TLV2254AQDRG4 [TI]

Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER POERATIONAL AMPLIFIERS; 高级LinCMOS轨到轨极低功耗POERATIONAL放大器
TLV2254AQDRG4
型号: TLV2254AQDRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER POERATIONAL AMPLIFIERS
高级LinCMOS轨到轨极低功耗POERATIONAL放大器

放大器
文件: 总55页 (文件大小:1303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
D Output Swing Includes Both Supply Rails  
D Low Noise . . . 19 nV/Hz Typ at f = 1 kHz  
D Low Input Bias Current . . . 1 pA Typ  
D Low Input Offset Voltage  
850 µV Max at T = 25°C  
A
D Wide Supply Voltage Range  
2.7 V to 8 V  
D Fully Specified for Both Single-Supply and  
D Macromodel Included  
Split-Supply Operation  
D Available in Q-Temp Automotive  
HighRel Automotive Applications  
Configuration Control / Print Support  
Qualification to Automotive Standards  
D Very Low Power . . . 34 µA Per Channel Typ  
D Common-Mode Input Voltage Range  
Includes Negative Rail  
description  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
The TLV2252 and TLV2254 are dual and  
quadruple low-voltage operational amplifiers from  
Texas Instruments. Both devices exhibit rail-to-rail  
output performance for increased dynamic range  
in single- or split-supply applications. The  
TLV225x family consumes only 34 µA of supply  
current per channel. This micropower operation  
makes them good choices for battery-powered  
applications. This family is fully characterized at  
3 V and 5 V and is optimized for low-voltage  
applications. The noise performance has been  
dramatically improved over previous generations  
of CMOS amplifiers. The TLV225x has a noise  
level of 19 nV/Hz at 1kHz, four times lower than  
competitive micropower solutions.  
3
V
= 3 V  
DD  
2.5  
2
T
= 40°C  
A
T
= 25°C  
A
1.5  
1
T
= 85°C  
A
T
= 125°C  
A
0.5  
0
The TLV225x, exhibiting high input impedance  
and low noise, are excellent for small-signal  
conditioning for high-impedance sources, such as  
piezoelectric transducers. Because of the micro-  
power dissipation levels combined with 3-V  
operation, these devices work well in hand-held  
monitoring and remote-sensing applications. In  
0
200  
400  
600  
800  
| I  
OH  
| − High-Level Output Current − µA  
Figure 1  
addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when  
interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV225xA family is  
available and has a maximum input offset voltage of 850 µV.  
The TLV2252/4 also make great upgrades to the TLV2322/4 in standard designs. They offer increased output  
dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows them to  
be used in a wider range of applications. For applications that require higher output drive and wider input voltage  
range, see the TLV2432 and TLV2442 devices. If your design requires single amplifiers, please see the  
TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their  
small size and low power consumption, make them ideal for high density, battery-powered equipment.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Advanced LinCMOS is a trademark of Texas Instruments.  
Copyright 1997−2006, Texas Instruments Incorporated  
ꢑ ꢋ ꢦ ꢡ ꢠꢈ ꢥꢌ ꢣꢤ ꢌꢠ ꢢꢦ ꢨꢎ ꢊꢋ ꢣ ꢣꢠ ꢐꢔ ꢁꢕ ꢙꢓ ꢛ ꢕꢮꢯꢄ ꢮꢄꢆ ꢊꢨꢨ ꢦꢊ ꢡ ꢊ ꢢꢍ ꢣꢍꢡ ꢤ ꢊ ꢡ ꢍ ꢣꢍ ꢤꢣꢍ ꢈ  
ꢣ ꢍ ꢤ ꢣꢎ ꢋꢭ ꢠꢟ ꢊ ꢨꢨ ꢦꢊ ꢡ ꢊ ꢢ ꢍ ꢣ ꢍ ꢡ ꢤ ꢩ  
ꢥ ꢋꢨ ꢍꢤꢤ ꢠ ꢣꢪꢍ ꢡ ꢫꢎ ꢤꢍ ꢋ ꢠꢣꢍ ꢈꢩ ꢑ ꢋ ꢊꢨ ꢨ ꢠ ꢣꢪꢍ ꢡ ꢦꢡ ꢠ ꢈꢥꢌ ꢣꢤ ꢆ ꢦꢡ ꢠ ꢈꢥꢌ ꢣꢎꢠ ꢋ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2252 AVAILABLE OPTIONS  
PACKAGED DEVICES  
V
max  
SMALL  
OUTLINE  
(D)  
CHIP  
CARRIER  
(FK)  
CERAMIC  
DIP  
PLASTIC  
DIP  
CERAMIC  
FLATPACK  
(U)  
IO  
T
A
TSSOP  
(PW)  
AT 25°C  
(JG)  
(P)  
850 µV  
1500 µV  
TLV2252AID  
TLV2252ID  
TLV2252AIP TLV2252AIPWLE  
40°C to 125°C  
TLV2252IP  
850 µV  
1500 µV  
TLV2252AQD  
TLV2252QD  
40°C to 125°C  
55°C to 125°C  
850 µV  
1500 µV  
TLV2252AMFK TLV2252AMJG  
TLV2252MFK TLV2252MJG  
TLV2252AMU  
TLV2252MU  
§
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2252CDR).  
The PW package is available only left-end taped and reeled.  
Chips are tested at 25°C.  
TLV2254 AVAILABLE OPTIONS  
PACKAGED DEVICES  
V
max  
SMALL  
OUTLINE  
(D)  
CHIP  
CARRIER  
(FK)  
CERAMIC  
DIP  
PLASTIC  
DIP  
CERAMIC  
FLATPACK  
(W)  
IO  
T
A
TSSOP  
(PW)  
AT 25°C  
(J)  
(N)  
850 µV  
1500 µV  
TLV2254AID  
TLV2254ID  
TLV2254AIN TLV2254AIPWLE  
40°C to 125°C  
TLV2254IN  
850 µV  
1500 µV  
TLV2254AQD  
TLV2254QD  
40°C to 125°C  
55°C to 125°C  
850 µV  
1500 µV  
TLV2254AMFK  
TLV2254MFK  
TLV2254AMJ  
TLV2254MJ  
TLV2254AMW  
TLV2254MW  
§
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2254CDR).  
The PW package is available only left-end taped and reeled.  
Chips are tested at 25°C.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
  
ꢘꢕ  
ꢖꢓ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2252I, TLV2252AI  
TLV2252Q, TLV2252AQ  
D, P, OR PW PACKAGE  
(TOP VIEW)  
TLV2254I, TLV2254AI, TLV2254Q, TLV2254AQ . . . D OR N PACKAGE  
TLV2254M, TLV2254AM . . . J OR W PACKAGE  
(TOP VIEW)  
1OUT  
1IN−  
1IN+  
V
DD+  
1
2
3
4
8
7
6
5
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
4IN+  
2OUT  
2IN−  
2IN+  
V
/GND  
DD−  
V
V
/GND  
DD+  
DD−  
2IN+  
2IN−  
3IN+  
3IN−  
3OUT  
TLV2252M, TLV2252AM . . . JG PACKAGE  
(TOP VIEW)  
8
2OUT  
1OUT  
1IN−  
1IN+  
V
DD+  
1
2
3
4
8
7
6
5
2OUT  
2IN−  
2IN+  
V
/GND  
DD−  
TLV2254I, TLV2254AI . . . PW PACKAGE  
(TOP VIEW)  
TLV2252M, TLV2252AM . . . U PACKAGE  
(TOP VIEW)  
1
1OUT  
1IN −  
1IN +  
4OUT  
4IN −  
4IN +  
14  
NC  
1OUT  
1IN −  
1IN +  
/GND  
NC  
V
2OUT  
2IN −  
2IN +  
1
10  
9
V
V
/GND  
DD+  
DD −  
+
2
3
4
5
2IN +  
2IN −  
2OUT  
3IN +  
3IN −  
3OUT  
CC  
8
7
8
7
V
6
CC−  
TLV2252M, TLV2252AM . . . FK PACKAGE  
(TOP VIEW)  
TLV2254M, TLV2254AM . . . FK PACKAGE  
(TOP VIEW)  
3
2
1
20 19  
18  
3
2
1
20 19  
18  
NC  
4IN+  
NC  
NC  
1IN−  
NC  
1IN+  
NC  
4
5
6
7
8
4
5
6
7
8
2OUT  
NC  
17  
16  
15  
14  
17  
16  
15  
14  
V
/GND  
V
DD−  
DD+  
NC  
2IN−  
NC  
NC  
1IN+  
NC  
3IN+  
2IN+  
9 10 11 12 13  
9 10 11 12 13  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Template Release Date: 7−11−94  
ꢁꢂ  
ꢁꢂ  
ꢂ ꢖꢓꢗꢰ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓꢰ ꢑꢙ ꢖꢓ ꢇꢀꢔ ꢑ ꢚꢇ ꢁꢰꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
  
ꢓꢗ  
ꢘꢕ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Input voltage range, V (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
V
ID  
DD  
−0.3 V to V  
I
DD−  
DD+  
Input current, I (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
O
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
DD+  
DD−  
Total current out of V  
Duration of short-circuit current (at or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : I Suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
A
Q Suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
M Suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, P, and PW packages . . . . . . . 260°C  
J, JG, U, and W packages . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to V  
.
DD −  
2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought  
below V − 0.3 V.  
DD−  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 85°C  
T = 125°C  
A
POWER RATING  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
A
D−8  
D−14  
FK  
725 mW  
5.8 mW/°C  
7.6 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
377 mW  
145 mW  
950 mW  
494 mW  
190 mW  
1375 mW  
1375 mW  
1050 mW  
715 mW  
275 mW  
J
715 mW  
275 mW  
JG  
546 mW  
210 mW  
N
P
1150 mW  
1000 mW  
525 mW  
700 mW  
700 mW  
700 mW  
9.2 mW/°C  
8.0 mW/°C  
4.2 mW/°C  
5.6 mW/°C  
5.5 mW/°C  
5.5 mW/°C  
598 mW  
520 mW  
273 mW  
364 mW  
370 mW  
370 mW  
230 mW  
200 mW  
105 mW  
140 mW  
150 mW  
150 mW  
PW−8  
PW−14  
U
W
recommended operating conditions  
TLV225xI  
TLV225xQ  
TLV225xM  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Supply voltage, V  
ꢀ ꢁ ꢂꢂ ꢃ ꢄꢅ ꢂ ꢆꢇ  
Input voltage range, V  
2.7  
8
2.7  
8
2.7  
8
V
V
DD  
V
V
V
V
1.3  
V
V
V
V
1.3  
V
V
V
V
1.3  
I
DD−  
DD+  
DD−  
DD+  
DD−  
DD+  
Common-mode input voltage, V  
IC  
1.3  
1.3  
1.3  
V
DD−  
40  
DD+  
DD−  
40  
DD+  
DD−  
55  
DD+  
Operating free-air temperature, T  
125  
125  
125  
°C  
A
NOTE 1: All voltage values, except differential voltages, are with respect to V  
DD −  
.
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2252I electrical characteristics at specified free-air temperature, V  
noted)  
= 3 V (unless otherwise  
DD  
TLV2252I  
TLV2252AI  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
200 1500  
1750  
MIN  
TYP MAX  
25°C  
200  
850  
V
IO  
Input offset voltage  
µV  
Full range  
1000  
Temperature coefficient  
of input offset voltage  
25°C  
to 85°C  
α
VIO  
0.5  
0.5  
µV/°C  
Input offset voltage  
long-term drift (see  
Note 4)  
25°C  
25°C  
0.003  
0.003  
0.5  
µV/mo  
V
V
= 1.5 V,  
V
R
= 0,  
= 50 Ω  
DD  
= 0,  
IC  
S
0.5  
60  
60  
O
−40°C  
to 85°C  
150  
150  
I
I
Input offset current  
Input bias current  
pA  
IO  
Full range  
1000  
60  
1000  
60  
25°C  
1
1
−40°C  
to 85°C  
150  
150  
pA  
V
IB  
Full range  
1000  
1000  
0
to  
2
0.3  
to  
2.2  
0
to  
2
0.3  
to  
2.2  
25°C  
Common-mode input  
voltage range  
V
R
= 50 Ω,  
|V | 5 mV  
IO  
ICR  
OH  
S
0
to  
0
to  
Full range  
1.7  
1.7  
I
I
I
= 20 µA  
= 75 µA  
= 150 µA  
= 1.5 V,  
25°C  
25°C  
2.98  
2.98  
OH  
OH  
OH  
2.9  
2.8  
2.8  
2.9  
2.8  
2.8  
High-level output  
voltage  
V
V
Full range  
25°C  
25°C  
10  
100  
200  
250  
800  
10  
100  
200  
250  
800  
V
V
V
I
I
I
= 50 µA  
= 500 µA  
= 1 A  
IC  
IC  
IC  
OL  
OL  
OL  
Full range  
25°C  
80  
150  
300  
80  
150  
300  
Low-level output  
voltage  
V
OL  
= 1.5 V,  
= 1.5 V,  
mV  
Full range  
25°C  
Full range  
25°C  
100  
10  
100  
10  
R
R
= 100 kΩ  
Large-signal differential  
voltage amplification  
V
V
= 1.5 V,  
= 1 V to 2 V  
L
L
IC  
O
Full range  
25°C  
A
VD  
V/mV  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
f = 25 kHz,  
P package  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
A
V
= 10  
220  
75  
220  
77  
25°C  
Full range  
65  
60  
65  
60  
Common-mode  
rejection ratio  
V
IC  
V
O
= 0 to 1.7 V,  
= 1.5 V,  
CMRR  
dB  
R
= 50 Ω  
S
Full range is − 40°C to 125°C.  
Referenced to 1.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢓꢗ  
ꢘꢕ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2252I electrical characteristics at specified free-air temperature, V  
noted) (continued)  
= 3 V (unless otherwise  
DD  
TLV2252I  
TLV2252AI  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
Supply voltage  
rejection ratio  
25°C  
80  
95  
80  
100  
V
V
= 2.7 V to 8 V,  
DD  
IC  
k
dB  
SVR  
= V  
/2,  
No load  
DD  
Full range  
80  
80  
(V  
/V )  
DD  
IO  
25°C  
Full range  
68  
125  
150  
68  
125  
150  
I
Supply current  
V
O
= 1.5 V,  
No load  
µA  
DD  
Full range is − 40°C to 125°C.  
TLV2252I operating characteristics at specified free-air temperature, V  
= 3 V  
DD  
TLV2252I  
TLV2252AI  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
0.07  
0.1  
0.07  
0.1  
V
R
C
= 1.1 V to 1.9 V,  
25°C  
O
L
L
= 100 k,  
SR  
Slew rate at unity gain  
V/µs  
Full  
range  
0.05  
0.05  
= 100 pF  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
35  
19  
35  
19  
Equivalent input noise  
voltage  
nV/Hz  
µV  
V
n
Peak-to-peak  
equivalent input noise  
voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.6  
1.1  
0.6  
1.1  
V
I
N(PP)  
Equivalent input noise  
current  
25°C  
25°C  
25°C  
0.6  
0.187  
60  
0.6  
0.187  
60  
fA/Hz  
MHz  
n
f = 1 kHz,  
R
= 50 k,  
L
Gain-bandwidth product  
C
= 100 pF  
L
Maximum output-swing  
bandwidth  
V
R
= 1 V,  
= 50 k,  
A
= 1,  
O(PP)  
L
V
B
OM  
kHz  
C
= 100 pF  
L
L
Phase margin at unity  
gain  
φ
m
25°C  
25°C  
63°  
63°  
R
= 50 k,  
C
= 100 pF  
L
Gain margin  
15  
15  
dB  
Full range is 40°C to 125°C.  
Referenced to 1.5 V  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢃꢄ ꢅ ꢇ  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2252I electrical characteristics at specified free-air temperature, V  
noted)  
= 5 V (unless otherwise  
DD  
TLV2252I  
TLV2252AI  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
200 1500  
1750  
MIN  
TYP MAX  
25°C  
200  
850  
V
IO  
Input offset voltage  
µV  
Full range  
1000  
Temperature coefficient  
of input offset voltage  
25°C  
to 85°C  
α
VIO  
0.5  
0.5  
µV/°C  
Input offset voltage long-  
term drift (see Note 4)  
25°C  
0.003  
0.003  
0.5  
µV/mo  
25°C  
0.5  
1
60  
60  
V
V
=
2.5 V,  
V
= 0,  
= 50 Ω  
DD  
= 0,  
IC  
R
S
−40°C  
to 85°C  
O
150  
150  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
Full range  
1000  
60  
1000  
60  
25°C  
1
−40°C  
to 85°C  
150  
150  
IB  
Full range  
1000  
1000  
0
to  
4
0.3  
to  
4.2  
0
to  
4
0.3  
to  
4.2  
25°C  
Common-mode input  
voltage range  
V
|V | 5 mV,  
IO  
R
= 50 Ω  
S
V
V
ICR  
OH  
0
to  
3.5  
0
to  
3.5  
Full range  
I
I
I
= 20 µA  
= 75 µA  
= 150 µA  
= 2.5 V,  
25°C  
25°C  
4.98  
4.94  
4.98  
4.94  
OH  
OH  
OH  
4.9  
4.8  
4.8  
4.9  
4.8  
4.8  
V
High-level output voltage  
Low-level output voltage  
Full range  
25°C  
4.88  
0.01  
4.88  
0.01  
25°C  
V
V
V
I
I
I
= 50 µA  
= 500 µA  
= 1 A  
IC  
IC  
IC  
OL  
OL  
OL  
Full range  
25°C  
0.06  
0.15  
0.15  
0.3  
0.06  
0.15  
0.15  
0.3  
0.09  
0.2  
0.09  
0.2  
V
OL  
= 2.5 V,  
= 2.5 V,  
V
Full range  
25°C  
Full range  
25°C  
0.3  
0.3  
100  
10  
350  
100  
10  
350  
R
R
= 100 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 2.5 V,  
= 1 V to 4 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
1700  
1700  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
f = 25 kHz,  
P package  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
A
V
= 10  
200  
83  
200  
83  
25°C  
70  
70  
70  
70  
Common-mode rejection  
ratio  
V
= 2.5 V,  
V
= 0 to 2.7 V,  
O
IC  
= 50 Ω  
CMRR  
dB  
R
Full range  
S
Full range is − 40°C to 125°C.  
Referenced to 2.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢖꢓ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2252I electrical characteristics at specified free-air temperature, V  
noted) (continued)  
= 5 V (unless otherwise  
DD  
TLV2252I  
TLV2252AI  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
80  
TYP MAX  
MIN  
80  
TYP MAX  
25°C  
Full range  
25°C  
95  
95  
Supply voltage rejection  
V
V
= 4.4 V to 8 V,  
DD  
IC  
k
dB  
SVR  
ratio (V  
DD  
/V  
IO  
)
= V  
/2,  
No load  
80  
80  
DD  
70  
125  
150  
70  
125  
150  
I
Supply current  
V
O
= 2.5 V,  
No load  
µA  
DD  
Full range  
Full range is − 40°C to 125°C.  
TLV2252I operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLV2252I  
TLV2252AI  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/µs  
T
A
MIN  
TYP MAX MIN  
TYP MAX  
25°C  
0.07  
0.12  
0.07  
0.05  
0.12  
V
C
= 1.5 V to 3.5 V,  
R
= 100 k,  
L
O
L
SR  
Slew rate at unity gain  
Full  
range  
= 100 pF  
0.05  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
36  
19  
36  
19  
Equivalent input noise  
voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.7  
1.1  
0.7  
1.1  
V
I
µV  
N(PP)  
Equivalent input noise  
current  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
V
= 0.5 V to 2.5 V,  
A
= 1  
0.2%  
1%  
0.2%  
1%  
O
V
Total harmonic  
distortion plus noise  
f = 20 kHz,  
THD + N  
A
V
= 10  
R
= 50 kΩ  
L
Gain-bandwidth  
product  
f = 50 kHz,  
R
= 50 k,  
L
25°C  
25°C  
0.2  
30  
0.2  
30  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-swing  
bandwidth  
V
R
= 2 V,  
‡,  
A
= 1,  
O(PP)  
L
V
B
OM  
= 50 kΩ  
C
= 100 pF  
L
L
Phase margin at unity  
gain  
φ
m
25°C  
25°C  
63°  
63°  
R
= 50 k,  
C
= 100 pF  
L
Gain margin  
15  
15  
dB  
Full range is − 40°C to 125°C.  
Referenced to 2.5 V  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢃꢄ ꢅ ꢇ  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2254I electrical characteristics at specified free-air temperature, V  
noted)  
= 3 V (unless otherwise  
DD  
TLV2254I  
TLV2254AI  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
200 1500  
1750  
200  
850  
V
IO  
Input offset voltage  
µV  
Full range  
1000  
Temperature  
coefficient of input  
offset voltage  
25°C  
to 85°C  
α
VIO  
0.5  
0.5  
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
25°C  
25°C  
0.003  
0.5  
0.003  
0.5  
µV/mo  
V
V
=
1.5 V,  
V
R
= 0,  
= 50 Ω  
S
DD  
= 0,  
IC  
60  
60  
O
−40°C  
to 85°C  
150  
150  
I
I
Input offset current  
Input bias current  
pA  
IO  
Full range  
1000  
60  
1000  
60  
25°C  
1
1
−40°C  
to 85°C  
150  
150  
pA  
V
IB  
Full range  
1000  
1000  
0
0.3  
to 2 to 2.2  
0
0.3  
to 2 to 2.2  
25°C  
Common-mode input  
voltage range  
R
= 50 Ω,  
S
V
|V | 5 mV  
IO  
ICR  
OH  
0
0
Full range  
to 1.7  
to 1.7  
I
I
I
= 20 µA  
= 75 µA  
= 150 µA  
= 1.5 V,  
25°C  
25°C  
2.98  
2.98  
OH  
OH  
OH  
2.9  
2.8  
2.8  
2.9  
2.8  
2.8  
High-level output  
voltage  
V
V
Full range  
25°C  
25°C  
10  
100  
200  
225  
800  
10  
100  
200  
225  
800  
V
IC  
V
IC  
V
IC  
I
I
I
= 50 µA  
= 500 µA  
= 1 A  
OL  
OL  
OL  
Full range  
25°C  
80  
150  
300  
80  
150  
300  
Low-level output  
voltage  
V
= 1.5 V,  
= 1.5 V,  
mV  
OL  
Full range  
25°C  
Full range  
25°C  
100  
10  
100  
10  
Large-signal  
differential voltage  
amplification  
R
R
= 100 kΩ  
V
IC  
V
O
= 1.5 V,  
= 1 V to 2 V  
L
L
Full range  
25°C  
A
V/mV  
VD  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
f = 25 kHz,  
N package  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
A
V
= 10  
220  
75  
220  
77  
25°C  
65  
60  
65  
60  
Common-mode  
rejection ratio  
V = 0 to 1.7 V,  
IC  
= 50 Ω  
V
O
= 1.5 V,  
CMRR  
dB  
R
Full range  
S
Full range is − 40°C to 125°C.  
Referenced to 1.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢘꢕ  
ꢖꢓ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2254I electrical characteristics at specified free-air temperature, V  
noted) (continued)  
= 3 V (unless otherwise  
DD  
TLV2254I  
TLV2254AI  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
Supply voltage  
rejection ratio  
25°C  
80  
95  
80  
100  
V
V
= 2.7 V to 8 V,  
DD  
IC  
k
dB  
SVR  
= V  
/2,  
No load  
DD  
Full range  
80  
80  
(V  
DD  
/V )  
IO  
25°C  
Full range  
135  
250  
300  
135  
250  
300  
Supply current  
(four amplifiers)  
I
V
O
= 1.5 V,  
No load  
µA  
DD  
Full range is − 40°C to 125°C.  
TLV2254I operating characteristics at specified free-air temperature, V  
= 3 V  
DD  
TLV2254I  
TLV2254AI  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/µs  
T
A
MIN  
0.07  
0.05  
TYP  
MAX  
MIN  
TYP  
MAX  
V
R
C
= 0.7 V to 1.7 V,  
O
L
L
0.1  
0.07  
0.05  
0.1  
25°C  
= 100 k,  
SR  
Slew rate at unity gain  
Equivalent input noise voltage  
Full range  
25°C  
= 100 pF  
f = 10 Hz  
35  
19  
35  
19  
nV/Hz  
V
n
f = 1 kHz  
25°C  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
0.6  
1.1  
0.6  
0.6  
1.1  
0.6  
Peak-to-peak equivalent input  
noise voltage  
V
I
µV  
N(PP)  
25°C  
Equivalent input noise current  
25°C  
fA/Hz  
n
f = 1 kHz,  
R
C
= 50 k,  
Gain-bandwidth product  
25°C  
25°C  
0.187  
60  
0.187  
60  
MHz  
kHz  
dB  
L
L
= 100 pF  
V
A
R
= 1 V,  
O(PP)  
= 1,  
Maximum output-swing  
bandwidth  
V
B
OM  
= 50 k,  
L
L
C
= 100 pF  
φ
m
Phase margin at unity gain  
Gain margin  
25°C  
25°C  
63°  
63°  
R
C
= 50 k,  
L
L
= 100 pF  
15  
15  
Full range is − 40°C to 85°C.  
Referenced to 1.5 V  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢃꢄ ꢅ ꢇ  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2254I electrical characteristics at specified free-air temperature, V  
noted)  
= 5 V (unless otherwise  
DD  
TLV2254I  
TLV2254AI  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
200 1500  
1750  
200  
850  
V
IO  
Input offset voltage  
µV  
Full range  
1000  
Temperature  
coefficient of input  
offset voltage  
25°C  
to 85°C  
α
VIO  
0.5  
0.5  
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
25°C  
25°C  
0.003  
0.5  
0.003  
0.5  
µV/mo  
V
V
=
2.5 V,  
V
= 0,  
= 50 Ω  
DD  
= 0,  
IC  
R
60  
60  
O
S
−40°C  
to 85°C  
150  
150  
I
I
Input offset current  
Input bias current  
pA  
IO  
Full range  
1000  
60  
1000  
60  
25°C  
1
1
−40°C  
to 85°C  
150  
150  
pA  
V
IB  
Full range  
1000  
1000  
0
0.3  
to 4 to 4.2  
0
0.3  
to 4 to 4.2  
25°C  
Common-mode input  
voltage range  
V
|V | 5 mV,  
IO  
R
= 50 Ω  
S
ICR  
OH  
0
0
Full range  
to 3.5  
to 3.5  
I
I
I
= 20 µA  
= 75 µA  
= 150 µA  
= 2.5 V,  
25°C  
25°C  
4.98  
4.94  
4.98  
4.94  
OH  
OH  
OH  
4.9  
4.8  
4.8  
4.9  
4.8  
4.8  
High-level output  
voltage  
V
V
Full range  
25°C  
4.88  
0.01  
4.88  
0.01  
25°C  
V
V
V
I
I
I
= 50 µA  
= 500 µA  
= 1 A  
IC  
IC  
IC  
OL  
OL  
OL  
Full range  
25°C  
0.06  
0.15  
0.15  
0.3  
0.06  
0.15  
0.15  
0.3  
0.09  
0.2  
0.09  
0.2  
Low-level output  
voltage  
V
= 2.5 V,  
= 2.5 V,  
V
OL  
Full range  
25°C  
Full range  
25°C  
0.3  
0.3  
100  
10  
350  
100  
10  
350  
Large-signal  
differential voltage  
amplification  
R
R
= 100 kΩ  
V
IC  
V
O
= 2.5 V,  
= 1 V to 4 V  
L
L
Full range  
25°C  
A
V/mV  
VD  
1700  
1700  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
f = 25 kHz,  
N package  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
A
V
= 10  
200  
83  
200  
83  
25°C  
70  
70  
70  
70  
Common-mode  
rejection ratio  
V
R
= 0 to 2.7 V,  
= 50 Ω  
V
O
= 2.5 V,  
IC  
CMRR  
dB  
Full range  
S
Full range is − 40°C to 125°C.  
Referenced to 2.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢓꢗ  
ꢖꢓ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2254I electrical characteristics at specified free-air temperature, V  
noted) (continued)  
= 5 V (unless otherwise  
DD  
TLV2254I  
TLV2254AI  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
Supply voltage  
rejection ratio  
25°C  
80  
95  
80  
95  
V
V
= 4.4 V to 8 V,  
DD  
IC  
k
dB  
SVR  
= V  
/2,  
No load  
DD  
Full range  
80  
80  
(V  
DD  
/V )  
IO  
25°C  
140  
250  
300  
140  
250  
300  
Supply current  
(four amplifiers)  
I
V
O
= 2.5 V,  
No load  
µA  
DD  
Full range  
Full range is − 40°C to 125°C.  
TLV2254I operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLV2254I  
TLV2254AI  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/µs  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
0.07  
0.12  
0.07  
0.12  
Slew rate at unity  
gain  
V
C
= 1.4 V to 2.6 V,  
R
= 100 k,  
L
O
L
SR  
Full  
range  
= 100 pF  
0.05  
0.05  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
36  
19  
36  
19  
Equivalent input  
noise voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.7  
1.1  
0.7  
1.1  
V
I
µV  
N(PP)  
Equivalent input  
noise current  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
Total harmonic  
distortion plus  
noise  
V
= 0.5 V to 2.5 V,  
A
= 1  
0.2%  
1%  
0.2%  
1%  
O
V
f = 20 kHz,  
THD + N  
A
V
= 10  
R
= 50 kΩ  
L
Gain-bandwidth  
product  
f = 50 kHz,  
R
= 50 k,  
L
25°C  
25°C  
0.2  
30  
0.2  
30  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-  
swing bandwidth  
V
R
= 2 V,  
= 50 k,  
A
= 1,  
O(PP)  
L
V
B
OM  
C
= 100 pF  
L
L
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
63°  
63°  
R
= 50 k,  
C
= 100 pF  
L
Gain margin  
15  
15  
dB  
Full range is − 40°C to 125°C.  
Referenced to 2.5 V  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢃꢄ ꢅ ꢇ  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, V  
(unless otherwise noted)  
= 3 V  
DD  
TLV2252Q,  
TLV2252M  
TLV2252AQ,  
TLV2252AM  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
200 1500  
1750  
200  
0.5  
850  
V
Input offset voltage  
µV  
IO  
Full range  
1000  
Temperature coefficient  
of input offset voltage  
25°C  
to 85°C  
α
VIO  
0.5  
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
V
V
=
1.5 V,  
V
R
= 0,  
= 50 Ω  
S
DD  
= 0,  
IC  
25°C  
0.003  
0.5  
0.003  
0.5  
µV/mo  
O
25°C  
125°C  
25°C  
60  
1000  
60  
60  
1000  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
1
1
IB  
125°C  
1000  
1000  
0
to  
2
0.3  
to  
2.2  
0
to  
2
0.3  
to  
2.2  
25°C  
Common-mode input  
voltage range  
V
V
V
R
= 50 Ω,  
|V | 5 mV  
IO  
V
V
ICR  
OH  
OL  
S
0
to  
1.7  
0
to  
1.7  
Full range  
I
I
I
= 20 µA  
= 75 µA  
25°C  
25°C  
2.98  
2.98  
OH  
OH  
OH  
2.9  
2.8  
2.8  
2.9  
2.8  
2.8  
High-level output  
voltage  
Full range  
25°C  
= 150 µA  
V
IC  
= 1.5 V,  
I
I
= 50 µA  
25°C  
10  
10  
OL  
25°C  
100  
150  
165  
300  
300  
100  
150  
165  
300  
300  
V
IC  
= 1.5 V,  
= 1.5 V,  
= 500 µA  
Low-level output  
voltage  
OL  
Full range  
25°C  
mV  
200  
250  
800  
200  
250  
800  
V
IC  
I
= 1 A  
OL  
Full range  
25°C  
100  
10  
100  
10  
R
R
= 100 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 1.5 V,  
= 1 V to 2 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
f = 25 kHz,  
P package  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
A
V
= 10  
220  
75  
220  
77  
25°C  
Full range  
25°C  
65  
60  
80  
80  
65  
60  
80  
80  
Common-mode rejection  
ratio  
V
O
= 1.5 V,  
V
R
= 0 to 1.7 V,  
= 50 Ω  
IC  
S
CMRR  
dB  
dB  
µA  
95  
68  
100  
68  
Supply voltage rejection  
V
= 2.7 V to 8 V,  
DD  
k
SVR  
ratio (V  
DD  
/V  
IO  
)
V
IC  
= V  
/2,  
No load  
Full range  
25°C  
DD  
125  
150  
125  
150  
I
Supply current  
V
O
= 1.5 V,  
No load  
DD  
Full range  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
Referenced to 1.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
  
ꢘꢕ  
ꢖꢓ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2252Q, and TLV2252M operating characteristics at specified free-air temperature, V  
= 3 V  
DD  
TLV2252Q,  
TLV2252M  
TLV2252AQ,  
TLV2252AM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
0.07  
0.05  
0.1  
0.07  
0.05  
0.1  
V
C
= 0.8 V to 1.4 V,  
= 100 pF  
R
= 100 k,  
L
O
L
SR  
Slew rate at unity gain  
V/µs  
Full  
range  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
35  
19  
35  
19  
Equivalent input noise  
voltage  
nV/Hz  
µV  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.6  
1.1  
0.6  
1.1  
V
I
N(PP)  
Equivalent input noise  
current  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
Gain-bandwidth  
product  
f = 1 kHz,  
R
= 50 k,  
L
0.187  
0.187  
MHz  
C
= 100 pF  
L
Maximum  
output-swing  
bandwidth  
V
R
= 1 V,  
= 50 k,  
A
C
= 1,  
= 100 pF  
O(PP)  
L
V
B
25°C  
60  
60  
kHz  
dB  
OM  
L
L
Phase margin at unity  
gain  
φ
m
25°C  
25°C  
63°  
63°  
R
= 50 k,  
C
= 100 pF  
L
Gain margin  
15  
15  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
Referenced to 1.5 V  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, V  
(unless otherwise noted)  
= 5 V  
DD  
TLV2252Q,  
TLV2252M  
TLV2252AQ,  
TLV2252AM  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
200 1500  
1750  
200  
850  
V
IO  
Input offset voltage  
µV  
Full range  
1000  
Temperature coefficient  
of input offset voltage  
25°C  
to 85°C  
α
VIO  
0.5  
0.5  
µV/°C  
Input offset voltage long-  
term drift (see Note 4)  
V
V
=
2.5 V,  
V
= 0,  
= 50 Ω  
DD  
= 0,  
IC  
R
25°C  
0.003  
0.5  
0.003  
0.5  
µV/mo  
S
O
25°C  
125°C  
25°C  
60  
1000  
60  
60  
1000  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
1
1
IB  
125°C  
1000  
1000  
0
to  
4
0.3  
to  
4.2  
0
to  
4
0.3  
to  
4.2  
25°C  
Common-mode input  
voltage range  
V
V
V
|V | 5 mV,  
IO  
R
= 50 Ω  
S
V
V
ICR  
OH  
OL  
0
to  
3.5  
0
to  
3.5  
Full range  
I
I
I
= 20 µA  
= 75 µA  
25°C  
25°C  
4.98  
4.94  
4.98  
4.94  
OH  
OH  
OH  
4.9  
4.8  
4.8  
4.9  
4.8  
4.8  
High-level output voltage  
Low-level output voltage  
Full range  
25°C  
= 150 µA  
4.88  
0.01  
0.09  
4.88  
0.01  
0.09  
V
IC  
= 2.5 V,  
I
I
= 50 µA  
25°C  
OL  
25°C  
0.15  
0.15  
0.3  
0.15  
0.15  
0.3  
V
= 2.5 V,  
= 2.5 V,  
= 500 µA  
IC  
OL  
Full range  
25°C  
V
0.2  
350  
0.2  
350  
V
IC  
I
= 1 A  
OL  
Full range  
25°C  
0.3  
0.3  
100  
10  
100  
10  
R
R
= 100 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 2.5 V,  
= 1 V to 4 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
1700  
1700  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
f = 25 kHz,  
P package  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
A
V
= 10  
200  
83  
200  
83  
25°C  
Full range  
25°C  
70  
70  
80  
80  
70  
70  
80  
80  
Common-mode rejection  
ratio  
V
IC  
V
O
= 0 to 2.7 V,  
= 2.5 V,  
CMRR  
dB  
dB  
R
= 50 Ω  
S
95  
95  
Supply voltage rejection  
V
= 4.4 V to 8 V,  
DD  
k
SVR  
ratio (V  
DD  
/V  
IO  
)
V
IC  
= V  
/2,  
No load  
Full range  
DD  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
Referenced to 2.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢖꢓ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, V  
(unless otherwise noted) (continued)  
= 5 V  
DD  
TLV2252Q,  
TLV2252M  
TLV2252AQ,  
TLV2252AM  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
70 125  
150  
25°C  
70  
125  
150  
I
Supply current  
V
O
= 2.5 V,  
No load  
µA  
DD  
Full range  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
TLV2252Q, and TLV2252M operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLV2252Q,  
TLV2252M  
TLV2252AQ,  
TLV2252AM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP MAX MIN  
TYP MAX  
0.07  
0.05  
0.12  
0.07  
0.05  
0.12  
V
R
C
= 1.25 V to 2.75 V,  
25°C  
O
L
L
= 100 k,  
SR  
Slew rate at unity gain  
V/µs  
Full  
range  
= 100 pF  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
36  
19  
36  
19  
Equivalent input noise  
voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.7  
1.1  
0.7  
1.1  
V
I
µV  
N(PP)  
Equivalent input noise  
current  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
V
= 0.5 V to 2.5 V,  
A
= 1  
0.2%  
1%  
0.2%  
1%  
O
V
Total harmonic  
distortion plus noise  
f = 20 kHz,  
THD + N  
A
V
= 10  
R
= 50 kΩ  
L
f = 50 kHz,  
R
= 50 k,  
L
Gain-bandwidth product  
25°C  
25°C  
0.2  
30  
0.2  
30  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-swing  
bandwidth  
V
R
= 2 V,  
= 50 k,  
A
= 1,  
O(PP)  
L
V
B
OM  
C
= 100 pF  
L
L
Phase margin at unity  
gain  
φ
m
25°C  
25°C  
63°  
63°  
R
= 50 k,  
C
= 100 pF  
L
Gain margin  
15  
15  
dB  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
Referenced to 2.5 V  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢃꢄ ꢅ ꢇ  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, V  
(unless otherwise noted)  
= 3 V  
DD  
TLV2254Q,  
TLV2254M  
TLV2254AQ,  
TLV2254AM  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
200 1500  
1750  
200  
850  
V
IO  
Input offset voltage  
µV  
Full range  
1000  
Temperature coefficient  
of input offset voltage  
25°C  
to 125°C  
α
VIO  
0.5  
0.5  
µV/°C  
Input offset voltage  
long-  
term drift (see Note 4)  
V
V
=
1.5 V,  
V
R
= 0,  
= 50 Ω  
S
DD  
= 0,  
IC  
25°C  
0.003  
0.5  
0.003  
0.5  
µV/mo  
O
25°C  
125°C  
25°C  
60  
1000  
60  
60  
1000  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
1
1
IB  
125°C  
1000  
1000  
0
to  
2
0.3  
to  
2.2  
0
to  
2
0.3  
to  
2.2  
25°C  
Common-mode input  
voltage range  
V
R
= 50 Ω,  
|V | 5 mV  
IO  
V
V
ICR  
S
0
to  
1.7  
0
to  
1.7  
Full range  
I
I
I
= 20 µA  
= 75 µA  
25°C  
25°C  
2.98  
2.98  
OH  
OH  
OH  
2.9  
2.8  
2.8  
2.9  
2.8  
2.8  
High-level output  
voltage  
V
V
OH  
Full range  
25°C  
= 150 µA  
V
IC  
= 1.5 V,  
I
I
= 50 µA  
25°C  
10  
10  
OL  
25°C  
100  
150  
165  
300  
300  
100  
150  
165  
300  
300  
V
IC  
= 1.5 V,  
= 1.5 V,  
= 500 µA  
Low-level output  
voltage  
OL  
Full range  
25°C  
mV  
OL  
200  
225  
800  
200  
225  
800  
V
IC  
I
= 1 A  
OL  
Full range  
25°C  
100  
10  
100  
10  
R
R
= 100 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 1.5 V,  
= 1 V to 2 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
f = 25 kHz,  
N package  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
A
V
= 10  
220  
75  
220  
77  
25°C  
65  
60  
65  
60  
Common-mode  
rejection ratio  
V
R
= 0 to 1.7 V,  
= 50 Ω  
V
O
= 1.5 V,  
IC  
S
CMRR  
dB  
dB  
Full range  
Supply voltage  
rejection ratio  
25°C  
80  
80  
95  
80  
80  
100  
V
V
= 2.7 V to 8 V,  
= V  
DD  
DD  
IC  
k
SVR  
/2,  
No load  
Full range  
(V  
DD  
/V )  
IO  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
Referenced to 1.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢓꢗ  
ꢘꢕ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, V  
(unless otherwise noted) (continued)  
= 3 V  
DD  
TLV2254Q,  
TLV2254M  
TLV2254AQ,  
TLV2254AM  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
135 250  
300  
25°C  
135  
250  
300  
Supply current  
(four amplifiers)  
I
V
O
= 1.5 V,  
No load  
µA  
DD  
Full range  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
TLV2254Q, and TLV2254M operating characteristics at specified free-air temperature, V  
= 3 V  
DD  
TLV2254Q,  
TLV2254M  
TLV2254AQ,  
TLV2254AM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
V
R
C
= 0.5 V to 1.7 V,  
0.07  
0.05  
0.1  
0.07  
0.05  
0.1  
O
L
L
25°C  
= 100 k,  
SR  
Slew rate at unity gain  
V/µs  
Full range  
25°C  
= 100 pF  
f = 10 Hz  
35  
19  
35  
19  
nV/Hz  
V
n
Equivalent input noise voltage  
f = 1 kHz  
25°C  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
0.6  
1.1  
0.6  
0.6  
1.1  
0.6  
Peak-to-peak equivalent input  
noise voltage  
V
I
µV  
N(PP)  
25°C  
Equivalent input noise current  
25°C  
fA/Hz  
n
f = 1 kHz,  
R
C
= 50 k,  
Gain-bandwidth product  
25°C  
25°C  
0.187  
60  
0.187  
60  
MHz  
kHz  
dB  
L
L
= 100 pF  
V
A
R
= 1 V,  
O(PP)  
= 1,  
Maximum output-swing  
bandwidth  
V
B
OM  
= 50 k,  
L
L
C
= 100 pF  
φ
m
Phase margin at unity gain  
Gain margin  
25°C  
25°C  
63°  
63°  
R
C
= 50 k,  
L
L
= 100 pF  
15  
15  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
Referenced to 1.5 V  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, V  
(unless otherwise noted)  
= 5 V  
DD  
TLV2254Q,  
TLV2254M  
TLV2254AQ,  
TLV2254AM  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
200 1500  
1750  
200  
850  
V
IO  
Input offset voltage  
µV  
Full range  
1000  
Temperature coefficient  
of input offset voltage  
25°C  
to 125°C  
α
VIO  
0.5  
0.5  
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
V
V
=
2.5 V,  
V
= 0,  
= 50 Ω  
DD  
= 0,  
IC  
R
25°C  
0.003  
0.5  
0.003  
0.5  
µV/mo  
O
S
25°C  
125°C  
25°C  
60  
1000  
60  
60  
1000  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
1
1
IB  
125°C  
1000  
1000  
0
to  
4
0.3  
to  
4.2  
0
to  
4
0.3  
to  
4.2  
25°C  
Common-mode input  
voltage range  
V
|V | 5 mV,  
IO  
R
= 50 Ω  
S
V
V
ICR  
0
to  
3.5  
0
to  
3.5  
Full range  
I
I
I
= 20 µA  
= 75 µA  
25°C  
25°C  
4.98  
4.94  
4.98  
4.94  
OH  
OH  
OH  
4.9  
4.8  
4.8  
4.9  
4.8  
4.8  
High-level output  
voltage  
V
V
OH  
Full range  
25°C  
= 150 µA  
4.88  
0.01  
0.09  
4.88  
0.01  
0.09  
V
IC  
= 2.5 V,  
I
I
= 50 µA  
25°C  
OL  
25°C  
0.15  
0.15  
0.3  
0.15  
0.15  
0.3  
V
= 2.5 V,  
= 2.5 V,  
= 500 µA  
Low-level output  
voltage  
IC  
OL  
Full range  
25°C  
V
OL  
0.2  
350  
0.2  
350  
V
IC  
I
= 1 A  
OL  
Full range  
25°C  
0.3  
0.3  
100  
10  
100  
10  
R
R
= 100 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 2.5 V,  
= 1 V to 4 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
1700  
1700  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
f = 25 kHz,  
N package  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
A
V
= 10  
200  
83  
200  
83  
25°C  
70  
70  
70  
70  
Common-mode  
rejection ratio  
V
R
= 0 to 2.7 V,  
= 50 Ω  
V
= 2.5 V,  
IC  
O
CMRR  
dB  
Full range  
S
Supply voltage  
rejection ratio  
25°C  
80  
80  
95  
80  
80  
95  
V
V
= 4.4 V to 8 V,  
DD  
IC  
k
dB  
SVR  
= V  
/2,  
No load  
DD  
Full range  
(V  
DD  
/V )  
IO  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
Referenced to 2.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
  
ꢓꢗ  
ꢘꢕ  
ꢖꢓ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, V  
(unless otherwise noted) (continued)  
= 5 V  
DD  
TLV2254Q,  
TLV2254M  
TLV2254AQ,  
TLV2254AM  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
140 250  
300  
25°C  
140  
250  
300  
Supply current  
(four amplifiers)  
I
V
O
= 2.5 V,  
No load  
µA  
DD  
Full range  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
TLV2254Q, and TLV2254M operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLV2254Q,  
TLV2254M  
TLV2254AQ,  
TLV2254AM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
0.07  
0.12  
0.07  
0.12  
25°C  
Slew rate at unity  
gain  
V
= 0.5 V to 3.5 V,  
R
= 100 k,  
O
L
SR  
V/µs  
Full  
range  
C = 100 pF  
L
0.05  
0.05  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
36  
19  
36  
19  
Equivalent input  
noise voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.7  
1.1  
0.7  
1.1  
V
I
µV  
N(PP)  
Equivalent input  
noise current  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
Total harmonic  
distortion plus  
noise  
V
= 0.5 V to 2.5 V,  
A
= 1  
0.2%  
1%  
0.2%  
1%  
O
V
f = 20 kHz,  
THD + N  
A
V
= 10  
R
= 50 kΩ  
L
Gain-bandwidth  
product  
f = 50 kHz,  
R
= 50 k,  
L
25°C  
25°C  
0.2  
30  
0.2  
30  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-  
swing bandwidth  
V
R
= 2 V,  
= 50 k,  
A
= 1,  
O(PP)  
L
V
B
OM  
C
= 100 pF  
L
L
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
63°  
63°  
R
= 50 k,  
C
= 100 pF  
L
Gain margin  
15  
15  
dB  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
Referenced to 2.5 V  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
Distribution  
vs Common-mode voltage  
2 − 5  
6, 7  
V
IO  
Input offset voltage  
α
Input offset voltage temperature coefficient  
Input bias and input offset currents  
Distribution  
8 − 11  
12  
VIO  
I
/I  
vs Free-air temperature  
IB IO  
vs Supply voltage  
vs Free-air temperature  
13  
14  
V
I
Input voltage  
V
V
V
High-level output voltage  
vs High-level output current  
vs Low-level output current  
vs Frequency  
15, 18  
16, 17, 19  
20  
OH  
Low-level output voltage  
OL  
Maximum peak-to-peak output voltage  
O(PP)  
vs Supply voltage  
vs Free-air temperature  
21  
22  
I
Short-circuit output current  
OS  
V
Differential input voltage  
vs Output voltage  
vs Load resistance  
23, 24  
25  
ID  
A
VD  
Differential voltage amplification  
vs Frequency  
vs Free-air temperature  
26, 27  
28, 29  
A
Large-signal differential voltage amplification  
Output impedance  
VD  
o
z
vs Frequency  
30, 31  
vs Frequency  
vs Free-air temperature  
32  
33  
CMRR  
Common-mode rejection ratio  
vs Frequency  
vs Free-air temperature  
34, 35  
36  
k
Supply-voltage rejection ratio  
Supply current  
SVR  
I
vs Supply voltage  
37, 38  
DD  
vs Load capacitance  
vs Free-air temperature  
39  
40  
SR  
Slew rate  
V
O
V
O
V
O
V
O
V
n
Inverting large-signal pulse response  
Voltage-follower large-signal pulse response  
Inverting small-signal pulse response  
Voltage-follower small-signal pulse response  
Equivalent input noise voltage  
41, 42  
43, 44  
45, 46  
47, 48  
49, 50  
51  
vs Frequency  
Input noise voltage  
Over a 10-second period  
vs Frequency  
Integrated noise voltage  
52  
THD + N  
Total harmonic distortion plus noise  
vs Frequency  
53  
vs Supply voltage  
vs Free-air temperature  
54  
55  
Gain-bandwidth product  
Phase margin  
vs Frequency  
vs Load capacitance  
26, 27  
56  
φ
m
Gain margin  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
57  
58  
59  
B
1
Unity-gain bandwidth  
Overestimation of phase margin  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
  
ꢓꢗ  
ꢖꢓ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLV2252  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2252  
INPUT OFFSET VOLTAGE  
20  
15  
10  
20  
15  
10  
1020 Amplifiers From 1 Wafer Lot  
1020 Amplifiers From 1 Wafer Lot  
V
T
=
1.5 V  
V
DD  
=
2.5 V  
T = 25°C  
A
DD  
= 25°C  
A
5
0
5
0
1.6  
0.8  
0
0.8  
1.6  
1.6  
0.8  
0
0.8  
1.6  
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 2  
Figure 3  
DISTRIBUTION OF TLV2254  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2254  
INPUT OFFSET VOLTAGE  
35  
30  
25  
20  
15  
35  
30  
682 Amplifiers From 1 Wafer Lot  
682 Amplifiers From 1 Wafer Lot  
V
T
=
1.5 V  
V
T
=
2.5 V  
DD  
DD  
= 25°C  
= 25°C  
A
A
25  
20  
15  
10  
5
10  
5
0
0
1.6  
0.8  
0
0.8  
1.6  
1.6  
0.8  
0
0.8  
1.6  
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 4  
Figure 5  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢃꢄ ꢅ ꢇ  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE  
INPUT OFFSET VOLTAGE  
vs  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
1
1
V
R
T
= 5 V  
= 50 Ω  
= 25°C  
V
R
T
= 3 V  
= 50 Ω  
= 25°C  
DD  
S
A
DD  
S
A
0.8  
0.8  
0.6  
0.4  
0.2  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0
0.2  
0.4  
0.6  
0.8  
0.6  
0.8  
−1  
−1  
−1  
−1  
0
1
2
3
4
5
0
1
2
3
V
IC  
− Common-Mode Input Voltage − V  
V
IC  
− Common-Mode Input Voltage − V  
Figure 6  
Figure 7  
DISTRIBUTION OF TLV2252 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TLV2252 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
25  
20  
15  
25  
20  
15  
62 Amplifiers From 1 Wafer Lot  
62 Amplifiers From 1 Wafer Lot  
V
=
2.5 V  
P Package  
= 25°C to 85°C  
V
=
1.5 V  
P Package  
= 25°C to 85°C  
DD  
DD  
T
T
A
A
10  
5
10  
5
0
−2  
0
−2  
−1  
0
1
2
−1  
0
1
2
α
− Temperature Coefficient − µV/°C  
α
− Temperature Coefficient − µV/°C  
VIO  
VIO  
Figure 8  
Figure 9  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
  
ꢓꢗ  
ꢘꢕ  
ꢖꢓ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLV2254 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TLV2254 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
25  
20  
15  
10  
25  
20  
15  
10  
62 Amplifiers From 1 Wafer Lot  
62 Amplifiers From 1 Wafer Lot  
V
=
1.5 V  
P Package  
= 25°C to 85°C  
DD  
V
=
2.5 V  
P Package  
= 25°C to 85°C  
DD  
T
A
T
A
5
0
5
0
−2  
−1  
0
1
2
−2  
−1  
0
1
2
α
− Temperature Coefficient  
α
− Temperature Coefficient  
VIO  
VIO  
of Input Offset Voltage − µV/°C  
of Input Offset Voltage − µV/°C  
Figure 10  
Figure 11  
INPUT VOLTAGE  
vs  
SUPPLY VOLTAGE  
INPUT BIAS AND INPUT OFFSET CURRENTS  
vs  
FREE-AIR TEMPERATURE  
2.5  
35  
30  
25  
R
T
= 50 Ω  
= 25°C  
V
V
V
= 2.5 V  
= 0  
= 0  
= 50 Ω  
S
A
DD  
IC  
O
2
1.5  
1
R
S
0.5  
0
20  
15  
10  
5
| V | 5 mV  
IO  
0.5  
−1  
I
IB  
1.5  
−2  
I
IO  
2.5  
0
25  
1
1.5  
2
2.5  
3
3.5  
4
45  
65  
85  
105  
125  
| V  
DD  
| − Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢃꢄ ꢅ ꢇ  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TYPICAL CHARACTERISTICS  
†‡  
†‡  
INPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
5
4
3
2
1
3
2.5  
2
V
DD  
= 5 V  
V
= 3 V  
DD  
T
= 40°C  
= 25°C  
A
T
A
| V | 5 mV  
IO  
1.5  
1
T
= 85°C  
A
T
A
= 125°C  
0
0.5  
0
−1  
55 35 15  
5
25  
45  
65 85 105 125  
0
200  
400  
600  
800  
T
A
− Free-Air Temperature − °C  
| I  
OH  
| − High-Level Output Current − µA  
Figure 14  
Figure 15  
†‡  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
1.4  
1.2  
1
1.2  
1
V
T
= 3 V  
V
V
= 3 V  
= 1.5 V  
DD  
= 25°C  
DD  
IC  
A
T
= 125°C  
= 85°C  
A
V
= 0  
IC  
0.8  
0.6  
0.4  
0.2  
0
T
A
0.8  
0.6  
V
IC  
= 0.75 V  
T
= 25°C  
A
V
IC  
= 1.5 V  
0.4  
T
A
= − 40°C  
0.2  
0
0
1
2
3
4
5
0
1
2
3
4
5
I − Low-Level Output Current − mA  
OL  
I
− Low-Level Output Current − mA  
OL  
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
DD  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
  
ꢓꢗ  
ꢘꢕ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TYPICAL CHARACTERISTICS  
†‡  
†‡  
HIGH-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
5
4
3
1.4  
1.2  
V
V
= 5 V  
V
= 5 V  
DD  
= 2.5 V  
DD  
T
= 125°C  
A
IC  
1
T
= 40°C  
= 25°C  
= 85°C  
T
A
= 85°C  
A
0.8  
T
A
= 25°C  
T
A
0.6  
0.4  
0.2  
0
2
1
0
T
A
T
= 40°C  
A
T
= 125°C  
A
0
200  
400  
600  
800  
0
1
2
3
4
5
6
| I  
OH  
| − High-Level Output Current − µA  
I
− Low-Level Output Current − mA  
OL  
Figure 18  
Figure 19  
SHORT-CIRCUIT OUTPUT CURRENT  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
10  
9
8
7
6
5
4
3
2
1
5
R = 50 kΩ  
V
= 5 V  
I
DD  
DD  
T
= 25°C  
A
4
V
= 100 mV  
ID  
3
2
V
= 3 V  
V
= V /2  
DD  
O
T
= 25°C  
A
V
IC  
= V /2  
DD  
1
0
V
= 100 mV  
0
ID  
−1  
2
3
4
5
6
7
8
2
3
4
5
10  
10  
10  
10  
V
− Supply Voltage − V  
DD  
f − Frequency − Hz  
Figure 20  
Figure 21  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V = 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD DD  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢃꢄ ꢅ ꢇ  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL INPUT VOLTAGE  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
OUTPUT VOLTAGE  
FREE-AIR TEMPERATURE  
11  
1000  
800  
V
= 3 V  
V
V
= 2.5 V  
DD  
I
O
10  
9
R = 50 kΩ  
=
5 V  
DD  
V
T
A
= 1.5 V  
= 25°C  
IC  
600  
8
V
ID  
= 100 mV  
400  
7
6
5
4
200  
0
200  
400  
600  
800  
3
2
1
V
ID  
= 100 mV  
0
−1  
75  
1000  
0
0.5  
1
1.5  
2
2.5  
3
50 25  
0
25  
50  
75  
100 125  
V
O
− Output Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 22  
Figure 23  
DIFFERENTIAL INPUT VOLTAGE  
†‡  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
OUTPUT VOLTAGE  
LOAD RESISTANCE  
1000  
800  
4
10  
3
10  
2
10  
1
10  
V
T
= 2 V  
V
V
R
= 5 V  
O(PP)  
= 25°C  
DD  
IC  
L
= 2.5 V  
= 50 kΩ  
= 25°C  
A
600  
T
A
400  
V
DD  
= 5 V  
V
200  
0
= 3 V  
DD  
200  
400  
600  
800  
1000  
1
1
10  
2
3
10  
1
10  
0
1
2
3
4
5
V
O
− Output Voltage − V  
R
− Load Resistance − kΩ  
L
Figure 24  
Figure 25  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
DD  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
  
ꢓꢗ  
ꢘꢕ  
ꢖꢓ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE MARGIN  
vs  
FREQUENCY  
80  
60  
180°  
135°  
V
R
= 5 V  
= 50 kΩ  
DD  
L
L
C = 100 pF  
T
A
= 25°C  
40  
90°  
45°  
Phase Margin  
20  
0
Gain  
0°  
20  
40  
45°  
90°  
3
4
5
6
7
10  
10  
10  
10  
10  
f − Frequency − Hz  
Figure 26  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE MARGIN  
vs  
FREQUENCY  
80  
60  
180°  
135°  
V
= 3 V  
DD  
R = 50 kΩ  
L
L
C = 100 pF  
T
A
= 25°C  
40  
90°  
45°  
Phase Margin  
20  
0
Gain  
0°  
20  
40  
45°  
90°  
3
4
5
6
7
10  
10  
10  
10  
10  
f − Frequency − Hz  
Figure 27  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TYPICAL CHARACTERISTICS  
†‡  
†‡  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
4
3
4
3
10  
10  
10  
10  
V
V
V
= 5 V  
= 2.5 V  
= 1 V to 4 V  
DD  
IC  
O
V
V
V
= 3 V  
= 1.5 V  
= 0.5 V to 2.5 V  
DD  
IC  
O
R
= 1 MΩ  
L
R
= 1 MΩ  
= 50 kΩ  
L
R
R
= 50 kΩ  
L
L
2
2
1
10  
10  
10  
1
10  
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 28  
Figure 29  
OUTPUT IMPEDANCE  
OUTPUT IMPEDANCE  
vs  
vs  
FREQUENCY  
FREQUENCY  
1000  
100  
10  
1000  
100  
10  
V
T
= 5 V  
= 25°C  
V
T
= 3 V  
= 25°C  
DD  
A
DD  
A
A
= 100  
V
A
= 100  
V
A
= 10  
= 1  
A
= 10  
= 1  
V
V
1
1
A
V
A
V
0.1  
10  
0.1  
10  
2
3
4
5
6
2
3
4
5
6
10  
10  
10  
10  
10  
10  
10  
10  
f− Frequency − Hz  
f− Frequency − Hz  
Figure 30  
Figure 31  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
DD  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
  
ꢓꢗ  
ꢘꢕ  
ꢖꢓ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TYPICAL CHARACTERISTICS  
†‡  
COMMON-MODE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
100  
80  
94  
92  
90  
88  
86  
84  
82  
V
V
= 5 V  
= 2.5 V  
T
A
= 25°C  
DD  
IC  
V
V
= 3 V  
= 1.5 V  
DD  
IC  
V
DD  
= 5 V  
60  
40  
20  
0
V
DD  
= 3 V  
80  
4
5
6
10  
1
2
3
10  
10  
10  
10  
10  
− 75 − 50 − 25  
0
25  
50  
75 100  
125  
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 32  
Figure 33  
SUPPLY-VOLTAGE REJECTION RATIO  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
80  
100  
80  
60  
40  
20  
V
T
= 3 V  
V
T
= 5 V  
= 25°C  
DD  
= 25°C  
DD  
A
k
SVR+  
A
60  
k
SVR+  
k
SVR−  
40  
k
SVR−  
20  
0
0
20  
20  
1
2
3
4
5
6
10  
6
1
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 34  
Figure 35  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
= 3 V, all loads are referenced to 1.5 V.  
DD  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢃꢄ ꢅ ꢇ  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TYPICAL CHARACTERISTICS  
TLV2252  
SUPPLY CURRENT  
vs  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
110  
105  
120  
100  
80  
60  
40  
20  
0
V
V
= 2.7 V to 8 V  
DD  
= V = V /2  
DD  
V
= 0  
O
IC  
O
No Load  
T
= 40°C  
= 85°C  
A
100  
95  
T
A
T
A
= 25°C  
90  
75 50 25  
0
25  
50  
75 100  
125  
0
1
2
3
4
5
6
7
8
T
A
− Free-Air Temperature − °C  
V
DD  
− Supply Voltage − V  
Figure 36  
Figure 37  
TLV2254  
SUPPLY CURRENT  
SLEW RATE  
vs  
vs  
SUPPLY VOLTAGE  
LOAD CAPACITANCE  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
240  
200  
160  
120  
80  
V
= 5 V  
DD  
= 1  
V
= 0  
O
A
V
A
No Load  
T
= 25°C  
T
= 40°C  
A
SR−  
T
= 85°C  
A
SR+  
T
A
= 25°C  
0.08  
0.06  
0.04  
40  
0.02  
0
0
1
2
3
4
10  
0
1
2
3
4
5
6
7
8
10  
10  
10  
| V  
DD  
| − Supply Voltage − V  
C
− Load Capacitance − pF  
L
Figure 38  
Figure 39  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
DD  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢓꢗ  
ꢘꢕ  
ꢖꢓ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TYPICAL CHARACTERISTICS  
†‡  
SLEW RATE  
vs  
INVERTING LARGE-SIGNAL PULSE  
FREE-AIR TEMPERATURE  
RESPONSE  
0.2  
3
2.5  
2
V
= 5 V  
= 50 kΩ  
= 100 pF  
= 1  
DD  
V
= 3 V  
= 50 kΩ  
= 100 pF  
= 1  
DD  
R
C
A
L
L
V
R
C
A
L
L
V
0.16  
T
A
= 25°C  
SR−  
0.12  
0.08  
1.5  
1
SR+  
0.04  
0
0.5  
0
0
10 20 30 40 50 60 70 80 90 100  
75 50 25  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature − °C  
t − Time − µs  
Figure 40  
Figure 41  
INVERTING LARGE-SIGNAL PULSE  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
RESPONSE  
PULSE RESPONSE  
5
3
2.5  
2
V
R
C
A
= 5 V  
V
= 3 V  
= 50 kΩ  
= 100 pF  
= 1  
DD  
L
L
DD  
= 50 kΩ  
= 100 pF  
= 1  
R
C
A
T
L
L
V
4
3
2
V
= 25°C  
T
A
= 25°C  
A
1.5  
1
1
0
0.5  
0
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
t − Time − µs  
t − Time − µs  
Figure 42  
Figure 43  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V = 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD DD  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TYPICAL CHARACTERISTICS  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
INVERTING SMALL-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
0.95  
0.9  
5
4
V
= 5 V  
= 50 kΩ  
= 100 pF  
= 1  
V
= 3 V  
DD  
L
L
DD  
L
L
R
C
A
R
C
A
= 50 kΩ  
= 100 pF  
= 1  
V
A
V
A
T
= 25°C  
T
= 25°C  
0.85  
0.8  
3
2
0.75  
0.7  
1
0
0.65  
0.6  
0
10  
20  
30  
40  
50  
0
10 20 30 40 50 60 70 80 90 100  
t − Time − µs  
t − Time − µs  
Figure 44  
Figure 45  
VOLTAGE-FOLLOWER SMALL-SIGNAL  
INVERTING SMALL-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
0.95  
2.65  
2.6  
V
= 3 V  
= 50 kΩ  
= 100 pF  
= 1  
V
= 5 V  
DD  
L
L
DD  
L
L
R
C
A
R
C
A
= 50 kΩ  
= 100 pF  
= 1  
0.9  
0.85  
0.8  
V
A
V
A
T
= 25°C  
T
= 25°C  
2.55  
2.5  
0.75  
0.7  
2.45  
2.4  
0.65  
0.6  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
t − Time − µs  
t − Time − µs  
Figure 46  
Figure 47  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
  
ꢓꢗ  
ꢘꢕ  
ꢖꢓ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TYPICAL CHARACTERISTICS  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
VOLTAGE-FOLLOWER SMALL-SIGNAL  
FREQUENCY  
PULSE RESPONSE  
60  
50  
2.65  
2.6  
V
R
C
= 5 V  
= 50 kΩ  
= 100 pF  
= 1  
DD  
L
L
V
R
T
A
= 3 V  
= 20 Ω  
= 25°C  
DD  
S
A
V
A
T
= 25°C  
40  
30  
2.55  
2.5  
20  
10  
0
2.45  
2.4  
1
2
3
4
10  
10  
10  
10  
0
10  
20  
30  
40  
50  
f − Frequency − Hz  
t − Time − µs  
Figure 48  
Figure 49  
EQUIVALENT INPUT NOISE VOLTAGE  
INPUT NOISE VOLTAGE OVER  
vs  
A 10-SECOND PERIOD  
FREQUENCY  
1000  
750  
500  
250  
0
60  
50  
40  
30  
20  
V
R
T
A
= 5 V  
= 20 Ω  
= 25°C  
DD  
S
V
= 5 V  
DD  
f = 0.1 Hz to 10 Hz  
T
A
= 25°C  
250  
500  
10  
0
750  
1000  
1
2
3
4
10  
0
2
4
6
8
10  
10  
10  
10  
f − Frequency − Hz  
t − Time − s  
Figure 50  
Figure 51  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢃꢄ ꢅ ꢇ  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TYPICAL CHARACTERISTICS  
INTEGRATED NOISE VOLTAGE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
1
Calculated Using Ideal Pass-Band Filter  
Low Frequency = 1 Hz  
A
V
= 100  
T
= 25°C  
A
10  
0.1  
A
V
= 10  
1
0.01  
A
V
= 1  
V
R
T
A
= 5 V  
= 50 kΩ  
= 25°C  
DD  
L
0.001  
0.1  
1
2
3
4
5
1
10  
2
3
4
5
10  
10  
10  
10  
10  
10  
1
10  
10  
10  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 52  
Figure 53  
†‡  
GAIN-BANDWIDTH PRODUCT  
vs  
GAIN-BANDWIDTH PRODUCT  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
300  
260  
V
DD  
= 5 V  
220  
210  
200  
f = 10 kHz  
R
C
= 50 kHz  
= 100 pF  
L
L
220  
180  
140  
100  
190  
180  
170  
75 50 25  
0
25  
50  
75  
100  
125  
0
1
2
V
3
4
5
6
7
8
T
A
− Free-Air Temperature − °C  
− Supply Voltage − V  
DD  
Figure 54  
Figure 55  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
GAIN MARGIN  
vs  
LOAD CAPACITANCE  
75°  
60°  
45°  
20  
15  
10  
T
A
= 25°C  
R
= 200 Ω  
null  
R
= 500 Ω  
null  
R
= 500 Ω  
null  
R
= 200 Ω  
= 100 Ω  
null  
R
= 100 Ω  
R
null  
null  
R
= 50 Ω  
= 10 Ω  
null  
R
= 50 Ω  
= 10 Ω  
null  
30°  
R
null  
R
null  
50 kΩ  
5
0
V
15°  
0°  
DD +  
DD −  
R
= 0  
null  
50 kΩ  
R
null  
R
= 0  
V
+
null  
I
C
L
T
= 25°C  
A
V
1
2
3
4
10  
10  
10  
10  
1
2
L
3
4
5
10  
10  
10  
C
10  
10  
C
− Load Capacitance − pF  
− Load Capacitance − pF  
L
Figure 56  
Figure 57  
OVERESTIMATION OF PHASE MARGIN  
vs  
UNITY-GAIN BANDWIDTH  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
25  
T
= 25°C  
200  
175  
150  
A
T
A
= 25°C  
R
= 500 Ω  
null  
20  
15  
10  
5
125  
100  
R
= 100 Ω  
null  
R
= 200 Ω  
null  
R
= 50 Ω  
= 10 Ω  
null  
75  
50  
R
null  
25  
0
10  
1
2
3
4
5
10  
10  
10  
10  
0
10  
1
2
3
4
5
10  
10  
C
10  
10  
C − Load Capacitance − pF  
L
− Load Capacitance − pF  
L
See application information  
Figure 58  
Figure 59  
For all curves where V  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
DD  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂ ꢖꢓꢗ ꢁ ꢑꢘꢕꢙ ꢑꢘꢖ ꢓ ꢑ ꢙꢖ ꢓꢇꢀꢔ ꢑ ꢚꢇ ꢁ ꢇꢐ ꢙꢁ ꢔꢛ ꢔꢖ ꢓꢒ  
  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
APPLICATION INFORMATION  
driving large capacitive loads  
The TLV2252 is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 56  
and Figure 57 illustrate its ability to drive loads up to 1000 pF while maintaining good gain and phase margins  
(R  
= 0).  
null  
A smaller series resistor (R ) at the output of the device (see Figure 60) improves the gain and phase margins  
null  
when driving large capacitive loads. Figure 55 and Figure 56 show the effects of adding series resistances of  
10 , 50 , 100 , 200 , and 500 . The addition of this series resistor has two effects: the first adds a zero  
to the transfer function and the second reduces the frequency of the pole associated with the output load in the  
transfer function.  
The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To  
calculate the improvement in phase margin, equation 1 can be used.  
–1  
ǒ2 × π × UGBW × R  
LǓ  
(1)  
∆φ  
Where :  
+ tan  
× C  
m1  
null  
∆φ  
+ improvement in phase margin  
m1  
UGBW + unity-gain bandwidth frequency  
R
+ output series resistance  
+ load capacitance  
null  
C
L
The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 58). To  
use equation 1, UGBW must be approximated from Figure 58.  
Using equation 1 alone overestimates the improvement in phase margin as illustrated in Figure 59. The  
overestimation is caused by the decrease in the frequency of the pole associated with the load, providing  
additional phase shift and reducing the overall improvement in phase margin.  
Using Figure 60, with equation 1 enables the designer to choose the appropriate output series resistance to  
optimize the design of circuits driving large capacitance loads.  
50 kΩ  
V
DD+  
50 kΩ  
R
null  
V
I
+
C
L
V
DD−  
/GND  
Figure 60. Series-Resistance Circuit  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
  
ꢓꢗ  
ꢘꢕ  
ꢖꢓ  
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts, the model generation software used  
with Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 61 are generated using  
the TLV2252 typical electrical and operating characteristics at T = 25°C. Using this information, output  
A
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
99  
DLN  
3
EGND  
+
V
CC+  
92  
9
FB  
+
91  
90  
RSS  
ISS  
RO2  
+
+
VB  
DLP  
RP  
2
VLP  
VLN  
HLIM  
+
10  
+
VC  
IN −  
IN+  
R2  
C2  
J1  
J2  
7
DP  
6
53  
+
1
VLIM  
11  
DC  
12  
RD2  
GA  
GCM  
8
C1  
RD1  
60  
RO1  
+
DE  
VAD  
5
54  
V
CC−  
+
4
VE  
OUT  
.SUBCKT TLV225x 1 2 3 4 5  
RD1  
RD2  
R01  
R02  
RP  
RSS  
VAD  
VB  
VC  
VE  
60  
60  
8
11  
12  
5
37.23E3  
37.23E3  
84  
C1  
11  
6
12  
7
6.369E−12  
C2  
25.00E−12  
DC  
5
53  
5
DX  
DX  
DX  
DX  
DX  
7
99  
4
84  
DE  
54  
90  
92  
4
3
71.43E3  
64.52E6  
−.5  
DLP  
DLN  
DP  
91  
90  
3
10  
60  
9
99  
4
0
DC 0  
EGND  
FB  
99  
7
0
99  
POLY (2) (3,0) (4,0) 0 .5 .5  
POLY (5) VB VC VE VLP  
3
53  
4
DC .605  
DC .605  
DC 0  
54  
7
+ VLN 0 57.62E6 −60E6 60E6 60E6 −60E6  
VLIM  
VLP  
VLN  
8
GA  
6
0
6
11  
10  
12 26.86E−6  
99 2.686E−9  
91  
0
0
DC −0.235  
DC 7.5  
GCM  
ISS  
HLIM  
J1  
0
92  
3
10  
0
DC 3.1E−6  
VLIM 1K  
10 JX  
10 JX  
100.0E3  
.MODEL DX D (IS=800.0E−18)  
90  
11  
12  
6
.MODEL JX PJF (IS=500.0E−15 BETA=139E−6  
2
1
+ VTO=−.05)  
.ENDS  
J2  
R2  
9
Figure 61. Boyle Macromodel and Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Oct-2007  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
LCCC  
CFP  
Drawing  
FK  
U
5962-9550401Q2A  
5962-9550401QHA  
5962-9550401QPA  
5962-9550403Q2A  
5962-9550403QHA  
5962-9550403QPA  
5962-9566601Q2A  
5962-9566601QHA  
5962-9566601QPA  
5962-9566602Q2A  
5962-9566602QCA  
5962-9566602QDA  
5962-9566603Q2A  
5962-9566603QHA  
5962-9566603QPA  
5962-9566604Q2A  
5962-9566604QCA  
5962-9566604QDA  
TLV2252AID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
20  
10  
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
POST-PLATE N / A for Pkg Type  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
CDIP  
LCCC  
CFP  
JG  
FK  
U
20  
10  
8
POST-PLATE N / A for Pkg Type  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
CDIP  
LCCC  
CFP  
JG  
FK  
U
20  
10  
8
POST-PLATE N / A for Pkg Type  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
CDIP  
LCCC  
CDIP  
CFP  
JG  
FK  
J
20  
14  
14  
20  
10  
8
POST-PLATE N / A for Pkg Type  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
W
LCCC  
CFP  
FK  
U
POST-PLATE N / A for Pkg Type  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
CDIP  
LCCC  
CDIP  
CFP  
JG  
FK  
J
20  
14  
14  
8
POST-PLATE N / A for Pkg Type  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
W
SOIC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2252AIDG4  
TLV2252AIDR  
TLV2252AIDRG4  
TLV2252AIP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2252AIPE4  
TLV2252AIPW  
TLV2252AIPWG4  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TSSOP  
TSSOP  
PW  
PW  
150 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
150 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2252AIPWLE  
TLV2252AIPWR  
OBSOLETE TSSOP  
PW  
PW  
8
8
TBD  
Call TI  
Call TI  
ACTIVE  
TSSOP  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2252AIPWRG4  
ACTIVE  
TSSOP  
PW  
8
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2252AMFKB  
TLV2252AMJGB  
TLV2252AQD  
ACTIVE  
ACTIVE  
NRND  
LCCC  
CDIP  
SOIC  
FK  
JG  
D
20  
8
1
1
TBD  
TBD  
POST-PLATE N / A for Pkg Type  
A42 SNPB N / A for Pkg Type  
8
75  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
TLV2252AQDG4  
TLV2252AQDR  
ACTIVE  
NRND  
SOIC  
SOIC  
D
D
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500  
Pb-Free  
CU NIPDAU Level-2-250C-1 YEAR/  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Oct-2007  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
(RoHS)  
Level-1-235C-UNLIM  
TLV2252AQDRG4  
ACTIVE  
SOIC  
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2252CP  
TLV2252ID  
ACTIVE  
ACTIVE  
PDIP  
SOIC  
P
D
8
8
TBD  
Call TI  
Call TI  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2252IDG4  
TLV2252IDR  
TLV2252IDRG4  
TLV2252IP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
D
D
D
P
P
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
POST-PLATE N / A for Pkg Type  
TLV2252IPE4  
50  
Pb-Free  
(RoHS)  
TLV2252MFKB  
TLV2252MJGB  
TLV2252MUB  
TLV2252QD  
ACTIVE  
ACTIVE  
ACTIVE  
NRND  
LCCC  
CDIP  
CFP  
FK  
JG  
U
20  
8
1
1
TBD  
TBD  
TBD  
TBD  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
10  
8
1
SOIC  
SOIC  
D
75  
CU NIPDAU Level-1-220C-UNLIM  
TLV2252QDG4  
ACTIVE  
D
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2252QDR  
NRND  
SOIC  
SOIC  
D
D
8
8
2500  
TBD  
CU NIPDAU Level-1-220C-UNLIM  
TLV2252QDRG4  
ACTIVE  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2254AID  
TLV2254AIDG4  
TLV2254AIDR  
TLV2254AIDRG4  
TLV2254AIN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
14  
14  
14  
14  
14  
14  
14  
14  
50 Green (RoHS &  
no Sb/Br)  
Call TI  
Call TI  
Call TI  
Call TI  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
50 Green (RoHS &  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS &  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS &  
no Sb/Br)  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
TLV2254AINE4  
TLV2254AIPW  
TLV2254AIPWG4  
PDIP  
N
25  
Pb-Free  
(RoHS)  
TSSOP  
TSSOP  
PW  
PW  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2254AIPWLE  
TLV2254AIPWR  
OBSOLETE TSSOP  
PW  
PW  
14  
14  
TBD  
Call TI  
Call TI  
ACTIVE  
TSSOP  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2254AIPWRG4  
ACTIVE  
TSSOP  
PW  
14  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2254AMFKB  
TLV2254AMJB  
TLV2254AMWB  
ACTIVE  
ACTIVE  
ACTIVE  
LCCC  
CDIP  
CFP  
FK  
J
20  
14  
14  
1
1
1
TBD  
TBD  
TBD  
POST-PLATE N / A for Pkg Type  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
W
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Oct-2007  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
SOIC  
SOIC  
Drawing  
TLV2254AQD  
ACTIVE  
ACTIVE  
D
D
14  
14  
50  
TBD  
CU NIPDAU Level-1-220C-UNLIM  
TLV2254AQDG4  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2254AQDR  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
14  
14  
2500  
TBD  
CU NIPDAU Level-1-220C-UNLIM  
TLV2254AQDRG4  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2254ID  
TLV2254IDG4  
TLV2254IDR  
TLV2254IDRG4  
TLV2254IN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
D
D
D
D
N
N
14  
14  
14  
14  
14  
14  
50 Green (RoHS &  
no Sb/Br)  
Call TI  
Call TI  
Call TI  
Call TI  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
50 Green (RoHS &  
no Sb/Br)  
2500 Green (RoHS &  
no Sb/Br)  
2500 Green (RoHS &  
no Sb/Br)  
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
POST-PLATE N / A for Pkg Type  
TLV2254INE4  
25  
Pb-Free  
(RoHS)  
TLV2254MFKB  
TLV2254MJB  
TLV2254MWB  
TLV2254QD  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LCCC  
CDIP  
CFP  
FK  
J
20  
14  
14  
14  
14  
1
1
TBD  
TBD  
TBD  
TBD  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
W
D
1
SOIC  
SOIC  
50  
CU NIPDAU Level-1-220C-UNLIM  
TLV2254QDG4  
D
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2254QDR  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
14  
14  
2500  
TBD  
CU NIPDAU Level-1-220C-UNLIM  
TLV2254QDRG4  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2262AMFKB  
TLV2262AMJGB  
TLV2262AMUB  
TLV2262MFKB  
TLV2262MJGB  
TLV2262MUB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LCCC  
CDIP  
CFP  
FK  
JG  
U
20  
8
1
1
1
1
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
POST-PLATE N / A for Pkg Type  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
10  
20  
8
LCCC  
CDIP  
CFP  
FK  
JG  
U
POST-PLATE N / A for Pkg Type  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
10  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Oct-2007  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2007  
TAPE AND REEL BOX INFORMATION  
Device  
Package Pins  
Site  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) (mm) Quadrant  
(mm)  
330  
330  
330  
330  
330  
330  
(mm)  
12  
TLV2252AIDR  
TLV2252AIPWR  
TLV2252IDR  
D
PW  
D
8
8
SITE 60  
SITE 41  
SITE 60  
SITE 60  
SITE 41  
SITE 60  
6.4  
7.0  
6.4  
6.5  
7.0  
6.5  
5.2  
3.6  
5.2  
9.0  
5.6  
9.0  
2.1  
1.6  
2.1  
2.1  
1.6  
2.1  
8
8
8
8
8
8
12  
12  
12  
16  
12  
16  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
12  
8
12  
TLV2254AIDR  
TLV2254AIPWR  
TLV2254IDR  
D
14  
14  
14  
16  
PW  
D
12  
16  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2007  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
TLV2252AIDR  
TLV2252AIPWR  
TLV2252IDR  
D
PW  
D
8
8
SITE 60  
SITE 41  
SITE 60  
SITE 60  
SITE 41  
SITE 60  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
29.0  
29.0  
29.0  
33.0  
29.0  
33.0  
8
TLV2254AIDR  
TLV2254AIPWR  
TLV2254IDR  
D
14  
14  
14  
PW  
D
Pack Materials-Page 2  
MECHANICAL DATA  
MCER001A – JANUARY 1995 – REVISED JANUARY 1997  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE  
0.400 (10,16)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.063 (1,60)  
0.015 (0,38)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.023 (0,58)  
0.015 (0,38)  
0°–15°  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification.  
E. Falls within MIL STD 1835 GDIP1-T8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MLCC006B – OCTOBER 1996  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
TERMINALS  
**  
18 17 16 15 14 13 12  
MIN  
MAX  
MIN  
MAX  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
21  
B SQ  
22  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
A SQ  
23  
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
24  
25  
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MPDI001A – JANUARY 1995 – REVISED JUNE 1999  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.325 (8,26)  
0.300 (7,62)  
0.020 (0,51) MIN  
0.015 (0,38)  
Gage Plane  
0.200 (5,08) MAX  
Seating Plane  
0.010 (0,25) NOM  
0.125 (3,18) MIN  
0.100 (2,54)  
0.021 (0,53)  
0.430 (10,92)  
MAX  
0.010 (0,25)  
M
0.015 (0,38)  
4040082/D 05/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright 2008, Texas Instruments Incorporated  

相关型号:

TLV2254AQDRG4Q1

Advanced LinCMOS™ RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2254AQDRQ1

Advanced LinCMOS™ RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2254AQPWRQ1

QUAD OP-AMP, 1000uV OFFSET-MAX, 0.187MHz BAND WIDTH, PDSO14, TSSOP-14
TI

TLV2254ID

Advanced LinCMOSE RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2254IDG4

ADVANCED LINCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2254IDR

Advanced LinCMOSE RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2254IDRG4

Advanced LinCMOSE RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2254IN

Advanced LinCMOSE RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2254INE4

Advanced LinCMOSE RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2254MFK

Advanced LinCMOSE RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2254MFKB

ADVANCED LINCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2254MJ

Advanced LinCMOSE RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
TI