TLV2264A-Q1 [TI]

汽车类四路、高级 LinCMOS、轨到轨精密运算放大器;
TLV2264A-Q1
型号: TLV2264A-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类四路、高级 LinCMOS、轨到轨精密运算放大器

放大器 运算放大器 放大器电路
文件: 总39页 (文件大小:694K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV2262A-Q1, TLV2264A-Q1  
www.ti.com ........................................................................................................................................................................................... SGLS193DECEMBER 2008  
Advanced LinCMOS™ RAIL-TO-RAIL OPERATIONAL AMPLIFIERS  
1
FEATURES  
TLV2262A  
PW PACKAGE  
(TOP VIEW)  
23  
Qualified for Automotive Applications  
Output Swing Includes Both Supply Rails  
Low Noise . . . 12 nV/Hz Typ at f = 1 kHz  
Low Input Bias Current . . . 1 pA Typ  
1OUT  
1IN-  
1
2
3
4
8
7
6
5
VDD+  
2OUT  
2IN-  
Fully Specified for Both Single-Supply and  
Split-Supply Operation  
1IN+  
V
DD- /GND  
2IN+  
Low Power . . . 500 µA Max  
Common-Mode Input Voltage Range Includes  
Negative Rail  
TLV2264A  
PW PACKAGE  
(TOP VIEW)  
Low Input Offset Voltage . . .  
950 µV Max at TA = 25°C  
1
2
3
14  
13  
12  
Wide Supply Voltage Range . . . 2.7 V to 8 V  
Macromodel Included  
1OUT  
1IN  
4OUT  
4IN  
+
+
1IN  
4IN  
4
5
6
7
11  
10  
9
VDD+  
V
DD- /GND  
+
+
-
2IN  
3IN  
3IN  
-
2IN  
8
2OUT  
3OUT  
DESCRIPTION  
The TLV2262 and TLV2264 are dual and quad low voltage operational amplifiers from Texas Instruments. Both  
devices exhibit rail-to-rail output performance for increased dynamic range in single or split supply applications.  
The TLV226x family offers a compromise between the micropower TLV225x and the ac performance of the  
TLC227x. It has low supply current for battery-powered applications, while still having adequate ac performance  
for applications that demand it. This family is fully characterized at 3 V and 5 V and is optimized for low-voltage  
applications. The noise performance has been dramatically improved over previous generations of CMOS  
amplifiers. Figure 1 depicts the low level of noise voltage for this CMOS amplifier, which has only 200 µA (typ) of  
supply current per amplifier.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
Advanced LinCMOS is a trademark of Texas Instruments.  
Parts, PSpice are trademarks of MicroSim Corporation.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008, Texas Instruments Incorporated  
TLV2262A-Q1, TLV2264A-Q1  
SGLS193DECEMBER 2008........................................................................................................................................................................................... www.ti.com  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
4
V
DD  
= 3 V  
3.5  
3
T = 55°C  
A
2.5  
2
T = 125°C  
A
T = 25°C  
A
1.5  
1
T = 85°C  
A
T = 40°C  
A
0.5  
0
0
500  
1000  
1500  
2000  
| I | − High-Level Output Current − µA  
OH  
Figure 1.  
The TLV226x, exhibiting high input impedance and low noise, are excellent for small-signal conditioning for  
high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels  
combined with 3-V operation, these devices work well in hand-held monitoring and remote-sensing applications.  
In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when  
interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV226xA family is available  
and has a maximum input offset voltage of 950 µV.  
The TLV2262/4 also makes great upgrades to the TLV2332/4 in standard designs. They offer increased output  
dynamic range, lower noise voltage and lower input offset voltage. This enhanced feature set allows them to be  
used in a wider range of applications. For applications that require higher output drive and wider input voltage  
range, see the TLV2432 and TLV2442 devices. If your design requires single amplifiers, please see the  
TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their  
small size and low power consumption make them ideal for high density, battery-powered equipment.  
ORDERING INFORMATION(1)  
TA  
PACKAGE(2)  
TSSOP – PW (8 pin)  
TSSOP – PW (14 pin)  
ORDERABLE PART NUMBER  
TLV2262AQPWRQ1  
TOP-SIDE MARKING  
TQ262A  
P2264AQ  
Reel of 2000  
Reel of 2000  
–40°C to 125°C  
TLV2264AQPWRQ1  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
2
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
www.ti.com ........................................................................................................................................................................................... SGLS193DECEMBER 2008  
EQUIVALENT SCHEMATIC (EACH AMPLIFIER)  
V
DD+  
Q3  
Q6  
Q9  
Q12  
Q14  
Q16  
R6  
IN+  
IN−  
OUT  
C1  
R5  
Q1  
Q4  
Q13  
Q15  
Q17  
D1  
Q2  
R3  
Q5  
R4  
Q7  
Q8  
Q10  
Q11  
R1  
R2  
V
DD−/ GND  
Table 1. Actual Device Component Count  
COMPONENT  
Transistors  
TLV2262  
TLV2264  
38  
28  
9
76  
54  
18  
6
Resistors  
Diodes  
Capacitors  
3
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
SGLS193DECEMBER 2008........................................................................................................................................................................................... www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
VDD  
VID  
VI  
Supply voltage(2)  
Differential input voltage(3)  
–0.3 V to 16 V  
±VDD  
Input voltage range  
(VDD– – 0.3 V) to VDD+  
±5 mA  
II  
Input current, any input  
IO  
Output current  
±50 mA  
Total current into VDD+  
±50 mA  
Total current out of VDD–  
±50 mA  
Duration of short-circuit current (at or below) 25°C(4)  
Continuous total power dissipation  
Operating free-air temperature range  
Storage temperature range  
Unlimited  
PD  
TA  
See Dissipation Rating Table  
–40°C to 125°C  
–65°C to 150°C  
Tstg  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to VDD–  
.
(3) Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought below  
VDD– – 0.3 V.  
(4) The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation  
rating is not exceeded.  
DISSIPATION RATINGS  
T
A 25°C  
DERATING FACTOR  
ABOVE TA = 25°C  
TA = 85°C  
POWER RATING  
TA = 125°C  
POWER RATING  
PACKAGE  
POWER RATING  
PW-8  
525 mW  
4.2 mW/°C  
5.6 mW/°C  
273 mW  
364 mW  
105 mW  
140 mW  
PW-14  
700 mW  
RECOMMENDED OPERATING CONDITIONS  
MIN  
MAX UNIT  
VDD±  
VI  
Supply voltage(1)  
2.7  
8
V
V
Input voltage  
VDD– VDD+ –1.3  
VDD– VDD+ –1.3  
VIC  
TA  
Common-mode input voltage  
Operating free-air temperature  
V
–40  
125  
°C  
(1) All voltage values, except differential voltages, are with respect to VDD–  
.
4
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
www.ti.com ........................................................................................................................................................................................... SGLS193DECEMBER 2008  
TLV2262A ELECTRICAL CHARACTERISTICS  
VDD = 3 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
300  
950  
mV  
VIO  
Input offset voltage  
VDD± = ±1.5 V, VIC = 0, VO = 0, RS = 50 Ω  
Full range  
1500  
Temperature coefficient  
of input offset voltage  
αVIO  
VDD± = ±1.5 V, VIC = 0, VO = 0, RS = 50 Ω  
VDD± = ±1.5 V, VIC = 0, VO = 0, RS = 50 Ω  
25°C to 125°C  
25°C  
2
µV/°C  
Input offset voltage long-term  
drift(1)  
0.003  
0.5  
µV/mo  
25°C  
125°C  
25°C  
60  
pA  
IIO  
Input offset current  
Input bias current  
VDD± = ±1.5 V, VIC = 0, VO = 0, RS = 50 Ω  
VDD± = ±1.5 V, VIC = 0, VO = 0, RS = 50 Ω  
800  
1
60  
pA  
IIB  
125°C  
800  
0
–0.3  
25°C  
to 2 to 2.2  
Common-mode input voltage  
range  
VICR  
RS = 50 , | VIO | 5 mV  
V
0
Full range  
to 1.7  
IOH = –20 µA  
IOH = –100 µA  
25°C  
25°C  
2.99  
2.85  
2.82  
2.7  
VOH  
High-level output voltage  
Low-level output voltage  
Full range  
25°C  
V
IOH = –400 µA  
Full range  
25°C  
2.55  
IOL = 50 µA  
10  
25°C  
100  
150  
IOL = 500 µA  
VOL  
VIC = 1.5 V  
Full range  
25°C  
165  
300  
300  
mV  
200  
100  
IOL = 1 mA  
Full range  
25°C  
60  
25  
RL = 50 k(2)  
Large-signal differential  
voltage amplification  
AVD  
VIC = 1.5 V, VO = 1 V to 2 V  
Full range  
25°C  
V/mV  
RL = 1 M(2)  
100  
ri(d)  
ri(c)  
ci(c)  
zo  
Differential input resistance  
25°C  
1012  
Common-mode input  
resistance  
25°C  
25°C  
25°C  
1012  
Common-mode input  
capacitance  
f = 10 kHz  
8
pF  
Closed-loop output  
impedance  
f = 100 kHz, AV = 10  
270  
77  
25°C  
Full range  
25°C  
65  
60  
80  
80  
Common-mode rejection  
ratio  
CMRR  
kSVR  
IDD  
VIC = 0 to 1.7 V, VO = 1.5 V, RS = 50 Ω  
VDD = 2.7 V to 8 V, VIC = VDD/2, No load  
VO = 1.5 V, No load  
dB  
dB  
µA  
100  
400  
Supply voltage rejection ratio  
(ΔVDD/ΔVIO  
)
Full range  
25°C  
500  
500  
Supply current  
Full range  
(1) Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to  
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
(2) Referenced to 1.5 V  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
SGLS193DECEMBER 2008........................................................................................................................................................................................... www.ti.com  
TLV2262A OPERATING CHARACTERISTICS  
VDD = 3 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
25°C  
MIN  
0.35  
0.25  
TYP  
MAX  
UNIT  
VO = 0.5 V to 1.7 V, RL = 50 k(1)  
,
0.55  
SR  
Vn  
Slew rate at unity gain  
V/µs  
CL = 100 pF(1)  
Full range  
25°C  
f = 10 Hz  
43  
12  
Equivalent input noise  
voltage  
nV/Hz  
f = 1 kHz  
25°C  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
0.6  
Peak-to-peak equivalent  
input noise voltage  
VN(PP)  
In  
µV  
fA/Hz  
%
25°C  
1
Equivalent input noise current  
25°C  
0.6  
AV = 1  
AV = 10  
f = 1 kHz, RL = 50 k(1), CL = 100 pF(1)  
25°C  
0.03  
0.05  
0.67  
Total harmonic distortion plus VO = 0.5 V to 2.5 V, f = 20 kHz,  
THD+N  
noise  
RL = 50 k(1)  
25°C  
Gain-bandwidth product  
25°C  
MHz  
kHz  
Maximum output-swing  
bandwidth  
VO(PP) = 1 V, AV = 1, RL = 50 k(1)  
,
BOM  
ts  
25°C  
395  
CL = 100 pF(1)  
To 0.1%  
25°C  
25°C  
25°C  
25°C  
5.6  
12.5  
55  
AV = –1, Step = 1 V to 2 V,  
Settling time  
µs  
RL = 50 k(1), CL = 100 pF(1)  
To 0.01%  
φm  
Phase margin at unity gain  
Gain margin  
RL = 50 k(1), CL = 100 pF(1)  
RL = 50 k(1), CL = 100 pF(1)  
°
Gm  
11  
dB  
(1) Referenced to 1.5 V  
6
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
www.ti.com ........................................................................................................................................................................................... SGLS193DECEMBER 2008  
TLV2262A ELECTRICAL CHARACTERISTICS  
VDD = 5 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
300  
950  
mV  
VIO  
Input offset voltage  
VDD± = ±2.5 V, VIC = 0, VO = 0, RS = 50 Ω  
Full range  
1500  
Temperature coefficient  
of input offset voltage  
αVIO  
VDD± = ±2.5 V, VIC = 0, VO = 0, RS = 50 Ω  
VDD± = ±2.5 V, VIC = 0, VO = 0, RS = 50 Ω  
25°C to 125°C  
25°C  
2
µV/°C  
Input offset voltage long-term  
drift(1)  
0.003  
0.5  
µV/mo  
25°C  
125°C  
25°C  
60  
pA  
IIO  
Input offset current  
Input bias current  
VDD± = ±2.5 V, VIC = 0, VO = 0, RS = 50 Ω  
VDD± = ±2.5 V, VIC = 0, VO = 0, RS = 50 Ω  
800  
1
60  
pA  
IIB  
125°C  
800  
0
–0.3  
25°C  
to 4 to 4.2  
Common-mode input voltage  
range  
VICR  
RS = 50 , | VIO | 5 mV  
V
0
Full range  
to 3.5  
IOH = –20 µA  
IOH = –100 µA  
25°C  
25°C  
4.99  
4.94  
4.85  
4.82  
4.7  
VOH  
High-level output voltage  
Low-level output voltage  
Full range  
25°C  
V
4.85  
IOH = –400 µA  
Full range  
25°C  
4.5  
IOL = 50 µA  
0.01  
0.09  
25°C  
0.15  
IOL = 500 µA  
VOL  
VIC = 2.5 V  
Full range  
25°C  
0.15  
0.3  
V
0.2  
IOL = 1 mA  
Full range  
25°C  
0.3  
80  
50  
170  
RL = 50 k(2)  
Large-signal differential  
voltage amplification  
AVD  
VIC = 2.5 V, VO = 1 V to 4 V  
Full range  
25°C  
V/mV  
RL = 1 M(2)  
550  
ri(d)  
ri(c)  
ci(c)  
zo  
Differential input resistance  
25°C  
1012  
Common-mode input  
resistance  
25°C  
25°C  
25°C  
1012  
Common-mode input  
capacitance  
f = 10 kHz  
8
pF  
Closed-loop output  
impedance  
f = 100 kHz, AV = 10  
240  
83  
25°C  
Full range  
25°C  
70  
70  
80  
80  
Common-mode rejection  
ratio  
CMRR  
kSVR  
IDD  
VIC = 0 to 2.7 V, VO = 2.5 V, RS = 50 Ω  
VDD = 4.4 V to 8 V, VIC = VDD/2, No load  
VO = 2.5 V, No load  
dB  
dB  
µA  
95  
Supply voltage rejection ratio  
(ΔVDD/ΔVIO  
)
Full range  
25°C  
400  
500  
500  
Supply current  
Full range  
(1) Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to  
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
(2) Referenced to 2.5 V  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
SGLS193DECEMBER 2008........................................................................................................................................................................................... www.ti.com  
TLV2262A OPERATING CHARACTERISTICS  
VDD = 5 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
25°C  
MIN  
0.35  
0.25  
TYP  
MAX  
UNIT  
VO = 0.5 V to 3.5 V, RL = 50 k(1)  
,
0.55  
SR  
Vn  
Slew rate at unity gain  
V/µs  
CL = 100 pF(1)  
Full range  
25°C  
f = 10 Hz  
40  
12  
Equivalent input noise  
voltage  
nV/Hz  
f = 1 kHz  
25°C  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
0.7  
Peak-to-peak equivalent  
input noise voltage  
VN(PP)  
In  
µV  
fA/Hz  
%
25°C  
1.3  
Equivalent input noise current  
25°C  
0.6  
AV = 1  
AV = 10  
f = 50 kHz, RL = 50 k(1), CL = 100 pF(1)  
25°C  
0.017  
0.03  
0.71  
Total harmonic distortion plus VO = 0.5 V to 2.5 V, f = 20 kHz,  
THD+N  
noise  
RL = 50 k(1)  
25°C  
Gain-bandwidth product  
25°C  
MHz  
kHz  
Maximum output-swing  
bandwidth  
VO(PP) = 2 V, AV = 1, RL = 50 k(1)  
,
BOM  
ts  
25°C  
185  
CL = 100 pF(1)  
To 0.1%  
25°C  
25°C  
25°C  
25°C  
6.4  
14.1  
56  
AV = –1, Step = 0.5 V to 2.5 V,  
Settling time  
µs  
RL = 50 k(1), CL = 100 pF(1)  
To 0.01%  
φm  
Phase margin at unity gain  
Gain margin  
RL = 50 k(1), CL = 100 pF(1)  
RL = 50 k(1), CL = 100 pF(1)  
°
Gm  
11  
dB  
(1) Referenced to 2.5 V  
8
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
www.ti.com ........................................................................................................................................................................................... SGLS193DECEMBER 2008  
TLV2264A ELECTRICAL CHARACTERISTICS  
VDD = 3 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
300  
950  
mV  
VIO  
Input offset voltage  
VDD± = ±1.5 V, VIC = 0, VO = 0, RS = 50 Ω  
Full range  
1500  
Temperature coefficient  
of input offset voltage  
αVIO  
VDD± = ±1.5 V, VIC = 0, VO = 0, RS = 50 Ω  
VDD± = ±1.5 V, VIC = 0, VO = 0, RS = 50 Ω  
25°C to 125°C  
25°C  
2
µV/°C  
Input offset voltage long-term  
drift(1)  
0.003  
0.5  
µV/mo  
25°C  
125°C  
25°C  
60  
pA  
IIO  
Input offset current  
Input bias current  
VDD± = ±1.5 V, VIC = 0, VO = 0, RS = 50 Ω  
VDD± = ±1.5 V, VIC = 0, VO = 0, RS = 50 Ω  
800  
1
60  
pA  
IIB  
125°C  
800  
0
–0.3  
25°C  
to 2 to 2.2  
Common-mode input voltage  
range  
VICR  
RS = 50 , | VIO | 5 mV  
V
0
Full range  
to 1.7  
IOH = –20 µA  
IOH = –100 µA  
25°C  
25°C  
2.99  
2.85  
2.82  
2.7  
VOH  
High-level output voltage  
Low-level output voltage  
Full range  
25°C  
V
IOH = –400 µA  
Full range  
25°C  
2.6  
IOL = 50 µA  
10  
25°C  
100  
150  
IOL = 500 µA  
VOL  
VIC = 1.5 V  
Full range  
25°C  
150  
300  
300  
mV  
200  
100  
IOL = 1 mA  
Full range  
25°C  
60  
25  
RL = 50 k(2)  
Large-signal differential  
voltage amplification  
AVD  
VIC = 1.5 V, VO = 1 V to 2 V  
Full range  
25°C  
V/mV  
RL = 1 M(2)  
100  
ri(d)  
ri(c)  
ci(c)  
zo  
Differential input resistance  
25°C  
1012  
Common-mode input  
resistance  
25°C  
25°C  
25°C  
1012  
Common-mode input  
capacitance  
f = 10 kHz  
8
pF  
Closed-loop output  
impedance  
f = 100 kHz, AV = 10  
270  
77  
25°C  
Full range  
25°C  
65  
60  
80  
80  
Common-mode rejection  
ratio  
CMRR  
kSVR  
IDD  
VIC = 0 to 1.7 V, VO = 1.5 V, RS = 50 Ω  
VDD = 2.7 V to 8 V, VIC = VDD/2, No load  
VO = 1.5 V, No load  
dB  
dB  
100  
0.8  
Supply voltage rejection ratio  
(ΔVDD/ΔVIO  
)
Full range  
25°C  
1
1
Supply current  
mA  
Full range  
(1) Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to  
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
(2) Referenced to 1.5 V  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
SGLS193DECEMBER 2008........................................................................................................................................................................................... www.ti.com  
TLV2264A OPERATING CHARACTERISTICS  
VDD = 3 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
25°C  
MIN  
0.35  
0.25  
TYP  
MAX  
UNIT  
VO = 0.5 V to 1.7 V, RL = 50 k(1)  
,
0.55  
SR  
Vn  
Slew rate at unity gain  
V/µs  
CL = 100 pF(1)  
Full range  
25°C  
f = 10 Hz  
43  
12  
Equivalent input noise  
voltage  
nV/Hz  
f = 1 kHz  
25°C  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
0.6  
Peak-to-peak equivalent  
input noise voltage  
VN(PP)  
In  
µV  
fA/Hz  
%
25°C  
1
Equivalent input noise current  
25°C  
0.6  
AV = 1  
AV = 10  
f = 1 kHz, RL = 50 k(1), CL = 100 pF(1)  
25°C  
0.03  
0.05  
0.67  
Total harmonic distortion plus VO = 0.5 V to 2.5 V, f = 20 kHz,  
THD+N  
noise  
RL = 50 k(1)  
25°C  
Gain-bandwidth product  
25°C  
MHz  
kHz  
Maximum output-swing  
bandwidth  
VO(PP) = 1 V, AV = 1, RL = 50 k(1)  
,
BOM  
ts  
25°C  
395  
CL = 100 pF(1)  
To 0.1%  
25°C  
25°C  
25°C  
25°C  
5.6  
12.5  
55  
AV = –1, Step = 1 V to 2 V,  
Settling time  
µs  
RL = 50 k(1), CL = 100 pF(1)  
To 0.01%  
φm  
Phase margin at unity gain  
Gain margin  
RL = 50 k(1), CL = 100 pF(1)  
RL = 50 k(1), CL = 100 pF(1)  
°
Gm  
11  
dB  
(1) Referenced to 1.5 V  
10  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
www.ti.com ........................................................................................................................................................................................... SGLS193DECEMBER 2008  
TLV2264A ELECTRICAL CHARACTERISTICS  
VDD = 5 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
300  
950  
mV  
VIO  
Input offset voltage  
VDD± = ±2.5 V, VIC = 0, VO = 0, RS = 50 Ω  
Full range  
1500  
Temperature coefficient  
of input offset voltage  
αVIO  
VDD± = ±2.5 V, VIC = 0, VO = 0, RS = 50 Ω  
VDD± = ±2.5 V, VIC = 0, VO = 0, RS = 50 Ω  
25°C to 125°C  
25°C  
2
µV/°C  
Input offset voltage long-term  
drift(1)  
0.003  
0.5  
µV/mo  
25°C  
125°C  
25°C  
60  
pA  
IIO  
Input offset current  
Input bias current  
VDD± = ±2.5 V, VIC = 0, VO = 0, RS = 50 Ω  
VDD± = ±2.5 V, VIC = 0, VO = 0, RS = 50 Ω  
800  
1
60  
pA  
IIB  
125°C  
800  
0
–0.3  
25°C  
to 4 to 4.2  
Common-mode input voltage  
range  
VICR  
RS = 50 , | VIO | 5 mV  
V
0
Full range  
to 3.5  
IOH = –20 µA  
IOH = –100 µA  
25°C  
25°C  
4.99  
4.94  
4.85  
4.82  
4.7  
VOH  
High-level output voltage  
Low-level output voltage  
Full range  
25°C  
V
4.85  
IOH = –400 µA  
Full range  
25°C  
4.5  
IOL = 50 µA  
0.01  
0.09  
25°C  
0.15  
IOL = 500 µA  
VOL  
VIC = 2.5 V  
Full range  
25°C  
0.15  
0.3  
V
0.2  
IOL = 1 mA  
Full range  
25°C  
0.3  
80  
50  
170  
RL = 50 k(2)  
Large-signal differential  
voltage amplification  
AVD  
VIC = 2.5 V, VO = 1 V to 4 V  
Full range  
25°C  
V/mV  
RL = 1 M(2)  
550  
ri(d)  
ri(c)  
ci(c)  
zo  
Differential input resistance  
25°C  
1012  
Common-mode input  
resistance  
25°C  
25°C  
25°C  
1012  
Common-mode input  
capacitance  
f = 10 kHz  
8
pF  
Closed-loop output  
impedance  
f = 100 kHz, AV = 10  
240  
83  
25°C  
Full range  
25°C  
70  
70  
80  
80  
Common-mode rejection  
ratio  
CMRR  
kSVR  
IDD  
VIC = 0 to 2.7 V, VO = 2.5 V, RS = 50 Ω  
VDD = 4.4 V to 8 V, VIC = VDD/2, No load  
VO = 2.5 V, No load  
dB  
dB  
95  
Supply voltage rejection ratio  
(ΔVDD/ΔVIO  
)
Full range  
25°C  
0.8  
1
1
Supply current  
mA  
Full range  
(1) Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to  
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
(2) Referenced to 2.5 V  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
SGLS193DECEMBER 2008........................................................................................................................................................................................... www.ti.com  
TLV2264A OPERATING CHARACTERISTICS  
VDD = 5 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
25°C  
MIN  
0.35  
0.25  
TYP  
MAX  
UNIT  
VO = 0.5 V to 3.5 V, RL = 50 k(1)  
,
0.55  
SR  
Vn  
Slew rate at unity gain  
V/µs  
CL = 100 pF(1)  
Full range  
25°C  
f = 10 Hz  
40  
12  
Equivalent input noise  
voltage  
nV/Hz  
f = 1 kHz  
25°C  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
0.7  
Peak-to-peak equivalent  
input noise voltage  
VN(PP)  
In  
µV  
fA/Hz  
%
25°C  
1.3  
Equivalent input noise current  
25°C  
0.6  
AV = 1  
AV = 10  
f = 50 kHz, RL = 50 k(1), CL = 100 pF(1)  
25°C  
0.017  
0.03  
0.71  
Total harmonic distortion plus VO = 0.5 V to 2.5 V, f = 20 kHz,  
THD+N  
noise  
RL = 50 k(1)  
25°C  
Gain-bandwidth product  
25°C  
MHz  
kHz  
Maximum output-swing  
bandwidth  
VO(PP) = 2 V, AV = 1, RL = 50 k(1)  
,
BOM  
ts  
25°C  
185  
CL = 100 pF(1)  
To 0.1%  
25°C  
25°C  
25°C  
25°C  
6.4  
14.1  
56  
AV = –1, Step = 0.5 V to 2.5 V,  
Settling time  
µs  
RL = 50 k(1), CL = 100 pF(1)  
To 0.01%  
φm  
Phase margin at unity gain  
Gain margin  
RL = 50 k(1), CL = 100 pF(1)  
RL = 50 k(1), CL = 100 pF(1)  
°
Gm  
11  
dB  
(1) Referenced to 2.5 V  
12  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
www.ti.com ........................................................................................................................................................................................... SGLS193DECEMBER 2008  
TYPICAL CHARACTERISTICS  
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are  
referenced to 1.5 V. Data at high and low temperatures are applicable only within the rated operating free-air  
temperature ranges of the various devices.  
Table of Graphs  
FIGURE  
Distribution  
2–5  
6, 7  
VIO  
Input offset voltage  
vs Common–mode voltage  
Distribution  
αVIO  
Input offset voltage temperature coefficient  
Input bias and input offset currents  
8–11  
12  
IIB/IIO  
vs Free–air temperature  
vs Supply voltage  
13  
VI  
Input voltage  
vs Free–air temperature  
vs High-level output current  
vs Low-level output current  
vs Frequency  
14  
VOH  
High-level output voltage  
15, 18  
16, 17, 19  
20  
VOL  
Low-level output voltage  
VO(PP)  
Maximum peak-to-peak output voltage  
vs Supply voltage  
21  
IOS  
Short-circuit output current  
vs Free-air temperature  
vs Output voltage  
22  
VID  
Differential input voltage  
23, 24  
25  
AVD  
Differential voltage amplification  
vs Load resistance  
vs Frequency  
26, 27  
28, 29  
30, 31  
32  
AVD  
zo  
Large-signal differential voltage amplification  
Output impedance  
vs Free-air temperature  
vs Frequency  
vs Frequency  
CMRR  
Common-mode rejection ratio  
vs Free-air temperature  
vs Frequency  
33  
34, 35  
36, 37  
38, 39  
40  
kSVR  
IDD  
Supply-voltage rejection ratio  
Supply current  
vs Free-air temperature  
vs Free-air temperature  
vs Load capacitance  
vs Free-air temperature  
SR  
Slew rate  
41  
VO  
VO  
VO  
VO  
Vn  
Inverting large-signal pulse response  
Voltage-follower large-signal pulse response  
Inverting small-signal pulse response  
Voltage-follower small-signal pulse response  
Equivalent input noise voltage  
42, 43  
44, 45  
46, 47  
48, 49  
50, 51  
52  
vs Frequency  
Input noise voltage  
Over a 10-second period  
vs Frequency  
Integrated noise voltage  
53  
THD+N  
Total harmonic distortion plus noise  
vs Frequency  
54  
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
55  
Gain-bandwidth product  
Phase margin  
56  
26, 27  
57  
φm  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
Gm  
B1  
Gain margin  
58  
Unity-gain bandwidth  
Overestimation of phase margin  
59  
60  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
SGLS193DECEMBER 2008........................................................................................................................................................................................... www.ti.com  
DISTRIBUTION OF TLV2262  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2262  
INPUT OFFSET VOLTAGE  
15  
12  
9
15  
12  
9
841 Amplifiers From 2 Wafer Lots  
841 Amplifiers From 2 Wafer Lots  
V
DD  
= ± 1.5 V  
V = ± 2.5 V  
±
DD  
±
T
A
= 25°C  
T = 25°C  
A
6
3
0
6
3
0
−1.6  
−0.8  
0
0.8  
1.6  
−1.6  
−0.8  
0
0.8  
1.6  
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 2.  
Figure 3.  
DISTRIBUTION OF TLV2264  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2264  
INPUT OFFSET VOLTAGE  
20  
16  
12  
20  
16  
12  
2272 Amplifiers From 2 Wafer Lots  
= ±1.5 V  
2272 Amplifiers From 2 Wafer Lots  
= ±2.5 V  
T = 25°C  
A
V
DD  
V
DD  
±
±
T
= 25°C  
A
8
4
0
8
4
0
−1.6  
−0.8  
0
0.8  
1.6  
−1.6  
−0.8  
0
0.8  
1.6  
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 4.  
Figure 5.  
14  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
www.ti.com ........................................................................................................................................................................................... SGLS193DECEMBER 2008  
INPUT OFFSET VOLTAGE  
vs  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
1
1
0.5  
0
V
R
T
= 3 V  
= 50   
= 25°C  
V
R
T
= 5 V  
= 50   
= 25°C  
DD  
DD  
S
S
A
A
0.5  
0
−0.5  
−0.5  
−1  
−1  
−1 −0.5  
−1  
0
1
2
3
4
5
0
0.5  
1
1.5  
2
2.5  
3
V
IC  
− Common-Mode Input Voltage − V  
V
IC  
− Common-Mode Input Voltage − V  
Figure 6.  
Figure 7.  
DISTRIBUTION OF TLV2262 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TLV2262 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
128 Amplifiers From 2 Wafer Lots  
128 Amplifiers From 2 Wafer Lots  
V
DD  
= ±1.5 V  
V = ±2.5 V  
±
DD  
±
P Package  
= 25°C to 85°C  
P Package  
= 25°C to 85°C  
T
T
A
A
0
0
−5 −4 −3 −2 −1  
0
1
2
3
4
5
−5 −4 −3 −2 −1  
0
1
2
3
4
5
α
− Temperature Coefficient − µV/°C  
α
− Temperature Coefficient − µV/°C  
VIO  
VIO  
Figure 8.  
Figure 9.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
SGLS193DECEMBER 2008........................................................................................................................................................................................... www.ti.com  
DISTRIBUTION OF TLV2264 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TLV2264 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
35  
30  
35  
30  
128 Amplifiers From  
2 Wafer Lots  
128 Amplifiers From  
2 Wafer Lots  
V
DD  
= ±1.5 V  
±
V
DD  
= ±2.5 V  
±
N Package  
= 25°C to 125°C  
N Package  
= 25°C to 125°C  
T
A
T
A
25  
20  
15  
10  
25  
20  
15  
10  
5
0
5
0
−5 −4 −3 −2 −1  
0
1
2
3
4
5
−5 −4 −3 −2 −1  
0
1
2
3
4
5
α
− Temperature Coefficient  
α
VIO  
− Temperature Coefficient  
VIO  
of Input Offset Voltage − µV/°C  
of Input Offset Voltage − µV/°C  
Figure 10.  
Figure 11.  
INPUT BIAS AND INPUT OFFSET CURRENTS  
INPUT VOLTAGE  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
35  
30  
2.5  
2
R
T
A
= 50  
= 25°C  
S
V
V
V
= ±2.5 V  
= 0  
= 0  
= 50 Ω  
±
DD  
IC  
O
1.5  
1
R
S
25  
I
IB  
0.5  
0
20  
15  
| V | 5 mV  
IO  
−0.5  
−1  
−1.5  
−2  
I
IO  
10  
5
0
−2.5  
25  
45  
T
65  
85  
105  
125  
1
1.5  
2
2.5  
3
3.5  
4
− Free-Air Temperature − °C  
|V  
DD  
| − Supply Voltage − V  
A
±
Figure 12.  
Figure 13.  
16  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
www.ti.com ........................................................................................................................................................................................... SGLS193DECEMBER 2008  
INPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
HIGH-LEVEL OUTPUT CURRENT  
4
3.5  
3
5
4
3
2
1
V
DD  
= 5 V  
V
DD  
= 3 V  
T
A
= 55°C  
2.5  
2
T
A
= 125°C  
| V | 5 mV  
IO  
T
A
= 25°C  
= 85°C  
1.5  
1
T
A
T
A
= 40°C  
0
0.5  
0
−1  
0
500  
1000  
1500  
2000  
−55 −35 −15  
5
25  
45  
65 85 105 125  
T
A
− Free-Air Temperature − °C  
| I | − High-Level Output Current − µA  
OH  
Figure 14.  
Figure 15.  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
1.4  
1.2  
1.2  
1
V
T
= 3 V  
= 25°C  
DD  
V
= 3 V  
DD  
= 1.5 V  
V
IC  
A
T
A
= 125°C  
V
IC  
= 0  
1
0.8  
0.6  
0.4  
0.2  
0
T
= 85°C  
A
0.8  
0.6  
V
IC  
= 0.75 V  
T
A
= 25°C  
V
IC  
= 1.5 V  
T
= − 55°C  
A
0.4  
T
A
= − 40°C  
0.2  
0
0
1
2
3
4
5
0
1
2
3
4
5
I
− Low-Level Output Current − mA  
OL  
I
− Low-Level Output Current − mA  
OL  
Figure 16.  
Figure 17.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
SGLS193DECEMBER 2008........................................................................................................................................................................................... www.ti.com  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
6
5
4
3
2
1.4  
1.2  
V
V
= 5 V  
= 2.5 V  
DD  
V
= 5 V  
DD  
IC  
T
A
= 55°C  
1
T
A
= 85°C  
T
= 40°C  
= 25°C  
0.8  
A
T
= 25°C  
A
T
0.6  
0.4  
A
T
= 125°C  
A
T
A
= 125°C  
T
A
= 55°C  
T
A
= 85°C  
T
A
= 40°C  
1
0
0.2  
0
0
500  
1000  
1500  
2000  
2500  
3000  
0
1
2
3
4
5
6
| I | − High-Level Output Current − µA  
OH  
I
− Low-Level Output Current − mA  
OL  
Figure 18.  
Figure 19.  
SHORT-CIRCUIT OUTPUT CURRENT  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
5
12  
10  
V
T
A
= V /2  
DD  
= 25°C  
IC  
R = 10 k  
V
DD  
= 5 V  
I
V
ID  
= 100 mV  
T
= 25°C  
A
4
3
8
6
V
DD  
= 3 V  
4
2
2
1
0
0
V
ID  
= 100 mV  
4
−2  
3
4
5
6
2
3
5
6
7
8
10  
10  
10  
10  
V
DD  
− Supply Voltage − V  
f − Frequency − Hz  
Figure 20.  
Figure 21.  
18  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
www.ti.com ........................................................................................................................................................................................... SGLS193DECEMBER 2008  
SHORT-CIRCUIT OUTPUT CURRENT  
DIFFERENTIAL INPUT VOLTAGE  
vs  
vs  
OUTPUT VOLTAGE  
FREE-AIR TEMPERATURE  
12  
10  
1000  
800  
V
V
= 2.5 V  
= 5 V  
O
V
= 3 V  
DD  
DD  
R = 50 k  
I
V
IC  
= 1.5 V  
= 25°C  
600  
V
ID  
= 100 mV  
T
A
8
6
4
2
0
400  
200  
0
−200  
−400  
−600  
−800  
V
ID  
= 100 mV  
−2  
−4  
−1000  
0
0.5  
1
1.5  
2
2.5  
3
−75 −50 −25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
V
O
− Output Voltage − V  
Figure 22.  
Figure 23.  
DIFFERENTIAL INPUT VOLTAGE  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
OUTPUT VOLTAGE  
LOAD RESISTANCE  
1000  
100  
10  
1000  
800  
V
T
= 2 V  
= 5 V  
O(PP)  
V
V
R
= 5 V  
DD  
= 25°C  
A
= 2.5 V  
= 50 k  
= 25°C  
IC  
L
600  
T
A
V
DD  
400  
200  
V
DD  
= 3 V  
0
−200  
−400  
−600  
−800  
1
10  
−1000  
3
4
5
6
10  
10  
10  
0
1
2
3
4
5
R − Load Resistance − kΩ  
L
V
O
− Output Voltage − V  
Figure 24.  
Figure 25.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
SGLS193DECEMBER 2008........................................................................................................................................................................................... www.ti.com  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE MARGIN  
AMPLIFICATION AND PHASE MARGIN  
vs  
vs  
FREQUENCY  
FREQUENCY  
80  
60  
80  
60  
180°  
135°  
180°  
135°  
V
= 3 V  
= 100 pF  
= 25°C  
V
= 5 V  
DD  
DD  
C
T
C = 100 pF  
T
A
L
L
= 25°C  
A
40  
20  
0
40  
90°  
45°  
90°  
45°  
Phase Margin  
Phase Margin  
20  
0
Gain  
Gain  
0°  
0°  
−20  
−45°  
−90°  
−20  
−45°  
−90°  
−40  
−40  
10  
3
4
5
6
7
10  
10  
10  
10  
10  
3
4
5
6
7
10  
10  
10  
10  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 26.  
Figure 27.  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1000  
100  
10  
10000  
1000  
V
= 5 V  
= 2.5 V  
= 1 V to 4 V  
DD  
V
IC  
V
O
R = 1 M  
L
R = 1 M  
L
R = 50 kΩ  
L
R = 50 kΩ  
L
R = 10 kΩ  
L
100  
10  
R = 10 kΩ  
L
V
= 3 V  
= 1.5 V  
= 0.5 V to 2.5 V  
DD  
V
IC  
V
O
−75 −50 −25  
0
25  
50  
75 100  
125  
−75 −50 −25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 28.  
Figure 29.  
20  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
www.ti.com ........................................................................................................................................................................................... SGLS193DECEMBER 2008  
OUTPUT IMPEDANCE  
vs  
OUTPUT IMPEDANCE  
vs  
FREQUENCY  
FREQUENCY  
1000  
100  
10  
1000  
100  
10  
V
T
= 3 V  
= 25°C  
V
T
= 5 V  
= 25°C  
DD  
DD  
A
A
A
= 100  
V
A
= 100  
= 10  
V
A
= 10  
= 1  
V
A
V
A
V
A
= 1  
V
1
1
0.1  
0.1  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
f− Frequency − Hz  
f− Frequency − Hz  
Figure 30.  
Figure 31.  
COMMON-MODE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
100  
80  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
V
V
= 5 V  
= 2.5 V  
T
A
= 25°C  
DD  
IC  
V
V
= 5 V  
= 1.5 V  
DD  
V
V
= 5 V  
DD  
IC  
60  
40  
20  
0
= 3 V  
DD  
4
5
6
1
2
3
10  
10  
10  
10  
10  
10  
− 75 − 50 − 25  
0
25 50  
75 100  
125  
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 32.  
Figure 33.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
SGLS193DECEMBER 2008........................................................................................................................................................................................... www.ti.com  
SUPPLY-VOLTAGE REJECTION RATIO  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
80  
100  
80  
V
T
A
= 3 V  
= 25°C  
V
= 5 V  
DD  
DD  
T = 25°C  
A
60  
60  
k
k
SVR+  
SVR+  
40  
40  
k
k
SVR−  
SVR−  
20  
0
20  
0
−20  
−20  
6
6
1
2
3
4
5
1
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 34.  
Figure 35.  
TLV2262  
TLV2264  
SUPPLY-VOLTAGE REJECTION RATIO  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
110  
105  
110  
105  
V
V
= 2.7 V to 8 V  
V
= 2.7 V to 8 V  
DD  
= V = V /2  
O DD  
DD  
= V = V /2  
V
IC  
IC  
O
DD  
100  
95  
100  
95  
90  
90  
−75 −50 −25  
0
25  
50  
75 100  
125  
−75  
−50 −25  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 36.  
Figure 37.  
22  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
www.ti.com ........................................................................................................................................................................................... SGLS193DECEMBER 2008  
TLV2262  
SUPPLY CURRENT  
vs  
TLV2264  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
600  
500  
1200  
1000  
V
V
= 5 V  
= 2.5 V  
DD  
V
= 5 V  
DD  
= 2.5 V  
O
V
O
400  
300  
800  
600  
V
V
= 3 V  
= 1.5 V  
DD  
V
= 3 V  
DD  
= 1.5 V  
O
V
O
200  
400  
−75 −50 −25  
0
25  
50  
75  
100 125  
−75 −50 −25  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature − °C  
Figure 38.  
T
A
− Free-Air Temperature − °C  
Figure 39.  
SLEW RATE  
vs  
SLEW RATE  
vs  
LOAD CAPACITANCE  
FREE-AIR TEMPERATURE  
1
0.8  
0.6  
1.2  
1
SR−  
SR−  
0.8  
0.6  
0.4  
0.2  
0
SR+  
SR+  
0.4  
V
= 5 V  
DD  
0.2  
0
R = 50 k  
C
A
V
= 5 V  
= 1  
= 25°C  
L
DD  
= 100 pF  
= 1  
A
T
L
V
V
A
1
2
3
4
−75 −50 −25  
0
25  
50  
75 100  
125  
10  
10  
10  
10  
T
A
− Free-Air Temperature − °C  
C − Load Capacitance − pF  
L
Figure 40.  
Figure 41.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
SGLS193DECEMBER 2008........................................................................................................................................................................................... www.ti.com  
INVERTING LARGE-SIGNAL PULSE  
RESPONSE  
INVERTING LARGE-SIGNAL PULSE  
RESPONSE  
3
2.5  
2
5
4
V
= 5 V  
V
= 3 V  
DD  
DD  
R = 50 k  
R = 50 k  
L
L
C
A
T
= 100 pF  
= 1  
= 25°C  
C
A
T
= 100 pF  
= 1  
= 25°C  
L
V
L
V
A
A
3
2
1.5  
1
1
0
0.5  
0
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
t − Time − µs  
t − Time − µs  
Figure 42.  
Figure 43.  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
5
4
3
2.5  
2
V
= 5 V  
DD  
V
= 3 V  
= 50 k  
= 100 pF  
= 1  
DD  
R = 50 k  
C
A
L
R
C
A
L
L
V
= 100 pF  
= 1  
= 25°C  
L
V
T
A
T
A
= 25°C  
3
2
1.5  
1
1
0
0.5  
0
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
t − Time − µs  
t − Time − µs  
Figure 44.  
Figure 45.  
24  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
www.ti.com ........................................................................................................................................................................................... SGLS193DECEMBER 2008  
INVERTING SMALL-SIGNAL  
PULSE RESPONSE  
INVERTING SMALL-SIGNAL  
PULSE RESPONSE  
0.95  
0.9  
2.65  
2.6  
V
= 3 V  
DD  
V
= 5 V  
DD  
R = 50 k  
C
A
L
R = 50 k  
C = 100 pF  
L
= 100 pF  
= − 1  
= 25°C  
L
V
L
A = 1  
V
T
A
T
A
= 25°C  
0.85  
0.8  
2.55  
2.5  
0.75  
0.7  
2.45  
2.4  
0.65  
0.6  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
t − Time − µs  
t − Time − µs  
Figure 46.  
Figure 47.  
VOLTAGE-FOLLOWER SMALL-SIGNAL  
PULSE RESPONSE  
VOLTAGE-FOLLOWER SMALL-SIGNAL  
PULSE RESPONSE  
0.95  
0.9  
2.65  
2.6  
V
= 3 V  
V
= 5 V  
DD  
DD  
R = 50 k  
C = 100 pF  
A
V
R = 50 k  
L
C = 100 pF  
L
A
V
L
L
= 1  
= 1  
T
A
= 25°C  
T
A
= 25°C  
0.85  
0.8  
2.55  
2.5  
0.75  
0.7  
2.45  
2.4  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
t − Time − µs  
t − Time − µs  
Figure 48.  
Figure 49.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
SGLS193DECEMBER 2008........................................................................................................................................................................................... www.ti.com  
EQUIVALENT INPUT NOISE VOLTAGE  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
60  
50  
60  
50  
V
R
T
A
= 3 V  
= 20  
= 25°C  
V
R
S
T
A
= 5 V  
= 20  
= 25°C  
DD  
DD  
S
40  
30  
40  
30  
20  
10  
0
20  
10  
0
1
2
3
4
1
2
3
4
10  
10  
10  
10  
10  
10  
10  
10  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 50.  
Figure 51.  
INPUT NOISE VOLTAGE OVER  
A 10-SECOND PERIOD  
INTEGRATED NOISE VOLTAGE  
vs  
1000  
750  
FREQUENCY  
100  
CalculatedUsing Ideal Pass-Band Filter  
Lower Frequency = 1 Hz  
T
A
= 25°C  
500  
250  
10  
0
−250  
−500  
−750  
−1000  
1
V
= 5 V  
DD  
f = 0.1 Hz  
to 10 Hz  
T
A
= 25°C  
0
2
4
6
8
10  
0.1  
1
2
3
4
5
t − Time − s  
1
10  
10  
10  
10  
10  
f − Frequency − Hz  
Figure 52.  
Figure 53.  
26  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
 
TLV2262A-Q1, TLV2264A-Q1  
www.ti.com ........................................................................................................................................................................................... SGLS193DECEMBER 2008  
GAIN-BANDWIDTH PRODUCT  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
−1  
10  
900  
860  
820  
A
= 100  
V
−2  
10  
A
A
= 10  
= 1  
V
V
780  
740  
700  
V
R
T
A
= 5 V  
= 50 k  
= 25°C  
DD  
L
−3  
10  
1
2
3
4
4
10  
10  
10  
10  
10  
0
1
2
3
4
5
6
7
8
V
DD  
− Supply Voltage − V  
f − Frequency − Hz  
Figure 54.  
Figure 55.  
GAIN-BANDWIDTH PRODUCT  
vs  
PHASE MARGIN  
vs  
FREE-AIR TEMPERATURE  
LOAD CAPACITANCE  
1200  
1000  
800  
75°  
V
= 5 V  
DD  
T
A
= 25°C  
f = 10 kHz  
C = 100 pF  
L
60°  
45°  
30°  
R
= 100 Ω  
null  
R
= 50 Ω  
null  
R
= 20 Ω  
= 10 Ω  
null  
R
null  
50 k  
600  
400  
V
15°  
0°  
DD +  
50 kΩ  
R
null  
V
+
I
C
L
R
null  
= 0  
V
/GND  
DD −  
2
3
4
−75 −50 −25  
0
25  
50  
75  
100  
125  
10  
10  
10  
10  
T
A
− Free-Air Temperature − °C  
C − Load Capacitance − pF  
L
Figure 56.  
Figure 57.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
SGLS193DECEMBER 2008........................................................................................................................................................................................... www.ti.com  
GAIN MARGIN  
vs  
UNITY-GAIN BANDWIDTH  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
1000  
20  
15  
10  
R
A
T
A
= 50 k  
= 1  
= 25°C  
L
V
T
A
= 25°C  
R
= 100 Ω  
null  
800  
600  
400  
200  
R
null  
= 50 Ω  
R
= 20 Ω  
null  
5
0
R
null  
= 10 Ω  
R
3
= 0  
null  
2
3
4
10  
10  
10  
10  
2
4
10  
10  
10  
10  
C − Load Capacitance − pF  
L
C − Load Capacitance − pF  
L
Figure 58.  
Figure 59.  
OVERESTIMATION OF PHASE MARGIN  
vs  
LOAD CAPACITANCE  
14°  
12°  
10°  
T
A
= 25°C  
R
null  
= 100 Ω  
8°  
6°  
4°  
2°  
0
R
= 50 Ω  
null  
R
null  
= 10 Ω  
R
null  
= 20 Ω  
2
3
4
10  
10  
10  
10  
C − Load Capacitance − pF  
L
NOTE: See application information.  
Figure 60.  
28  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
 
TLV2262A-Q1, TLV2264A-Q1  
www.ti.com ........................................................................................................................................................................................... SGLS193DECEMBER 2008  
APPLICATION INFORMATION  
Driving Large Capacitive Loads  
The TLV226x is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 51 and  
Figure 52 illustrate its ability to drive loads greater than 400 pF while maintaining good gain and phase margins  
(Rnull = 0).  
A smaller series resistor (Rnull) at the output of the device (see Figure 61) improves the gain and phase margins  
when driving large capacitive loads. Figure 51 and Figure 52 show the effects of adding series resistances of 10  
, 20 , 50 , and 100 . The addition of this series resistor has two effects: the first is that it adds a zero to the  
transfer function and the second is that it reduces the frequency of the pole associated with the output load in the  
transfer function.  
The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To  
calculate the improvement in phase margin, Equation 1 can be used.  
–1  
ǒ2 × π × UGBW × R  
LǓ  
∆θ  
+ tan  
× C  
m1  
null  
Where :  
∆θ  
+ improvement in phase margin  
m1  
UGBW + unity-gain bandwidth frequency  
R
+ output series resistance  
+ load capacitance  
null  
C
L
(1)  
The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 53). To use  
Equation 1, UGBW must be approximated from Figure 53.  
Using Equation 1 alone overestimates the improvement in phase margin as illustrated in Figure 60. The  
overestimation is caused by the decrease in the frequency of the pole associated with the load, providing  
additional phase shift and reducing the overall improvement in phase margin. The pole associated with the load  
is reduced by the factor calculated in Equation 2.  
1
F +  
1 ) g × R  
m
null  
Where :  
F + factor reducing frequency of pole  
–3  
g
+ small-signal output transconductance (typically 4.83 × 10  
+ output series resistance  
mhos)  
m
R
null  
(2)  
For the TLV226x, the pole associated with the load is typically 7 MHz with 100-pF load capacitance. This value  
varies inversely with CL: at CL = 10 pF, use 70 MHz, at CL = 1000 pF, use 700 kHz, and so on.  
Reducing the pole associated with the load introduces phase shift, thereby reducing phase margin. This results  
in an error in the increase in phase margin expected by considering the zero alone (see Equation 1). Equation 3  
approximates the reduction in phase margin due to the movement of the pole associated with the load. The  
result of this equation can be subtracted from the result of the Equation 1 to better approximate the improvement  
in phase margin.  
–1ȱUGBW  
ȳ
UGBW  
–1  
ǒ Ǔ  
∆θ  
+ tan  
– tan  
2 ȴ  
ȧ
ȧ
Ǔ
m2  
P
ǒF×P  
2
Ȳ
Where :  
∆θ  
+ reduction in phase margin  
m2  
UGBW + unity-gain bandwidth frequency  
F + factor from equation (2)  
P
+ unadjusted pole (70 MHz @ 10 pF, 7 MHz @100 pF, etc.)  
2
(3)  
Using these equations with Figure 60 and Figure 61 enables the designer to choose the appropriate output  
series resistance to optimize the design of circuits driving large capacitive loads.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
 
 
 
TLV2262A-Q1, TLV2264A-Q1  
SGLS193DECEMBER 2008........................................................................................................................................................................................... www.ti.com  
50 k  
V
DD+  
50 kΩ  
R
null  
V
I
+
C
L
V
DD−  
/GND  
Figure 61. Series-Resistance Circuit  
Macromodel Information  
Macromodel information provided was derived using Microsim Parts™, the model generation software used with  
Microsim PSpice™. The Boyle macromodel(1) and subcircuit in Figure 62 are generated using the TLV226x  
typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the  
following key parameters can be generated to a tolerance of 20% (in most cases):  
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
Quiescent power dissipation  
Input bias current  
Open-loop voltage amplification  
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
(1) G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers," IEEE  
Journal of Solid-State Circuits, SC-9, 353 (1974).  
30  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
TLV2262A-Q1, TLV2264A-Q1  
www.ti.com ........................................................................................................................................................................................... SGLS193DECEMBER 2008  
99  
DLN  
3
EGND  
+
V
CC+  
92  
9
FB  
+
91  
90  
RSS  
ISS  
RO2  
+
+
VB  
DLP  
RP  
2
VLP  
VLN  
HLIM  
+
10  
+
VC  
IN −  
IN+  
R2  
C2  
J1  
J2  
7
DP  
6
53  
+
1
VLIM  
11  
DC  
12  
RD2  
GA  
GCM  
8
C1  
RD1  
60  
RO1  
+
DE  
VAD  
5
54  
V
CC−  
+
4
VE  
OUT  
.SUBCKT TLV226x 1 2 3 4 5  
RD1  
RD2  
R01  
R02  
RP  
RSS  
VAD  
VB  
VC  
VE  
60  
60  
8
11  
12  
5
15.92E3  
15.92E3  
135  
C1  
11  
6
12  
7
5.5E−12  
20.00E−12  
DX  
C2  
DC  
5
53  
5
7
99  
4
135  
DE  
54  
90  
92  
4
DX  
3
15.87E3  
18.18E6  
−.5  
DLP  
DLN  
DP  
91  
90  
3
DX  
10  
60  
9
99  
4
DX  
DX  
0
DC 0  
EGND  
FB  
99  
7
0
99  
POLY (2) (3,0) (4,0) 0 .5 .5  
POLY (5) VB VC VE VLP  
3
53  
4
DC .615  
DC .615  
DC 0  
54  
7
+ VLN 0 8.84E6 −10E6 10E6 10E6 −10E6  
VLIM  
VLP  
VLN  
8
0
GA  
6
0
6
11  
10  
12 62.83E−6  
99 12.34E−9  
91  
0
DC 1  
DC 5.1  
GCM  
ISS  
HLIM  
J1  
0
92  
3
10  
0
DC 11.05E−6  
VLIM 1K  
10 JX  
.MODEL DX D (IS=800.0E−18)  
90  
11  
12  
6
.MODEL JX PJF (IS=500.0E−15 BETA=325E−6  
2
1
+ VTO=−.08)  
.ENDS  
J2  
10 JX  
R2  
9
100.0E3  
Figure 62. Boyle Macromodel and Subcircuit  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): TLV2262A-Q1 TLV2264A-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Mar-2009  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TLV2262AQDRQ1  
OBSOLETE  
ACTIVE  
SOIC  
D
8
8
TBD  
Call TI  
Call TI  
TLV2262AQPWRQ1  
TSSOP  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2262QDRQ1  
TLV2264AQDRQ1  
TLV2264AQPWRQ1  
OBSOLETE  
OBSOLETE  
ACTIVE  
SOIC  
SOIC  
D
D
8
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
14  
14  
TSSOP  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2264QDRQ1  
OBSOLETE  
SOIC  
D
14  
TBD  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV2262-Q1, TLV2262A-Q1, TLV2264-Q1, TLV2264A-Q1 :  
Catalog: TLV2262, TLV2262A, TLV2264, TLV2264A  
Military: TLV2262M, TLV2262AM, TLV2264M, TLV2264AM  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Military - QML certified for Military and Defense Applications  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

TLV2264AID

Advanced LinCMOSE RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLV2264AID

ADVANCED LINCOMS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
STMICROELECTR

TLV2264AIDG4

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLV2264AIDG4

ADVANCED LINCOMS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
STMICROELECTR

TLV2264AIDR

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLV2264AIDR

ADVANCED LINCOMS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
STMICROELECTR

TLV2264AIDR

QUAD OP-AMP, 1500uV OFFSET-MAX, 0.67MHz BAND WIDTH, PDSO14, GREEN, PLASTIC, SOIC-14
ROCHESTER

TLV2264AIDRG4

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLV2264AIDRG4

ADVANCED LINCOMS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
STMICROELECTR

TLV2264AIN

Advanced LinCMOSE RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

TLV2264AIN

ADVANCED LINCOMS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
STMICROELECTR

TLV2264AINE4

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI