TLV2304IPWR [TI]

Op Amp (2) + Open Collector Comparator (2) Combo IC 14-TSSOP -40 to 125;
TLV2304IPWR
型号: TLV2304IPWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Op Amp (2) + Open Collector Comparator (2) Combo IC 14-TSSOP -40 to 125

比较器 运算放大器
文件: 总22页 (文件大小:397K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
Micro-Power Operation . . . 1.4 µA  
Input Common-Mode Range Exceeds the  
Rails . . . –0.1 V to V + 5 V  
CC  
+
Supply Voltage Range . . . 2.5 V to 16 V  
Rail-to-Rail Input/Output (Amplifier)  
Reverse Battery Protection Up to 18 V  
SUPPLY CURRENT  
vs  
Gain Bandwidth Product . . . 5.5 kHz  
(Amplifier)  
SUPPLY VOLTAGE  
2.5  
2.25  
Open-Drain CMOS Output Stage  
(Comparator)  
2
1.75  
Specified Temperature Range  
1.5  
– T = –40°C to 125°C . . . Industrial Grade  
A
1.25  
Ultrasmall Packaging  
– 8-Pin MSOP (TLV2302)  
1
Op Amp  
V = V /2  
I
CC  
0.75  
Comparator  
V
R
T
A
= –1 V  
= 1M(pullup to V  
= 25°C  
Universal Op-Amp EVM (See the SLOU060  
for More Information)  
ID  
p
0.5  
)
CC  
0.25  
0
2
4
6
8
10 12 14  
0
16  
V
– Supply Voltage – V  
CC  
The TLV230x combines sub-micropower operational amplifier and comparator into a single package that  
produces excellent micropower signal conditioning with only 1.4 µA of supply current. This combination gives  
the designer more board space and reduces part counts in systems that require an operational amplifier and  
comparator. The low supply current makes it an ideal choice for battery-powered portable applications where  
quiescent current is the primary concern. Reverse battery protection guards the amplifier from an over-current  
condition due to improper battery installation. For harsh environments, the inputs can be taken 5 V above the  
positive supply rail without damage to the device.  
The TLV230x’s low supply current is coupled with extremely low input bias currents enabling them to be used  
with mega-ohm resistors making them ideal for portable, long active life, applications. DC accuracy is ensured  
with a low typical offset voltage as low as 390 µV, CMRR of 90 dB and minimum open loop gain of 130 V/mV  
at 2.7 V.  
The maximum recommended supply voltage is as high as 16 V and ensured operation down to 2.5 V, with  
electrical characteristics specified at 2.7 V, 5 V, and 15 V. The 2.5-V operation makes it compatible with Li-Ion  
battery-powered systems and many micropower microcontrollers available today including TI’s MSP430.  
All members are available in PDIP and SOIC with the duals (one op-amp and one comparator) in the small  
MSOP package, and the quads (two operational amplifiers and two comparators) in the TSSOP package.  
A SELECTION OF OUTPUT COMPARATORS  
V
(V)  
V
I
/Ch  
GBW  
(kHz)  
SR  
(V/µs)  
t
t
t
f
RAIL-TO-  
RAIL  
OUTPUT  
STAGE  
CC  
IO  
CC  
(µA)  
PLH  
PHL  
DEVICE  
(µV)  
390  
390  
390  
600  
250  
250  
(µs)  
55  
55  
(µs)  
30  
30  
(µs)  
TLV230x  
TLV270x  
TLV240x  
TLV224x  
TLV340x  
TLV370x  
2.5 – 16  
2.5 – 16  
2.5 – 16  
2.5 – 12  
2.5 – 16  
2.5 – 16  
1.4  
1.4  
5.5  
5.5  
5.5  
5.5  
0.0025  
0.0025  
0.0025  
0.002  
5
I/O  
I/O  
I/O  
I/O  
I
OD  
PP  
5
880  
1
5
0.47  
0.47  
55  
55  
30  
30  
OD  
PP  
5
I
All specifications are typical values measured at 5 V.  
is specified as one op-amp and one comparator.  
I
CC  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
TLV2302 AVAILABLE OPTIONS  
PACKAGED DEVICES  
MSOP  
V
max  
IO  
T
A
SMALL OUTLINE  
(D)  
PLASTIC DIP  
(P)  
AT 25°C  
MSOP  
(DGK)  
SYMBOLS  
-40°C to 125°C  
4000 µV  
TLV2302ID  
TLV2302IDGK  
xxTIAQG  
TLV2302IP  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g.,  
TLV2302IDR).  
TLV2304 AVAILABLE OPTIONS  
PACKAGED DEVICES  
V
IO  
max  
T
A
SMALL OUTLINE  
(D)  
TSSOP  
(PW)  
PLASTIC DIP  
(N)  
AT 25°C  
40°C to 125°C  
4000 µV  
TLV2304ID  
TLV2304IPW  
TLV2304IN  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part  
number (e.g., TLV2304IDR).  
TLV230x PACKAGE PINOUTS  
TLV2304  
D, N, OR PW PACKAGE  
(TOP VIEW)  
TLV2302  
D, DGK, OR P PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
C1OUT  
C1IN–  
C1IN+  
A2OUT  
A2IN–  
A2IN+  
GND  
AOUT  
AIN–  
AIN+  
GND  
V
CC  
1
2
3
4
8
7
6
5
COUT  
CIN–  
CIN+  
V
CC  
C2IN+  
C2IN–  
C2OUT  
A1IN+  
A1IN–  
A1OUT  
8
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Differential input voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 V  
CC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
ID  
CC  
Input voltage range, V (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to V  
Input current range, I (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA  
Output current range, I  
+ 5 V  
I
CC  
I
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA  
O
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 125°C  
A
Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to GND  
2. Input voltage range is limited to 20 V max or V + 5 V, whichever is smaller.  
CC  
DISSIPATION RATING TABLE  
25°C  
Θ
Θ
T
A
T = 125°C  
A
POWER RATING  
JC  
JA  
PACKAGE  
POWER RATING  
(°C/W)  
(°C/W)  
D (8)  
38.3  
176  
710 mW  
142 mW  
D (14)  
26.9  
122.3  
1022 mW  
204.4 mW  
DGK (8)  
N (14)  
54.2  
32  
259.9  
78  
481 mW  
1600 mW  
1200 mW  
720 mW  
96.2 mW  
320.5 mW  
240.4 mW  
144 mW  
P (8)  
41  
104  
PW (14)  
29.3  
173.6  
recommended operating conditions  
MIN  
MAX  
16  
UNIT  
Single supply  
2.5  
±1.25  
–0.1  
Supply voltage, V  
V
CC  
Split supply  
±8  
Common-mode input voltage range, V  
ICR  
Amplifier and comparator  
V
+5  
CC  
125  
V
Operating free-air temperature, T  
40  
°C  
A
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
electrical characteristics at recommended operating conditions, V  
otherwise noted)  
= 2.7, 5 V, and 15 V (unless  
CC  
amplifier dc performance  
PARAMETER  
Input offset voltage  
Offset voltage draft  
TEST CONDITIONS  
= V /2 V,  
= V /2 V,  
CC  
= 50 Ω  
MIN  
TYP  
MAX  
4000  
6000  
T
UNIT  
µV  
A
25°C  
Full range  
25°C  
390  
V
V
R
O
IC  
S
CC  
V
IO  
α
3
µV/°C  
VIO  
25°C  
55  
52  
73  
V
V
V
= 2.7 V  
= 5 V  
CC  
CC  
CC  
Full range  
25°C  
60  
80  
90  
V
R
= 0 to V  
= 50 Ω  
,
IC  
S
CC  
CMRR Common-mode rejection ratio  
dB  
Full range  
25°C  
55  
66  
= 15 V  
= 500 kΩ  
Full range  
25°C  
60  
130  
30  
400  
1000  
1400  
120  
120  
V
CC  
V
CC  
V
CC  
= 2.7 V,  
= 5 V,  
V
V
= 1.5 V,  
= 3 V,  
R
L
O(pp)  
O(pp)  
Full range  
25°C  
300  
100  
400  
120  
90  
Large-signal differential voltage  
amplification  
A
VD  
R
= 500 kΩ  
V/mV  
L
Full range  
25°C  
= 15 V,  
V
= 8 V, R = 500 kΩ  
O(pp) L  
Full range  
25°C  
V
= 2.7 to 5 V  
= 5 to 15 V  
CC  
CC  
Full range  
25°C  
85  
Power supply rejection ratio  
V
IC  
= V /2 V, No load  
CC  
PSRR  
dB  
(V /V  
CC IO  
)
94  
V
Full range  
90  
Full range is –40°C to 125°C.  
amplifier and comparator input characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
250  
300  
500  
500  
550  
1000  
T
A
UNIT  
25°C  
0 to 70°C  
Full range  
25°C  
25  
I
Input offset current  
pA  
IO  
IB  
V
V
R
R
= V /2 V,  
CC  
= V /2 V,  
O
IC  
p
S
CC  
= 1 M(pullup to V ),  
100  
CC  
= 50 Ω  
I
Input bias current  
0 to 70°C  
Full range  
25°C  
pA  
r
Differential input resistance  
300  
3
MΩ  
i(d)  
Common-mode input  
capacitance  
C
f = 100 kHz  
25°C  
pF  
i(c)  
Full range is –40°C to 125°C.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
electrical characteristics at recommended operating conditions, V  
otherwise noted) (continued)  
= 2.7, 5 V, and 15 V (unless  
CC  
amplifier output characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
2.55  
2.5  
TYP  
MAX  
T
A
UNIT  
25°C  
Full range  
25°C  
2.65  
V
CC  
V
CC  
V
CC  
= 2.7 V  
= 5 V  
4.85  
4.8  
4.95  
V
I
= V /2,  
CC  
= –50 µA  
IC  
OH  
V
V
High-level output voltage  
V
OH  
Full range  
25°C  
14.85 14.95  
14.8  
= 15 V  
Full range  
25°C  
180  
260  
300  
Low-level output voltage  
Output current  
V
IC  
= V /2,  
CC  
I
= 50 µA  
OL  
mV  
OL  
Full range  
25°C  
I
O
V
O
= 0.5 V from rail  
±200  
µA  
Full range is –40°C to 125°C.  
amplifier dynamic performance  
PARAMETER  
TEST CONDITIONS  
T
MIN  
TYP  
5.5  
2.5  
60°  
15  
MAX  
UNIT  
kHz  
A
UGBW Unity gain bandwidth  
R
= 500 k,  
C
C
= 100 pF  
= 100 pF  
25°C  
25°C  
L
L
L
SR  
Slew rate at unity gain  
Phase margin  
V
O(pp)  
= 0.8 V,  
R
C
= 500 k,  
V/ms  
L
L
φM  
R
= 500 k,  
= 100 pF  
25°C  
25°C  
L
Gain margin  
dB  
ms  
V
V
A
V
= 2.7 or 5 V,  
CC  
(STEP)PP  
= 1 V,  
C
R
= 100 pF,  
= 100 kΩ  
0.1%  
1.84  
L
L
= –1,  
t
s
Settling time  
V
V
A
V
= 15 V,  
CC  
(STEP)PP  
= –1,  
0.1%  
6.1  
32  
= 1 V,  
C
R
= 100 pF,  
= 100 kΩ  
L
L
0.01%  
f = 0.1 to 10 Hz  
f = 100 Hz  
5.3  
µV  
pp  
Equivalent input noise  
voltage  
V
25°C  
25°C  
n
500  
nV/Hz  
Equivalent input noise  
current  
I
n
f = 100 Hz  
8
fA/Hz  
supply current  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.4  
MAX  
T
A
UNIT  
µA  
V
= 2.7 V or 5 V  
25°C  
25°C  
CC  
CC  
Supply current (one op-amp and one  
comparator)  
R
= No pullup,  
Output state high  
p
I
1.4  
1.7  
2.3  
CC  
V
= 15 V  
Full range  
25°C  
Reverse supply current  
V
CC  
= –18 V, V = 0 V, V = open  
50  
nA  
I
O
Full range is –40°C to 125°C.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
electrical characteristics at recommended operating conditions, V  
otherwise noted) (continued)  
= 2.7, 5 V, and 15 V (unless  
CC  
comparator dc performance  
T
PARAMETER  
Input offset voltage  
Offset voltage drift  
MIN  
TYP MAX  
UNIT  
µV  
TEST CONDITIONS  
A
25°C  
Full range  
25°C  
250 5000  
V
IO  
V
R
= V /2,  
CC  
R = 50 ,  
S
IC  
p
7000  
= 1 M(pullup to V  
)
CC  
α
3
µV/°C  
VIO  
25°C  
55  
72  
V
CC  
V
CC  
V
CC  
= 2.7 V  
= 5 V  
Full range  
25°C  
50  
60  
55  
65  
60  
76  
88  
V
R
= 0 to V  
= 50 Ω  
,
CC  
IC  
S
CMRR Common-mode rejection ratio  
dB  
Full range  
25°C  
= 15 V  
Full range  
Large-signal differential voltage  
amplification  
A
R
= 1 M(pullup to V )  
CC  
25°C  
1000  
100  
V/mV  
dB  
VD  
p
25°C  
Full range  
25°C  
75  
70  
85  
80  
V
= 2.7 to 5 V  
= 5 to 15 V  
CC  
CC  
Power supply rejection ratio  
V
IC  
= V /2 V,  
CC  
PSRR  
(V /V  
CC IO  
)
No load  
105  
V
Full range  
Full range is –40°C to 125°C.  
comparator output characteristics  
PARAMETER  
T
A
MIN  
TYP MAX  
UNIT  
TEST CONDITIONS  
High-impedance output leakage  
current  
I
V
= V /2,  
CC  
V
= V  
,
V = 1 V  
ID  
25°C  
50  
pA  
OZ  
IC  
IC  
O
CC  
25°C  
80  
200  
300  
V
Low-level output voltage  
V
= V /2,  
CC  
I
= 50 µA, V = –1 V  
ID  
mV  
OL  
OL  
Full range  
Full range is –40°C to 125°C.  
switching characteristics at recommended operating conditions, V  
otherwise noted)  
= 2.7 V, 5 V, 15 V (unless  
CC  
PARAMETER  
TEST CONDITIONS  
Overdrive = 2 mV  
T
MIN  
TYP  
175  
55  
MAX  
UNIT  
A
Propagation delay time,  
low-to-high-level output  
t
Overdrive = 10 mV  
Overdrive = 50 mV  
Overdrive = 2 mV  
Overdrive = 10 mV  
Overdrive = 50 mV  
25°C  
(PLH)  
f = 10 kHz,  
= 1 V,  
25  
V
STEP  
µs  
C
R
= 10 pF,  
300  
60  
L
p
Propagation delay time,  
high-to-low-level output  
= 1 M(pullup to V  
)
CC  
t
t
25°C  
25°C  
(PHL)  
30  
Fall time  
C
= 10 pF  
5
µs  
f
L
NOTE: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
Input offset voltage  
Input bias current  
vs Common-mode input voltage  
vs Free-air temperature  
1, 2  
3, 5, 7  
4, 6  
3, 5, 7  
4, 6  
8
IO  
I
I
I
IB  
vs Common-mode input voltage  
vs Free-air temperature  
Input offset current  
Supply current  
IO  
vs Common-mode input voltage  
vs Supply voltage  
CC  
vs Free-air temperature  
9
Amplifier  
CMRR  
Common-mode rejection ratio  
High-level output voltage  
Low-level output voltage  
Output voltage, peak-to-peak  
Power supply rejection ratio  
Voltage noise over a 10 Second Period  
Phase margin  
vs Frequency  
10  
11, 13  
12, 14  
15  
V
V
V
vs High-level output current  
vs Low-level output current  
vs Frequency  
OH  
OL  
O(PP)  
PSRR  
vs Frequency  
16  
17  
φ
m
vs Capacitive load  
vs Frequency  
18  
A
VD  
Differential voltage gain  
19  
Phase  
vs Frequency  
19  
Gain bandwidth product  
vs Supply voltage  
vs Free-air temperature  
20  
SR  
Slew rate  
21  
Large signal follower pulse response  
Small signal follower pulse response  
Large signal inverting pulse response  
Small signal inverting pulse response  
22  
23  
24  
25  
Comparator  
V
OL  
Low-level output voltage  
vs Low-level output current  
vs Free-air temperature  
vs Supply voltage  
26, 27  
28  
Open collector leakage current  
Output fall time  
29  
Low-to-high level output response for various input overdrives  
High-to-low level output response for various input overdrives  
30, 31  
32, 33  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
AMPLIFIER AND COMPARATOR TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT  
VOLTAGE  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT  
VOLTAGE  
INPUT BIAS / OFFSET CURRENT  
vs  
FREE-AIR TEMPERATURE  
600  
500  
400  
300  
200  
100  
0
100  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
V
T
= 2.7 V  
V
V
= 2.7 V  
CC  
= 25°C  
CC  
= 1.35 V  
A
IC  
–100  
–200  
–300  
–400  
I
IO  
I
IB  
–100  
–200  
V
T
A
= 5 V  
CC  
= 25 °C  
–200  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
0.4 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2  
–0.1  
––00.2.10 0.20 0.60 1.00 1.40 1.80 2.20 2.60 2.9  
V
– Common-Mode Input Voltage – V  
T
A
– Free-Air Temperature – °C  
V
– Common-Mode Input Voltage – V  
ICR  
ICR  
Figure 1  
Figure 2  
Figure 3  
INPUT BIAS/OFFSET CURRENT  
INPUT BIAS/OFFSET CURRENT  
INPUT BIAS/OFFSET CURRENT  
vs  
vs  
vs  
COMMON-MODE INPUT  
VOLTAGE  
COMMON-MODE INPUT  
VOLTAGE  
FREE-AIR TEMPERATURE  
400  
350  
300  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
200  
150  
100  
50  
V
V
= 5 V  
V
T
= 2.7 V  
V
T
= 5 V  
CC  
= 2.5 V  
CC  
= 25 °C  
CC  
= 25 °C  
IC  
A
A
I
IO  
0
I
I
IO  
I
IO  
–50  
–100  
–150  
0
I
IB  
–50  
–100  
–150  
I
IB  
–100  
–200  
IB  
.0.2 0.6 1.0 1.4 1.8 2.2 2.6 2.9  
–0.1  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
–0.2 0.4 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2  
V
– Common Mode Input Voltage – V  
T
A
– Free-Air Temperature – °C  
V – Common Mode Input Voltage – V  
ICR  
ICR  
Figure 4  
Figure 5  
Figure 6  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
INPUT BIAS/OFFSET CURRENT  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
2
1200  
1000  
800  
2.5  
T = 25°C  
A
V
= 15 V  
CC  
2.25  
T
= 125°C  
A
T
1.75  
2
1.5  
= 70°C  
A
1.75  
1.25  
1.5  
V
= 2.7, 5, & 15 V  
I
CC  
Op Amp  
V = V /2  
IB  
600  
1
1.25  
I
CC  
= 1  
400  
200  
T
= 0°C  
A
A
1
V
0.75  
0.5  
0.25  
0
Comparator  
V
R
T
= –40°C  
0.75  
A
= –1 V  
= 1M(pullup to V  
ID  
p
Op Amp, V = V /2  
CC  
Comparator, V = –1 V  
= 1M(pullup to V )  
CC  
I
IO  
I
)
0.5  
CC  
0
ID  
0.25  
R
p
0
–200  
–40 –25 –10  
2
4
6
8
10 12 14  
0
16  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
5 20 35 50 65 80 95 110 125  
V
– Supply Voltage – V  
T
– Free-Air Temperature – °C  
T
– Free-Air Temperature – °C  
CC  
A
A
Figure 8  
Figure 7  
Figure 9  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
AMPLIFIER TYPICAL CHARACTERISTICS  
COMMON-MODE REJECTION RATIO  
HIGH-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
FREQUENCY  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
120  
100  
80  
60  
40  
20  
0
V
T
= 2.7 V  
CC  
V
= 2.7 V  
CC  
=25 °C  
= 0 °C  
= –40°C  
A
T
A
T
A
T
= –40°C  
A
T
T
T
T
= –0°C  
A
A
A
A
= 25 °C  
= 70 °C  
= 125 °C  
T
T
= 70 °C  
= 125 °C  
A
A
0
50  
100  
150  
200  
0
50  
100  
150  
200  
1
10  
100  
1k  
10k  
f – Frequency – Hz  
I
– High-Level Output Current – µA  
I
– Low-Level Output Current – µA  
OH  
OL  
Figure 10  
Figure 11  
Figure 12  
OUTPUT VOLTAGE  
PEAK-TO-PEAK  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
FREQUENCY  
5.0  
4.5  
4.0  
3.5  
3.0  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
16  
14  
12  
10  
8
V
= 5 V  
CC  
V
= 15 V  
V
= 5 V  
CC  
CC  
T
= –40°C  
A
T
= 0 °C  
= –40°C  
A
T
A
T
= –0°C  
A
T
T
T
= 25 °C  
= 70 °C  
= 125 °C  
A
A
A
T
= 25 °C  
= 70 °C  
= 125 °C  
6
A
T
A
R
C
T
A
= 100 kΩ  
= 100 pF  
= 25°C  
L
L
4
V
= 5 V  
CC  
T
A
2
V
= 2.7 V  
CC  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
10  
100  
1k  
I
– High-Level Output Current – µA  
I
– Low-Level Output Current – µA  
f – Frequency – Hz  
OH  
OL  
Figure 13  
Figure 14  
Figure 15  
POWER SUPPLY REJECTION RATIO  
PHASE MARGIN  
vs  
CAPACITIVE LOAD  
vs  
VOLTAGE NOISE  
OVER A 10 SECOND PERIOD  
FREQUENCY  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4
3
V
= 5 V  
V
T
= 2.7, 5, & 15 V  
CC  
f = 0.1 Hz to 10 Hz  
= 25°C  
CC  
= 25°C  
A
T
A
2
1
80  
0
70  
–1  
–2  
–3  
V
= 2.7, 5, & 15 V  
60  
CC  
R = 500 kΩ  
L
50  
T = 25°C  
A
40  
10  
100  
1k  
10k  
–4  
0
10  
100  
1k  
10k  
1
2
3
4
5
6
7
8
9
10  
f – Frequency – Hz  
C
– Capacitive Load – pF  
t – Time – s  
Figure 17  
L
Figure 16  
Figure 18  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
AMPLIFIER TYPICAL CHARACTERISTICS  
DIFFERENTIAL VOLTAGE GAIN AND PHASE  
GAIN BANDWIDTH PRODUCT  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
vs  
vs  
FREQUENCY  
SUPPLY VOLTAGE  
60  
50  
135  
90  
7
6
5
4
3
2
1
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
A
= 25°C  
R
C
= 100 kΩ  
= 100 pF  
L
L
SR+  
40  
30  
20  
10  
f = 1kHz  
V
= 5, 15 V  
CC  
V
= 2.7 V  
CC  
45  
V
= 2.7, 5, 15 V  
CC  
SR–  
0
0
V
=2.7, 5, 15 V  
CC  
L
L
R =500 kΩ  
C =100 pF  
–10  
T
=25°C  
A
–20  
–45  
10k  
10  
100  
1k  
2.5 4.0 5.5 7.0 8.5 10.0 11.5 13.0 14.5 16.0  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
f – Frequency – Hz  
V
– Supply Voltage –V  
CC  
T
A
– Free-Air Temperature – °C  
Figure 19  
Figure 20  
Figure 21  
SMALL SIGNAL FOLLOWER  
PULSE RESPONSE  
LARGE SIGNAL FOLLOWER  
PULSE RESPONSE  
4
3
2
120  
100  
80  
300  
150  
V
= 5 V  
= 1  
= 100 kΩ  
= 100 pF  
= 25°C  
V
CC  
IN  
A
V
V
IN  
R
0
L
L
C
T
V
= 2.7, 5,  
CC  
& 15 V  
–150  
1
0
A
A
= 1  
= 100 kΩ  
= 100 pF  
V
4
R
C
L
L
3
–1  
60  
V
O
T = 25°C  
A
2
V
O
40  
1
20  
0
0
0
1
2
3
4
5
6
0
100 1200 300 0 400 0 500  
t – Time – ms  
t – Time – µs  
Figure 22  
Figure 23  
LARGE SIGNAL INVERTING  
PULSE RESPONSE  
SMALL SIGNAL INVERTING  
PULSE RESPONSE  
50  
4
3
2
1
0
200  
100  
0
V
IN  
V
IN  
V
= 2.7, 5,  
CC  
& 15 V  
= –1  
= 100 kΩ  
= 100 pF  
0.5  
V
A
= 5 V  
CC  
= –1  
A
0.0  
V
–1  
V
–100  
R
C
T
A
L
L
R
C
T
A
= 100 kΩ  
= 100 pF  
= 25°C  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
L
L
0
= 25°C  
–50  
–100  
–150  
V
O
V
O
1  
0
1
2
3
4
5
6
7
0
0
200 400 600 800 1000 1200  
t – Time – ms  
t – Time – ms  
Figure 24  
Figure 25  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
COMPARATOR TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
5
V
V
= 2.7 V  
= –1 V  
CC  
ID  
V
V
= 5 V  
CC  
= –1 V  
4.5  
4
ID  
T
= 125°C  
A
T
= 125°C  
A
T
= 70°C  
= 25°C  
3.5  
3
A
T
= 70°C  
A
T
A
2.5  
2
T = 25°C  
A
T
= 0°C  
A
1.5  
1
T
= 0°C  
A
T
A
= –40°C  
T
= –40°C  
A
0.5  
0
0
0.4 0.8  
1.2  
1.6  
2.0 2.4  
2.8  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
I
– Low-Level Output Current – mA  
I
– Low-Level Output Current – mA  
OL  
OL  
Figure 26  
Figure 27  
OPEN COLLECTOR LEAKAGE CURRENT  
vs  
OUTPUT FALL TIME  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
2400  
8
V
= 1 V  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
ID  
7
6
5
4
3
2
1
0
C
= 50 pF  
L
V
= 15 V  
CC  
C
= 10 pF  
L
V
= 2.7 V, 5 V  
CC  
V
R
= 1 V to –1 V  
= 1 M(pullup to V  
600  
ID  
p
)
CC  
400  
Input Fall Time = 500 ns  
T = 25°C  
A
200  
0
–200  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
7
8
11  
12 13 14 15  
2
3
4
5
6
9
10  
T
– Free-Air Temperature – °C  
V
– Supply Voltage – V  
A
CC  
Figure 29  
Figure 28  
LOW-TO-HIGH LEVEL OUTPUT  
RESPONSE FOR VARIOUS  
INPUT OVERDRIVES  
LOW-TO-HIGH LEVEL OUTPUT  
RESPONSE FOR VARIOUS  
INPUT OVERDRIVES  
5
4
3
3
2.5  
2
50 mV  
10 mV  
50 mV  
1.5  
2
1
2 mV  
1
2 mV  
10 mV  
0.5  
0
0
V
= 5 V  
= 10 pF  
= 1 M(Pullup to V  
= 25°C  
CC  
L
P
0.1  
0.05  
0
V
= 2.7 V  
= 10 pF  
= 1 M(Pullup to V  
= 25°C  
C
R
T
CC  
L
P
0.1  
C
R
T
)
CC  
)
CC  
A
0.05  
0
A
0
50  
100 150 200 250 300  
t – Time – µs  
0
50  
100 150 200 250 300  
t – Time – µs  
Figure 30  
Figure 31  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
COMPARATOR TYPICAL CHARACTERISTICS  
HIGH-TO-LOW LEVEL OUTPUT  
RESPONSE FOR VARIOUS  
INPUT OVERDRIVES  
HIGH-TO-LOW LEVEL OUTPUT  
RESPONSE FOR VARIOUS  
INPUT OVERDRIVES  
3
6
5
2.5  
2
4
50 mV  
50 mV  
10 mV  
2 mV  
3
1.5  
10 mV  
2 mV  
2
1
0.5  
0
1
0
–1  
V
C
R
= 2.7 V  
= 10 pF  
= 1 M(pullup to V  
= 25°C  
V
C
R
= 5 V  
CC  
CC  
L
p
0.1  
0.05  
0
= 10 pF  
0.1  
L
p
)
= 1 M(pullup to V  
= 25°C  
)
CC  
CC  
0.05  
0
T
A
T
A
0
50 100 150 200 250 300 350 400  
0
50 100 150 200 250 300 350 400  
t – Time – µs  
t – Time – µs  
Figure 33  
Figure 32  
APPLICATION INFORMATION  
reverse battery protection  
The TLV2302/4 is protected against reverse battery voltage up to 18 V. When subjected to reverse battery  
condition, the supply current is typically less than 100 nA at 25°C (inputs grounded and outputs open). This  
current is determined by the leakage of six Schottky diodes and will therefore increase as the ambient  
temperature increases.  
When subjected to reverse battery conditions and negative voltages applied to the inputs or outputs, the input  
ESD structure will turn on—this current should be limited to less than 10 mA. If the inputs or outputs are referred  
to ground, rather than midrail, no extra precautions need be taken.  
common-mode input range  
The TLV2302/4 has rail-rail input and outputs. For common-mode inputs from –0.1 V to V  
differential pair will provide the gain.  
– 0.8 V a PNP  
CC  
For inputs between V  
– 0.8 V and V , two NPN emitter followers buffering a second PNP differential pair  
CC  
CC  
provide the gain. This special combination of NPN/PNP differential pair enables the inputs to be taken 5 V above  
the rails; because as the inputs go above V , the NPNs switch from functioning as transistors to functioning  
CC  
as diodes. This will lead to an increase in input bias current. The second PNP differential pair continues to  
function normally as the inputs exceed V  
.
CC  
The TLV2302/4 has a negative common-input range that exceeds ground by 100 mV. If the inputs are taken  
much below this, reduced open loop gain will be observed with the ultimate possibility of phase inversion.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
APPLICATION INFORMATION  
offset voltage  
Theoutputoffsetvoltage,(V )isthesumoftheinputoffsetvoltage(V )andbothinputbiascurrents(I )times  
OO  
IO  
IB  
the corresponding gains. The following schematic and formula can be used to calculate the output offset  
voltage.  
R
F
I
IB–  
R
G
R
R
R
R
+
+
F
F
V
V
1
I
R
1
I
R
V
I
V
O
OO  
IO  
IB  
S
IB–  
F
G
G
R
S
I
IB+  
Figure 34. Output Offset Voltage Model  
general configurations  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often  
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier  
(see Figure 35).  
R
R
F
G
1
f
–3dB  
2 R1C1  
V
R
F
O
1
1
V
O
V
R
1
sR1C1  
I
G
+
V
I
R1  
C1  
Figure 35. Single-Pole Low-Pass Filter  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.  
Failure to do this can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
–3dB  
2 RC  
C2  
R
F
1
R
=
G
R
F
2 –  
)
(
R
Q
G
Figure 36. 2-Pole Low-Pass Sallen-Key Filter  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
APPLICATION INFORMATION  
circuit layout considerations  
ToachievethelevelsofhighperformanceoftheTLV230x, followproperprinted-circuitboarddesigntechniques.  
A general set of guidelines is given in the following.  
Ground planes—It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and  
output, the ground plane can be removed to minimize the stray capacitance.  
Proper power supply decoupling—Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic  
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers  
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal  
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply  
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less  
effective. The designer should strive for distances of less than 0.1 inches between the device power  
terminals and the ceramic capacitors.  
Sockets—Socketscanbeusedbutarenotrecommended. Theadditionalleadinductanceinthesocketpins  
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board  
is the best implementation.  
Short trace runs/compact part placements—Optimum high performance is achieved when stray series  
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,  
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of  
the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at  
the input of the amplifier.  
Surface-mount passive components—Using surface-mount passive components is recommended for high  
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be  
kept as short as possible.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
APPLICATION INFORMATION  
general power dissipation considerations  
Foragivenθ , themaximumpowerdissipationisshowninFigure37andiscalculatedbythefollowingformula:  
JA  
T
–T  
MAX  
A
P
D
JA  
Where:  
P
= Maximum power dissipation of TLV230x IC (watts)  
= Absolute maximum junction temperature (150°C)  
= Free-ambient air temperature (°C)  
D
T
MAX  
T
A
θ
= θ + θ  
JA  
JC CA  
θ
θ
= Thermal coefficient from junction to case  
JC  
= Thermal coefficient from case to ambient air (°C/W)  
CA  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
2
T
= 150°C  
PDIP Package  
J
Low-K Test PCB  
1.75  
1.5  
1.25  
1
θ
= 104°C/W  
JA  
MSOP Package  
Low-K Test PCB  
SOIC Package  
Low-K Test PCB  
θ
= 260°C/W  
JA  
θ
= 176°C/W  
JA  
0.75  
0.5  
0.25  
0
–5540 –25 –10  
5
20 35 50 65 80 95 110 125  
T
A
– Free-Air Temperature – °C  
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.  
Figure 37. Maximum Power Dissipation vs Free-Air Temperature  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
APPLICATION INFORMATION  
amplifier macromodel information  
Macromodel information provided was derived using Microsim Parts Release 8, the model generation  
software used with Microsim PSpice . The Boyle macromodel (see Note 2) and subcircuit in Figure 38 are  
generated using the TLV230x typical electrical and operating characteristics at T = 25°C. Using this  
A
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most  
cases):  
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 3: G. R. Boyle, B. M. Cohn, D. O. Pederson, andJ. E. Solomon, “MacromodelingofIntegratedCircuitOperationalAmplifiers”, IEEEJournal  
of Solid-State Circuits, SC-9, 353 (1974).  
3
99  
V
CC+  
+
egnd  
ree  
ro2  
cee  
fb  
rp  
rc1  
11  
rc2  
12  
c1  
7
+
1
2
c2  
vlim  
8
IN+  
IN–  
+
r2  
9
6
vc  
+
q1  
q2  
vb  
ga  
ro1  
gcm  
ioff  
53  
dp  
14  
13  
V
OUT  
re1  
re2  
dlp  
dln  
5
91  
90  
92  
10  
+
+
iee  
dc  
vlp  
hlim  
vln  
V
CC–  
+
+ 54  
4
de  
ve  
.subckt 230X_5V–X 1 2 3 4 5  
*
rc1  
rc2  
re1  
re2  
ree  
ro1  
ro2  
rp  
3
3
11 978.81E3  
12 978.81E3  
c1  
c2  
11 12 9.8944E–12  
30.000E–12  
13 10 30.364E3  
14 10 30.364E3  
10 99 3.6670E9  
6
7
cee 10 99 8.8738E–12  
dc  
5
53 dy  
8
5
10  
de  
dlp  
dln  
dp  
54 5 dy  
90 91 dx  
92 90 dx  
7
99 10  
3
4
0
1.4183E6  
dc  
vb  
9
0
4
3
dx  
vc  
ve  
vlim  
vlp  
vln  
3
53 dc .88315  
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5  
54  
7
4
8
0
dc .88315  
dc  
dc 540  
fb  
7
6
0
99 poly(5) vb vc ve vlp vln 0 61.404E6 –1E3 1E3 61E6 –61E6  
0
ga  
0
6
11 12 1.0216E–6  
10 99 10.216E–12  
91  
0
gcm  
iee  
ioff  
92 dc 540  
10 4 dc 54.540E–9  
.model dx D(Is=800.00E–18)  
0
6
dc 5e–12  
.model dy D(Is=800.00E–18 Rs=1m Cjo=10p)  
.model qx1 NPN(Is=800.00E–18 Bf=27.270E21)  
.model qx2 NPN(Is=800.0000E–18 Bf=27.270E21)  
.ends  
hlim 90 0 vlim 1K  
q1  
q2  
r2  
11  
12 1 14 qx2  
100.00E3  
2
13 qx1  
6
9
Figure 38. Boyle Macromodels and Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
MECHANICAL INFORMATION  
DGK (R-PDSO-G8)  
PLASTIC SMALL-OUTLINE PACKAGE  
0,38  
M
0,65  
0,25  
0,25  
8
5
0,15 NOM  
3,05  
2,95  
4,98  
4,78  
Gage Plane  
0,25  
0°6°  
1
4
0,69  
3,05  
2,95  
0,41  
Seating Plane  
0,10  
0,15  
0,05  
1,07 MAX  
4073329/B 04/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-187  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
MECHANICAL INFORMATION  
PLASTIC DUAL-IN-LINE PACKAGE  
N (R-PDIP-T**)  
16 PINS SHOWN  
PINS **  
14  
16  
18  
20  
DIM  
0.775  
(19,69)  
0.775  
(19,69)  
0.920  
(23,37)  
0.975  
(24,77)  
A MAX  
A
16  
9
0.745  
(18,92)  
0.745  
(18,92)  
0.850  
(21,59)  
0.940  
(23,88)  
A MIN  
0.260 (6,60)  
0.240 (6,10)  
1
8
0.070 (1,78) MAX  
0.325 (8,26)  
0.300 (7,62)  
0.035 (0,89) MAX  
0.020 (0,51) MIN  
0.015 (0,38)  
Gauge Plane  
0.200 (5,08) MAX  
Seating Plane  
0.010 (0,25) NOM  
0.125 (3,18) MIN  
0.100 (2,54)  
0.010 (0,25)  
0.430 (10,92) MAX  
0.021 (0,53)  
0.015 (0,38)  
M
14/18 PIN ONLY  
4040049/D 02/00  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001 (20-pin package is shorter than MS-001).  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
MECHANICAL INFORMATION  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE PACKAGE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.310 (7,87)  
0.290 (7,37)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
4040082/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2302, TLV2304  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS  
AND OPEN DRAIN COMPARATORS  
SLOS343 – DECEMBER 2000  
MECHANICAL INFORMATION  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
M
0,10  
0,65  
0,19  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

TLV2313

双路、5.5V、1MHz、低静态电流 (65μA)、RRIO 运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2313-Q1

汽车级、双路、5.5V、1MHz、RRIO 运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2313IDGKR

Dual, 5.5-V, 1-MHz, low quiescent current (65-μA), RRIO operational amplifier | DGK | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2313IDGKT

Dual, 5.5-V, 1-MHz, low quiescent current (65-μA), RRIO operational amplifier | DGK | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2313IDR

Dual, 5.5-V, 1-MHz, low quiescent current (65-μA), RRIO operational amplifier | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2313QDGKRQ1

Automotive-grade, dual, 5.5-V, 1-MHz, RRIO operational amplifier | DGK | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2313QDRQ1

Automotive-grade, dual, 5.5-V, 1-MHz, RRIO operational amplifier | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2314

双路、5.5V、3MHz、RRIO 运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2314-Q1

汽车级、双路、5.5V、3MHz、RRIO 运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2314IDGKR

Dual, 5.5-V, 3-MHz, RRIO operational amplifier | DGK | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2314IDGKT

Dual, 5.5-V, 3-MHz, RRIO operational amplifier | DGK | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2314IDR

Dual, 5.5-V, 3-MHz, RRIO operational amplifier | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI