TLV2316QDGKTQ1 [TI]

Automotive-grade, dual, 5.5-V, 10-MHz, RRIO operational amplifier | DGK | 8 | -40 to 125;
TLV2316QDGKTQ1
型号: TLV2316QDGKTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Automotive-grade, dual, 5.5-V, 10-MHz, RRIO operational amplifier | DGK | 8 | -40 to 125

文件: 总33页 (文件大小:1475K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
TLVx316-Q1  
10MHz、轨到轨输入/输出、低电压、1.8V CMOS 运算放大器  
1 特性  
3 说明  
1
符合汽车应用 要求  
具有符合 AEC-Q100 标准的下列结果:  
TLV316-Q1(单路)、TLV2316-Q1(双路)和  
TLV4316-Q1(四路)器件构成了低功耗通用运算放大  
器系列。该器件系列将轨至轨 输入和输出摆幅、低静  
态电流(每通道的典型值为 400µA)等特性与 10MHz  
的较宽带宽和超低噪声(1kHz 时为 12nV/Hz)相结  
合,因此适用于要求兼具快速特性与良好功率比的电  
路。低输入偏置电流支持在 源阻抗高达兆欧级的 的应  
用。TLVx316-Q1 的低输入偏置电流产生的电流噪声极  
低,该器件系列因此备受高阻抗传感器接口的青睐。  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
器件人体放电模型 (HBM) 静电放电 (ESD) 分类  
等级 3A  
带电器件模型 (CDM) ESD 分类等级 C5  
单位增益带宽:10MHz  
IQ:每通道 400µA  
出色的功率带宽比  
TLVx316-Q1 采用稳健耐用的设计,方便电路设计人员  
使用。该器件具有单位增益稳定的集成 RFI EMI 抑  
制滤波器,在过驱条件下不会出现反相,并且具有高静  
电放电 (ESD) 保护 (4kV HBM)。  
在温度和电源电压范围内保持稳定的 IQ  
宽电源电压范围:1.8V 5.5V  
低噪声:1kHz 时为 12nV/Hz  
低输入偏置电流:±10pA  
偏移电压:±0.75mV  
此类器件经过优化,适合在 1.8V (±0.9V) 5.5V  
(±2.75V) 的低电压状态下工作。产品组合中最新补充  
的这款低压 CMOS 运算放大器与 TLVx313-Q1 和  
TLVx314-Q1 系列相结合,为用户提供了广泛的带宽、  
噪声和功率选项,可以满足各种应用的 需求提供了灵  
活性和便利性。  
单位增益稳定  
内部射频干扰 (RFI) 和电磁干扰 (EMI) 滤波器  
通道数量:  
TLV316-Q11  
TLV2316-Q12  
TLV4316-Q14  
中的 SC70 (5)SOIC (8) SOIC (14) 封装  
器件信息(1)  
扩展温度范围:-40°C +125°C  
器件型号  
TLV316-Q1  
封装  
SOT-23 (5)  
封装尺寸(标称值)  
1.60mm x 2.90mm  
3.00mm × 3.00mm  
4.40mm × 5.00mm  
2 应用  
TLV2316-Q1  
TLV4316-Q1  
VSSOP (8)  
汽车 应用:  
TSSOP (14)  
高级驾驶员辅助系统 (ADAS)  
车身电子装置和照明  
电流感测  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
电池管理系统  
单极低通滤波器  
10MHz 带宽下的低电源电流(400µA/通道)  
120  
100  
80  
270  
225  
180  
135  
90  
RG  
RF  
60  
R1  
VOUT  
Phase  
40  
VIN  
20  
45  
C1  
VS = ±2.75 V  
1
2pR1C1  
0
0
Gain  
f
=
-3 dB  
VS =±0.9V
œ20  
-45  
1
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
VOUT  
VIN  
RF  
Frequency (Hz)  
C006  
1
1 + sR1C1  
=
1 +  
(
(
(  
(
RG  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS845  
 
 
 
 
 
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 15  
8.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 17  
9.1 Application Information............................................ 17  
9.2 System Examples ................................................... 17  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings ............................................................ 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information: TLV316-Q1 ............................. 8  
7.5 Thermal Information: TLV2316-Q1 ........................... 8  
7.6 Thermal Information: TLV4316-Q1 ........................... 8  
7.7 Electrical Characteristics........................................... 9  
7.8 Typical Characteristics: Table of Graphs................ 10  
7.9 Typical Characteristics............................................ 11  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 14  
9
10 Power Supply Recommendations ..................... 18  
10.1 Input and ESD Protection ..................................... 18  
11 Layout................................................................... 19  
11.1 Layout Guidelines ................................................. 19  
11.2 Layout Example .................................................... 19  
12 器件和文档支持 ..................................................... 20  
12.1 文档支持................................................................ 20  
12.2 相关链接................................................................ 20  
12.3 社区资源................................................................ 20  
12.4 ....................................................................... 20  
12.5 静电放电警告......................................................... 21  
12.6 Glossary................................................................ 21  
13 机械、封装和可订购信息....................................... 21  
8
4 修订历史记录  
Changes from Revision A (December 2016) to Revision B  
Page  
更正了输入错误;在特性 部分中将部件号从 TLV314TLV2314 TLV4314 更改为 TLV316-Q1TLV2316-Q1 和  
TLV4316-Q1 ........................................................................................................................................................................... 1  
Changed values in the Thermal Information: TLV4316-Q1 table to align with JEDEC standards......................................... 8  
Changes from Original (November 2016) to Revision A  
Page  
已更改 CDM ESD 分类等级 C6 C5(位于 特性 部分)..................................................................................................... 1  
已删除 器件信息.................................................................................................................................................................. 1  
Deleted the DCK (SC70) package from the TLV316-Q1 pinout diagram in the Pin Configurations and Functions  
section ................................................................................................................................................................................... 4  
Deleted the DCK (SC70) pinout information from the Pin Functions: TLV316-Q1 table in the Pin Configurations and  
Functions section ................................................................................................................................................................... 4  
Deleted D (SOIC) package from the TLV2316-Q1 pinout diagram in the Pin Configurations and Functions section .......... 5  
Deleted the D (SOIC) package from TLV4316-Q1 pinout diagram in the Pin Configurations and Functions section ........... 6  
Changed the ESD Ratings table from commercial to automotive specifications .................................................................. 7  
Changed the CDM ESD rating from ±1500 to ±750 in the ESD Ratings table ..................................................................... 7  
Deleted the DCK (SC70) package from the Thermal Information: TLV316-Q1 table in the Specifications section............... 8  
Changed the formatting of all Thermal Information table notes ............................................................................................ 8  
Deleted the D (SOIC) package from the Thermal Information: TLV2316-Q1 table in the Specifications section.................. 8  
Deleted the D (SOIC) package from the Thermal Information: TLV4316-Q1 table in the Specifications section ................. 8  
已删除 the static literature number in the SBOA128 application note reference in the EMI Susceptibility and Input  
Filtering section..................................................................................................................................................................... 16  
已删除 the static literature number in document reference in the Layout Guidelines section ............................................. 19  
已更改 the layout example image (Figure 41) in Layout Example section........................................................................... 19  
已删除 相关文档部分 ............................................................................................................................................................ 20  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
www.ti.com.cn  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
5 Device Comparison Table  
PACKAGE-LEADS  
NO. OF  
DEVICE  
CHANNELS  
DBV  
5
DCK  
5
D
DGK  
PW  
TLV316-Q1  
TLV2316-Q1  
TLV4316-Q1  
1
2
4
8
8
14  
14  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
www.ti.com.cn  
6 Pin Configuration and Functions  
TLV316-Q1 DBV Package  
5-Pin SOT-23  
Top View  
OUT  
1
2
3
5
4
V+  
V-  
+IN  
-IN  
Pin Functions: TLV316-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN  
NO.  
4
I
Inverting input  
+IN  
3
I
Noninverting input  
Output  
OUT  
V–  
1
O
2
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
V+  
5
4
Copyright © 2016–2017, Texas Instruments Incorporated  
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
www.ti.com.cn  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
TLV2316-Q1 DGK Package  
8-Pin VSSOP  
Top View  
OUT A  
-IN A  
+IN A  
V-  
1
2
3
4
8
7
6
5
V+  
OUT B  
-IN B  
+IN B  
Pin Functions: TLV2316 -Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
+IN A  
–IN B  
+IN B  
OUT A  
OUT B  
V–  
NO.  
2
I
I
Inverting input, channel A  
3
Noninverting input, channel A  
Inverting input, channel B  
6
I
5
I
Noninverting input, channel B  
Output, channel A  
1
O
O
7
Output, channel B  
4
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
V+  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
5
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
www.ti.com.cn  
TLV4316-Q1 PW Package  
14-Pin TSSOP  
Top View  
OUT A  
1
2
3
4
5
6
7
14 OUT D  
A
D
-IN A  
+IN A  
V+  
13 -IN D  
12 +IN D  
11 V-  
+IN B  
-IN B  
OUT B  
10 +IN C  
9
8
-IN C  
B
C
OUT C  
Pin Functions: TLV4316-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
+IN A  
–IN B  
+IN B  
–IN C  
+IN C  
–IN D  
+IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V–  
NO.  
2
I
I
Inverting input, channel A  
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Inverting input, channel C  
Noninverting input, channel C  
Inverting input, channel D  
Noninverting input, channel D  
Output, channel A  
3
6
I
5
I
9
I
10  
13  
12  
1
I
I
I
O
O
O
O
7
Output, channel B  
8
Output, channel C  
14  
11  
4
Output, channel D  
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
V+  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
www.ti.com.cn  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted)(1)  
MIN  
(V–) – 0.5  
–10  
MAX  
UNIT  
Supply voltage  
7
(V+) + 0.5  
(V+) – (V–) + 0.2  
10  
V
Common-mode  
Voltage(2)  
V
Signal input pins  
Differential  
Current(2)  
Output short-circuit(3)  
Specified, TA  
mA  
mA  
Continuous  
–40  
125  
150  
150  
Temperature  
Junction, TJ  
Storage, Tstg  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Current limit input signals that can swing more than 0.5 V beyond the supply  
rails to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
7.2 ESD Ratings  
VALUE  
±4000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
NOM  
MAX UNIT  
VS  
Supply voltage  
5.5  
V
Specified temperature range  
–40  
125  
°C  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
 
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
www.ti.com.cn  
7.4 Thermal Information: TLV316-Q1  
TLV316-Q1  
DBV (SOT-23)  
5 PINS  
221.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
144.7  
49.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
26.1  
ψJB  
49.0  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Thermal Information: TLV2316-Q1  
TLV2316-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
186.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
78.8  
107.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
15.5  
ψJB  
106.3  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.6 Thermal Information: TLV4316-Q1  
TLV4316-Q1  
THERMAL METRIC(1)  
PW (TSSOP)  
14 PINS  
117.8  
46.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
59.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
5.3  
ψJB  
59  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
www.ti.com.cn  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
7.7 Electrical Characteristics  
at TA = 25°C, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted); VS (total supply  
voltage) = (V+) – (V–) = 1.8 V to 5.5 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VS = 5 V  
±0.75  
±3  
VOS  
Input offset voltage  
mV  
VS = 5 V, TA = –40°C to 125°C  
VS = 5 V, TA = –40°C to 125°C  
VS = 1.8 V – 5.5 V, VCM = (V–)  
At dc  
±4.5  
dVOS/dT Drift  
PSRR Power-supply rejection ratio  
Channel separation, dc  
INPUT VOLTAGE RANGE  
±2  
±30  
100  
µV/°C  
µV/V  
dB  
±175  
VCM  
Common-mode voltage range  
VS = 5.5 V  
(V–) – 0.2  
72  
(V+) + 0.2  
V
VS = 5.5 V, (V–) – 0.2 V < VCM < (V+) – 1.4 V,  
TA = –40°C to 125°C  
90  
75  
CMRR  
Common-mode rejection ratio  
dB  
VS = 5.5 V, VCM = –0.2 V to 5.7 V,  
TA = –40°C to 125°C  
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
±10  
±10  
pA  
pA  
IOS  
NOISE  
En  
Input voltage noise (peak-to-peak)  
Input voltage noise density  
Input current noise density  
VS = 5 V, f = 0.1 Hz to 10 Hz  
VS = 5 V, f = 1 kHz  
f = 1 kHz  
5
12  
µVPP  
nV/Hz  
fA/Hz  
en  
in  
1.3  
INPUT IMPEDANCE  
1016Ω || pF  
1011Ω || pF  
ZID  
ZIC  
Differential  
2 || 2  
2 || 4  
Common-mode  
OPEN-LOOP GAIN  
VS = 5.5 V, (V–) + 0.05 V < VO < (V+) – 0.05 V,  
RL = 10 kΩ  
100  
104  
104  
AOL  
Open-loop voltage gain  
dB  
VS = 5.5 V, (V–) + 0.15 V < VO < (V+) – 0.15 V,  
RL = 2 kΩ  
FREQUENCY RESPONSE  
GBP  
φm  
Gain bandwidth product  
VS = 5 V, G = 1  
10  
MHz  
Degrees  
V/μs  
μs  
Phase margin  
Slew rate  
VS = 5 V, G = 1  
60  
SR  
tS  
VS = 5 V, G = 1  
6
1
Settling time  
To 0.1%, VS = 5 V, 2-V step , G = 1, CL = 100 pF  
VS = 5 V, VIN × gain = VS  
VS = 5 V, VO = 0.5 VRMS, G = 1, f = 1 kHz  
tOR  
Overload recovery time  
0.8  
μs  
THD + N Total harmonic distortion + noise(1)  
0.008%  
OUTPUT  
VS = 1.8 V to 5.5 V, RL = 10 kΩ  
VS = 1.8 to 5.5 V, RL = 2 kΩ  
VS = 5 V  
35  
Voltage output swing from supply  
rails  
VO  
mV  
125  
ISC  
ZO  
Short-circuit current  
±50  
250  
mA  
Open-loop output impedance  
VS = 5 V, f = 10 MHz  
Ω
POWER SUPPLY  
VS  
IQ  
Specified voltage range  
Quiescent current per amplifier  
1.8  
5.5  
V
VS = 5 V, IO = 0 mA, TA = –40°C to 125°C  
400  
575  
µA  
TEMPERATURE  
TA  
Specified  
Storage  
–40  
–65  
125  
150  
°C  
°C  
Tstg  
(1) Third-order filter; bandwidth = 80 kHz at –3 dB.  
版权 © 2016–2017, Texas Instruments Incorporated  
9
 
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
www.ti.com.cn  
7.8 Typical Characteristics: Table of Graphs  
1. Table of Graphs  
TITLE  
FIGURE  
Offset Voltage Production Distribution  
1  
2  
Offset Voltage vs Common-Mode Voltage  
Open- Loop Gain and Phase vs Frequency  
Input Bias and Offset Current vs Temperature  
3  
4  
Input Voltage Noise Spectral Density vs Frequency  
Quiescent Current vs Supply Voltage  
5  
6  
Small-Signal Overshoot vs Load Capacitance  
No Phase Reversal  
7  
8  
Small-Signal Step Response  
9  
Large-Signal Step Response  
10  
11  
12  
13  
Short-Circuit Current vs Temperature  
Electromagnetic Interference Rejection Ratio Referred to Noninverting Input vs Frequency  
Channel Separation vs Frequency  
10  
版权 © 2016–2017, Texas Instruments Incorporated  
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
www.ti.com.cn  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
7.9 Typical Characteristics  
at TA = 25°C, VS = 5.5 V, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2, (unless otherwise noted)  
25  
20  
15  
10  
5
2500  
2000  
1500  
1000  
500  
VCM = 2.95 V  
VCM = -2.95 V  
0
œ500  
œ1000  
œ1500  
œ2000  
œ2500  
N-  
Channel  
P-  
Channel  
Transition  
2
0
0
1
3
œ3  
œ2  
œ1  
VCM (V)  
C001  
Offset Voltage (mV)  
C013  
V+ = 2.75 V  
V– = –2.75 V  
9 typical units  
shown  
Distribution taken from 12551 amplifiers  
1. Offset Voltage Production Distribution  
2. Offset Voltage vs Common-Mode Voltage  
120  
100  
80  
270  
100000  
10000  
1000  
100  
10  
IB+  
IB -  
Ios  
225  
180  
135  
90  
60  
Phase  
40  
20  
45  
VS = ±2.75 V  
0
0
Gain  
1
VS =±0.9V
œ20  
-45  
1
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
0
Frequency (Hz)  
C006  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
VCM < (V+) – 1.4 V  
Temperature (°C)  
C001  
3. Open-Loop Gain and Phase vs Frequency  
4. Input Bias and Offset Current vs Temperature  
1000  
100  
10  
450  
425  
400  
375  
350  
325  
300  
275  
250  
1
0.1  
1
10  
100  
1k  
10k  
100k  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
C015  
Supply Voltage (V)  
Frequency (Hz)  
C001  
5. Input Voltage Noise Spectral Density vs Frequency  
6. Quiescent Current vs Supply Voltage  
版权 © 2016–2017, Texas Instruments Incorporated  
11  
 
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5.5 V, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2, (unless otherwise noted)  
50  
VIN  
40  
VOUT  
30  
+ 2.75 V  
RI = 1 kohm  
RF = 1 kohm  
+ 2.75 V  
œ
20  
10  
0
Device  
VOUT  
+
œ
+
+
Device  
œ 2.75 V  
VIN = 100 mVpp  
+
6.1 VPP  
Sine Wave  
œ
CL  
œ
œ 2.75 V  
Time (100 s/div)  
0p  
100p  
200p  
300p  
C027  
Capacitive Load (F)  
C025  
V+ = 2.75 V, V– = –2.75 V  
V+ = 2.75 V, V– = –2.75 V, G = –1 V/V  
8. No Phase Reversal  
7. Small-Signal Overshoot vs Load Capacitance  
+
2.75  
V
V
CL = 10 pF  
œ
Device  
CL = 100 pF  
+
+
VIN  
= 1 Vpp  
RL  
CL  
œ
2.75  
œ
VOUT  
+ 2.75 V  
œ
Device  
+
+
VIN = 100 mVpp  
RL  
CL  
œ 2.75 V  
œ
VIN  
Time (100 ns/div)  
Time (200 ns/div)  
C030  
C031  
V+ = 2.75 V, V– = –2.75 V, G = 1 V/V  
V+ = 2.75 V, V– = –2.75 V, CL = 100 pF, G = 1 V/V  
9. Small-Signal Step Response  
10. Large-Signal Step Response  
70  
60  
50  
40  
30  
100  
80  
60  
40  
20  
0
ISC, Source  
ISC, Sink  
10M  
100M  
Frequency (Hz)  
1G  
10G  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
C036  
Temperature (°C)  
C001  
PRF = –10 dBm  
12. Electromagnetic Interference Rejection Ratio  
11. Short-Circuit Current vs Temperature  
Referred to Noninverting Input vs Frequency  
12  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
www.ti.com.cn  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5.5 V, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2, (unless otherwise noted)  
0
œ20  
œ40  
œ60  
œ80  
œ100  
œ120  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
C001  
V+ = 2.75 V, V– = –2.75 V  
13. Channel Separation vs Frequency  
版权 © 2016–2017, Texas Instruments Incorporated  
13  
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TLVx316-Q1 is a family of low-power, rail-to-rail input and output operational amplifiers. These devices  
operate from 1.8 V to 5.5 V, are unity-gain stable, and are suitable for a wide range of general-purpose  
applications. The class AB output stage is capable of driving 10-kΩ loads connected to any point between V+  
and ground. The input common-mode voltage range includes both rails and allows the TLVx316-Q1 to be used in  
virtually any single-supply application. Rail-to-rail input and output swing significantly increases dynamic range,  
especially in low-supply applications, and makes them suitable for driving sampling analog-to-digital converters  
(ADCs).  
The TLVx316-Q1 features 10-MHz bandwidth and 6-V/μs slew rate with only 400-μA supply current per channel,  
providing good ac performance at very-low-power consumption. DC applications are well served with a very-low  
input noise voltage of 12 nV/Hz at 1 kHz, low input bias current (5 pA), and an input offset voltage of 0.5 mV  
(typical).  
8.2 Functional Block Diagram  
V+  
Reference  
Current  
VIN+  
VIN–  
VBIAS1  
Class AB  
Control  
Circuitry  
VO  
VBIAS2  
V–  
(Ground)  
Copyright © 2017, Texas Instruments Incorporated  
14  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
www.ti.com.cn  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
8.3 Feature Description  
8.3.1 Operating Voltage  
The TLVx316-Q1 operational amplifiers are fully specified and ensured for operation from 1.8 V to 5.5 V. In  
addition, many specifications apply from –40°C to +125°C. Parameters that vary significantly with operating  
voltages or temperature are illustrated in the Typical Characteristics section.  
8.3.2 Rail-to-Rail Input  
The input common-mode voltage range of the TLVx316-Q1 extends 200 mV beyond the supply rails for supply  
voltages greater than 2.5 V. This performance is achieved with a complementary input stage: an N-channel input  
differential pair in parallel with a P-channel differential pair, as shown in the Functional Block Diagram. The N-  
channel pair is active for input voltages close to the positive rail, typically (V+) – 1.4 V to 200 mV above the  
positive supply, whereas the P-channel pair is active for inputs from 200 mV below the negative supply to  
approximately (V+) – 1.4 V. There is a small transition region, typically (V+) – 1.2 V to (V+) – 1 V, in which both  
pairs are on. This 200-mV transition region can vary up to 200 mV with process variation. Thus, the transition  
region (both stages on) can range from (V+) – 1.4 V to (V+) – 1.2 V on the low end, up to (V+) – 1 V to (V+) –  
0.8 V on the high end. Within this transition region, PSRR, CMRR, offset voltage, offset drift, and THD can be  
degraded compared to device operation outside this region.  
8.3.3 Rail-to-Rail Output  
Designed as a low-power, low-voltage operational amplifier, the TLVx316-Q1 delivers a robust output drive  
capability. A class AB output stage with common-source transistors is used to achieve full rail-to-rail output swing  
capability. For resistive loads of 10 kΩ, the output swings typically to within 30 mV of either supply rail regardless  
of the power-supply voltage applied. Different load conditions change the ability of the amplifier to swing close to  
the rails; see .  
8.3.4 Common-Mode Rejection Ratio (CMRR)  
CMRR for the TLVx316-Q1 is specified in two ways so the best match for a given application can be selected.  
The Electrical Characteristics table provides the CMRR of the device in the common-mode range below the  
transition region [VCM < (V+) – 1.4 V]. This specification is the best indicator of device capability when the  
application requires using one of the differential input pairs. The CMRR over the entire common-mode range is  
specified at VCM = –0.2 V to 5.7 V for VS = 5.5 V. This last value includes the variations through the transition  
region.  
8.3.5 Capacitive Load and Stability  
The TLVx316-Q1 is designed for applications where driving a capacitive load is required. As with all operational  
amplifiers, there may be specific instances where the TLVx316-Q1 can become unstable. The particular  
operational amplifier circuit configuration, layout, gain, and output loading are some of the factors to consider  
when establishing whether or not an amplifier is stable in operation. An operational amplifier in the unity-gain (1  
V/V) buffer configuration that drives a capacitive load exhibits a greater tendency to be unstable than an amplifier  
operated at a higher noise gain. The capacitive load, in conjunction with the operational amplifier output  
resistance, creates a pole within the feedback loop that degrades the phase margin. The degradation of the  
phase margin increases when the capacitive loading increases. For a conservative best practice, designing for  
25% overshoot (40° phase margin) provides improved stability over process variations. The equivalent series  
resistance (ESR) of some very-large capacitors (CL capacitors with a value greater than 1 μF) is sufficient to alter  
the phase characteristics in the feedback loop such that the amplifier remains stable. Increasing the amplifier  
closed-loop gain allows the amplifier to drive increasingly larger capacitance. This increased capability is evident  
when observing the overshoot response of the amplifier at higher voltage gains, as shown in 7 (G = –1 V/V).  
版权 © 2016–2017, Texas Instruments Incorporated  
15  
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
www.ti.com.cn  
Feature Description (接下页)  
One technique for increasing the capacitive load drive capability of the amplifier operating in a unity-gain  
configuration is to insert a small resistor (typically 10-Ω to 20-Ω) in series with the output, as shown in 14. This  
resistor significantly reduces the overshoot and ringing associated with large capacitive loads. One possible  
problem with this technique, however, is that a voltage divider is created with the added series resistor and any  
resistor connected in parallel with the capacitive load. The voltage divider introduces a gain error at the output  
that reduces the output swing.  
V+  
RS  
VOUT  
Device  
VIN  
10 W to  
20 W  
RL  
CL  
14. Improving Capacitive Load Drive  
8.3.6 EMI Susceptibility and Input Filtering  
Operational amplifiers vary with regard to the susceptibility of the device to electromagnetic interference (EMI). If  
conducted EMI enters the operational amplifier, the dc offset measured at the amplifier output can shift from the  
nominal value when EMI is present. This shift is a result of signal rectification associated with the internal  
semiconductor junctions. Although EMI can affect all operational amplifier pin functions, the signal input pins are  
likely to be the most susceptible. The TLVx316-Q1 operational amplifier family incorporates an internal input low-  
pass filter that reduces the amplifier response to EMI. This filter provides both common-mode and differential-  
mode filtering. The filter is designed for a cutoff frequency of approximately 80 MHz (–3 dB), with a roll-off of 20  
dB per decade.  
The immunity of an operational amplifier can be accurately measured and quantified over a broad frequency  
spectrum extending from 10 MHz to 6 GHz. The EMI rejection ratio (EMIRR) metric allows operational amplifiers  
to be directly compared by the EMI immunity. 12 illustrates the results of this testing on the TLVx316-Q1.  
Detailed information can be found in EMI Rejection Ratio of Operational Amplifiers, available for download from  
www.ti.com.  
8.3.7 Overload Recovery  
Overload recovery is defined as the time required for the operational amplifier output to recover from a saturated  
state to a linear state. The output devices of the operational amplifier enter a saturation region when the output  
voltage exceeds the rated operating voltage, either because of the high input voltage or the high gain. After the  
device enters the saturation region, the charge carriers in the output devices require time to return back to the  
linear state. After the charge carriers return back to the linear state, the device begins to slew at the specified  
slew rate. Thus, the propagation delay in case of an overload condition is the sum of the overload recovery time  
and the slew time. The overload recovery time for the TLVx316-Q1 is approximately 300 ns.  
8.4 Device Functional Modes  
The TLVx316-Q1 family has a single functional mode. These devices are powered on as long as the power-  
supply voltage is between 1.8 V (±0.9 V) and 5.5 V (±2.75 V).  
16  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
www.ti.com.cn  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TLV316-Q1, TLV2316-Q1, and TLV4316-Q1 devices are powered on when the supply is connected. The  
devices can operate as a single-supply operational amplifier or a dual-supply amplifier, depending on the  
application.  
9.2 System Examples  
When receiving low-level signals, the device often requires limiting the bandwidth of the incoming signals into the  
system. The simplest way to establish this limited bandwidth is to place an RC filter at the noninverting pin of the  
amplifier, as shown in 15.  
RG  
RF  
R1  
VOUT  
VIN  
C1  
1
2pR1C1  
f
=
-3 dB  
VOUT  
VIN  
RF  
1
1 + sR1C1  
=
1 +  
(
(
(  
(
RG  
15. Single-Pole, Low-Pass Filter  
If even more attenuation is needed, the device requires a multiple-pole filter. The Sallen-Key filter can be used  
for this task, as shown in 16. For best results, the amplifier must have a bandwidth that is eight to ten times  
the filter frequency bandwidth. Failure to follow this guideline can result in a phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
R1  
R2  
Q = Peaking factor  
(Butterworth Q = 0.707)  
VIN  
VOUT  
C2  
1
2pRC  
f
=
-3 dB  
RF  
RF  
RG  
=
1
2 -  
RG  
(
(
Q
16. Two-Pole, Low-Pass, Sallen-Key Filter  
版权 © 2016–2017, Texas Instruments Incorporated  
17  
 
 
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
www.ti.com.cn  
10 Power Supply Recommendations  
The TLVx316-Q1 family is specified for operation from 1.8 V to 5.5 V (±0.9 V to ±2.75 V); many specifications  
apply from –40°C to +125°C. The Typical Characteristics section presents parameters that can exhibit significant  
variance with regard to operating voltage or temperature.  
CAUTION  
Supply voltages larger than 7 V can permanently damage the device; see the Absolute  
Maximum Ratings table.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
Guidelines section.  
10.1 Input and ESD Protection  
The TLVx316-Q1 incorporates internal ESD protection circuits on all pins. For input and output pins, this  
protection primarily consists of current-steering diodes connected between the input and power-supply pins.  
These ESD protection diodes provide in-circuit, input overdrive protection, as long as the current is limited to 10  
mA, as stated in the Absolute Maximum Ratings table. 17 shows how a series input resistor can be added to  
the driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input and  
the value must be kept to a minimum in noise-sensitive applications.  
V+  
IOVERLOAD  
10-mA max  
VOUT  
Device  
VIN  
5 kW  
17. Input Current Protection  
18  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
www.ti.com.cn  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
11 Layout  
11.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the  
operational amplifier. Bypass capacitors reduce the coupled noise by providing low-impedance power  
sources local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of the circuitry is one of the simplest and most  
effective methods of noise suppression. One or more layers on multilayer PCBs are typically devoted to  
ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Take care to  
physically separate digital and analog grounds, paying attention to the flow of the ground current. For  
more detailed information, see Circuit Board Layout Techniques.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicularly is much  
better than crossing in parallel with the noisy trace.  
Place the external components as close to the device as possible. Keeping RF and RG close to the  
inverting input minimizes parasitic capacitance, as shown in 18.  
Keep the length of input traces as short as possible. Remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
11.2 Layout Example  
Run the input traces  
as far away from  
the supply lines  
VS+  
VIN  
as possible.  
VSœ  
+IN  
V+  
GND  
Use a low-ESR,  
ceramic bypass  
capacitor.  
Vœ  
Use a low-ESR,  
ceramic bypass  
capacitor.  
RG  
OUT  
œIN  
VOUT  
GND  
RF  
Place components  
close to the device  
and to each other to  
reduce parasitic  
errors.  
Copyright © 2016, Texas Instruments Incorporated  
18. Operational Amplifier Board Layout for a Noninverting Configuration  
版权 © 2016–2017, Texas Instruments Incorporated  
19  
 
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
中文档参考的固定文献编号  
12.1.1 相关文档ꢀ  
TLVx313 面向成本敏感型系统的低功耗、轨到轨输入/输出、500μV 典型偏移值、1MHz 运算放大器》  
TLVx314 3MHz、低功耗、 内部 EMI 滤波器、RRIO 运算放大器  
《运算放大器的电磁干扰 (EMI) 抑制比》  
QFN/SON PCB 连接》  
《四方扁平无引线逻辑器件封装》  
《电路板布局布线技巧》  
单端输入至差动输出转换电路参考设计  
12.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件以及立即订购快速访问。  
2. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
TLV316-Q1  
TLV2316-Q1  
TLV4316-Q1  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
20  
版权 © 2016–2017, Texas Instruments Incorporated  
TLV316-Q1, TLV2316-Q1, TLV4316-Q1  
www.ti.com.cn  
ZHCSFX0B NOVEMBER 2016REVISED AUGUST 2017  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
版权 © 2016–2017, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV2316QDGKRQ1  
TLV2316QDGKTQ1  
TLV316QDBVRQ1  
TLV316QDBVTQ1  
TLV4316QPWRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
SOT-23  
SOT-23  
TSSOP  
DGK  
DGK  
DBV  
DBV  
PW  
8
8
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
16M6  
16M6  
16ND  
16ND  
NIPDAUAG  
NIPDAU  
NIPDAU  
NIPDAU  
5
5
14  
V4316Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV2316QDGKRQ1  
TLV2316QDGKTQ1  
TLV316QDBVRQ1  
TLV316QDBVTQ1  
TLV4316QPWRQ1  
VSSOP  
VSSOP  
SOT-23  
SOT-23  
TSSOP  
DGK  
DGK  
DBV  
DBV  
PW  
8
8
2500  
250  
330.0  
330.0  
178.0  
178.0  
330.0  
12.4  
12.4  
9.0  
5.3  
5.3  
3.3  
3.3  
6.9  
3.4  
3.4  
3.2  
3.2  
5.6  
1.4  
1.4  
1.4  
1.4  
1.6  
8.0  
8.0  
4.0  
4.0  
8.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q3  
Q3  
Q1  
5
3000  
250  
5
9.0  
8.0  
14  
2000  
12.4  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV2316QDGKRQ1  
TLV2316QDGKTQ1  
TLV316QDBVRQ1  
TLV316QDBVTQ1  
TLV4316QPWRQ1  
VSSOP  
VSSOP  
SOT-23  
SOT-23  
TSSOP  
DGK  
DGK  
DBV  
DBV  
PW  
8
8
2500  
250  
366.0  
366.0  
180.0  
180.0  
356.0  
364.0  
364.0  
180.0  
180.0  
356.0  
50.0  
50.0  
18.0  
18.0  
35.0  
5
3000  
250  
5
14  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV2322

LinCMOSE LOW-VOLTAGE LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2322ID

LinCMOSE LOW-VOLTAGE LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2322IDG4

LinCMOSE LOW-VOLTAGE LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2322IDR

LinCMOSE LOW-VOLTAGE LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2322IDRG4

LinCMOSE LOW-VOLTAGE LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2322IP

LinCMOSE LOW-VOLTAGE LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2322IPE4

LinCMOSE LOW-VOLTAGE LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2322IPW

LinCMOSE LOW-VOLTAGE LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2322IPWG4

LinCMOSE LOW-VOLTAGE LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2322IPWLE

LinCMOSE LOW-VOLTAGE LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2322IPWR

LinCMOSE LOW-VOLTAGE LOW-POWER OPERATIONAL AMPLIFIERS
TI

TLV2322IPWRG4

LinCMOSE LOW-VOLTAGE LOW-POWER OPERATIONAL AMPLIFIERS
TI