize errors caused by noise at CS, the internal circuitry waits for a setup time after CSbefore responding to control input  
signals. No attempt should be made to clock in input data until the minimum CS setup time elapses.  
Figure 19. DSP Interface Timing (16-Clock Transfer, Normal Sample Mode, INV CLK = Low)  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY ERROR  
INTEGRAL NONLINEARITY ERROR  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
0.4  
0.3  
0.5  
0.4  
Maximum  
Maximum  
0.3  
0.2  
0.1  
0.2  
0.1  
V
CC  
= 2.7 V  
V
CC  
= 5.5 V  
0
–0.1  
–0.2  
–0.3  
–0.4  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
Minimum  
Minimum  
75  
–75  
–25  
T
25  
75  
125  
–75  
–25  
25  
125  
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
A
Figure 20  
Figure 21  
DIFFERENTIAL NONLINEARITY ERROR  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
0.4  
0.3  
0.6  
0.4  
0.2  
Maximum  
Maximum  
0.2  
0.1  
0
V
CC  
= 5.5 V  
V
CC  
= 2.7 V  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.2  
Minimum  
75  
Minimum  
25  
–0.4  
–0.5  
–0.6  
–75  
–25  
25  
125  
–75  
–25  
75  
125  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 22  
Figure 23  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
TYPICAL CHARACTERISTICS  
OFFSET ERROR  
vs  
FREE-AIR TEMPERATURE  
GAIN ERROR  
vs  
FREE-AIR TEMPERATURE  
0.35  
0.3  
0.7  
0.6  
0.5  
V
CC  
= 2.7 V  
0.25  
V
CC  
= 5.5 V  
0.2  
0.4  
0.3  
V
CC  
= 2.7 V  
0.15  
0.1  
0.2  
0.1  
V
CC  
= 5.5 V  
0.05  
0
0
–75  
–25  
25  
75  
125  
–75  
–25  
25  
75  
125  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 24  
Figure 25  
TOTAL UNADJUSTED ERROR  
vs  
FREE-AIR TEMPERATURE  
TOTAL UNADJUSTED ERROR  
vs  
FREE-AIR TEMPERATURE  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.2  
1
Maximum  
0.8  
Maximum  
0.6  
0.4  
0.2  
0
V
CC  
= 2.7 V  
V
CC  
= 5.5 V  
Minimum  
Minimum  
25  
–0.2  
–0.4  
–0.1  
–0.2  
–75  
–25  
T
A
25  
75  
125  
–75  
–25  
T
A
75  
125  
– Free-Air Temperature – °C  
– Free-Air Temperature – °C  
Figure 26  
Figure 27  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
0.56  
0.54  
0.52  
0.5  
0.48  
0.46  
0.44  
V
= 5.5 V  
CC  
Clock Mode =  
0.42  
0.4  
Fast Conversion  
–75  
–25  
25  
75  
125  
T
A
– Free-Air Temperature – °C  
Figure 28  
INTEGRAL NONLINEARITY ERROR  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
vs  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
2
1.6  
2
1
V
T
= 2.7 V  
V
T
= 2.7 V  
= 25°C  
CC  
= 25°C  
CC  
A
A
Clock Mode = Fast  
Clock Mode = Fast  
1.2  
0.8  
0.4  
0
0
–0.4  
–0.8  
–1.2  
–1  
–1.6  
–2  
–2  
0
512  
1023  
0
512  
1023  
Digital Output Code  
Digital Output Code  
Figure 29  
Figure 30  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY ERROR  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
vs  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
1
0.8  
0.6  
0.4  
0.2  
1
0.8  
0.6  
0.4  
0.2  
V
T
= 5 V  
CC  
= –40°C  
V
= 5 V  
CC  
= –40°C  
A
T
A
Clock Mode = Fast  
Clock Mode = Fast  
0
–0.2  
–0.4  
–0.6  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–0.8  
–1  
0
512  
1023  
0
512  
1023  
Digital Output Code  
Digital Output Code  
Figure 31  
Figure 32  
INTEGRAL NONLINEARITY ERROR  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
vs  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
1
0.8  
0.6  
0.4  
0.2  
1
0.8  
0.6  
0.4  
0.2  
V
T
= 5 V  
CC  
= 25°C  
V
= 5 V  
CC  
T = 25°C  
A
A
Clock Mode = Fast  
Clock Mode = Fast  
0
–0.2  
–0.4  
–0.6  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–0.8  
–1  
0
512  
1023  
0
512  
1023  
Digital Output Code  
Digital Output Code  
Figure 33  
Figure 34  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
0.8  
0.6  
0.4  
0.2  
V
T
= 5 V  
CC  
= 85°C  
A
Clock Mode = Fast  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
512  
1023  
Digital Output Code  
Figure 35  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODE  
1
V
T
= 5 V  
CC  
= 85°C  
0.8  
0.6  
0.4  
0.2  
A
Clock Mode = Fast  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
512  
1023  
Digital Output Code  
Figure 36  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
APPLICATION INFORMATION  
1023  
1022  
1021  
1111111111  
V
FS  
See Notes A and B  
1111111110  
1111111101  
V
FSnom  
V
FT  
= V  
– 1/2 LSB  
FS  
513  
512  
1000000001  
1000000000  
V
ZT  
= V  
+ 1/2 LSB  
ZS  
511  
0111111111  
V
ZS  
2
1
0
0000000010  
0000000001  
0000000000  
0
0.0048 0.0096  
2.4528 2.4576 2.4624  
V – Analog Input Voltage – V  
4.9128  
4.9140 4.9152  
I
NOTES: A. This curve is based on the assumption that V  
ref+  
and V have been adjusted so that the voltage at the transition from digital 0  
ref–  
to 1 (V ) is 0.0024 V, and the transition to full scale (V ) is 4.908 V. 1 LSB = 4.8 mV.  
ZT FT  
B. The full-scale value (V ) is the step whose nominal midstep value has the highest absolute value. The zero-scale value (V ) is  
FS  
ZS  
the step whose nominal midstep value equals zero.  
Figure 37. Ideal Conversion Characteristics  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
APPLICATION INFORMATION  
V
CC  
TLV1548  
Microprocessor  
20  
12  
V
CC  
FS  
15  
18  
I/O 2  
11  
CS  
INV CLK  
CLKX  
CLKR  
DX  
I/O CLK  
17  
16  
DATA IN  
1–8  
DATA OUT  
DR  
A0–A7  
Analog Inputs  
14  
13  
3 V dc  
Regulated  
REF+  
REF–  
GND  
10  
To Source Ground  
DB package is shown for TLV1548  
Figure 38. Typical Interface to a Microprocessor  
V
CC  
TLV1548  
20  
V
15  
18  
CC  
IO2  
CS  
11  
INV CLK  
CLKX  
CLKR  
DX  
I/O CLK  
TMS320 DSP  
17  
16  
DATA IN  
1–8  
DATA OUT  
DR  
A0–A7  
Analog Inputs  
12  
14  
13  
FS  
REF+  
REF–  
FSX  
FSR  
3 V dc  
Regulated  
GND  
10  
To Source GND  
DB package is shown for TLV1548  
Figure 39. Typical Interface to a TMS320 DSP  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
APPLICATIONS INFORMATION  
simplified analog input analysis  
Using the equivalent circuit in Figure 33, the time required to charge the analog input capacitance from 0 to V  
within 1/2 LSB can be derived as follows:  
S
The capacitance charging voltage is given by:  
–t R C  
c
t
i
V
V
1–e  
C
S
where  
(1)  
R = R + r  
i
t
s
t = Cycle time  
c
The input impedance Z is 1 kat 5 V, and is higher (~ 5 k) at 2.7 V. The final voltage to 1/2 LSB is given by:  
i
(2)  
V (1/2 LSB) = V – (V /2048)  
C
S
S
Equating equation 1 to equation 2 and solving for cycle time t gives:  
c
–t R C  
c
t
i
V
V
2048  
V
1–e  
S
S
S
(3)  
and time to change to 1/2 LSB (minimum sampling time) is:  
(1/2 LSB) = R × C × ln(2048)  
t
ch  
t
i
where  
ln(2048) = 7.625  
Therefore, with the values given, the time for the analog input signal to settle is:  
(1/2 LSB) = (R + 1 k) × 55 pF × ln(2048)  
(4)  
t
ch  
s
This time must be less than the converter sample time shown in the timing diagrams. Which is 6x I/O CLK.  
(5)  
t
(1/2 LSB) 6x 1/f  
I/O  
ch  
Therefore the maximum I/O CLK frequency is:  
max(f ) = 6/t (1/2 LSB) = 6/(ln(2048) × R × C )  
(6)  
I/O  
ch  
t
i
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
APPLICATIONS INFORMATION  
Driving Source  
TLV1544/48  
V
V
= Input Voltage at AIN  
= External Driving Source Voltage  
I
S
s
R
r
i
s
V
I
R = Source Resistance  
V
S
V
r
= Input Resistance (MUX on Resistance)  
C
i
1 kΩ  
C = Input Capacitance  
i
C
V
= Capacitance Charging Voltage  
C
i
55 pF MAX  
Driving source requirements:  
Noise and distortion for the source must be equivalent to the resolution of the converter.  
R must be real at the input frequency.  
s
Figure 40. Equivalent Input Circuit Including the Driving Source  
maximum conversion throughput  
For a supply voltage at 5 V, if the source impedance is less than 1 k, this equates to a minimum sampling  
time t (0.5 LSB) of 0.84 µs. Since the sampling time requires six I/O clocks, the fastest I/O clockfrequency is  
ch  
6/t = 7.18 MHz. The minimal total cycle time is given as:  
ch  
t = t  
+ t  
+ t  
+ t  
c
address  
sample  
conv d(EOC– CS)  
= 0.56 µs + 0.84 µs + 10 µs + 0.1 µs  
= 11.5 µs  
A maximum throughput of 87 KSPS. The throughput can be even higher with a smaller source impedance.  
When source impedance is 100, the minimum sampling time is 0.46 µs. The maximum I/O clock frequency  
possible is almost 13 MHz. Then 10 MHz clock (maximum I/O CLK for TLV1544/1548) can be used. The minimal  
total cycle time is:  
t = t  
+ t  
+ t  
+ t  
c
address  
sample  
conv d(EOC– CS)  
= 4 × 1/f + 0.46 µs + 10 µs + 0.1 µs  
= 0.4 µs + 0.46 µs + 10 µs + 0.1 µs  
= 10.96 µs  
The maximum throughput is 1/10.96 µs = 91 KSPS for this case.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.010 (0,25)  
M
0.014 (0,35)  
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
A
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
MECHANICAL DATA  
DB (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
28 PIN SHOWN  
0,38  
0,65  
28  
M
0,15  
0,22  
15  
0,15 NOM  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
14  
0,25  
A
0°8°  
1,03  
0,63  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
14  
PINS **  
16  
20  
24  
28  
30  
38  
DIM  
6,50  
5,90  
6,50  
5,90  
7,50  
6,90  
8,50  
7,90  
10,50  
9,90  
10,50 12,90  
A MAX  
A MIN  
9,90  
12,30  
4040065 /D 02/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-150  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
MECHANICAL DATA  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
18 17 16 15 14 13 12  
TERMINALS  
MIN  
MAX  
MIN  
MAX  
**  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
21  
22  
23  
24  
25  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
B SQ  
A SQ  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
MECHANICAL DATA  
J (R-GDIP-T**)  
CERAMIC DUAL-IN-LINE PACKAGE  
14 PIN SHOWN  
PINS **  
14  
16  
18  
20  
DIM  
0.310  
(7,87)  
0.310  
(7,87)  
0.310  
(7,87)  
0.310  
(7,87)  
A MAX  
B
0.290  
(7,37)  
0.290  
(7,37)  
0.290  
(7,37)  
0.290  
(7,37)  
A MIN  
B MAX  
B MIN  
C MAX  
C MIN  
14  
8
0.785  
0.785  
0.910  
0.975  
(19,94) (19,94) (23,10) (24,77)  
C
0.755  
(19,18) (19,18)  
0.755  
0.930  
(23,62)  
0.300  
(7,62)  
0.300  
(7,62)  
0.300  
(7,62)  
0.300  
(7,62)  
1
7
0.065 (1,65)  
0.045 (1,14)  
0.245  
(6,22)  
0.245  
(6,22)  
0.245  
(6,22)  
0.245  
(6,22)  
0.100 (2,54)  
0.070 (1,78)  
0.020 (0,51) MIN  
A
0.200 (5,08) MAX  
Seating Plane  
0.130 (3,30) MIN  
0.100 (2,54)  
0°–15°  
0.023 (0,58)  
0.015 (0,38)  
0.014 (0,36)  
0.008 (0,20)  
4040083/D 08/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.  
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22.  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV1544C, TLV1544I, TLV1548C, TLV1548I, TLV1548M  
LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS  
WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS  
SLAS139C – DECEMBER 1996 – REVISED JANUARY 1999  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0,30  
0,65  
M
0,10  
0,19  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
0,75  
A
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4040064/E 08/96  
NOTES: F. All linear dimensions are in millimeters.  
G. This drawing is subject to change without notice.  
H. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
I. Falls within JEDEC MO-153  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Sep-2008  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
LCCC  
CDIP  
SOIC  
Drawing  
5962-9853801Q2A  
5962-9853801QRA  
TLV1544CD  
ACTIVE  
ACTIVE  
ACTIVE  
FK  
J
20  
20  
16  
1
1
TBD  
TBD  
POST-PLATE N / A for Pkg Type  
A42 SNPB N / A for Pkg Type  
D
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV1544CDG4  
TLV1544CDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
20  
20  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV1544CDRG4  
TLV1544CPW  
TLV1544CPWG4  
TLV1544CPWR  
TLV1544CPWRG4  
TLV1544ID  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
PW  
PW  
D
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV1544IDG4  
TLV1544IDR  
SOIC  
D
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV1544IDRG4  
TLV1544IPW  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
SSOP  
SSOP  
PW  
PW  
PW  
PW  
DB  
DB  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV1544IPWG4  
TLV1544IPWR  
TLV1544IPWRG4  
TLV1548CDB  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV1548CDBG4  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV1548CDBLE  
TLV1548CDBR  
OBSOLETE  
ACTIVE  
SSOP  
SSOP  
DB  
DB  
20  
20  
TBD  
Call TI  
Call TI  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV1548CDBRG4  
TLV1548IDB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
SSOP  
SSOP  
DB  
DB  
DB  
DB  
20  
20  
20  
20  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV1548IDBG4  
TLV1548IDBR  
70 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Sep-2008  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TLV1548IDBRG4  
ACTIVE  
SSOP  
DB  
20  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV1548MFKB  
TLV1548MJ  
ACTIVE  
ACTIVE  
ACTIVE  
LCCC  
CDIP  
CDIP  
FK  
J
20  
20  
20  
1
1
1
TBD  
TBD  
TBD  
POST-PLATE N / A for Pkg Type  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
TLV1548MJB  
J
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV1548, TLV1548M :  
Automotive: TLV1548-Q1  
Enhanced Product: TLV1548-EP  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
TLV1544CDR  
TLV1544CPWR  
TLV1544IDR  
SOIC  
TSSOP  
SOIC  
D
16  
16  
16  
16  
20  
20  
2500  
2000  
2500  
2000  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
12.4  
16.4  
12.4  
16.4  
16.4  
6.5  
6.67  
6.5  
10.3  
5.4  
2.1  
1.6  
2.1  
1.6  
2.5  
2.5  
8.0  
8.0  
16.0  
12.0  
16.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
PW  
D
10.3  
5.4  
8.0  
TLV1544IPWR  
TLV1548CDBR  
TLV1548IDBR  
TSSOP  
SSOP  
SSOP  
PW  
DB  
DB  
6.67  
8.2  
8.0  
7.5  
12.0  
12.0  
8.2  
7.5  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV1544CDR  
TLV1544CPWR  
TLV1544IDR  
SOIC  
TSSOP  
SOIC  
D
16  
16  
16  
16  
20  
20  
2500  
2000  
2500  
2000  
2000  
2000  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
33.0  
29.0  
33.0  
29.0  
33.0  
33.0  
PW  
D
TLV1544IPWR  
TLV1548CDBR  
TLV1548IDBR  
TSSOP  
SSOP  
SSOP  
PW  
DB  
DB  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

TLV1544I

LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS
TI

TLV1544ID

LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS
TI

TLV1544IDB

4-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO16
TI

TLV1544IDG4

LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS
TI

TLV1544IDR

LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS
TI

TLV1544IDRG4

LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS
TI

TLV1544IDW

4-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO16
TI

TLV1544IN

4-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDIP16
TI

TLV1544IPW

LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS
TI

TLV1544IPWG4

LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS
TI

TLV1544IPWR

LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS
TI

TLV1544IPWRG4

LOW-VOLTAGE 10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL AND 4/8 ANALOG INPUTS
TI