TLV2197-Q1 [TI]

汽车类、双通道、高电压、精密 RRIO 运算放大器;
TLV2197-Q1
型号: TLV2197-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类、双通道、高电压、精密 RRIO 运算放大器

放大器 运算放大器
文件: 总41页 (文件大小:1861K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
SBOS935B APRIL 2020REVISED JULY 2020  
TLVx197-Q1 Automotive, High-Voltage, Precision, Rail-to-Rail In, Rail-to-Rail Out Op Amp  
1 Features  
3 Description  
The TLV197-Q1, TLV2197-Q1 and TLV4197-Q1  
(TLVx197-Q1) family of devices are part of a new  
generation, of low-cost, 36-V, automotive-qualified,  
operational amplifiers. The TLVx197-Q1 family uses a  
method of package-level trim for offset and offset  
temperature drift implemented during the final steps  
of manufacturing after the plastic molding process.  
This method minimizes the influence of inherent input  
transistor mismatch, as well as errors induced during  
package molding.  
1
AEC-Q100 qualified for automotive applications:  
Temperature grade 1: –40°C to +125°C, TA  
Low offset voltage: ±500 µV (maximum)  
Low noise: 5.5 nV/Hz at 1 kHz  
High common-mode rejection: 140 dB  
Low bias current: ±5 pA  
Rail-to-rail input and output  
Wide bandwidth: 10-MHz GBW  
High slew rate: 20 V/µs  
Good dc precision and ac performance including rail-  
to-rail input/output, an optimized cost structure, and  
AEC-Q100 grade 1 qualification, make this family an  
excellent choice for low-side current-sensing and  
signal-conditioning applications in the automotive  
space.  
Low quiescent current: 1 mA per amplifier  
Wide supply: ±2.25 V to ±18 V, 4.5 V to 36 V  
EMI/RFI filtered inputs  
Differential input-voltage range to supply rail  
High capacitive load drive capability: 1 nF  
Industry-standard package:  
More unique features, such as a differential input-  
voltage range to the supply rail, a high output current  
(±65 mA), a heavy capacitive load drive of up to 1 nF,  
and a high slew rate (20 V/µs), make these devices a  
robust, high-performance operational amplifier family  
for high-voltage automotive applications.  
Single channel in very small 8-pin VSSOP  
Dual channel in 8-pin VSSOP  
Quad channel in 14-pin TSSOP  
The TLVx197-Q1 family of op amps is available in  
standard packages and is specified from –40°C to  
+125°C.  
2 Applications  
Inverter and motor control  
DC/DC converter  
Device Information  
On-board (OBC) and wireless charger  
Battery management system (BMS)  
PART NUMBER  
TLV197-Q1  
PACKAGE  
VSSOP (8)  
TSSOP (14)  
BODY SIZE (NOM)  
3.00 mm × 3.00 mm  
5.00 mm x 4.40 mm  
TLV2197-Q1  
TLV4197-Q1  
1. For all available packages, see the package option addendum  
at the end of the data sheet.  
TLVx197-Q1 Detect Voltages in Automotive Applications  
VBUS  
VREF  
TLVx197-Q1  
+
ADC  
œ
GND  
GND  
`
VREF  
TLVx197-Q1  
+
ADC  
œ
GND  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
SBOS935B APRIL 2020REVISED JULY 2020  
www.ti.com  
Table of Contents  
7.3 Feature Description................................................. 19  
7.4 Device Functional Modes........................................ 25  
Application and Implementation ........................ 26  
8.1 Application Information............................................ 26  
8.2 Typical Applications ................................................ 26  
Power Supply Recommendations...................... 29  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information: TLV197-Q1 ............................. 7  
6.5 Thermal Information: TLV2197-Q1 ........................... 7  
6.6 Thermal Information: TLV4197-Q1 ........................... 7  
8
9
10 Layout................................................................... 29  
10.1 Layout Guidelines ................................................. 29  
10.2 Layout Examples................................................... 30  
11 Device and Documentation Support ................. 31  
11.1 Device Support...................................................... 31  
11.2 Documentation Support ........................................ 31  
11.3 Related Links ........................................................ 31  
11.4 Receiving Notification of Documentation Updates 31  
11.5 Support Resources ............................................... 31  
11.6 Trademarks........................................................... 32  
11.7 Electrostatic Discharge Caution............................ 32  
11.8 Glossary................................................................ 32  
6.7 Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8  
V to 36 V)................................................................... 8  
6.8 Electrical Characteristics: VS = ±2.25 V to ±4 V (VS  
=
4.5 V to 8 V)............................................................. 10  
6.9 Typical Characteristics............................................ 12  
Detailed Description ............................................ 18  
7.1 Overview ................................................................. 18  
7.2 Functional Block Diagram ....................................... 18  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 32  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (June 2020) to Revision B  
Page  
Changed TLV197-Q1 and TLV2197-Q1 from advance information (preview) to production data (active) ............................ 1  
Changes from Original (April 2020) to Revision A  
Page  
Changed to correct device names in titles for all Thermal Information tables ....................................................................... 7  
2
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
 
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
www.ti.com  
SBOS935B APRIL 2020REVISED JULY 2020  
5 Pin Configuration and Functions  
TLV197-Q1 DGK Package  
8-Pin VSSOP  
Top View  
Pin Functions: TLV197-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN  
–IN  
NO.  
3
I
Noninverting input  
Inverting input  
2
I
NC  
1, 5, 8  
O
No internal connection (can be left floating)  
Output  
OUT  
V+  
6
7
4
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
SBOS935B APRIL 2020REVISED JULY 2020  
www.ti.com  
TLV2197-Q1 DGK Package  
8-Pin VSSOP  
Top View  
Pin Functions: TLV2197-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN A  
+IN B  
–IN A  
–IN B  
OUT A  
OUT B  
V+  
NO.  
3
I
I
Noninverting input, channel A  
Noninverting input, channel B  
Inverting input, channel A  
Inverting input, channel B  
Output, channel A  
5
2
I
6
I
1
O
O
7
Output, channel B  
8
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
4
4
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
www.ti.com  
SBOS935B APRIL 2020REVISED JULY 2020  
TLV4197-Q1 PW Package  
14-Pin TSSOP  
Top View  
Pin Functions: TLV4197-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN A  
–IN B  
+IN C  
+IN D  
–IN A  
–IN B  
–IN C  
–IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V+  
NO.  
3
I
I
Noninverting input, channel A  
Noninverting input, channel B  
Noninverting input, channel C  
Noninverting input, channel D  
Inverting input, channel A  
Inverting input, channel B  
Inverting input, channel C  
Inverting input, channel D  
Output, channel A  
5
10  
12  
2
I
I
I
6
I
9
I
13  
1
I
O
O
O
O
7
Output, channel B  
8
Output, channel C  
14  
4
Output, channel D  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
11  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
SBOS935B APRIL 2020REVISED JULY 2020  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40  
UNIT  
V
Single-supply, VS = (V+)  
VS  
Supply voltage  
Voltage  
Dual-supply, VS = (V+) – (V–)  
Common-mode  
±20  
(V–) – 0.5  
(V+) + 0.5  
(V+) – (V–) +  
0.2  
+IN, –IN  
Differential  
Current  
±10  
Continuous  
150  
mA  
Output short circuit(2)  
Operating temperature  
Junction temperature  
Storage temperature  
Continuous  
–55  
TA  
TJ  
150  
°C  
Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Theseare stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under Recommended  
OperatingConditions. Exposure to absolute-maximum-rated conditions for extended periods mayaffect device reliability.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±2000  
V
V(ESD)  
Electrostatic discharge  
Charge Device Model (CDM), per AEC Q100-011  
CDM ESD Classification Level C5  
±750  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
36  
UNIT  
V
Single-supply, VS = (V+)  
VS  
TA  
Supply voltage  
Dual-supply, VS = (V+) – (V–)  
±2.25  
–40  
±18  
125  
Operating temperature  
°C  
6
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
 
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
www.ti.com  
SBOS935B APRIL 2020REVISED JULY 2020  
6.4 Thermal Information: TLV197-Q1  
TLV197-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
180.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
N/A  
RθJC(top)  
RθJB  
67.9  
102.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
10.4  
ψJB  
100.3  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductorand IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: TLV2197-Q1  
TLV2197-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
158  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
N/A  
RθJC(top)  
RθJB  
48.6  
78.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
3.9  
ψJB  
77.3  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductorand IC Package Thermal Metrics application  
report.  
6.6 Thermal Information: TLV4197-Q1  
TLV4197-Q1  
THERMAL METRIC(1)  
PW (TSSOP)  
14 PINS  
108.1  
26.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
N/A  
RθJC(top)  
RθJB  
54.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
1.4  
ψJB  
53.3  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductorand IC Package Thermal Metrics application  
report.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
SBOS935B APRIL 2020REVISED JULY 2020  
www.ti.com  
6.7 Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V)  
at TA = +25°C, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VOS  
Input offset voltage  
±5  
±1  
±500  
±5  
µV  
dVOS/dT  
Input offset voltage drift TA = –40°C to +125°C  
µV/°C  
Power-supply rejection  
TA = –40°C to +125°C  
ratio  
PSRR  
±0.3  
±1.0  
µV/V  
INPUT BIAS CURRENT  
±5  
±2  
±20  
±5  
pA  
nA  
pA  
nA  
IB  
Input bias current  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
±20  
±2  
IOS  
Input offset current  
Input voltage noise  
NOISE  
En  
(V–) – 0.1 V < VCM < (V+) – 3 V  
(V+) – 1.5 V < VCM < (V+) + 0.1 V  
f = 0.1 Hz to 10 Hz  
f = 0.1 Hz to 10 Hz  
f = 100 Hz  
1.3  
4
µVPP  
10.5  
5.5  
32  
(V–) – 0.1 V < VCM < (V+) – 3 V  
f = 1 kHz  
Input voltage noise  
density  
en  
nV/Hz  
f = 100 Hz  
(V+) – 1.5 V < VCM < (V+) + 0.1 V  
f = 1 kHz  
f = 1 kHz  
12.5  
Input current noise  
density  
in  
1.5  
fA/Hz  
INPUT VOLTAGE  
Common-mode voltage  
range  
VCM  
(V–) – 0.1  
(V+) + 0.1  
V
120  
114  
100  
86  
140  
126  
120  
100  
(V–) – 0.1 V < VCM < (V+) – 3 V  
(V–) < VCM < (V+) – 3 V  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
Common-mode  
rejection ratio  
CMRR  
dB  
(V+) – 1.5 V < VCM < (V+)  
INPUT IMPEDANCE  
ZID  
Differential  
100 || 1.6  
1 || 6.4  
MΩ || pF  
1013Ω ||  
pF  
ZIC  
Common-mode  
8
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
www.ti.com  
SBOS935B APRIL 2020REVISED JULY 2020  
Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V) (continued)  
at TA = +25°C, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPEN-LOOP GAIN  
(V–) + 0.6 V < VO < (V+) – 0.6 V,  
RL = 2 kΩ  
120  
114  
126  
134  
126  
140  
(V–) + 0.6 V < VO < (V+) – 0.6 V,  
RL = 2 kΩ  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
AOL  
Open-loop voltage gain  
dB  
(V–) + 0.3 V < VO < (V+) – 0.3 V,  
RL = 10 kΩ  
(V–) + 0.3 V < VO < (V+) – 0.3 V,  
RL = 10 kΩ  
120  
134  
FREQUENCY RESPONSE  
GBW  
SR  
Unity gain bandwidth  
10  
20  
MHz  
V/µs  
Slew rate  
G = 1, 10-V step  
To 0.01%  
G = 1, 10-V step  
G = 1, 5-V step  
G = 1, 10-V step  
G = 1, 5-V step  
1.4  
0.9  
2.1  
1.8  
0.2  
ts  
Settling time  
µs  
To 0.001%  
ts  
Settling time  
µs  
µs  
tOR  
Overload recovery time VIN × G = VS  
Total harmonic  
THD+N  
G = 1, f = 1 kHz, VO = 3.5 VRMS  
0.00008%  
distortion + noise  
TLV4197-Q1 at dc  
150  
130  
dB  
dB  
Crosstalk  
TLV4197-Q1, f = 100 kHz  
OUTPUT  
No load  
5
95  
15  
110  
500  
15  
Positive rail  
Negative rail  
RL = 10 kΩ  
RL = 2 kΩ  
No load  
430  
5
Voltage output swing  
from rail  
VO  
mV  
RL = 10 kΩ  
RL = 2 kΩ  
95  
110  
500  
430  
±65  
ISC  
Short-circuit current  
mA  
mA  
°C  
POWER SUPPLY  
1
1.2  
1.5  
Quiescent current per  
IQ  
IO = 0 A  
amplifier  
TEMPERATURE  
Thermal protection  
TA = –40°C to +125°C  
140  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
SBOS935B APRIL 2020REVISED JULY 2020  
www.ti.com  
6.8 Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = 4.5 V to 8 V)  
at TA = +25°C, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VOS  
Input offset voltage  
VCM = (V+) – 3 V  
±5  
±1  
±500  
±5  
µV  
dVOS/dT  
Input offset voltage drift VCM = (V+) – 1.5 V  
µV/°C  
Power-supply rejection  
TA = –40°C to +125°C  
ratio  
PSRR  
±2  
µV/V  
INPUT BIAS CURRENT  
±5  
±2  
±20  
±5  
pA  
nA  
pA  
nA  
IB  
Input bias current  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
±20  
±2  
IOS  
Input offset current  
Input voltage noise  
NOISE  
En  
(V–) – 0.1 V < VCM < (V+) – 3 V  
(V+) – 1.5 V < VCM < (V+) + 0.1 V  
f = 0.1 Hz to 10 Hz  
f = 0.1 Hz to 10 Hz  
f = 100 Hz  
1.3  
4
µVPP  
10.5  
5.5  
32  
(V–) – 0.1 V < VCM < (V+) – 3 V  
f = 1 kHz  
Input voltage noise  
density  
en  
nV/Hz  
f = 100 Hz  
(V+) – 1.5 V < VCM < (V+) + 0.1 V  
f = 1 kHz  
f = 1 kHz  
12.5  
Input current noise  
density  
in  
1.5  
fA/Hz  
INPUT VOLTAGE  
Common-mode voltage  
range  
VCM  
(V–) – 0.1  
(V+) + 0.1  
V
94  
90  
110  
104  
120  
100  
(V–) – 0.1 V < VCM < (V+) – 3 V  
(V–) < VCM < (V+) – 3 V  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
Common-mode  
rejection ratio  
CMRR  
dB  
100  
84  
(V+) – 1.5 V < VCM < (V+)  
INPUT IMPEDANCE  
ZID  
Differential  
100 || 1.6  
1 || 6.4  
MΩ || pF  
1013Ω ||  
pF  
ZIC  
Common-mode  
10  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
www.ti.com  
SBOS935B APRIL 2020REVISED JULY 2020  
Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = 4.5 V to 8 V) (continued)  
at TA = +25°C, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPEN-LOOP GAIN  
(V–) + 0.6 V < VO < (V+) – 0.6 V,  
RL = 2 kΩ  
110  
100  
110  
120  
114  
126  
(V–) + 0.6 V < VO < (V+) – 0.6 V,  
RL = 2 kΩ  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
AOL  
Open-loop voltage gain  
Open-loop voltage gain  
dB  
dB  
(V–) + 0.3 V < VO < (V+) – 0.3 V,  
RL = 10 kΩ  
(V–) + 0.3 V < VO < (V+) – 0.3 V,  
RL = 10 kΩ  
AOL  
110  
120  
FREQUENCY RESPONSE  
GBW  
SR  
ts  
Unity gain bandwidth  
10  
20  
MHz  
V/µs  
µs  
Slew rate  
G = 1, 5-V step  
To 0.01%  
Settling time  
VS = ±3V, G = 1, 5-V step  
1
tOR  
Overload recovery time VIN × G = VS  
0.2  
150  
130  
µs  
dB  
dB  
TLV4197-Q1 at dc  
Crosstalk  
TLV4197-Q1, f = 100 kHz  
OUTPUT  
No load  
5
95  
15  
110  
500  
15  
Positive rail  
RL = 10 kΩ  
RL = 2 kΩ  
No load  
430  
5
Voltage output swing  
from rail  
VO  
mV  
Negative rail  
RL = 10 kΩ  
RL = 2 kΩ  
95  
110  
500  
430  
±65  
ISC  
Short-circuit current  
mA  
mA  
°C  
POWER SUPPLY  
1
1.2  
1.5  
Quiescent current per  
IQ  
IO = 0 A  
amplifier  
TEMPERATURE  
Thermal protection  
TA = –40°C to +125°C  
140  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
SBOS935B APRIL 2020REVISED JULY 2020  
www.ti.com  
6.9 Typical Characteristics  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
50  
25  
0
100  
75  
VCM = +18.1 V  
50  
VCM = –18.1 V  
P-Channel  
25  
0
–25  
–50  
–75  
–100  
VCM = –18.1 V  
N-Channel  
–25  
–50  
Transition  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
12.5  
13.5  
14.5  
15.5  
16.5  
17.5  
18.5  
Common-Mode Voltage (V)  
Common-Mode Voltage (V)  
C001  
Figure 1. Offset Voltage vs Common-Mode Voltage  
Figure 2. Offset Voltage vs Common-Mode Voltage  
200  
150  
100  
50  
50  
40  
10 Typical Units Shown  
5 Typical Units Shown  
30  
20  
10  
0
0
–10  
–20  
–30  
–40  
–50  
–50  
–100  
–150  
–200  
VCM = +2.35 V  
N-Channel  
VCM = –2.35 V  
P-Channel  
Transition  
–2.5 –2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2.5  
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0  
Power Supply Voltage (V)  
Common-Mode Voltage (V)  
VS = ±2.25 V  
VS = ±2.25 V to ±18 V  
Figure 3. Offset Voltage vs Common-Mode Voltage  
Figure 4. Offset Voltage vs Power Supply  
140.0  
120.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
180  
60.0  
G = -100  
G = +1  
G = -1  
Open-Loop Gain  
135  
40.0  
20.0  
0.0  
G = -10  
Phase  
90  
45  
œ20.0  
–20.0  
0
10M 100M  
1000  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k 100k 1M  
C003  
Frequency (Hz)  
Frequency (Hz)  
CLOAD = 15 pF  
Figure 5. Open-Loop Gain and Phase vs Frequency  
Figure 6. Closed-Loop Gain and Phase vs Frequency  
12  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
 
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
www.ti.com  
SBOS935B APRIL 2020REVISED JULY 2020  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
6000  
5000  
4000  
3000  
2000  
1000  
0
20  
IB+  
IB -  
15  
Ios  
10  
IB–  
5
0
IB+  
–5  
–10  
–15  
–20  
Ios  
œ1000  
œ75 œ50 œ25  
0
25  
50  
75 100 125 150 175  
18.0  
9.0  
0.0  
9.0  
18.0  
Temperature (°C)  
Common-Mode Voltage (V)  
C001  
C001  
Figure 7. Input Bias Current vs Common-Mode Voltage  
Figure 8. Input Bias Current vs Temperature  
(V–) + 5  
160.0  
140.0  
120.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
(V–) + 4  
(V–) + 3  
(V–) + 2  
(V–) + 1  
(V–)  
+125°C  
– 40°C  
+PSRR  
CMRR  
-PSRR  
(V–) – 1  
0
10  
20  
30  
40  
50  
60  
70  
80  
1
10  
100  
1k  
10k  
100k  
1M  
Output Current (mA)  
C012  
Frequency (Hz)  
C001  
Figure 9. Output Voltage Swing vs Output Current  
(Maximum Supply)  
Figure 10. CMRR and PSRR vs Frequency  
10  
1
0.8  
8
6
0.6  
0.4  
4
VS  
= 2.25 V, VCM = V+ - 3 V  
0.2  
2
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
œ2  
œ4  
œ6  
œ8  
œ10  
VS  
= 18 V, VCM = 0 V  
–75 –50 –25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
Figure 12. PSRR vs Temperature  
Figure 11. CMRR vs Temperature  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
SBOS935B APRIL 2020REVISED JULY 2020  
www.ti.com  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
1000  
VCM = V+ 100 mV  
N-Channel Input  
100  
10  
1
VCM = 0 V  
P-Channel Input  
µV  
Peak-to-Peak Noise = VRMS × 6.6 = 1.30  
Time (1 s/div)  
pp  
0.1  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
C002  
C001  
Figure 13. 0.1-Hz to 10-Hz Noise  
Figure 14. Input Voltage Noise Spectral Density  
vs Frequency  
0.1  
–60  
0.1  
0.01  
–60  
G = +1 V/V, RL = 10 kΩ  
G = +1 V/V, RL = 2 kΩ  
G = –1 V/V, RL = 10 kΩ  
G = –1 V/V, RL = 2 kΩ  
0.01  
0.001  
–80  
–80  
–100  
–120  
–140  
0.001  
–100  
–120  
–140  
0.0001  
0.0001  
0.00001  
G = +1 V/V, RL = 10 kΩ  
G = +1 V/V, RL = 2 kΩ  
G = –1 V/V, RL = 10 kΩ  
G = –1 V/V, RL = 2 kΩ  
0.00001  
0.01  
0.1  
1
10  
10  
100  
1k  
10k  
Output Amplitude (VRMS  
)
Frequency (Hz)  
f = 1 kHz, BW = 80 kHz  
VOUT = 3.5 VRMS, BW = 80 kHz  
Figure 15. THD+N Ratio vs Frequency  
Figure 16. THD+N vs Output Amplitude  
1.2  
1.1  
1.0  
0.9  
1.2  
1.1  
1
VS = 18 V  
VS = 2.25 V  
0.9  
0.8  
0
0.8  
75  
4
8
12  
16  
20  
24  
28  
32  
36  
50  
25  
0
25  
50  
75  
100 125 150  
Supply Voltage (V)  
Temperature (°C)  
C001  
Figure 17. Quiescent Current vs Supply Voltage  
Figure 18. Quiescent Current vs Temperature  
14  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
www.ti.com  
SBOS935B APRIL 2020REVISED JULY 2020  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
3.0  
2.0  
10k  
VS = 4.5 V  
VS = 36 V  
1k  
1.0  
0.0  
100  
10  
–1.0  
–2.0  
–3.0  
0
1
10  
100  
1k  
10k 100k 1M  
10M  
–75 –50 –25  
0
25  
50  
75  
100 125 150  
Frequency (Hz)  
Temperature(°C)  
C016  
RL = 10 kΩ  
Figure 19. Open-Loop Gain vs Temperature  
Figure 20. Open-Loop Output Impedance vs Frequency  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
+ 18 V  
45  
40  
35  
30  
25  
20  
15  
10  
5
-
+ 18 V  
RISO  
TLV197-Q1  
-
RISO  
+
+
-
RL  
CL  
+
-
TLV197-Q1  
VIN  
-18 V  
VIN  
+
CL  
-18 V  
0
RISO = 0 Ω  
RISO = 252Ω5  
RISO = 50 Ω  
RISO = 0 Ω  
0
RISO = 25 Ω  
25  
RISO = 50 Ω  
50  
0
0
10p  
100p  
1n  
10p  
100p  
1n  
Capacitive Load (F)  
Capacitive Load (F)  
G = 1  
RI = 1 kΩ, RF = 1 kΩ, G = –1  
Figure 21. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
Figure 22. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
VOUT  
+ 18  
V
-
+
-
VOUT  
TLV197-Q1  
VIN  
+
- 18  
V
+ 18 V  
-
TLV197-Q1  
+
+
VIN  
RL  
CL  
-18 V  
-
VIN  
Time (100 ns/div)  
Time (200 ns/div)  
CL = 10 pF, G = 1  
RI = 1 kΩ, RF = 10 kΩ, G = –10  
Figure 24. Small-Signal Step Response (100 mV)  
Figure 23. Positive Overload Recovery  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
SBOS935B APRIL 2020REVISED JULY 2020  
www.ti.com  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
+ 18  
V
-
+
-
TLV197-Q1  
VIN  
+
CL  
- 18  
V
+ 18 V  
-
+
-
TLV197-Q1  
VIN  
+
CL  
-18 V  
Time (120 ns/div)  
Time (300 ns/div)  
RL = 1 kΩ, CL = 10 pF, G = –1  
RL = 1 kΩ, CL = 10 pF, G = –1  
Figure 25. Small-Signal Step Response (100 mV)  
Figure 26. Large-Signal Step Response  
4
3
4
3
2
2
1
1
0
0
0.01% Settling = 500 μV  
–1  
–2  
3  
–4  
–1  
–2  
3  
–4  
0.01% Settling = 1 mV  
Step Applied at t = 0  
Step Applied at t = 0  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
Time (μs)  
Time (μs)  
G = 1  
G = 1  
Figure 28. Settling Time (5-V Positive Step)  
Figure 27. Settling Time (10-V Positive Step)  
80  
60  
40  
20  
0
30  
25  
20  
15  
10  
5
Maximum output voltage without  
slew-rate induced distortion.  
VS  
= 15 V  
ISC, Source  
ISC, Sink  
VS  
= 5 V  
VS  
=
2.25 V  
0
10k  
100k  
1M  
Frequency (Hz)  
10M  
–75 –50 –25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
C033  
C001  
Figure 29. Short-Circuit Current vs Temperature  
Figure 30. Maximum Output Voltage vs Frequency  
16  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
www.ti.com  
SBOS935B APRIL 2020REVISED JULY 2020  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
Overdrive = 100 mV  
VOUT Voltage  
tpLH = 1.1 s  
tpLH = 0.97 s  
VOUT Voltage  
Overdrive = 100 mV  
Time (200 ns/div)  
Time (200 ns/div)  
C025  
C026  
Figure 31. Propagation Delay Rising Edge  
Figure 32. Propagation Delay Falling Edge  
-80  
-100  
-120  
-140  
-160  
-180  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Figure 33. Crosstalk vs Frequency  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
SBOS935B APRIL 2020REVISED JULY 2020  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TLVx197-Q1 family of e-trim™ operational amplifiers uses a method of package-level trim for offset and  
offset temperature drift implemented during the final steps of manufacturing after the plastic molding process.  
This method minimizes the influence of inherent input transistor mismatch, as well as errors induced during  
package molding. The trim communication occurs on the output pin of the standard pinout, and after the trim  
points are set, further communication to the trim structure is permanently disabled. The Functional Block  
Diagram shows the simplified diagram of the TLVx197-Q1 e-trim operational amplifier.  
Unlike previous e-trim op amps, the TLVx197-Q1 uses a patented two-temperature trim architecture to achieve a  
low offset voltage of 500 µV (maximum), and low voltage offset drift of 5 µV/°C (maximum) over the full specified  
temperature range. This level of precision performance at wide supply voltages makes these amplifiers useful for  
high-impedance industrial sensors, filters, and high-voltage data acquisition.  
7.2 Functional Block Diagram  
+
NCH Input  
Stage  
œ
IN+  
+
High Capacitive  
Load  
Compensation  
VOUT  
36-V  
Differential  
Front End  
Output  
Stage  
Slew  
Boost  
œ
INœ  
+
PCH Input  
Stage  
œ
e-trim™  
Package Level Trim  
18  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
 
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
www.ti.com  
SBOS935B APRIL 2020REVISED JULY 2020  
7.3 Feature Description  
7.3.1 Input Protection Circuitry  
The TLVx197-Q1 use a unique input architecture to eliminate the need for input protection diodes, but still  
provide robust input protection under transient conditions. Conventional input diode protection schemes shown in  
Figure 34 can be activated by fast transient step responses, and can introduce signal distortion and settling time  
delays because of alternate current paths, as shown in Figure 35. For low-gain circuits, these fast-ramping input  
signals forward-bias back-to-back diodes, cause an increase in input current, and result in extended settling time.  
TLV197-Q1 Provides Full 36-  
V Differential Input Range  
Conventional Input Protection  
Limits Differential Input Range  
V+  
V+  
+
VIN+  
VIN+  
+
VOUT  
VOUT  
TLVx197-Q1  
~0.7 V  
36 V  
œ
VIN-  
œ
VIN-  
V-  
V-  
Figure 34. TLVx197-Q1 Input Protection Does Not Limit Differential Input Capability  
1
Ron_mux  
Vn = +10 V  
RFILT  
+10 V  
Sn  
D
1
2
~œ9.3 V  
+10 V  
CFILT  
CS  
CD  
Vinœ  
2
Ron_mux  
Sn+1  
Vn+1 = œ10 V RFILT  
œ10 V  
~0.7 V  
Vout  
CFILT  
CS  
Idiode_transient  
Vin+  
œ10 V  
Input Low Pass Filter  
Simplified Mux Model  
Buffer Amplifier  
Figure 35. Back-to-Back Diodes Create Settling Issues  
The TLVx197-Q1 family of operational amplifiers provides a true high-impedance differential input capability for  
high-voltage applications. This patented input protection architecture does not introduce additional signal  
distortion or delayed settling time, and makes the device an excellent choice for multichannel, high-switched,  
input applications. The TLVx197-Q1 tolerates a maximum differential swing (voltage between inverting and  
noninverting pins of the op amp) of up to 36 V, thus making the device great for use as a comparator or in  
applications with fast-ramping input signals such as multiplexed data-acquisition systems; see Figure 41.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
 
 
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
SBOS935B APRIL 2020REVISED JULY 2020  
www.ti.com  
Feature Description (continued)  
7.3.2 EMI Rejection  
The TLVx197-Q1 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from  
sources such as wireless communications and densely-populated boards with a mix of analog signal chain and  
digital components. EMI immunity can be improved with circuit design techniques; the TLVx197-Q1 benefits from  
these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the  
immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz.  
Figure 36 shows the results of this testing on the TLVx197-Q1. Table 1 shows the EMIRR IN+ values for the  
TLVx197-Q1 at particular frequencies commonly encountered in real-world applications. Applications listed in  
Table 1 may be centered on or operated near the particular frequency shown. Detailed information can also be  
found in the EMI Rejection Ratio of Operational Amplifiers application report, available for download from  
www.ti.com.  
160.0  
PRF = -10 dBm  
VSUPPLY = 18 V  
VCM = 0 V  
140.0  
120.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
10M  
100M  
Frequency (Hz)  
1G  
10G  
C017  
Figure 36. EMIRR Testing  
Table 1. TLVx197-Q1 EMIRR IN+ For Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
400 MHz  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF) applications  
44.1 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation, GPS  
(to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5 GHz  
52.8 dB  
61.0 dB  
69.5 dB  
88.7 dB  
105.5 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
20  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
 
 
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
www.ti.com  
SBOS935B APRIL 2020REVISED JULY 2020  
7.3.3 Phase Reversal Protection  
The TLVx197-Q1 family has internal phase-reversal protection. Many op amps exhibit a phase reversal when the  
input is driven beyond the respective linear common-mode range. This condition is most often encountered in  
noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the  
output to reverse into the opposite rail. The TLVx197-Q1 is a rail-to-rail input op amp; therefore, the common-  
mode range can extend up to the rails. Input signals beyond the rails do not cause phase reversal; instead, the  
output limits into the appropriate rail.  
7.3.4 Thermal Protection  
CAUTION  
The absolute maximum junction temperature of the TLVx197-Q1 is 150°C. Exceeding  
this temperature causes damage to the device.  
The internal power dissipation of any amplifier causes the internal (junction) temperature of the amplifier to rise.  
This phenomenon is called self heating. The TLVx197-Q1 has a thermal protection feature that prevents damage  
from self heating. The protection works by monitoring the temperature of the device and turning off the op amp  
output drive for temperatures greater than 140°C. Figure 37 shows an application example for the TLVx197-Q1  
that has significant self heating (159°C) because of the power dissipation (0.81 W). Thermal calculations indicate  
that for an ambient temperature of 65°C, the device junction temperature must reach 187°C. The actual device,  
however, turns off the output drive to maintain a safe junction temperature. Figure 37 shows how the circuit  
behaves during thermal protection. During normal operation, the device acts as a buffer, so the output is 3 V.  
When self heating causes the device junction temperature to exceed 140°C, the thermal protection forces the  
output to a high-impedance state, and the output is pulled to ground through resistor RL.  
Normal  
Operation  
3 V  
TA = 65°C  
PD = 0.81W  
30 V  
Output  
High-Z  
0 V  
RJA = 116°C/W  
TJ = 116°C/W × 0.81W + 65°C  
TJ = 159°C (expected)  
œ
150°C  
140°C  
TLVx197-Q1  
+
IOUT = 30 mA  
+
3 V  
œ
RL  
100 Ω  
+
VIN  
3 V  
œ
Figure 37. Thermal Protection  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
 
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
SBOS935B APRIL 2020REVISED JULY 2020  
www.ti.com  
7.3.5 Capacitive Load and Stability  
The TLVx197-Q1 features a patented output stage capable of driving large capacitive loads, and in a unity-gain  
configuration, directly drives up to 1 nF of pure capacitive load. Increasing the gain enhances the ability of the  
amplifier to drive greater capacitive loads.  
The particular op amp circuit configuration, layout, gain, and output loading are some of the factors to consider  
when establishing whether an amplifier is stable in operation.  
For additional drive capability in unity-gain configurations, improve capacitive load drive by inserting a small (10-  
Ω to 20-Ω) resistor, RISO, in series with the output, as shown in Figure 38. This resistor significantly reduces  
ringing and maintains dc performance for purely capacitive loads. However, if a resistive load is in parallel with  
the capacitive load, then a voltage divider is created, thus introducing a gain error at the output and slightly  
reducing the output swing. The error introduced is proportional to the ratio RISO / RL, and is generally negligible at  
low output levels. A high capacitive load drive makes the TLVx197-Q1 a great choice for applications such as  
reference buffers, MOSFET gate drives, and cable-shield drives. The circuit shown in Figure 38 uses an isolation  
resistor, RISO, to stabilize the output of an op amp. RISO modifies the open-loop gain of the system for increased  
phase margin, and the results using the TLVx197-Q1 are summarized in Table 2. For additional information on  
techniques to optimize and design using this circuit, reference design TIPD128, Capacitive Load Drive Verified  
Reference Design Using an Isolation Resistor, details complete design goals, simulation, and test results.  
+Vs  
Vout  
Riso  
+
Cload  
+
Vin  
-Vs  
œ
Figure 38. Extending Capacitive Load Drive With the TLVx197-Q1  
Table 2. TLVx197-Q1 Capacitive Load Drive Using Isolation Resistor Comparison of Calculated and  
Measured Results  
PARAMETER  
Capacitive Load  
Phase Margin  
RISO (Ω)  
VALUE  
100 pF  
1000 pF  
0.01 µF  
0.1 µF  
1 µF  
45°  
47  
60°  
45°  
24  
60°  
45°  
20  
60°  
51  
45°  
6.2  
60°  
45°  
2
60°  
4.7  
360  
100  
15.8  
Measured  
Overshoot (%)  
23.2 8.6  
45.1°  
10.4  
22.5  
9
22.1  
8.7  
23.1  
8.6  
21  
8.6  
Calculated PM  
58.1°  
45.8°  
59.7°  
46.1°  
60.1°  
45.2°  
60.2°  
47.2°  
60.2°  
For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files, simulation results, and test results,  
see TI Precision Design TIDU032, Capacitive Load Drive Solution using an Isolation Resistor .  
22  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
 
 
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
www.ti.com  
SBOS935B APRIL 2020REVISED JULY 2020  
7.3.6 Common-Mode Voltage Range  
The TLVx197-Q1 is a 36-V, true rail-to-rail input operational amplifier with an input common-mode range that  
extends 100 mV beyond either supply rail. This wide range is achieved with paralleled complementary N-channel  
and P-channel differential input pairs, as shown in Figure 39. The N-channel pair is active for input voltages  
close to the positive rail, typically (V+) – 3 V to 100 mV greater than the positive supply. The P-channel pair is  
active for inputs from 100 mV less than the negative supply to approximately (V+) – 1.5 V. There is a small  
transition region, typically (V+) –3 V to (V+) – 1.5 V in which both input pairs are on. This transition region can  
vary modestly with process variation, and within this region PSRR, CMRR, offset voltage, offset drift, noise, and  
THD performance may be degraded compared to operation outside this region.  
+Vsupply  
IS1  
VINœ  
PCH1  
NCH4  
NCH3  
PCH2  
VIN+  
e-trimTM  
FUSE BANK  
VOS TRIM  
VOS DRIFT TRIM  
œVsupply  
Figure 39. Rail-to-Rail Input Stage  
To achieve the best performance for two-stage rail-to-rail input amplifiers, avoid the transition region when  
possible. The TLVx197-Q1 uses a precision trim for both the N-channel and P-channel regions. This technique  
enables significantly lower levels of offset than previous-generation devices, and causes the variance in the  
transition region of the input stages to appear exaggerated relative to offset over the full common-mode range.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
 
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
SBOS935B APRIL 2020REVISED JULY 2020  
www.ti.com  
7.3.7 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress  
(EOS). These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the  
output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is  
helpful. Figure 40 shows an illustration of the ESD circuits contained in the TLVx197-Q1 (indicated by the dashed  
line area). The ESD protection circuitry involves several current-steering diodes connected from the input and  
output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device or  
the power-supply ESD cell, internal to the operational amplifier. This protection circuitry is intended to remain  
inactive during normal circuit operation.  
TVS  
RF  
+VS  
VDD  
TLVx197-Q1  
R1  
RS  
100  
100 ꢀ  
INœ  
œ
IN+  
+
Power Supply  
ESD Cell  
RL  
+
VIN  
œ
VSS  
œVS  
TVS  
Figure 40. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
An ESD event is very short in duration and very high voltage (for example, 1 kV, 100 ns); whereas, an EOS  
event is long duration and lower voltage (for example, 50 V, 100 ms). The ESD diodes are designed for out-of-  
circuit ESD protection (that is, during assembly, test, and storage of the device before being soldered to the  
PCB). During an ESD event, the ESD signal is passed through the ESD steering diodes to an absorption circuit  
(labeled ESD power-supply circuit). The ESD absorption circuit clamps the supplies to a safe level.  
Although this behavior is necessary for out-of-circuit protection, excessive current and damage is caused if  
activated in-circuit. A transient voltage suppressors (TVS) can be used to prevent against damage caused by  
turning on the ESD absorption circuit during an in-circuit ESD event. Using the appropriate current limiting  
resistors and TVS diodes allows for the use of device ESD diodes to protect against EOS events.  
24  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
 
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
www.ti.com  
SBOS935B APRIL 2020REVISED JULY 2020  
7.3.8 Overload Recovery  
Overload recovery is defined as the time required for the op amp output to recover from a saturated state to a  
linear state. The output devices of the op amp enter a saturation region when the output voltage exceeds the  
rated operating voltage, either due to the high input voltage or the high gain. After the device enters the  
saturation region, the charge carriers in the output devices require time to return back to the linear state. After  
the charge carriers return back to the linear state, the device begins to slew at the specified slew rate. Thus, the  
propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time.  
The overload recovery time for the TLVx197-Q1 is approximately 200 ns.  
7.4 Device Functional Modes  
The TLVx197-Q1 has a single functional mode and is operational when the power-supply voltage is greater than  
4.5 V (±2.25 V). The maximum power supply voltage for the TLVx197-Q1 is 36 V (±18 V).  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
SBOS935B APRIL 2020REVISED JULY 2020  
www.ti.com  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLVx197-Q1 family offers outstanding dc precision and ac performance. These devices operate up to 36-V  
supply rails and offer true rail-to-rail input and output, low offset voltage and offset voltage drift, as well as  
10-MHz bandwidth and high capacitive load drive. These features make the TLVx197-Q1 a robust, high-  
performance operational amplifier for high-voltage automotive applications.  
8.2 Typical Applications  
8.2.1 16-Bit Precision Multiplexed Data-Acquisition System  
Figure 41 shows a 16-bit, differential, 4-channel, multiplexed data-acquisition system. This example is typical in  
sensor based applications that require low distortion and a high-voltage differential input. The circuit uses the  
ADS8864, a 16-bit, 400-kSPS successive-approximation-resistor (SAR) analog-to-digital converter (ADC), along  
with a precision, high-voltage, signal-conditioning front end, and a 4-channel differential multiplexer (mux). This  
TI Precision Design details the process for optimizing the precision, high-voltage, front-end drive circuit using the  
TLVx197-Q1 and TLV140 to achieve excellent dynamic performance and linearity with the ADS8864.  
1
2
3
4
High-Impedance Inputs  
No Differential Input Clamps  
Fast Settling-Time Requirements  
Attenuate High-Voltage Input Signal  
Fast-Settling Time Requirements  
Stability of the Input Driver  
Attenuate ADC Kickback Noise  
VREF Output: Value and Accuracy  
Low Temp and Long-Term Drift  
Very Low Output Impedance  
Input-Filter Bandwidth  
Voltage  
Reference  
TLVx197-Q1  
+
CH0+  
CH0-  
RC Filter  
Buffer  
RC Filter  
20-V,  
10-kHz  
Sine Wave  
Reference Driver  
+
Gain  
Network  
Gain  
Network  
TLVx197-Q1  
TLVx197-Q1  
+
4:2  
Mux  
REFP  
+
TLVx197-Q1  
VINP  
Gain  
Network  
TLVx197-Q1  
+
CH3+  
TLVx197-Q1  
+
Antialiasing  
Filter  
SAR  
ADC  
20-V,  
10-kHz  
Sine Wave  
+
VINM  
TLVx197-Q1  
CH3-  
n
CONV  
16 Bits  
400 kSPS  
High-Voltage Level Translation  
High-Voltage Multiplexed Input  
Voltage  
Divider  
REF3240  
OPA350  
Shmidtt  
Trigger  
VCM Generation Circuit  
Counter  
Delay  
n
5
Fast logic transition  
Digital Counter For Multiplexer  
Figure 41. TLVx197-Q1 in 16-Bit, 400-kSPS, 4-Channel, Multiplexed Data Acquisition System for High-  
Voltage Inputs With Lowest Distortion  
26  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
 
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
www.ti.com  
SBOS935B APRIL 2020REVISED JULY 2020  
Typical Applications (continued)  
8.2.1.1 Design Requirements  
The primary objective is to design a ±20 V, differential 4-channel multiplexed data acquisition system with lowest  
distortion using the 16-bit ADS8864 at a throughput of 400 kSPS for a 10 kHz full-scale pure sine-wave input.  
The design requirements for this block design are:  
System supply voltage: ±15 V  
ADC supply voltage: 3.3 V  
ADC sampling rate: 400 kSPS  
ADC reference voltage (REFP): 4.096 V  
System input signal: A high-voltage differential input signal with a peak amplitude of 10 V and frequency  
(fIN) of 10 kHz are applied to each differential input of the mux.  
8.2.1.2 Detailed Design Procedure  
The purpose of this precision design is to design an optimal high voltage multiplexed data acquisition system for  
highest system linearity and fast settling. The overall system block diagram is illustrated in Figure 41. The circuit  
is a multichannel data acquisition signal chain consisting of an input low-pass filter, multiplexer (mux), mux output  
buffer, attenuating SAR ADC driver, digital counter for mux and the reference driver. The architecture allows fast  
sampling of multiple channels using a single ADC, providing a low-cost solution. The two primary design  
considerations to maximize the performance of a precision multiplexed data acquisition system are the mux input  
analog front-end and the high-voltage level translation SAR ADC driver design. However, carefully design each  
analog circuit block based on the ADC performance specifications in order to achieve the fastest settling at 16-bit  
resolution and lowest distortion system. Figure 41 includes the most important specifications for each individual  
analog block.  
This design systematically approaches each analog circuit block to achieve a 16-bit settling for a full-scale input  
stage voltage and linearity for a 10-kHz sinusoidal input signal at each input channel. The first step in the design  
is to understand the requirement for extremely low impedance input-filter design for the mux. This understanding  
helps in the decision of an appropriate input filter and selection of a mux to meet the system settling  
requirements. The next important step is the design of the attenuating analog front-end (AFE) used to level  
translate the high-voltage input signal to a low-voltage ADC input when maintaining amplifier stability. The next  
step is to design a digital interface to switch the mux input channels with minimum delay. The final design  
challenge is to design a high-precision, reference-driver circuit that provides the required REFP reference voltage  
with low offset, drift, and noise contributions.  
8.2.1.3 Application Curve  
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
ADC Differential Input (V)  
Figure 42. ADC 16-Bit Linearity Error for the Multiplexed Data Acquisition Block  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test results, refer to TIPD151, 16-  
Bit, 400 kSPS 4-Channell, Multiplexed Data Acquisition Ref erence Design for High Voltage Inputs, Low Distortion.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
SBOS935B APRIL 2020REVISED JULY 2020  
www.ti.com  
8.2.2 Slew-Rate Limit for Input Protection  
In control systems for motors, abrupt changes in voltages or currents can cause mechanical damages. By  
controlling the slew rate of the command voltages into the drive circuits, the load voltages ramps up and down at  
a safe rate. For symmetrical slew-rate applications (positive slew rate equals negative slew rate), one additional  
op amp provides slew-rate control for a given analog gain stage. The unique input protection and high output  
current and slew rate of the TLVx197-Q1 make these devices an optimal amplifier to achieve slew-rate control for  
both dual- and single-supply systems.Figure 43 shows the TLVx197-Q1 in a slew-rate limit design.  
Op Amp Gain Stage  
Slew Rate Limiter  
C1  
470 nF  
R1  
1.69 kΩ  
VEE  
VEE  
R2  
œ
1.6 MΩ  
-
TLVx197-Q1  
TLVx197-Q1  
VIN  
V+  
+
VOUT  
V+  
+
VCC  
RL  
10 kΩ  
VCC  
Figure 43. Slew-Rate Limiter Uses One Op Amp  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test results, see TIPD140, Single  
Op-Amp Slew Rate Limiter Reference Design.  
8.2.3 Precision Reference Buffer  
The TLVx197-Q1 feature high output-current-drive capability and low input offset voltage, making the device an  
excellent reference buffer to provide an accurate buffered output with ample drive current for transients. For the  
10-µF ceramic capacitor shown in Figure 44, RISO, a 37.4-Ω isolation resistor, provides separation of two  
feedback paths for optimal stability. Feedback path number one is through RF and is directly at the output (VOUT).  
Feedback path number two is through RFx and CF and is connected at the output of the op amp. The optimized  
stability components shown for the 10-µF load give a closed-loop signal bandwidth at VOUT of 4 kHz and still  
provide a loop gain phase margin of 89°. Any other load capacitances require recalculation of the stability  
components: RF, RFx, CF, and RISO  
.
RF  
1 k  
CF  
39 nF  
RFx  
10 kΩ  
RISO  
37.4 Ω  
œ
VOUT  
TLVx197-Q1  
+
V+  
CL  
10 µF  
+
VREF  
2.5 V  
VCC  
Figure 44. Precision Reference Buffer  
28  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
 
 
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
www.ti.com  
SBOS935B APRIL 2020REVISED JULY 2020  
9 Power Supply Recommendations  
The TLVx197-Q1 is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply from  
–40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in Typical Characteristics.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see Absolute  
Maximum Ratings.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
section.  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole. and through  
the individual op amp. Bypass capacitors are used to reduce the coupled noise by providing low-  
impedance power sources local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close as possible to the device. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground  
planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically  
separate digital and analog grounds paying attention to the flow of the ground current.  
To reduce parasitic coupling, run the input traces as far away as possible from the supply or output  
traces. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better  
than in parallel with the noisy trace.  
Place the external components as close as possible to the device. As illustrated in Figure 46, keep RF  
and RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
For best performance, clean the PCB following board assembly.  
Any precision integrated circuit may experience performance shifts due to moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, bake the PCB assembly to remove  
moisture introduced into the device packaging during the cleaning process. A low-temperature, post-  
cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
 
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
SBOS935B APRIL 2020REVISED JULY 2020  
www.ti.com  
10.2 Layout Examples  
VIN  
+
VOUT  
RG  
RF  
Figure 45. Schematic Representation  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
RF  
VS+  
N/C  
N/C  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
N/C  
VIN  
GND  
GND  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitors  
Figure 46. Operational Amplifier Board Layout for Noninverting Configuration  
30  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
www.ti.com  
SBOS935B APRIL 2020REVISED JULY 2020  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 TINA-TI™ (Free Software Download)  
TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a  
free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range  
of both passive and active models. TINA-TI provides all the conventional dc, transient, and frequency domain  
analysis of SPICE, as well as additional design capabilities.  
Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing  
capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select  
input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.  
NOTE  
These files require that either the TINA software (from DesignSoft™) or TINA-TI software  
be installed. Download the free TINA-TI software from the TINA-TI folder.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, EMI Rejection Ratio of Operational Amplifiers application report  
Texas Instruments, Capacitive Load Drive Solution using an Isolation Resistor reference design  
11.3 Related Links  
Table 3 lists quick access links. Categories include technical documents, support and community resources,  
tools and software, and quick access to order now.  
Table 3. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TLV197-Q1  
TLV2197-Q1  
TLV4197-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
11.4 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.5 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
 
TLV197-Q1, TLV2197-Q1, TLV4197-Q1  
SBOS935B APRIL 2020REVISED JULY 2020  
www.ti.com  
11.6 Trademarks  
e-trim, E2E are trademarks of Texas Instruments.  
TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
11.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
32  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TLV197-Q1 TLV2197-Q1 TLV4197-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV197QDGKRQ1  
TLV2197QDGKRQ1  
TLV4197QPWRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
TSSOP  
DGK  
DGK  
PW  
8
8
2500 RoHS & Green  
2500 RoHS & Green  
2000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
Q197  
2BD6  
NIPDAUAG  
NIPDAU  
14  
T4197Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV197QDGKRQ1  
TLV2197QDGKRQ1  
TLV4197QPWRQ1  
VSSOP  
VSSOP  
TSSOP  
DGK  
DGK  
PW  
8
8
2500  
2500  
2000  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
5.3  
5.3  
6.9  
3.4  
3.4  
5.6  
1.4  
1.4  
1.6  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
14  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV197QDGKRQ1  
TLV2197QDGKRQ1  
TLV4197QPWRQ1  
VSSOP  
VSSOP  
TSSOP  
DGK  
DGK  
PW  
8
8
2500  
2500  
2000  
366.0  
366.0  
356.0  
364.0  
364.0  
356.0  
50.0  
50.0  
35.0  
14  
Pack Materials-Page 2  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

TLV2197QDGKRQ1

汽车类、双通道、高电压、精密 RRIO 运算放大器 | DGK | 8 | -40 to 125
TI

TLV2211

Advanced LinCMOSE RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS
TI

TLV2211CDBV

Advanced LinCMOSE RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS
TI

TLV2211CDBVR

Advanced LinCMOC™ RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS
TI

TLV2211CDBVRG4

Single LinCMOS&#153; Rail-To-Rail uPower Operational Amplifier 5-SOT-23 0 to 70
TI

TLV2211CDBVT

Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS
TI

TLV2211CDBVTG4

Single LinCMOS&#153; Rail-To-Rail uPower Operational Amplifier 5-SOT-23 0 to 70
TI

TLV2211IDBV

Advanced LinCMOSE RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS
TI

TLV2211IDBVR

Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS
TI

TLV2211IDBVRG4

MICROPOWER SINGLE OPERATIONAL AMPLIFIERS
TI

TLV2211IDBVT

Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS
TI

TLV2211IDBVTG4

Single, 10-V, 65-kHz operational amplifier with high output current (10 mA) | DBV | 5 | -40 to 85
TI