TLV1812 [TI]

双路微功耗高电压比较器;
TLV1812
型号: TLV1812
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路微功耗高电压比较器

比较器
文件: 总39页 (文件大小:1916K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
TLV181x TLV182x 40V 轨至轨输入比较器,具有推挽或开漏输出选项  
输入做出响应从而防止系统上电和断电期间出现错误  
输出。  
1 特性  
2.4V 40V 宽电源电压范围  
TLV181x 比较器具有推挽式输出级能够灌/拉毫安级  
• 轨至轨输入  
电流同时可对 LED 进行控制或驱动容性负载例如  
• 已知启动的上电复(POR)  
MOSFET 栅极。  
• 低输入失调电500µV  
TLV182x 比较器具有开漏输出级可在独立于比较器  
电源电压的情况下上拉40V。  
420ns 典型传播延迟  
• 每通道的低静态电流5μA  
• 低输入偏置电150fA  
• 开漏输出选(TLV182x)  
• 推挽输出选(TLV181x)  
-40°C +125°C 的完整温度范围  
2kV ESD 保护  
器件信息  
封装(1)  
封装尺寸标称值)  
1.25mm x 2.00mm  
1.60mm x 2.90mm  
器件型号  
TLV1811、  
TLV1821  
单通道)  
SC-70 (6)  
SOT-23 (5)  
SC-70 (5)  
功能安全型  
1.25mm x 2.00mm  
1.60mm x 2.90mm  
TLV1811L、  
TLV1821L  
有助于进行功能安全系统设计的文档  
单通- 交替引脚  
排列)  
SOT-23 (5)  
2 应用  
SOIC (8)  
3.91mm × 4.90mm  
3.00mm × 4.40mm  
3.00mm × 3.00mm  
2.00mm × 2.00mm  
1.60mm × 2.90mm  
3.91mm × 8.65mm  
4.40mm × 5.00mm  
4.20mm x 2.00mm  
电器  
TSSOP (8)预览)  
VSSOP (8)预发布)  
WSON (8)预发布)  
SOT-23 (8)预发布)  
SOIC (14)预览)  
TSSOP (14)预览)  
工厂自动化和控制  
电机驱动器  
信息娱乐系统与仪表组  
TLV1812,  
TLV1822  
双通道)  
3 说明  
TLV181x TLV182x 是一40V 单通道、双通道和四  
通道比较器系列具有多个输出选项。该系列提供具有  
推挽或开漏输出选项的轨至轨输入。该系列具有出色的  
速度功率组合传播延迟420ns整个电源电压范围  
2.4V 40V个通道的静态电源电流仅为  
5μA。  
TLV1814、  
TLV1824  
四通道)  
SOT-23 (14)预发  
)  
3.00mm × 3.00mm  
WQFN (16)预发布)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
所有器件都包含上电复位 (POR) 功能。这可确保输出  
处于已知状态直到达到最小电源电压然后输出才对  
V+  
V+  
V+  
V+  
*
*
IN+  
IN-  
+
-
Output  
Control  
OUT  
V+  
ESD  
CLAMPS  
Power  
Clamp  
V-  
V-  
V-  
V-  
Power-On  
Reset  
Bias  
* Push-Pull  
Version Only  
V-  
TLV18xx 方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNOSDC8  
 
 
 
 
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.1 Overview...................................................................13  
8.2 Functional Block Diagrams....................................... 13  
8.3 Feature Description...................................................13  
8.4 Device Functional Modes..........................................13  
9 Application and Implementation..................................16  
9.1 Application Information............................................. 16  
9.2 Typical Applications.................................................. 19  
9.3 Power Supply Recommendations.............................26  
9.4 Layout....................................................................... 26  
10 Device and Documentation Support..........................28  
10.1 Documentation Support.......................................... 28  
10.2 接收文档更新通知................................................... 28  
10.3 支持资源..................................................................28  
10.4 Trademarks.............................................................28  
10.5 Electrostatic Discharge Caution..............................28  
10.6 术语表..................................................................... 28  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions: TLV18x1 and TLV18x1L............................3  
Pin Functions: TLV1812 and TLV1822..............................4  
Pin Functions: TLV1814 and TLV1824..............................5  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information - Single.......................................7  
6.5 Thermal Information - Dual......................................... 7  
6.6 Thermal Information - Quad........................................7  
6.7 Electrical Characteristics.............................................8  
6.8 Switching Characteristics............................................9  
7 Typical Characteristics................................................. 10  
8 Detailed Description......................................................13  
Information.................................................................... 28  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (November 2022) to Revision B (December 2022)  
Page  
• 商TLV1811/21 单版本.....................................................................................................................................1  
Changes from Revision * (September 2022) to Revision A (November 2022)  
Page  
• 商TLV1812/22 双版本.....................................................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
www.ti.com.cn  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
5 Pin Configuration and Functions  
Pin Functions: TLV18x1 and TLV18x1L  
OUT  
V-  
1
2
3
5
4
V+  
IN-  
IN+  
TLV1811 and TLV1821  
Standard "North West" pinout  
DBV, DCK Packages,  
SOT-23-5, SC-70-5  
Top View  
OUT  
V+  
1
2
3
5
4
V-  
IN+  
IN-  
TLV1811L and TLV1821L DBV Package,  
"LMC72x1/TLV72x1 type" pinout with reversed supplies  
SOT-23-5,  
Top View  
OUT  
V+  
1
2
3
6
5
4
N/C  
V-  
IN+  
IN-  
TLV1811L and TLV1821L DCK Package,  
"TLV72x1 6-pin type" pinout with reversed supplies and shifted V-  
SC-70-6,  
Top View  
5-1. Pin Functions: TLV1811, TLV1821, TLV1811L and TLV1821L  
TLV1811, TLV1821  
TLV1811L, TLV1821L  
PINS  
PINS  
NAME  
I/O  
DESCRIPTION  
SOT-23  
SC-70  
SOT-23  
SC-70  
1
1
5
3
4
2
6
OUT  
1
2
3
4
1
5
3
O
-
Output  
V-  
2
3
4
Negative Supply Voltage  
Non-Inverting (+) Input  
IN+  
IN-  
I
4
2
-
I
-
-
Inverting (-) Input  
Positive Supply Voltage  
No Connection  
V+  
5
-
5
-
N/C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Pin Functions: TLV1812 and TLV1822  
OUT1  
IN1œ  
IN1+  
Vœ  
1
2
3
4
8
7
6
5
V+  
8
V+  
OUT1  
1
2
Exposed  
Thermal  
Die Pad  
on  
OUT2  
IN2œ  
IN2+  
IN1œ  
7
6
OUT2  
IN2œ  
IN1+  
3
4
Underside  
5
IN2+  
Vœ  
D, DGK, PW, DDF Packages  
8-Pin SOIC, VSSOP, TSSOP, SOT-23-8  
Top View  
NOTE: Connect exposed thermal pad directly to V- pin.  
DSG Package,  
8-Pad WSON With Exposed Thermal Pad,  
Top View  
5-2. Pin Functions: TLV1812 and TLV1822  
PIN  
I/O  
DESCRIPTION  
NAME  
OUT1  
NO.  
1
O
I
Output pin of the comparator 1  
2
Inverting input pin of comparator 1  
Noninverting input pin of comparator 1  
Negative (low) supply  
IN1–  
IN1+  
3
I
V-  
4
IN2+  
5
I
Noninverting input pin of comparator 2  
Inverting input pin of comparator 2  
Output pin of the comparator 2  
Positive supply  
6
I
IN2–  
OUT2  
V+  
7
O
8
Thermal Pad  
Connect directly to V- pin  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
www.ti.com.cn  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
Pin Functions: TLV1814 and TLV1824  
OUT2  
OUT1  
V+  
1
2
3
4
5
6
7
14 OUT3  
OUT4  
Vœ  
13  
12  
11  
10  
9
V+  
IN1œ  
NC  
1
2
3
4
12  
11  
10  
9
Vœ  
IN4+  
NC  
IN1œ  
IN1+  
IN4+  
IN4œ  
Thermal  
Pad  
IN1+  
IN4œ  
IN2œ  
IN3+  
IN2+  
IN3œ  
8
Not to scale  
D, PW, DYY Package, 14-Pin SOIC, TSSOP, SOT-23,  
Top View  
NOTE: Connect exposed thermal pad directly to V- pin.  
RTE Package, 16-Pad WQFN With Exposed  
Thermal Pad, Top View  
5-3. Pin Functions: TLV1814 and TLV1824  
PIN  
SOIC  
I/O  
DESCRIPTION  
NAME  
OUT2(1)  
WQFN  
1
2
3
15  
16  
1
O
O
Output pin of the comparator 2  
OUT1(1)  
V+  
Output pin of the comparator1  
Positive supply  
I
4
5
2
4
Negative input pin of the comparator 1  
Positive input pin of the comparator 1  
Negative input pin of the comparator 2  
Positive input pin of the comparator 2  
Negative input pin of the comparator 3  
Positive input pin of the comparator 3  
Negative input pin of the comparator 4  
Positive input pin of the comparator 4  
Negative supply  
IN1–  
IN1+  
I
6
5
I
IN2–  
IN2+  
7
6
I
8
7
I
IN3–  
IN3+  
9
8
I
10  
11  
12  
13  
14  
9
I
IN4–  
IN4+  
11  
12  
13  
14  
3
I
V-  
O
O
OUT4  
OUT3  
NC  
Output pin of the comparator 4  
Output pin of the comparator 3  
No Internal Connection - Leave floating or GND  
No Internal Connection - Leave floating or GND  
Connect directly to V- pin.  
NC  
10  
PAD  
Thermal Pad  
(1) Some manufacturers transpose the names of channels 1 and 2. Electrically the pinouts are identical, just a difference in channel  
naming convention.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
10  
0.3  
0.3  
-10  
MAX  
42  
UNIT  
V
Supply voltage: VS = (V+) (V)  
Input pins (IN+, IN) from (V), Rail-to-Rail Input(2)  
Current into Input pins (IN+, IN)  
Output (OUT) voltage (Open-Drain) from (V)(3)  
Output (OUT) voltage (Push-Pull) from (V)  
Output (OUT) current (4) (5) (6)  
(V+) + 0.3  
10  
V
mA  
V
42  
(V+) + 0.3  
10  
V
mA  
°C  
°C  
Junction temperature, TJ  
150  
Storage temperature, Tstg  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Input terminals are diode-clamped to (V). Inputs (IN+, IN) can be greater than (V+) and OUT as long as it is within the 0.3 V to  
42 V range  
(3) Output (OUT) for open drain can be greater than (V+) and inputs (IN+, IN) as long as it is within the 0.3 V to 42 V range  
(4) The output is diode-clamped to (V-) for both output options, and diode clamped to (V+) for the push-pull output option. The open drain  
version does not have a clamp to V+. Please see the Outputs and ESD Protection section of the Application Information Section for  
more information.  
(5) Output sinking and sourcing current is internally limited to <35mA when operating within the Absolute Maximum output voltage limits.  
The Absoulute Maximum Output Current limit specified here is the maximum current through the clamp structure when exceeding the  
supply votlage below (V-) for both output options, or above (V+) for the push-pull option.  
(6) Short-circuit from output to (V) or (V+). Continuous output short circuits at elevated supply voltages can result in excessive heating  
and exceeding the maximum allowed junction temperature, leading to eventual device destruction.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.4  
MAX  
UNIT  
40  
(V+) + 0.2  
40  
V
V
Supply voltage: VS = (V+) (V)  
Input voltage range from (V)  
0.2  
0.2  
0.2  
40  
Open Drain  
Push Pull  
V
Output voltage range from (V)  
(V+) + 0.2  
125  
V
Ambient temperature, TA  
°C  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
 
 
 
 
 
 
 
 
 
 
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
www.ti.com.cn  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
6.4 Thermal Information - Single  
TLV18x1 and TLV18x1L  
DCK  
(SC-70)  
DCK  
DBV  
THERMAL METRIC(1)  
UNIT  
(SC-70) (SOT-23)  
5 PINS  
6 PINS  
5 PINS  
RθJA  
Junction-to-ambient thermal resistance  
226.6  
185.6  
203.4  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
129.5  
78.6  
51.5  
78.3  
137.6  
76.5  
59.8  
76.2  
105.4  
106.6  
54.0  
106  
RθJB  
ψJT  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
°C/W  
°C/W  
ψJB  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics report.  
6.5 Thermal Information - Dual  
TLV18x2  
D
PW  
DDF  
DSG  
(WSON)  
DGK  
(VSSOP)  
THERMAL METRIC(1)  
UNIT  
(SOIC) (TSSOP) (SOT-23)  
8 PINS  
136.1  
76.8  
8 PINS  
8 PINS  
8 PINS  
8 PINS  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
79.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
26.8  
ψJT  
78.9  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics report.  
6.6 Thermal Information - Quad  
TLV18x4  
D
PW  
DDF  
DSG  
(WQFN)  
DGK  
(VSSOP)  
THERMAL METRIC(1)  
UNIT  
(SOIC)  
(TSSOP) (SOT-23)  
14 PINS  
14 PINS  
14 PINS  
16 PINS  
16 PINS  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
104.2  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
60.3  
60.2  
20.7  
59.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJT  
°C/W  
°C/W  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics report.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
 
 
 
 
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Electrical Characteristics  
For VS (Total Supply Votlage) = (V+) (V) = 12 V, VCM = VS / 2 at TA = 25°C (Unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±0.5  
3
4
mV  
mV  
3  
4  
VOS  
Input offset voltage  
TA = 40°C to +125°C  
Input offset voltage  
drift  
dVIO/dT  
PSRR  
±1.2  
100  
µV/°C  
dB  
TA = 40°C to +125°C  
Power supply rejection  
ratio  
VS = 2.4 V to 40 V, VCM = (V)  
POWER SUPPLY  
Output Low, TA = 25°C  
TLV1811 Only  
6
8
7.5  
8.5  
10  
Output Low, TA = 40°C to +125°C  
TLV1811 Only  
Quiescent current, No  
Load  
IQ  
µA  
Output High, TA = 25°C  
TLV1811 Only  
Output High, TA = 40°C to +125°C  
TLV1811 Only  
11  
Output Low, TA = 25°C  
5
7
6.5  
7.5  
9
Output Low, TA = 40°C to +125°C  
Output High, TA = 25°C  
Quiescent current per  
comparator, No Load  
IQ  
µA  
V
10  
Output High, TA = 40°C to +125°C  
Power On Reset  
Voltage  
VPOR  
1.7  
INPUT BIAS CURRENT  
150  
10  
fA  
nA  
fA  
IB  
Input bias current (1)  
Input offset current (1)  
1.2  
TA = 40°C to +125°C  
1.2  
IOS  
INPUT CAPACITANCE  
Input Capacitance,  
Differential  
CID  
CIC  
2
8
pF  
pF  
Input Capacitance,  
Common Mode  
INPUT COMMON MODE RANGE  
VS = 2.4 V to 40 V  
TA = 40°C to +125°C, Rail to Rail  
Common-mode  
VCM-Range  
(V+) + 0.2  
V
(V) 0.2  
voltage range  
OUTPUT  
Voltage swing from  
(V)  
ISINK = 4 mA  
TA = 40°C to +125°C  
VOL  
250  
250  
mV  
mV  
nA  
Voltage swing from  
(V+) (for Push-  
Pull only)  
ISOURCE = 4 mA  
TA = 40°C to +125°C  
VOH  
VID = +0.1 V, VPULLUP = (V+)  
TA = 40°C to +125°C  
Open-drain output  
leakage current  
ILKG  
0.1  
IOL  
IOH  
Short-circuit current  
Short-circuit current  
Sinking  
15  
15  
30  
30  
mA  
mA  
Sourcing (for Push-Pull only)  
(1) This parameter is ensured by design and/or characterization and is not tested in production .  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
www.ti.com.cn  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
6.8 Switching Characteristics  
For VS (Total Supply Voltage) = (V+) (V) = 12 V, VCM = VS / 2 at TA = 25°C (Unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
Propagation delay time, high-  
to-low  
ns  
ns  
TPD-HL  
VOD = 10 mV, CL = 50 pF  
900  
450  
900  
420  
15  
Propagation delay time, high-  
to-low  
TPD-HL  
TPD-LH  
TPD-LH  
TRISE  
VOD = 100 mV, CL = 50 pF  
VOD = 10 mV, CL = 50 pF  
VOD = 100 mV, CL = 50 pF  
CL = 50 pF  
Propagation delay time, low-to-  
high, push-pull output  
ns  
ns  
Propagation delay time, low-to-  
high, push-pull output  
Output Rise Time, 20% to  
80%, push-pull output  
ns  
TFALL  
Output Fall Time, 80% to 20% CL = 50 pF  
Toggle Frequency VID = 100 mV, CL = 50 pF  
15  
ns  
FTOGGLE  
500  
kHz  
POWER ON TIME  
PON  
Power on-time  
200  
µs  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7 Typical Characteristics  
TA = 25°C, VS = 12 V, RPULLUP = 2.5k, CL = 20pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise  
noted.  
8.0  
125°C  
25°C  
-40°C  
Output High  
No Load  
7.5  
7.0  
6.5  
6.0  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
Supply Voltage (V)  
7-1. Supply Current per Channel vs. Supply Votlage, Output  
7-2. Supply Current per Channel vs. Supply Votlage, Output  
Low  
High  
10  
VS = 2.4 V  
P-P Output Only  
1
100m  
10m  
125°C  
25°C  
-40°C  
1m  
10  
100  
1m  
10m  
100m  
Output Sourcing Current (A)  
7-3. Output Voltage vs. Output Sinking Current, 2.4 V  
7-4. Output Voltage vs. Output Sourcing Current, 2.4 V  
10  
10  
VS = 5 V  
VS = 5 V  
P-P Output Only  
1
100m  
10m  
1
100m  
10m  
125°C  
125°C  
25°C  
25°C  
-40°C  
-40°C  
1m  
10  
1m  
10  
100  
1m  
10m  
100m  
100  
1m  
10m  
100m  
Output Sinking Current (A)  
Output Sourcing Current (A)  
7-5. Output Voltage vs. Output Sinking Current, 5 V  
7-6. Output Voltage vs. Output Sourcing Current, 5 V  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
www.ti.com.cn  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
7 Typical Characteristics (continued)  
TA = 25°C, VS = 12 V, RPULLUP = 2.5k, CL = 20pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise  
noted.  
10  
1
VS = 12 V  
P-P Output Only  
100m  
10m  
1m  
125°C  
25°C  
-40°C  
10  
100  
1m  
10m  
100m  
Output Sourcing Current (A)  
7-7. Output Voltage vs. Output Sinking Current, 12 V  
7-8. Output Voltage vs. Output Sourcing Current, 12 V  
VS = 40 V  
10  
VS = 40 V  
P-P Output Only  
10  
1
1
100m  
100m  
10m  
1m  
10m  
125°C  
25°C  
-40°C  
125°C  
25°C  
-40°C  
1m  
10  
100  
1m  
10m  
100m  
10  
100  
1m  
10m  
100m  
Output Sinking Current (A)  
Output Sourcing Current (A)  
7-9. Output Voltage vs. Output Sinking Current, 40 V  
7-10. Output Voltage vs. Output Sourcing Current, 40 V  
1000  
1000  
125°C  
85°C  
25°C  
-40°C  
125°C  
85°C  
25°C  
-40°C  
VS = 2.4V  
VCM = VS/2  
CL = 20pF  
VS = 2.4V  
VCM = VS/2  
CL = 20pF  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
10  
20 30 40 50 70 100  
200 300 500 700 1000  
10  
20 30 40 50 70 100  
200 300 500 700 1000  
Input Overdrive (mV)  
Input Overdrive (mV)  
7-11. Propagation Delay, High to Low, 2.4V  
7-12. Propagation Delay, Low to High, 2.4V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7 Typical Characteristics (continued)  
TA = 25°C, VS = 12 V, RPULLUP = 2.5k, CL = 20pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise  
noted.  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
125°C  
85°C  
25°C  
-40°C  
125°C  
85°C  
25°C  
-40°C  
VS = 5V  
VCM = VS/2  
CL = 20pF  
VS = 5V  
VCM = VS/2  
CL = 20pF  
10  
20 30 40 50 70 100  
200 300 500 700 1000  
10  
20 30 40 50 70 100  
200 300 500 700 1000  
Input Overdrive (mV)  
Input Overdrive (mV)  
7-13. Propagation Delay, High to Low, 5V  
7-14. Propagation Delay, Low to High, 5V  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
125°C  
85°C  
25°C  
-40°C  
125°C  
85°C  
25°C  
-40°C  
VS = 12V  
VCM = VS/2  
CL = 20pF  
VS = 12V  
VCM = VS/2  
CL = 20pF  
10  
20 30 40 50 70 100  
200 300 500 700 1000  
10  
20 30 40 50 70 100  
200 300 500 700 1000  
Input Overdrive (mV)  
Input Overdrive (mV)  
7-15. Propagation Delay, High to Low, 12V  
7-16. Propagation Delay, Low to High, 12V  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
125°C  
VS = 40V  
VCM = VS/2  
CL = 20pF  
85°C  
25°C  
-40°C  
10  
20 30 40 50 70 100  
200 300 500 700 1000  
Input Overdrive (mV)  
7-17. Propagation Delay, High to Low, 40V  
7-18. Propagation Delay, Low to High, 40V  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
www.ti.com.cn  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
8 Detailed Description  
8.1 Overview  
The TLV181x and TLV182x devices are micro-power comparators with push-pull and open-drain output options.  
Operating down to 2.4 V while only consuming only 5 µA per channel, the TLV181x and TLV182x are well suited  
for portable, automotive and industrial applications. An internal power-on reset circuit ensures that the output  
remains in a known state during power-up and power-down.  
8.2 Functional Block Diagrams  
V+  
V+  
V+  
V+  
*
*
IN+  
IN-  
+
-
Output  
Control  
OUT  
V+  
ESD  
CLAMPS  
Power  
Clamp  
V-  
V-  
V-  
V-  
Power-On  
Reset  
Bias  
* Push-Pull  
Version Only  
V-  
8-1. TLV18xx Block Diagram  
8.3 Feature Description  
TLV18xx Family Options  
The TLV18xxy family consists of several output and pinout options, all featuring 40 V operation, micro-power 5  
µA supply currents, 420 ns propagation delay, and a Power-On Reset (POR) function.  
The TLV18xx family has two output options:  
The TLV181x has a push-pull (sink-source) output.  
The TLV182x has a open-drain (sink only) output, capable of being pulled-up to any voltage up to 40 V,  
independent of comparator supply voltage.  
The TLV1811L and TLV1821L are alternate pinouts of the TLV1811 and TLV1821 that allow upgrading older  
devices such as the TLV7211, TLV7221, LMC7211 and LMC7221 family.  
8.4 Device Functional Modes  
8.4.1 Inputs  
8.4.1.1 TLV18xx Rail-to-Rail Input  
The TLV18xx input voltage range extends from 200 mV below V- to 200 mV above V+. The differential input  
voltage (VID) may be any voltage within these limits. No phase-inversion of the comparator output will occur  
when the input voltages stay within the specified range.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
 
 
 
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
The Rail-to-Rail input does have an ESD clamp to the V+supply line and therefore the input voltage must not  
exceed the supply voltages by more than 200mV. It is not recommended to apply signals to the rail to rail inputs  
with no supply voltage.  
8.4.1.2 ESD Protection  
The TLV181x open-drain output ESD protection consists of a snapback ESD clamp between the output and V- to  
allow the output to be pulled above V+ to a maximum of 40 V. There is no "upper" ESD clamp diode between the  
output and V+ on the open-drain output. There is a "lower" clamp between V- and the output.  
The TLV182x push-pull output ESD protection contains a conventional diode-type "upper" ESD clamp between  
the output and V+, and a "lower" ESD clamp between the output and V-. The output must not exceed the supply  
rails by more than 200mV.  
If the inputs are to be connected to a low impedance source, such as a power supply or buffered reference line,  
TI recommends adding a current-limiting resistor in series with the input to limit any currents when the clamps  
conduct. The current must be limited 10 mA or less, though TI recommends limitng the current to 1mA or less.  
This series resistance may be part of any resistive input dividers or networks.  
8.4.1.3 Unused Inputs  
If a channel is not to be used, DO NOT tie the inputs together. Due to the high equivalent bandwidth and low  
offset voltage, tying the inputs directly together may cause high frequency chatter as the device triggers on it's  
own internal wideband noise. Instead, the inputs must be tied to any available voltage that resides within the  
specified input voltage range and provides a minimum of 50 mV differential voltage. For example, one input can  
be grounded and the other input connected to a reference voltage, or even V+ (as long as the input is directly  
connected to the V+ pin to avoid transients).  
8.4.2 Outputs  
8.4.2.1 TLV181x Push-Pull Output  
The TLV181x features a push-pull output stage capable of both sinking and sourcing current. This allows driving  
loads such as LED's and MOSFET gates, as well as eliminating the need for a power-wasting external pull-up  
resistor. The push-pull output must never be connected to another output.  
Directly shorting the output to the opposite supply rail (V+ when output "low" or V- when output "High") can result  
in thermal runaway and eventual device destruction at high (>12 V) supply voltages. If output shorts are  
possible, a series current limiting resistor is recommended to limit the power dissipation.  
Unused push-pull outputs mustbe left floating, and never tied to a supply, ground, or another output.  
8.4.2.2 TLV182x Open-Drain Output  
The TLV182x features an open-drain (also commonly called open collector) sinking-only output stage enabling  
the output logic levels to be pulled up to an external voltage from 0 V up to 40 V, independent of the comparator  
supply voltage (V+). The open-drain output allows logical OR'ing of multiple open drain outputs and logic level  
translation. TI recommends setting the pull-up resistor current to between 100uA and 1mA. Lower value pull-up  
resistor values will help increase the rising edge rise-time, but at the expense of increasing VOL and higher  
power dissipation. The rise-time is dependent on the time constant of the total pull-up resistance and total load  
capacitance. Large value pull-up resistors (>1 MΩ) will create an exponential rising edge due to the output RC  
time constant and increase the rise-time.  
Directly shorting the output to V+ can result in thermal runaway and eventual device destruction at high (>12 V)  
pull-up voltages. If output shorts are possible, a series current limiting resistor is recommended to limit the power  
dissipation.  
Unused open drain outputs may be left floating, or may be tied to the V- pin if floating pins are not desired.  
8.4.3 Power-On Reset (POR)  
The TLV18xx family has an internal Power-on-Reset (POR) circuit for known start-up or power-down conditions.  
While the power supply (V+) is ramping up or ramping down, the POR circuitry will be activated for up to 200µs  
after the minimum supply voltage threshold of 2.4 V is crossed, or immediately when the supply voltage drops  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
www.ti.com.cn  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
below 2.4 V. When the supply voltage is equal to or greater than the minimum supply voltage, and after the delay  
period, the comparator output reflects the state of the differential input (VID).  
For the TLV181x push-pull output devices, the output is held low during the POR period (ton).  
For the TLV182x open drain output option the POR circuit will keep the output high impedance (Hi-Z) during the  
POR period (ton).  
tON  
V-  
(V-) + 2.4V  
V+  
VOH/2  
V-  
OUT  
8-2. Power-On Reset Timing Diagram  
Note that it the nature of an open collector output that the output will rise with the pull-up voltage during the POR  
period.  
8.4.4 Hysteresis  
The TLV18xx family does not have internal hysteresis. Due to the wide effective bandwidth and low input offset  
voltage, it is possible for the output to "chatter" when the absolute differential voltage is near zero as the  
comparator triggers on it's own internal wideband noise. This is normal comparator behavior and is expected. TI  
recommends that the user add external hysteresis if slow moving signals are expected. See 9.1.2 in the  
following section.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Basic Comparator Definitions  
9.1.1.1 Operation  
The basic comparator compares the input voltage (VIN) on one input to a reference voltage (VREF) on the other  
input. In the 9-1 example below, if VIN is less than VREF, the output voltage (VO) is logic low (VOL). If VIN is  
greater than VREF, the output voltage (VO) is at logic high (VOH). 9-1 summarizes the output conditions. The  
output logic can be inverted by simply swapping the input pins.  
9-1. Output Conditions  
Inputs Condition  
IN+ > IN-  
Output  
HIGH (VOH  
)
IN+ = IN-  
Indeterminate (chatters - see Hysteresis)  
LOW (VOL  
IN+ < IN-  
)
9.1.1.2 Propagation Delay  
There is a delay between from when the input crosses the reference voltage and the output responds. This is  
called the Propagation Delay. Propagation delay can be different between high-to low and low-to-high input  
transitions. This is shown as tpLH and tpHL in 9-1 and is measured from the mid-point of the input to the  
midpoint of the output.  
9-1. Comparator Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
 
 
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
www.ti.com.cn  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
9.1.1.3 Overdrive Voltage  
The overdrive voltage, VOD, is the amount of input voltage beyond the reference voltage (and not the total input  
peak-to-peak voltage). The overdrive voltage is 100 mV as shown in the 9-1 example. The overdrive voltage  
can influence the propagation delay (tp). The smaller the overdrive voltage, the longer the propagation delay,  
particularly when <100mV. If the fastest speeds are desired, it is recommended to apply the highest amount of  
overdrive possible.  
The risetime (tr) and falltime (tf) is the time from the 20% and 80% points of the output waveform.  
9.1.2 Hysteresis  
The basic comparator configuration may oscillate or produce a noisy "chatter" output if the applied differential  
input voltage is near the comparator's offset voltage. This usually occurs when the input signal is moving very  
slowly across the switching threshold of the comparator.  
This problem can be prevented by the addition of hysteresis or positive feedback.  
The hysteresis transfer curve is shown in 9-2. This curve is a function of three components: VTH, VOS, and  
VHYST  
:
VTH is the actual set voltage or threshold trip voltage.  
VOS is the internal offset voltage between VIN+ and VIN. This voltage is added to VTH to form the actual trip  
point at which the comparator must respond to change output states.  
VHYST is the hysteresis (or trip window) that is designed to reduce comparator sensitivity to noise.  
V
+ V œ (V  
/ 2)  
V
TH  
+ V  
V
+ V + (V  
OS  
/ 2)  
TH  
OS  
HYST  
OS  
TH  
HYST  
9-2. Hysteresis Transfer Curve  
For more information, please see Application Note SBOA219 "Comparator with and without hysteresis circuit".  
9.1.2.1 Inverting Comparator With Hysteresis  
The inverting comparator with hysteresis requires a three-resistor network that is referenced to the comparator  
supply voltage (VCC), as shown in 9-3.  
+V  
CC  
+5 V  
R
1
1 MΩ  
5 V  
0 V  
V
IN  
œ
V
O
V
O
V
A
+
V
A2  
V
A1  
1.67 V  
3.33 V  
V
IN  
R
3
R
2
1 MΩ  
1 MΩ  
9-3. TLV181xin an Inverting Configuration With Hysteresis  
The equivalent resistor networks when the output is high and low are shown in 9-3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
 
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
V
High  
V Low  
O
O
+V  
+V  
CC  
CC  
R
R
R
1
1
3
V
A1  
V
A2  
R
3
R
R
2
2
9-4. Inverting Configuration Resistor Equivalent Networks  
When VIN is less than VA, the output voltage is high (for simplicity, assume VO switches as high as VCC). The  
three network resistors can be represented as R1 || R3 in series with R2, as shown in 9-4.  
方程1 below defines the high-to-low trip voltage (VA1).  
R2  
VA1 = VCC  
´
(R1 || R3) + R2  
(1)  
When VIN is greater than VA, the output voltage is low. In this case, the three network resistors can be presented  
as R2 || R3 in series with R1, as shown in 方程2.  
Use 方程2 to define the low to high trip voltage (VA2).  
R2 || R3  
VA2 = VCC  
´
R1 + (R2 || R3)  
(2)  
(3)  
方程3 defines the total hysteresis provided by the network.  
DVA = VA1 - VA2  
9.1.2.2 Non-Inverting Comparator With Hysteresis  
A non-inverting comparator with hysteresis requires a two-resistor network and a voltage reference (VREF) at the  
inverting input, as shown in 9-5,  
5 V  
V
œ
REF 2.5 V  
V
O
V
O
V
A
V
+
IN  
V
V
IN2  
IN1  
R
0 V  
1
1.675 V  
3.325 V  
330 kΩ  
V
IN  
R
2
1 MΩ  
9-5. TLV181x in a Non-Inverting Configuration With Hysteresis  
The equivalent resistor networks when the output is high and low are shown in 9-6.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
 
 
 
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
www.ti.com.cn  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
V
Low  
IN1  
V
High  
O
O
+V  
+V  
CC  
R
R
R
R
2
1
V
A
= V  
V
= V  
A REF  
REF  
1
2
V
IN2  
9-6. Non-Inverting Configuration Resistor Networks  
When VIN is less than VREF,, the output is low. For the output to switch from low to high, VIN must rise above the  
V
IN1 threshold. Use 方程4 to calculate VIN1.  
VREF  
VIN1 = R1 ´  
+ VREF  
R2  
(4)  
When VIN is greater than VREF, the output is high. For the comparator to switch back to a low state, VIN must  
drop below VIN2. Use 方程5 to calculate VIN2  
.
VREF (R1 + R2) - VCC ´ R1  
VIN2  
=
R2  
(5)  
(6)  
The hysteresis of this circuit is the difference between VIN1 and VIN2, as shown in 方程6.  
R1  
DVIN = VCC  
´
R2  
For more information, please see Application Notes SNOA997 "Inverting comparator with hysteresis circuit" and  
SBOA313 "Non-Inverting Comparator With Hysteresis Circuit".  
9.1.2.3 Inverting and Non-Inverting Hysteresis using Open-Drain Output  
It is also possible to use an open drain output device, such as the TLV182x, but the output pull-up resistor must  
also be taken into account in the calculations. The pull-up resistor is seen in series with the feedback resistor  
when the output is high. Thus, the feedback resistor is actually seen as R2 + RPULLUP. TI recommends that the  
pull-up resistor be at least 10 times less than the feedback resistor value.  
9.2 Typical Applications  
9.2.1 Window Comparator  
Window comparators are commonly used to detect undervoltage and overvoltage conditions. 9-7 shows a  
simple window comparator circuit. Window comparators require open drain outputs (TLV182x) if the outputs are  
directly connected together.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
 
 
 
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
3.3 V  
RPU  
R
1
Low when V > V  
IN  
TH+  
10 MΩ  
UV_OV  
+
V
TH+  
Micro-  
Controller  
œ
Sensor  
Open Drain Output Only!  
V
IN  
R
2
10 MΩ  
Low when V < V  
IN  
TH-  
+
Output high  
when V is  
IN  
œ
V
TH-  
within window  
R
3
Open Drain Output Only!  
10 MΩ  
9-7. Window Comparator  
9.2.1.1 Design Requirements  
For this design, follow these design requirements:  
Alert (logic low output) when an input signal is less than 1.1 V  
Alert (logic low output) when an input signal is greater than 2.2 V  
Alert signal is active low  
Operate from a 3.3-V power supply  
9.2.1.2 Detailed Design Procedure  
Configure the circuit as shown in 9-7. Connect VCC to a 3.3-V power supply and VEE to ground. Make R1, R2  
and R3 each 10-MΩ resistors. These three resistors are used to create the positive and negative thresholds for  
the window comparator (VTH+ and VTH).  
With each resistor being equal, VTH+ is 2.2 V and VTH- is 1.1 V. Large resistor values such as 10-MΩare used to  
minimize power consumption. The resistor values may be recalculated to provide the desired trip point values.  
The sensor output voltage is applied to the inverting and noninverting inputs of the two comparators. Using two  
open-drain output comparators allows the two comparator outputs to be Wire-OR'ed together.  
The respective comparator outputs will be low when the sensor is less than 1.1 V or greater than 2.2 V. The  
respective comparator outputs will be high when the sensor is in the range of 1.1 V to 2.2 V (within the  
"window"), as shown in 9-8.  
9.2.1.3 Application Curve  
V
IN  
V + = 2.2 V  
TH  
V
= 1.1 V  
THœ  
OUT  
9-8. Window Comparator Results  
For more information, please see Application note SBOA221 "Window comparator circuit".  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
www.ti.com.cn  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
9.2.2 Square-Wave Oscillator  
Square-wave oscillator can be used as low cost timing reference or system supervisory clock source. A push-  
pull output (TLV181x) is recommended for best symmetry.  
R4  
100 k  
t
C1  
100 pF  
1
+
V
V
C
œ
OUT  
0
t
2
+
R1  
100 kΩ  
R3  
100 kΩ  
V
A
V
CC  
R2  
100 kΩ  
9-9. Square-Wave Oscillator  
9.2.2.1 Design Requirements  
The square-wave period is determined by the RC time constant of the capacitor C1 and resistor R4. The  
maximum frequency is limited by propagation delay of the device and the capacitance load at the output. The  
low input bias current allows a lower capacitor value and larger resistor value combination for a given oscillator  
frequency, which may help to reduce BOM cost and board space. TI recommends that R4 be over several kilo-  
ohms to minimize loading of the output.  
9.2.2.2 Detailed Design Procedure  
The oscillation frequency is determined by the resistor and capacitor values. The following calculation provides  
details of the steps.  
9-10. Square-Wave Oscillator Timing Thresholds  
First consider the output of Figure 9-9 as high, which indicates the inverted input VC is lower than the  
noninverting input (VA). This causes the C1 to be charged through R4, and the voltage VC increases until it is  
equal to the noninverting input. The value of VA at the point is calculated by 方程7.  
VCCìR2  
R2 + R1IIR3  
VA1  
=
(7)  
if R1 = R2= R3, then VA1 = 2 VCC/ 3  
At this time the comparator output trips pulling down the output to the negative rail. The value of VAat this point is  
calculated by 方程8.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
VCC(R2IIR3 )  
VA2  
=
R1+R2IIR3  
(8)  
if R1 = R2 = R3, then VA2 = VCC/3  
The C1 now discharges though the R4, and the voltage VCC decreases until it reaches VA2. At this point, the  
output switches back to the starting state. The oscillation period equals to the time duration from for C1 from  
2VCC/3 to VCC / 3 then back to 2VCC/3, which is given by R4C1 × ln 2 for each trip. Therefore, the total time  
duration is calculated as 2 R4C1 × ln 2.  
The oscillation frequency can be obtained by 方程9:  
f = 1/ 2 R4ìC1ìIn2  
(
)
(9)  
9.2.2.3 Application Curve  
9-11 shows the simulated results of an oscillator using the following component values:  
R1 = R2 = R3 = R4 = 100 kΩ  
C1 = 100 pF, CL = 20 pF  
V+ = 5 V, V= GND  
Cstray (not shown) from VA TO GND = 10 pF  
9-11. Square-Wave Oscillator Output Waveform  
9.2.3 Adjustable Pulse Width Generator  
9-12 is a variation on the square wave oscillator that allows adjusting the pulse widths.  
R4 and R5 provide separate charge and discharge paths for the capacitor C depending on the output state.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
 
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
www.ti.com.cn  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
R4  
1 M  
D1  
R5  
100 kΩ  
D2  
t
C1  
100 pF  
1
+
V
V
V
C
œ
OUT  
0
t
2
+
R1  
100 kΩ  
R3  
100 kΩ  
A
V
CC  
R2  
100 kΩ  
9-12. Adjustable Pulse Width Generator  
The charge path is set through R5 and D2 when the output is high. Similarly, the discharge path for the capacitor  
is set by R4 and D1 when the output is low.  
The pulse width t1 is determined by the RC time constant of R5 and C. Thus, the time t2 between the pulses can  
be changed by varying R4, and the pulse width can be altered by R5. The frequency of the output can be  
changed by varying both R4 and R5. At low voltages, the effects of the diode forward drop (0.8 V, or 0.15 V for  
Shottky) must be taken into account by altering output high and low voltages in the calculations.  
9.2.4 Time Delay Generator  
The circuit shown in 9-13 provides output signals at a prescribed time interval from a time reference and  
automatically resets the output low when the input returns to 0 V. This is useful for sequencing a "power on"  
signal to trigger a controlled start-up of power supplies.  
+V  
RPU not required if using  
push-pull output devices  
+V  
LOGIC3  
100 kΩ  
10 MΩ  
Open  
Drain  
Output  
R
PU  
R
100 kΩ  
+
V
IN  
V
10 kΩ  
10 kΩ  
10 kΩ  
+
V
C
0
+
4
t
t4  
0
œ
1
V
3
Input  
Gating  
Signal  
œ
C
+V  
LOGIC2  
t
t
3
0
100 kΩ  
51 kΩ  
R
PU  
10 MΩ  
+
2
œ
V
2
V
V
3
+V  
LOGIC1  
t
t
2
0
2
51 kΩ  
10 MΩ  
R
PU  
V
C
V
1
+
3
V
1
t
0
t
1
t
2
t
3
t
4
œ
t
t
1
0
51 kΩ  
9-13. Time Delay Generator  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Consider the case of VIN = 0. The output of comparator 4 is also at ground, "shorting" the capacitor and holding it  
at 0V. This implies that the outputs of comparators 1, 2, and 3 are also at 0V. When an input signal is applied,  
the output of open drain comparator 4 goes High-Z and C charges exponentially through R. This is indicated in  
the graph. The output voltages of comparators 1, 2, and 3 switch to the high state in sequence when VC rises  
above the reference voltages V1, V2 and V3. A small amount of hysteresis has been provided by the 10 kΩ and  
10 MΩ resistors to insure fast switching when the RC time constant is chosen to give long delay times. A good  
starting point is R = 100 kΩand C = 0.01 µF to 1 µF.  
All outputs will immediately go low when VIN falls to 0V, due to the comparator output going low and immediately  
discharging the capacitor.  
Comparator 4 must be a open-drain type output (TLV182x), whereas comparators 1 though 3 may be either  
open drain or push-pull output, depending on system requirements. RPU is not required for push-pull output  
devices.  
9.2.5 Logic Level Shifter  
The output of the TLV182x is the uncommitted drain of the output transistor. Many open-drain outputs can be  
tied together to provide an output OR'ing function if desired.  
V
LOGIC  
V
CC  
Logic  
In  
V
CC  
R
PULLUP  
+
Logic  
Out  
0
œ
Open  
Drain  
Output  
R1  
V
CC  
10 k  
V
R2  
10 kΩ  
LOGIC  
0
9-14. Universal Logic Level Shifter  
The two 10 kΩ resistors bias the input to half of the input logic supply level to set the threshold in the mid-point  
of the input logic levels. Only one shared output pull-up resistor is needed and may be connected to any pull-up  
voltage between 0 V and 5.5 V. The pullup voltage should match the driven logic input "high" level.  
9.2.6 One-Shot Multivibrator  
+V  
R1  
C1  
1 MΩ  
100 pF  
+V  
IN  
V
2
1
+V  
0
œ
PW  
R2  
1 MΩ  
+
D1  
1N4148  
t
0
C2  
t
0
t
1
V
D2  
1N4148  
R4  
9-15. One-Shot Multivibrator  
A monostable multivibrator has one stable state in which it can remain indefinitely. It can be triggered externally  
to another quasi-stable state. A monostable multivibrator can thus be used to generate a pulse of desired width.  
The desired pulse width is set by adjusting the values of C2 and R4. The resistor divider of R1 and R2 can be  
used to determine the magnitude of the input trigger pulse. The output will change state when V1 < V2. Diode D2  
provides a rapid discharge path for capacitor C2 to reset at the end of the pulse. The diode also prevents the  
non-inverting input from being driven below ground.  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
www.ti.com.cn  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
9.2.7 Bi-Stable Multivibrator  
+V  
R3  
R4  
100 kΩ  
50 kΩ  
R1  
100 kΩ  
+V  
S
+
SET  
œ
RESET  
R
R2  
100 kΩ  
9-16. Bi-Stable Multivibrator  
A bi-stable multivibrator has two stable states. The reference voltage is set up by the voltage divider of R2 and  
R3. A pulse applied to the SET terminal will switch the output of the comparator high. The resistor divider of R1  
and R4 now sets the non-inverting input to a voltage greater than the reference voltage. A pulse applied to  
RESET will now toggle the output low.  
9.2.8 Zero Crossing Detector  
+V  
R3  
100 kΩ  
R4  
100 kΩ  
R1  
5 kΩ  
R2  
5 kΩ  
V
3
V
IN  
œ
V
2
V
OUT  
+
D1  
BAT54  
V
1
R4  
20 MΩ  
R5  
10 kΩ  
R1 = R2 = (R5 / 2)  
9-17. Zero Crossing Detector  
A voltage divider of R4 and R5 establishes a reference voltage V1 at the non-inverting input. By making the  
series resistance of R1 and R2 equal to R5, the comparator will switch when VIN = 0. Diode D1 insures that V3  
clamps near ground. The voltage divider of R2 and R3 then prevents V2 from going below ground. A small  
amount of hysteresis is setup to ensure rapid output voltage transitions.  
9.2.9 Pulse Slicer  
A Pulse Slicer is a variation of the Zero Crossing Detector and is used to detect the zero crossings on an input  
signal with a varying baseline level. This circuit works best with symmetrical waveforms. The RC network of R1  
and C1 establishes an mean reference voltage VREF, which tracks the mean amplitude of the VIN signal. The  
non-inverting input is directly connected to VREF through R2. R2 and R3 are used to produce hysteresis to keep  
transitions free of spurious toggles. The time constant is a tradeoff between long-term symmetry and response  
time to changes in amplitude.  
If the waveform is data, it is recommended that the data be encoded in NRZ (Non-Return to Zero) format to  
maintain proper average baseline. Asymmetrical inputs may suffer from timing distortions caused by the  
changing VREF average voltage.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
V
REF  
470 k  
R1  
470 kꢀ  
10M ꢀ  
R3  
+
R2  
U1  
Output  
V
IN  
œ
C1  
0.01 F  
9-18. Pulse Slicer  
For this design, follow these design requirements:  
The RC constant value (R2 and C1) must support the targeted data rate to maintain a valid tripping threshold.  
The hysteresis introduced with R2 and R43 helps to avoid spurious output toggles.  
The TLV182x may also be used, but with the addition of a pull-up resistor on the output (not shown for clarity).  
9-19 shows the results of a 9600 baud data signal riding on a varying baseline.  
1.8 V  
VIN  
1.2 V  
4.0 V  
VOUT  
0.0 V  
1.61 V  
VREF  
1.58 V  
0.0  
200.0 u  
400.0 u  
Time  
600.0 u  
800.0 u  
9-19. Pulse Slicer Waveforms  
9.3 Power Supply Recommendations  
Due to the fast output edges, it is critical to have bypass capacitors on the supply pin to prevent supply ringing  
and false triggers and oscillations. Bypass the supply directly at each device with a low ESR 0.1 µF ceramic  
bypass capacitor directly between VCC pin and ground pins. Narrow, peak currents will be drawn during the  
output transition time, particularly for the push-pull output device. These narrow pulses can cause un-bypassed  
supply lines and poor grounds to ring, possibly causing variation that can eat into the input voltage range and  
create an inaccurate comparison or even oscillations.  
The device may be powered from both "split" supplies (V+ and V-), or "single" supplies (V+ and GND), with GND  
applied to the V- pin. Input signals must stay within the specified input range (between V+ and V-) for either type.  
Note that with a "split" supply the ouptut will now swing "low" (VOL) to V- potential and not GND.  
9.4 Layout  
9.4.1 Layout Guidelines  
For accurate comparator applications it is important maintain a stable power supply with minimized noise and  
glitches. Output rise and fall times are in the tens of nanoseconds, and should be treated as high speed logic  
devices. The bypass capacitor should be as close to the supply pin as possible and connected to a solid ground  
plane, and preferably directly between the VCC and GND pins.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
 
 
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
www.ti.com.cn  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
Minimize coupling between outputs and inputs to prevent output oscillations. Do not run output and input traces  
in parallel unless there is a VCC or GND trace between output to reduce coupling. When series resistance is  
added to inputs, place resistor close to the device. A low value (<100 ohms) resistor may also be added in series  
with the output to dampen any ringing or reflections on long, non-impedance controlled traces. For best edge  
shapes, controlled impedance traces with back-terminations should be used when routing long distances.  
9.4.2 Layout Example  
Ground  
Better  
0.1mF  
VCC  
1
2
3
4
8
7
6
5
1OUT  
1IN-  
VCC  
2OUT  
2IN-  
Input Resistors  
Close to device  
OK  
VCC or GND  
1IN+  
GND  
Ground  
2IN+  
9-20. Dual Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
TLV1811, TLV1811L, TLV1821, TLV1821L, TLV1812, TLV1822  
ZHCSLV0B SEPTEMBER 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
Analog Engineers Circuit Cookbook: Amplifiers (See Comparators section) - SLYY137  
Precision Design, Comparator with Hysteresis Reference DesignTIDU020  
Window comparator circuit - SBOA221  
Reference Design, Window Comparator Reference DesignTIPD178  
Comparator with and without hysteresis circuit - SBOA219  
Inverting comparator with hysteresis circuit - SNOA997  
Non-Inverting Comparator With Hysteresis Circuit - SBOA313  
Zero crossing detection using comparator circuit - SNOA999  
PWM generator circuit - SBOA212  
How to Implement Comparators for Improving Performance of Rotary Encoder in Industrial Drive Applications -  
SNOAA41  
A Quad of Independently Func Comparators - SNOA654  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLV1811 TLV1811L TLV1821 TLV1821L TLV1812 TLV1822  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV1811DBVR  
TLV1811LDBVR  
TLV1812DR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
5
8
5
5
8
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2XJT  
2XNT  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
SN  
NIPDAU  
SN  
TL1812  
2XLT  
TLV1821DBVR  
TLV1821LDBVR  
TLV1822DR  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
SN  
2XMT  
NIPDAU  
TL1822  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Dec-2022  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV1812, TLV1822 :  
Automotive : TLV1812-Q1, TLV1822-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Dec-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV1811DBVR  
TLV1811LDBVR  
TLV1812DR  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
5
8
5
5
8
3000  
3000  
3000  
3000  
3000  
3000  
178.0  
178.0  
330.0  
178.0  
178.0  
330.0  
9.0  
9.0  
2.4  
2.4  
6.4  
2.4  
2.4  
6.4  
2.5  
2.5  
5.2  
2.5  
2.5  
5.2  
1.2  
1.2  
2.1  
1.2  
1.2  
2.1  
4.0  
4.0  
8.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q3  
Q3  
Q1  
12.4  
9.0  
12.0  
8.0  
TLV1821DBVR  
TLV1821LDBVR  
TLV1822DR  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
9.0  
8.0  
12.4  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Dec-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV1811DBVR  
TLV1811LDBVR  
TLV1812DR  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
5
8
5
5
8
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
356.0  
180.0  
180.0  
356.0  
180.0  
180.0  
356.0  
180.0  
180.0  
356.0  
18.0  
18.0  
35.0  
18.0  
18.0  
35.0  
TLV1821DBVR  
TLV1821LDBVR  
TLV1822DR  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV1812-Q1

汽车类双路微功耗高压比较器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1812DR

双路微功耗高电压比较器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1812QDRQ1

汽车类双路微功耗高压比较器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1821

具有开漏输出的单通道、微功耗高压比较器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1821-Q1

具有开漏输出的汽车类、单通道、微功耗高压比较器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1821DBVR

具有开漏输出的单通道、微功耗高压比较器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1821LDBVR

具有开漏输出的单通道、微功耗高压比较器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1822

双路微功耗高电压开漏比较器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1822-Q1

汽车类、双路、微功耗高压开漏比较器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1822DR

双路微功耗高电压开漏比较器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1822QDRQ1

汽车类、双路、微功耗高压开漏比较器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1861

具有开漏输出的单路毫微功耗高压比较器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI