TLV2231IDBVTR [TI]

OP-AMP, 3000uV OFFSET-MAX, 1.9MHz BAND WIDTH, PDSO5;
TLV2231IDBVTR
型号: TLV2231IDBVTR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

OP-AMP, 3000uV OFFSET-MAX, 1.9MHz BAND WIDTH, PDSO5

运算放大器
文件: 总27页 (文件大小:584K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
DBV PACKAGE  
(TOP VIEW)  
Output Swing Includes Both Supply Rails  
Low Noise . . . 15 nV/Hz Typ at f = 1 kHz  
Low Input Bias Current . . . 1 pA Typ  
IN+  
1
2
3
5
4
V
DD+  
Fully Specified for Single-Supply 3-V and  
5-V Operation  
V
DD–  
/GND  
IN–  
Common-Mode Input Voltage Range  
Includes Negative Rail  
OUT  
High Gain Bandwidth . . . 2 MHz at  
V
= 5 V with 600 Load  
DD  
High Slew Rate . . . 1.6 V/µs at V  
= 5 V  
DD  
Wide Supply Voltage Range  
2.7 V to 10 V  
Macromodel Included  
description  
The TLV2231 is a single low-voltage operational amplifier available in the SOT-23 package. It offers 2 MHz of  
bandwidth and 1.6 V/µs of slew rate for applications requiring good ac performance. The device exhibits  
rail-to-rail output performance for increased dynamic range in single or split supply applications. The TLV2231  
is fully characterized at 3 V and 5 V and is optimized for low-voltage applications.  
The TLV2231, exhibiting high input impedance and low noise, is excellent for small-signal conditioning of  
high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels  
combined with 3-V operation, these devices work well in hand-held monitoring and remote-sensing  
applications. In addition, the rail-to-rail output feature with single- or split-supplies makes this family a great  
choice when interfacing with analog-to-digital converters (ADCs). The device can also drive 600-loads for  
telecom applications.  
2
With a total area of 5.6mm , the SOT-23 package only requires one-third the board space of the standard 8-pin  
SOIC package. This ultra-small package allows designers to place single amplifiers very close to the signal  
source, minimizing noise pick-up from long PCB traces. TI has also taken special care to provide a pinout that  
is optimized for board layout (see Figure 1). Both inputs are separated by GND to prevent coupling or leakage  
paths. The OUT and INterminals are on the same end of the board for providing negative feedback. Finally,  
gain setting resistors and decoupling capacitor are easily placed around the package.  
1
4
V
I
IN+  
V
DD+  
V+  
C
2
3
GND  
V
/GND  
DD  
R
I
5
IN–  
OUT  
V
O
R
F
Figure 1. Typical Surface Mount Layout for a Fixed-Gain Noninverting Amplifier  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Advanced LinCMOS is a trademark of Texas Instruments Incorporated.  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
AVAILABLE OPTIONS  
CHIP  
FORM  
(Y)  
PACKAGED DEVICES  
T
A
V
IO  
max AT 25°C  
SYMBOL  
SOT-23 (DBV)  
0°C to 70°C  
3 mV  
3 mV  
TLV2231CDBV  
TLV2231IDBV  
VAEC  
VAEI  
TLV2231Y  
40°C to 85°C  
The DBV package available in tape and reel only.  
Chip forms are tested at T = 25°C only.  
A
TLV2231Y chip information  
This chip, when properly assembled, displays characteristics similar to the TLV2231C. Thermal compression  
or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with  
conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
(4)  
V
DD+  
(5)  
(3)  
(1)  
(3)  
+
IN+  
IN–  
(4)  
OUT  
(2)  
V
DD–  
/GND  
40  
(2)  
CHIP THICKNESS: 10 MILS TYPICAL  
BONDING PADS: 4 × 4 MILS MINIMUM  
T max = 150°C  
J
TOLERANCES ARE ±10%.  
ALL DIMENSIONS ARE IN MILS.  
PIN (2) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
(1)  
(5)  
32  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
equivalent schematic  
V
DD+  
Q3  
Q6  
Q9  
Q12  
Q14  
Q16  
R7  
C2  
IN+  
R6  
OUT  
C1  
IN–  
R5  
Q1  
Q4  
Q13  
Q15  
R2  
Q17  
D1  
Q2  
R3  
Q5  
R4  
Q7  
Q8  
Q10  
Q11  
R1  
V
DD–/GND  
COMPONENT COUNT  
Transistors  
Diodes  
23  
5
Resistors  
Capacitors  
11  
2
Includes both amplifiers and all  
ESD, bias, and trim circuitry  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±V  
Input voltage range, V (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
ID  
DD  
DD  
I
Input current, I (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA  
O
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA  
DD+  
DD–  
Total current out of V  
Duration of short-circuit current (at or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : TLV2231C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
TLV2231I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Storage temperature range, T  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DBV package . . . . . . . . . . . . . . . . . . 260°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to V  
.
DD –  
2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought  
below V – 0.3 V.  
DD–  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T = 85°C  
A
POWER RATING  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
A
DBV  
150 mW  
1.2 mW/°C  
96 mW  
78 mW  
recommended operating conditions  
TLV2231C  
TLV2231I  
UNIT  
MIN  
MAX  
MIN  
MAX  
10  
1.3  
Supply voltage, V  
2.7  
10  
2.7  
V
V
DD  
Input voltage range, V  
V
V
V
V
1.3  
V
V
V
V
I
DD–  
DD+  
DD–  
DD+  
Common-mode input voltage, V  
IC  
Operating free-air temperature, T  
1.3  
1.3  
V
DD–  
0
DD+  
DD–  
40  
DD+  
70  
85  
°C  
A
NOTE 1: All voltage values, except differential voltages, are with respect to V  
DD –  
.
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
electrical characteristics at specified free-air temperature, V  
= 3 V (unless otherwise noted)  
DD  
TLV2231C  
TYP MAX  
TLV2231I  
TYP MAX  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
MIN  
V
IO  
Input offset voltage  
0.75  
3
0.75  
3
mV  
Temperature  
coefficient of input  
offset voltage  
Full range  
α
0.5  
0.5  
µV/°C  
VIO  
Input offset voltage  
long-term drift  
(see Note 4)  
V
V
= ±1.5 V,  
V
R
= 0,  
= 50 Ω  
S
DD±  
= 0,  
IC  
25°C  
0.003  
0.5  
0.003  
0.5  
µV/mo  
O
25°C  
Full range  
25°C  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
150  
150  
150  
150  
1
1
IB  
Full range  
0
to  
2
0.3  
to  
2.2  
0
to  
2
0.3  
to  
2.2  
25°C  
Common-mode input  
voltage range  
V
ICR  
R
= 50 ,  
|V | 5 mV  
IO  
V
S
0
to  
0
to  
Full range  
1.7  
1.7  
I
I
= 1 mA  
= 2 mA  
= 1.5 V,  
= 1.5 V,  
25°C  
25°C  
2.87  
2.74  
2.87  
2.74  
OH  
High-level output  
voltage  
V
V
V
OH  
OH  
Full range  
25°C  
2
2
V
V
I
I
= 50 µA  
10  
10  
IC  
OL  
Low-level output  
voltage  
25°C  
100  
100  
mV  
OL  
= 500 µA  
IC  
OL  
Full range  
25°C  
300  
300  
1
1.6  
1
1.6  
Large-signal  
differential voltage  
amplification  
= 600 Ω  
R
R
V
V
= 1.5 V,  
= 1 V to 2 V  
L
L
IC  
O
Full range  
25°C  
0.3  
0.3  
A
VD  
V/mV  
250  
250  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
id  
Common-mode input  
resistance  
12  
10  
12  
10  
ic  
Common-mode input  
capacitance  
c
z
f = 10 kHz  
f = 1 MHz,  
6
6
pF  
ic  
o
Closed-loop output  
impedance  
A
= 1  
156  
70  
156  
70  
V
25°C  
60  
55  
60  
55  
Common-mode  
rejection ratio  
V
IC  
V
O
= 0 to 1.7 V,  
= 1.5 V,  
CMRR  
dB  
dB  
µA  
R
= 50 Ω  
S
Full range  
Supply voltage  
rejection ratio  
25°C  
70  
70  
96  
70  
70  
96  
V
V
= 2.7 V to 8 V,  
DD  
IC  
k
SVR  
= V  
/2,  
No load  
DD  
Full range  
(V  
/V )  
DD  
IO  
25°C  
750 1200  
1500  
750 1200  
1500  
I
Supply current  
V
O
= 1.5 V,  
No load  
DD  
Full range  
Full range for the TLV2231C is 0°C to 70°C. Full range for the TLV2231I is – 40°C to 85°C.  
Referenced to 1.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
operating characteristics at specified free-air temperature, V  
= 3 V  
DD  
TLV2231C  
TYP  
TLV2231I  
TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX MIN  
25°C  
0.75  
1.25  
0.75  
1.25  
Slew rate at unity  
gain  
V
C
= 1.1 V to 1.9 V,  
= 100 pF  
R
= 600 ,  
L
O
L
SR  
V/µs  
Full  
range  
0.5  
0.5  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
105  
16  
105  
16  
Equivalent input  
noise voltage  
V
n
nV/Hz  
µV  
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
1.4  
1.5  
1.4  
1.5  
V
N(PP)  
Equivalent input  
noise current  
I
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
V
= 1 V to 2 V,  
A
= 1  
0.285%  
7.2%  
0.285%  
7.2%  
O
V
f = 20 kHz,  
R
= 600 Ω  
A
V
= 10  
Total harmonic  
distortion plus  
noise  
L
THD+N  
A
V
= 1  
0.014%  
0.098%  
0.13%  
0.014%  
0.098%  
0.13%  
V
O
= 1 V to 2 V,  
A
V
= 10  
= 100  
25°C  
f = 20 kHz,  
§
R
= 600 Ω  
L
A
V
Gain-bandwidth  
product  
f = 10 kHz,  
R
= 600 ,  
L
25°C  
25°C  
1.9  
1.9  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-  
swing bandwidth  
V
R
= 1 V,  
= 600 ,  
A
V
= 1,  
O(PP)  
L
B
OM  
60  
0.9  
1.5  
60  
0.9  
1.5  
C = 100 pF  
L
A
= –1,  
V
To 0.1%  
Step = 1 V to 2 V,  
t
s
Settling time  
25°C  
µs  
R
L
C
L
= 600 ,  
= 100 pF  
To 0.01%  
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
50°  
50°  
R
= 600 ,  
C = 100 pF  
L
L
Gain margin  
8
8
dB  
§
Full range is 40°C to 85°C.  
Referenced to 1.5 V  
Referenced to 0 V  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLV2231C  
TYP MAX  
TLV2231I  
TYP MAX  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
MIN  
V
IO  
Input offset voltage  
0.71  
3
0.71  
3
mV  
Temperature  
coefficient of input  
offset voltage  
Full range  
α
0.5  
0.5  
µV/°C  
VIO  
Input offset voltage  
long-term drift  
(see Note 4)  
V
V
= ±2.5 V,  
V
R
= 0,  
= 50 Ω  
S
DD±  
= 0,  
IC  
25°C  
0.003  
0.5  
0.003  
0.5  
µV/mo  
O
25°C  
Full range  
25°C  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
150  
150  
150  
150  
1
1
IB  
Full range  
0
to  
4
0.3  
to  
4.2  
0
to  
4
0.3  
to  
4.2  
25°C  
Common-mode input  
voltage range  
V
ICR  
R
= 50 Ω,  
|V | 5 mV  
IO  
V
S
0
to  
0
to  
Full range  
3.7  
3.7  
I
I
= 1 mA  
= 4 mA  
= 2.5 V,  
= 2.5 V,  
25°C  
25°C  
4.9  
4.6  
4.9  
4.6  
OH  
High-level output  
voltage  
V
V
V
OH  
OH  
Full range  
25°C  
4
4
V
V
I
I
= 500 µA  
80  
80  
IC  
OL  
Low-level output  
voltage  
25°C  
160  
160  
mV  
OL  
= 1 mA  
IC  
OL  
Full range  
25°C  
500  
500  
1
1.5  
1
1.5  
Large-signal  
differential voltage  
amplification  
= 600 Ω  
R
R
V
V
= 2.5 V,  
= 1 V to 4 V  
L
L
IC  
O
Full range  
25°C  
0.3  
0.3  
A
VD  
V/mV  
400  
400  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
id  
Common-mode input  
resistance  
12  
10  
12  
10  
ic  
Common-mode input  
capacitance  
c
z
f = 10 kHz  
f = 1 MHz,  
6
6
pF  
ic  
o
Closed-loop output  
impedance  
A
= 1  
138  
70  
138  
70  
V
25°C  
60  
55  
60  
55  
Common-mode  
rejection ratio  
V
IC  
V
O
= 0 to 2.7 V,  
= 2.5 V,  
CMRR  
dB  
dB  
µA  
R
= 50 Ω  
S
Full range  
Supply voltage  
rejection ratio  
25°C  
70  
70  
96  
70  
70  
96  
V
V
= 4.4 V to 8 V,  
DD  
IC  
k
SVR  
= V  
/2,  
No load  
DD  
Full range  
(V  
/V )  
DD  
IO  
25°C  
850 1300  
1600  
850 1300  
1600  
I
Supply current  
V
O
= 2.5 V,  
No load  
DD  
Full range  
Full range for the TLV2231C is 0°C to 70°C. Full range for the TLV2231I is – 40°C to 85°C.  
Referenced to 2.5 V  
NOTE 5: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLV2231C  
TYP  
TLV2231I  
TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX MIN  
25°C  
1
1.6  
1
1.6  
Slew rate at unity  
gain  
V
C
= 1.5 V to 3.5 V,  
= 100 pF  
R
= 600 ,  
O
L
L
SR  
V/µs  
Full  
range  
0.7  
0.7  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
100  
15  
100  
15  
Equivalent input  
noise voltage  
V
n
nV/Hz  
µV  
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
1.4  
1.5  
1.4  
1.5  
V
N(PP)  
Equivalent input  
noise current  
I
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
V
= 1.5 V to 3.5 V,  
A
= 1  
0.409%  
3.68%  
0.409%  
3.68%  
O
V
f = 20 kHz,  
R
= 600 Ω  
A
V
= 10  
Total harmonic  
distortion plus  
noise  
L
THD+N  
A
V
= 1  
0.018%  
0.045%  
0.116%  
0.018%  
0.045%  
0.116%  
V
O
= 1.5 V to 3.5 V,  
A
V
= 10  
= 100  
25°C  
f = 20 kHz,  
§
R
= 600 Ω  
L
A
V
Gain-bandwidth  
product  
f = 10 kHz,  
R
= 600 ,  
L
25°C  
25°C  
2
2
MHz  
kHz  
C
= 100 pF  
L
Maximum  
output-swing  
bandwidth  
V
R
= 1 V,  
= 600 ,  
A
V
= 1,  
O(PP)  
L
B
OM  
300  
300  
C = 100 pF  
L
A
= –1,  
V
To 0.1%  
0.95  
2.4  
0.95  
2.4  
Step = 1.5 V to 3.5 V,  
R
C
t
s
Settling time  
25°C  
µs  
= 600 ,  
= 100 pF  
L
L
To 0.01%  
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
48°  
48°  
R
= 600 ,  
C = 100 pF  
L
L
Gain margin  
8
8
dB  
§
Full range is 40°C to 85°C.  
Referenced to 2.5 V  
Referenced to 0 V  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
electrical characteristics at V  
= 3 V, T = 25°C (unless otherwise noted)  
A
DD  
TLV2231Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
750  
0.5  
1
MAX  
V
IO  
Input offset voltage  
Input offset current  
Input bias current  
µV  
pA  
pA  
V
R
± = ±1.5 V,  
V
IC  
= 0,  
V = 0,  
O
DD  
S
I
IO  
IB  
= 50 Ω  
I
0.3  
to  
2.2  
V
ICR  
Common-mode input voltage range  
|V | 5 mV,  
IO  
R
= 50 Ω  
V
S
V
V
High-level output voltage  
Low-level output voltage  
I
= 1 mA  
= 1.5 V,  
= 1.5 V,  
2.87  
10  
V
OH  
OH  
V
I
I
= 50 µA  
IC  
IC  
OL  
mV  
OL  
V
= 500 µA  
100  
1.6  
OL  
R
R
= 600 Ω  
Large-signal differential voltage  
amplification  
L
L
A
VD  
V
= 1 V to 2 V  
V/mV  
O
250  
= 1 MΩ  
12  
r
r
Differential input resistance  
10  
10  
id  
12  
Common-mode input resistance  
Common-mode input capacitance  
Closed-loop output impedance  
Common-mode rejection ratio  
Supply voltage rejection ratio  
ic  
c
z
f = 10 kHz  
f = 1 MHz,  
6
pF  
ic  
o
A
= 1  
156  
70  
V
CMRR  
V
V
V
= 0 to 1.7 V,  
V
O
= 0,  
R = 50 Ω  
S
60  
dB  
IC  
k
I
= 2.7 V to 8 V,  
V
IC  
= 0,  
No load  
96  
dB  
SVR  
DD  
(V  
DD  
/V )  
IO  
Supply current  
= 0,  
No load  
750  
µA  
DD  
O
Referenced to 1.5 V  
electrical characteristics at V  
= 5 V, T = 25°C (unless otherwise noted)  
DD  
A
TLV2231Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
710  
0.5  
1
MAX  
V
IO  
Input offset voltage  
Input offset current  
Input bias current  
µV  
pA  
pA  
V
R
± = ±1.5 V,  
= 50 Ω  
V
IC  
= 0,  
V = 0,  
O
DD  
S
I
I
IO  
IB  
0.3  
to  
4.2  
V
ICR  
Common-mode input voltage range  
|V | 5 mV,  
IO  
R
= 50 Ω  
V
S
V
V
High-level output voltage  
Low-level output voltage  
I
= 1 mA  
= 2.5 V,  
= 2.5 V,  
4.9  
80  
V
OH  
OH  
V
I
I
= 500 µA  
IC  
IC  
OL  
mV  
OL  
V
= 1 mA  
160  
15  
OL  
R
R
= 600 Ω  
Large-signal differential voltage  
amplification  
L
L
A
VD  
V
= 1 V to 2 V  
V/mV  
O
400  
= 1 MΩ  
12  
r
r
Differential input resistance  
10  
10  
id  
12  
Common-mode input resistance  
Common-mode input capacitance  
Closed-loop output impedance  
Common-mode rejection ratio  
Supply voltage rejection ratio  
ic  
c
z
f = 10 kHz  
f = 1 MHz,  
6
pF  
ic  
o
A
= 1  
138  
70  
V
CMRR  
V
V
V
= 0 to 1.7 V,  
V
O
= 0,  
R = 50 Ω  
S
60  
dB  
IC  
k
I
= 2.7 V to 8 V,  
V
IC  
= 0,  
No load  
96  
dB  
SVR  
DD  
(V  
DD  
/V )  
IO  
Supply current  
= 0,  
No load  
850  
µA  
DD  
O
Referenced to 2.5 V  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
Distribution  
vs Common-mode input voltage  
2, 3  
4, 5  
V
IO  
Input offset voltage  
α
Input offset voltage temperature coefficient  
Input bias and input offset currents  
Distribution  
6, 7  
8
VIO  
I
/I  
vs Free-air temperature  
IB IO  
vs Supply voltage  
vs Free-air temperature  
9
10  
V
I
Input voltage  
V
V
V
High-level output voltage  
vs High-level output current  
vs Low-level output current  
vs Frequency  
11, 14  
12, 13, 15  
16  
OH  
Low-level output voltage  
OL  
Maximum peak-to-peak output voltage  
O(PP)  
vs Supply voltage  
vs Free-air temperature  
17  
18  
I
Short-circuit output current  
OS  
V
Output voltage  
vs Differential input voltage  
vs Load resistance  
19, 20  
21  
O
A
VD  
Differential voltage amplification  
vs Frequency  
vs Free-air temperature  
22, 23  
24, 25  
A
Large-signal differential voltage amplification  
Output impedance  
VD  
o
z
vs Frequency  
26, 27  
vs Frequency  
vs Free-air temperature  
28  
29  
CMRR  
Common-mode rejection ratio  
vs Frequency  
vs Free-air temperature  
30, 31  
32  
k
Supply-voltage rejection ratio  
Supply current  
SVR  
I
vs Supply voltage  
33  
DD  
vs Load capacitance  
vs Free-air temperature  
34  
35  
SR  
Slew rate  
V
V
V
V
V
Inverting large-signal pulse response  
Voltage-follower large-signal pulse response  
Inverting small-signal pulse response  
Voltage-follower small-signal pulse response  
Equivalent input noise voltage  
vs Time  
36, 37  
38, 39  
40, 41  
42, 43  
44, 45  
46  
O
O
O
O
n
vs Time  
vs Time  
vs Time  
vs Frequency  
Over a 10-second period  
vs Frequency  
Noise voltage (referred to input)  
THD + N  
Total harmonic distortion plus noise  
47  
vs Free-air temperature  
vs Supply voltage  
48  
49  
Gain-bandwidth product  
Gain margin  
vs Load capacitance  
50, 51  
vs Frequency  
vs Load capacitance  
22, 23  
52, 53  
φ
m
Phase margin  
B
1
Unity-gain bandwidth  
vs Load capacitance  
54, 55  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLV2231  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2231  
INPUT OFFSET VOLTAGE  
20  
18  
20  
18  
380 Amplifiers From 1 Wafer Lot  
380 Amplifiers From 1 Wafer Lot  
V
T
= ±2.5 V  
= 25°C  
V
T
= ±1.5 V  
= 25°C  
DD  
DD  
A
A
16  
14  
16  
14  
12  
10  
8
12  
10  
8
6
6
4
4
2
2
0
–3  
0
–3  
–2  
–1  
0
1
2
3
–2  
–1  
0
1
2
3
V
IO  
– Input Offset Voltage – mV  
V
IO  
– Input Offset Voltage – mV  
Figure 2  
Figure 3  
INPUT OFFSET VOLTAGE  
vs  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
1
1
V
= 5 V  
= 50 Ω  
= 25°C  
V
= 3 V  
= 50 Ω  
= 25°C  
DD  
S
DD  
S
0.8  
0.8  
R
T
R
T
A
A
0.6  
0.4  
0.2  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0
0.2  
0.4  
0.6  
0.8  
0.6  
0.8  
–1  
–1  
–1  
–1  
0
1
2
3
0
1
2
3
4
5
V
IC  
– Common-Mode Input Voltage – V  
V
IC  
– Common-Mode Input Voltage – V  
Figure 4  
Figure 5  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLV2231 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TLV2231 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
32 Amplifiers From  
1 Wafer Lots  
32 Amplifiers From  
1 Wafer Lots  
V
= ±1.5 V  
V
= ±2.5 V  
DD±  
P Package  
= 25°C to 125°C  
DD±  
P Package  
T = 25°C to 125°C  
A
T
A
0
0
–4  
–3 –2  
–1  
0
1
2
3
4
–4  
–3 –2  
–1  
0
1
2
3
4
α
– Input Offset Voltage  
α
VIO  
– Input Offset Voltage  
Temperature Coefficient – µV/°C  
VIO  
Temperature Coefficient – µV/°C  
Figure 6  
Figure 7  
INPUT BIAS AND INPUT OFFSET CURRENTS  
INPUT VOLTAGE  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
100  
90  
5
V
V
V
= ±2.5 V  
= 0  
= 0  
= 50 Ω  
R
T
= 50 Ω  
= 25°C  
DD±  
IC  
O
S
A
4
3
R
80  
70  
S
2
1
60  
50  
40  
30  
20  
0
|V | 5 mV  
IO  
–1  
–2  
–3  
–4  
I
IB  
I
IO  
10  
0
–5  
1
1.5  
2
2.5  
3
3.5  
4
25  
45  
65  
85  
105  
125  
T
A
– Free-Air Temperature – °C  
|V | – Supply Voltage – V  
DD±  
Figure 8  
Figure 9  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
†‡  
INPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
HIGH-LEVEL OUTPUT CURRENT  
3
2.5  
2
5
4
3
2
1
V
= 3 V  
DD  
V
DD  
= 5 V  
T
A
= 40°C  
T
A
= 25°C  
|V | 5 mV  
IO  
1.5  
1
T
A
= 85°C  
T
A
= 125°C  
0
0.5  
0
–1  
0
5
10  
15  
55 35 15  
5
25  
45  
65 85 105 125  
T
A
– Free-Air Temperature – °C  
|I | – High-Level Output Current – mA  
OH  
Figure 10  
Figure 11  
†‡  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
1.2  
1
1.4  
1.2  
1
V
T
= 3 V  
V
= 3 V  
DD  
DD  
= 25°C  
V
IC  
= 1.5 V  
A
T
A
= 125°C  
V
IC  
= 0  
0.8  
0.6  
0.4  
0.2  
0
T
= 85°C  
A
V
IC  
= 0.75 V  
0.8  
0.6  
T
= 25°C  
A
V
= 1.5 V  
IC  
T
A
= – 40°C  
0.4  
0.2  
0
0
1
2
3
4
5
0
1
2
3
4
5
I
– Low-Level Output Current – mA  
I
– Low-Level Output Current – mA  
OL  
OL  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V = 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD DD  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
†‡  
†‡  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
5
4.5  
4
1.4  
1.2  
V
V
= 5 V  
V
= 5 V  
DD  
= 2.5 V  
DD  
IC  
T
A
= 125°C  
T
A
= 40°C  
1
3.5  
3
T
A
= 85°C  
0.8  
T
A
= 25°C  
2.5  
2
T
A
= 25°C  
T
= 85°C  
A
0.6  
0.4  
0.2  
0
T
A
= 40°C  
1.5  
1
T
= 125°C  
A
0.5  
0
0
1
2
3
4
5
6
0
5
10  
15  
20  
25  
30  
I
– Low-Level Output Current – mA  
OL  
|I | – High-Level Output Current – mA  
OH  
Figure 14  
Figure 15  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
FREQUENCY  
SUPPLY VOLTAGE  
5
30  
25  
R = 600 Ω  
I
V
= V /2  
DD  
DD  
= 25°C  
O
IC  
T
= 25°C  
A
V
T
= V /2  
20  
A
4
V
DD  
= 5 V  
15  
10  
V
ID  
= 100 mV  
3
2
5
0
V
DD  
= 3 V  
–5  
10  
15  
20  
V
ID  
= 100 mV  
1
0
25  
30  
2
3
4
5
6
10  
10  
10  
10  
10  
2
3
4
5
6
7
8
f – Frequency – Hz  
V
DD  
– Supply Voltage – V  
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
DD  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
†‡  
SHORT-CIRCUIT OUTPUT CURRENT  
OUTPUT VOLTAGE  
vs  
vs  
FREE-AIR TEMPERATURE  
DIFFERENTIAL INPUT VOLTAGE  
3
2.5  
2
30  
25  
20  
15  
10  
V
V
= 3 V  
DD  
= 1.5 V  
V
V
V
= 5 V  
= 2.5 V  
= 2.5 V  
DD  
IC  
O
IC  
R = 600 Ω  
T
A
I
= 25°C  
V
ID  
= 100 mV  
5
0
1.5  
1
–5  
10  
V
= 100 mV  
ID  
15  
20  
25  
30  
0.5  
0
75 50 25  
0
25  
50  
75  
100  
125  
10 8 –6 –4 –2  
0
2
4
6
8
10  
T
A
– Free-Air Temperature – °C  
V
ID  
– Differential Input Voltage – mV  
Figure 18  
Figure 19  
OUTPUT VOLTAGE  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
DIFFERENTIAL INPUT VOLTAGE  
LOAD RESISTANCE  
5
4
3
4
3
2
1
10  
10  
10  
10  
V
T
A
= 2 V  
O(PP)  
= 25°C  
V
V
R
= 5 V  
DD  
IC  
L
= 2.5 V  
= 600 Ω  
= 25°C  
T
A
V
DD  
= 5 V  
V
DD  
= 3 V  
2
1
0
1
1
10  
2
3
10  
0.1  
1
10  
10 8 –6 –4 –2  
0
2
4
6
8
10  
V
ID  
– Differential Input Voltage – mV  
R
– Load Resistance – kΩ  
L
Figure 20  
Figure 21  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V = 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD DD  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE MARGIN  
vs  
FREQUENCY  
180°  
135°  
80  
60  
V
R
= 3 V  
= 600 Ω  
DD  
L
L
C = 100 pF  
T
A
= 25°C  
90°  
45°  
40  
Phase Margin  
20  
0
Gain  
0°  
45°  
20  
40  
90°  
7
4
5
6
10  
10  
10  
10  
f – Frequency – Hz  
Figure 22  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE MARGIN  
vs  
FREQUENCY  
80  
60  
180°  
135°  
V
= 5 V  
DD  
R = 600 Ω  
L
C = 100 pF  
T
A
L
= 25°C  
40  
90°  
45°  
Phase Margin  
20  
0
Gain  
0°  
45°  
20  
40  
90°  
7
4
5
6
10  
10  
10  
10  
f – Frequency – Hz  
Figure 23  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
†‡  
†‡  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
3
3
2
10  
10  
10  
R
= 1 MΩ  
L
R
= 1 MΩ  
L
2
1
10  
1
10  
10  
R
= 600 Ω  
R
= 600 Ω  
L
L
1
1
V
V
V
= 5 V  
= 2.5 V  
= 1 V to 4 V  
DD  
IC  
O
V
V
V
= 3 V  
= 1.5 V  
= 0.5 V to 2.5 V  
DD  
IC  
O
0.1  
75 50 25  
0.1  
75  
0
25  
50  
75  
100 125  
50 25  
0
25  
50  
75  
100 125  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 24  
Figure 25  
OUTPUT IMPEDANCE  
OUTPUT IMPEDANCE  
vs  
vs  
FREQUENCY  
FREQUENCY  
1000  
100  
10  
1000  
100  
10  
V
T
A
= 3 V  
= 25°C  
DD  
V
T
A
= 5 V  
= 25°C  
DD  
A
V
= 100  
= 10  
A
V
= 100  
= 10  
A
V
A
V
1
1
A
V
= 1  
A
V
= 1  
0.1  
10  
0.1  
10  
2
3
4
5
6
10  
10  
10  
10  
2
3
4
5
6
10  
10  
10  
f– Frequency – Hz  
10  
f– Frequency – Hz  
Figure 26  
Figure 27  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V = 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD DD  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
†‡  
COMMON-MODE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
84  
82  
80  
78  
76  
74  
72  
100  
80  
T
= 25°C  
A
V
V
= 5 V  
= 2.5 V  
DD  
IC  
V
DD  
= 5 V  
V
V
= 3 V  
= 1.5 V  
DD  
IC  
60  
40  
20  
0
V
DD  
= 3 V  
0
70  
4
5
6
7
10  
2
3
10  
10  
10  
– 75 – 50 – 25  
25  
50  
75 100 125  
10  
10  
T
A
– Free-Air Temperature – °C  
f – Frequency – Hz  
Figure 28  
Figure 29  
SUPPLY-VOLTAGE REJECTION RATIO  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
100  
80  
V
T
A
= 3 V  
DD  
= 25°C  
V
T
A
= 5 V  
= 25°C  
DD  
80  
60  
40  
k
SVR+  
k
SVR+  
60  
40  
k
SVR–  
k
SVR–  
20  
0
20  
0
2
3
4
5
6
7
10  
6
7
10  
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 30  
Figure 31  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
= 3 V, all loads are referenced to 1.5 V.  
DD  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
SUPPLY-VOLTAGE REJECTION RATIO  
SUPPLY CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
100  
98  
1000  
750  
V
= 0  
O
V
V
= 2.7 V to 8 V  
DD  
= V = V /2  
DD  
T
A
= 40°C  
No Load  
IC  
O
T
= 85°C  
A
T
A
= 25°C  
96  
500  
250  
0
94  
92  
90  
75 50 25  
0
25  
50  
75 100  
125  
0
1
2
3
4
5
6
7
8
T
A
– Free-Air Temperature – °C  
V
DD  
– Supply Voltage – V  
Figure 32  
Figure 33  
†‡  
SLEW RATE  
vs  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
LOAD CAPACITANCE  
3.5  
3
4
3
V
= 5 V  
DD  
V
= 5 V  
= 1  
= 25°C  
DD  
R
C
A
= 600 Ω  
= 100 pF  
= 1  
L
L
V
SR+  
SR–  
A
V
A
T
2.5  
2
SR–  
SR+  
2
1
0
1.5  
1
0.5  
0
1
2
3
4
5
75 50 25  
0
25  
50  
75 100 125  
10  
10  
10  
10  
10  
T
A
– Free-Air Temperature – °C  
C
– Load Capacitance – pF  
L
Figure 34  
Figure 35  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V = 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD DD  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
INVERTING LARGE-SIGNAL PULSE  
INVERTING LARGE-SIGNAL PULSE  
RESPONSE  
RESPONSE  
3
2.5  
2
5
4
3
V
= 3 V  
= 600 Ω  
= 100 pF  
= 1  
V
= 5 V  
= 600 Ω  
= 100 pF  
= 1  
DD  
DD  
R
C
A
T
R
C
A
T
L
L
V
L
L
V
= 25°C  
= 25°C  
A
A
1.5  
1
2
1
0
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
t – Time – µs  
t – Time – µs  
Figure 36  
Figure 37  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
5
4
3
2.5  
2
V
= 3 V  
= 600 Ω  
= 100 pF  
= 1  
= 25°C  
DD  
V
R
C
= 5 V  
= 600 Ω  
= 100 pF  
= 1  
DD  
L
L
R
C
A
L
L
V
A
V
A
T
A
T
= 25°C  
3
2
1.5  
1
1
0
0.5  
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
t – Time – µs  
t – Time – µs  
Figure 38  
Figure 39  
For all curves where V  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
DD  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
INVERTING SMALL-SIGNAL  
INVERTING SMALL-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
1.56  
1.54  
2.56  
2.54  
V
= 3 V  
V
= 5 V  
= 600 Ω  
= 100 pF  
= 1  
= 25°C  
DD  
L
L
DD  
L
L
R
C
A
= 600 Ω  
= 100 pF  
= 1  
R
C
A
V
A
V
A
T
= 25°C  
T
1.52  
1.5  
2.52  
2.5  
1.48  
1.46  
2.48  
2.46  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
t – Time – µs  
t – Time – µs  
Figure 40  
Figure 41  
VOLTAGE-FOLLOWER SMALL-SIGNAL  
VOLTAGE-FOLLOWER SMALL-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
2.56  
2.54  
1.56  
1.54  
V
R
C
= 5 V  
= 600 Ω  
= 100 pF  
= 1  
DD  
L
L
V
R
C
= 3 V  
= 600 Ω  
= 100 pF  
= 1  
DD  
L
L
A
V
A
A
V
A
T
= 25°C  
T
= 25°C  
2.52  
1.52  
1.5  
2.5  
2.48  
1.48  
1.48  
2.46  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.50  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5  
t – Time – µs  
t – Time – µs  
Figure 42  
Figure 43  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
EQUIVALENT INPUT NOISE VOLTAGE  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
120  
100  
80  
120  
100  
80  
V
= 5 V  
= 20 Ω  
= 25°C  
V
= 3 V  
= 20 Ω  
= 25°C  
DD  
S
DD  
S
R
T
R
T
A
A
60  
60  
40  
40  
20  
0
20  
0
1
2
3
4
10  
1
2
3
4
10  
10  
10  
10  
10  
10  
10  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 44  
Figure 45  
TOTAL HARMONIC DISTORTION PLUS NOISE  
INPUT NOISE VOLTAGE OVER  
vs  
A 10-SECOND PERIOD  
FREQUENCY  
1000  
10  
A
V
= 10  
V
= 5 V  
DD  
f = 0.1 Hz to 10 Hz  
V
T
A
= 5 V  
DD  
= 25°C  
750  
500  
250  
0
T
A
= 25°C  
A
V
= 100  
A
= 1  
V
1
A
= 100  
V
R
R
= 600 to 2.5 V  
= 600 to 0 V  
L
L
250  
500  
0.1  
A
V
= 10  
750  
A
V
= 1  
0.01  
1000  
1
2
3
4
5
10  
10  
10  
10  
f – Frequency – Hz  
10  
0
2
4
6
8
10  
t – Time – s  
Figure 46  
Figure 47  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
†‡  
GAIN-BANDWIDTH PRODUCT  
GAIN-BANDWIDTH PRODUCT  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
2.5  
2.25  
2
4
R
C
T
A
= 600 Ω  
= 100 pF  
= 25°C  
L
L
V
= 5 V  
DD  
f = 10 kHz  
3.5  
3
R
C
= 600 Ω  
= 100 pF  
L
L
2.5  
2
1.75  
1.5  
1.5  
1
0
1
2
3
4
5
6
7
8
75 50 25  
0
25  
50  
75  
100  
125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 48  
Figure 49  
GAIN MARGIN  
GAIN MARGIN  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
20  
15  
10  
20  
15  
T
R
= 25°  
=  
T
R
= 25°  
= 600 Ω  
A
L
A
L
R
= 100 Ω  
R
= 100 Ω  
null  
null  
R
= 500 Ω  
null  
R
= 500 Ω  
null  
R
= 1000 Ω  
null  
R
= 50 Ω  
null  
10  
5
R
= 50 Ω  
null  
5
0
R
= 0  
null  
R
= 0  
2
null  
0
10  
1
3
4
5
10  
10  
10  
C
10  
10  
1
2
L
3
4
5
10  
C
10  
10  
10  
– Load Capacitance – pF  
L
– Load Capacitance – pF  
Figure 50  
Figure 51  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V = 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD DD  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
75°  
60°  
45°  
75°  
60°  
45°  
T
R
= 25°C  
= 600 Ω  
T
R
= 25°C  
= ∞  
A
L
A
L
R
= 1000 Ω  
null  
R
= 500 Ω  
null  
R
= 100 Ω  
R
= 500 Ω  
null  
null  
30°  
30°  
R
= 100 Ω  
null  
R
= 50 Ω  
null  
R
= 50 Ω  
null  
15°  
0°  
R
= 0 Ω  
15°  
0°  
null  
R
= 0  
null  
1
2
3
4
5
10  
1
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
C
10  
10  
C
– Load Capacitance – pF  
L
– Load Capacitance – pF  
L
Figure 52  
Figure 53  
UNITY-GAIN BANDWIDTH  
vs  
UNITY-GAIN BANDWIDTH  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
10  
10  
T
R
= 25°C  
= ∞  
A
L
T
R
= 25°C  
= 600 Ω  
A
L
1
1
0.1  
10  
0.1  
10  
2
3
4
5
10  
10  
10  
2
3
4
5
10  
10  
10  
C
– Load Capacitance – pF  
C
– Load Capacitance – pF  
L
L
Figure 54  
Figure 55  
For all curves where V  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
DD  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
APPLICATION INFORMATION  
driving large capacitive loads  
The TLV2231 is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 50  
through Figure 55 illustrate its ability to drive loads greater than 100 pF while maintaining good gain and phase  
margins (R  
= 0).  
null  
A small series resistor (R ) at the output of the device (see Figure 56) improves the gain and phase margins  
null  
when driving large capacitive loads. Figure 50 through Figure 53 show the effects of adding series resistances  
of 50 , 100 , 500 , and 1000 . The addition of this series resistor has two effects: the first effect is that  
it adds a zero to the transfer function and the second effect is that it reduces the frequency of the poleassociated  
with the output load in the transfer function.  
The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To  
calculate the approximate improvement in phase margin, equation 1 can be used.  
–1  
(1)  
∆φ  
tan  
2 × π × UGBW × R  
× C  
m1  
null  
L
where :  
∆φ  
improvement in phase margin  
m1  
UGBW  
unity-gain bandwidth frequency  
output series resistance  
R
null  
C
load capacitance  
L
The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 54 and  
Figure 55). To use equation 1, UGBW must be approximated from Figure 54 and Figure 55.  
V
DD+  
R
null  
V
I
+
C
L
R
V
DD–  
/GND  
L
Figure 56. Series-Resistance Circuit  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2231, TLV2231Y  
Advanced LinCMOS RAIL-TO-RAIL  
LOW-POWER SINGLE OPERATIONAL AMPLIFIERS  
SLOS158C – JUNE 1996 – REVISED SEPTEMBER 1997  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts , the model generation software used  
with Microsim PSpice . The Boyle macromodel (see Note 6) and subcircuit in Figure 57 are generated using  
the TLV2231 typical electrical and operating characteristics at T = 25°C. Using this information, output  
A
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, andJ. E. Solomon, “MacromodelingofIntegratedCircuitOperationalAmplifiers,IEEEJournal  
of Solid-State Circuits, SC-9, 353 (1974).  
99  
DLN  
3
EGND  
+
V
DD+  
92  
9
FB  
+
91  
90  
RSS  
ISS  
RO2  
+
+
VB  
DLP  
RP  
2
VLP  
VLN  
HLIM  
+
10  
+
VC  
IN –  
IN+  
R2  
C2  
J1  
J2  
7
DP  
6
53  
+
1
VLIM  
11  
DC  
12  
RD2  
GA  
GCM  
8
C1  
RD1  
60  
RO1  
+
DE  
VAD  
5
54  
V
DD–  
+
4
VE  
OUT  
.SUBCKT TLV2231 1 2 3 4 5  
RD1  
RD2  
R01  
R02  
RP  
RSS  
VAD  
VB  
VC  
VE  
60  
60  
8
11  
12  
5
3.183E3  
3.183E3  
25  
C1  
11  
6
12  
7
13.51E–12  
C2  
50.00E–12  
DC  
5
53  
5
DX  
DX  
DX  
DX  
DX  
7
99  
4
25  
DE  
54  
90  
92  
4
3
6.553E3  
2.500E6  
–.5  
DLP  
DLN  
DP  
91  
90  
3
10  
60  
9
99  
4
0
DC 0  
EGND  
FB  
99  
7
0
99  
POLY (2) (3,0) (4,0) 0 .5 .5  
POLY (5) VB VC VE VLP  
3
53  
4
DC .795  
DC .795  
DC 0  
54  
7
+ VLN 0 90.83E3 –10E3 10E3 10E3 –10E3  
VLIM  
VLP  
VLN  
8
GA  
6
0
6
11  
12 314.2E–6  
99 242.35E–9  
87.00E–6  
91  
0
0
DC 12.4  
DC 17.4  
GCM  
ISS  
HLIM  
J1  
0
10  
DC  
92  
3
10  
0
.MODEL DX D (IS=800.0E–18)  
90  
11  
12  
6
VLIM 1K  
10 JX  
.MODEL JX PJF (IS=500.0E–15 BETA=2.939E–3  
2
1
+ VTO=–.065)  
.ENDS  
J2  
10 JX  
R2  
9
100.0E3  
Figure 57. Boyle Macromodel and Subcircuit  
PSpice and Parts are trademark of MicroSim Corporation.  
Macromodels, simulation models, or other models provided by TI,  
directly or indirectly, are not warranted by TI as fully representing all  
of the specification and operating characteristics of the  
semiconductor product to which the model relates.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TLV2231Y

Advanced LinCMOSE RAIL-TO-RAIL LOW-POWER SINGLE OPERATIONAL AMPLIFIERS
TI

TLV2231_08

Advanced LinCMOS RAIL-TO-RAIL LOW-POWER SINGLE OPERATIONAL AMPLIFIERS
TI

TLV2241

FAMILY OF 1-mA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV2241CDG4

FAMILY OF 1-mA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV2241CDR

OP-AMP, 4500uV OFFSET-MAX, 0.0055MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8
TI

TLV2241ID

FAMILY OF 1-mA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV2241IDBVR

FAMILY OF 1-mA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV2241IDBVRG4

FAMILY OF 1-mA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV2241IDBVT

FAMILY OF 1-mA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV2241IDBVTG4

FAMILY OF 1-mA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV2241IDG4

FAMILY OF 1-mA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV2241IDR

FAMILY OF 1-mA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS
TI