TLV2369 [TI]

适用于成本敏感型应用的双路、800nA、1.8V、RRIO 零交叉失真运算放大器;
TLV2369
型号: TLV2369
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于成本敏感型应用的双路、800nA、1.8V、RRIO 零交叉失真运算放大器

放大器 运算放大器
文件: 总28页 (文件大小:1093K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TLV369, TLV2369  
ZHCSF19 MAY 2016  
TLVx369 具有零交叉失真的成本优化型  
800nA1.8V、轨到轨 I/O 运算放大器  
1 特性  
3 说明  
1
成本优化型精密放大器,具有毫微功耗:800nA/通  
道(典型值)  
TLV369 系列单通道和双通道运算放大器是成本优化型  
1.8V 毫微功耗放大器的典型代表。  
低偏移电压:400μV(典型值)  
轨到轨输入和输出  
该系列放大器由 1.8V 5.5V 的单电源供电运行,并  
且配有零交叉失真电路,可在整个共模输入范围内保持  
较高线性度且无交叉失真,从而实现真正的轨到轨输  
入。该系列还兼容符合行业标准的 3.0V3.3V 和  
5.0V 标称电压。  
零交叉失真  
低偏移漂移:0.5µV/°C(典型值)  
增益带宽积:850MHz  
电源电压:1.8V 5.5V  
微型封装:SC70-5VSSOP-8  
TLV369(单通道版本)采用 5 引脚 SC70 封装。  
TLV2369(双通道版本)采用 8 引脚超薄小外形尺寸  
(VSSOP) 和小外形尺寸集成电路 (SOIC) 封装。  
2 应用  
血糖仪  
器件信息(1)  
测试设备  
器件型号  
TLV369  
封装  
SC70 (5)  
封装尺寸(标称值)  
低功耗传感器信号调节  
便携式设备  
2.00mm × 1.25mm  
超薄小外形尺寸封装  
(VSSOP) (8)  
3.00mm × 3.00mm  
4.90mm x 3.91mm  
TLV2369  
SOIC (8)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
TLV369 系列消除了整个电源电压范围内的  
交叉失真  
100  
80  
60  
40  
20  
0
20  
40  
60  
80  
100  
10 Typical Units Shown  
VS = 5 V  
Common-Mode Voltage (V)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS757  
 
 
 
TLV369, TLV2369  
ZHCSF19 MAY 2016  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
8.1 Application Information............................................ 12  
8.2 Typical Application .................................................. 12  
8.3 System Examples .................................................. 14  
Power Supply Recommendations...................... 15  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information: TLV369 ................................... 5  
6.5 Thermal Information: TLV2369 ................................. 5  
6.6 Electrical Characteristics........................................... 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 11  
10 Layout................................................................... 16  
10.1 Layout Guidelines ................................................. 16  
10.2 Layout Example .................................................... 16  
11 器件和文档支持 ..................................................... 17  
11.1 文档支持 ............................................................... 17  
11.2 社区资源................................................................ 17  
11.3 ....................................................................... 17  
11.4 静电放电警告......................................................... 17  
11.5 Glossary................................................................ 17  
12 机械、封装和可订购信息....................................... 17  
7
4 修订历史记录  
日期  
修订版本  
注释  
2016 5 月  
*
首次发布。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TLV369, TLV2369  
www.ti.com.cn  
ZHCSF19 MAY 2016  
5 Pin Configuration and Functions  
TLV369: DCK Package  
5-Pin SC70  
Top View  
+IN  
V-  
1
2
3
5
4
V+  
-IN  
OUT  
Pin Functions: TLV369  
PIN  
TLV369  
I/O  
DESCRIPTION  
NAME  
DCK (SC70)  
–IN  
+IN  
3
1
4
2
5
I
Negative (inverting) input  
I
Positive (noninverting) input  
Output  
OUT  
V–  
O
Negative (lowest) power supply or ground (for single-supply operation)  
Positive (highest) power supply  
V+  
TLV2369: D Package  
8-Pin SOIC  
TLV2369: DGK Package  
8-Pin VSSOP  
Top View  
Top View  
OUT A  
-IN A  
+IN A  
V-  
V+  
1
2
3
4
8
7
6
5
OUT A  
-IN A  
+IN A  
V-  
1
8
7
6
5
V+  
OUT B  
-IN B  
+IN B  
2
3
4
OUT B  
-IN B  
+IN B  
Pin Functions: TLV2369  
PIN  
TLV2369  
I/O  
DESCRIPTION  
NAME  
DGK  
(VSSOP)  
D (SOIC)  
–IN A  
–IN B  
+IN A  
+IN B  
OUT A  
OUT B  
V–  
2
6
3
5
1
7
4
8
2
6
3
5
1
7
4
8
I
I
Inverting input, channel A  
Inverting input, channel B  
Noninverting input, channel A  
Noninverting input, channel B  
Output, channel A  
I
I
O
O
Output, channel B  
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
Copyright © 2016, Texas Instruments Incorporated  
3
TLV369, TLV2369  
ZHCSF19 MAY 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0
MAX  
+7  
UNIT  
V
Supply, VS = (V+) – (V–)  
Signal input pin(2)  
Signal input pin(2)  
Output short-circuit(3)  
Voltage  
(V–) – 0.5  
–10  
(V+) + 0.5  
10  
V
mA  
mA  
°C  
Current  
Continuous  
Operating, TA  
–40  
–65  
125  
150  
150  
Temperature  
Junction, TJ  
Storage, Tstg  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less.  
(3) Short-circuit to VS / 2, one amplifier per package.  
6.2 ESD Ratings  
over operating free-air temperature range (unless otherwise noted).  
VALUE  
±4000  
±1500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted).  
MIN  
1.8  
NOM  
MAX  
5.5  
UNIT  
VS  
Supply voltage  
V
Specified temperature  
–40  
85  
°C  
4
Copyright © 2016, Texas Instruments Incorporated  
 
 
TLV369, TLV2369  
www.ti.com.cn  
ZHCSF19 MAY 2016  
6.4 Thermal Information: TLV369  
TLV369  
THERMAL METRIC(1)  
DCK (SC70)  
5 PINS  
293.3  
95.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
83.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.9  
ψJB  
82.4  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Thermal Information: TLV2369  
TLV2369  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
121.5  
66.3  
DGK (VSSOP)  
8 PINS  
168.5  
58.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
62.5  
88.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
22.8  
9.3  
ψJB  
61.9  
87.6  
RθJC(bot)  
n/a  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2016, Texas Instruments Incorporated  
5
TLV369, TLV2369  
ZHCSF19 MAY 2016  
www.ti.com.cn  
6.6 Electrical Characteristics  
VS (total supply voltage) = 1.8 V to 5.5 V; at TA = 25°C, and RL = 100 kconnected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
At TA= 25°C  
0.4  
0.85  
0.5  
2
VOS  
Input offset voltage  
mV  
At TA = –40°C to +85°C  
At TA = –40°C to +85°C  
VS = 1.8 V to 5.5 V  
dVOS/dT  
PSRR  
Drift  
Power-supply rejection ratio  
μV/°C  
80  
94  
dB  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
Common-mode rejection ratio  
V–  
80  
V+  
V
CMRR  
(V–) VCM (V+)  
110  
dB  
INPUT BIAS CURRENT  
At TA= 25°C  
10  
See Figure 8  
10  
pA  
pA  
IB  
Input bias current  
Input offset current  
At TA= –40°C to +85°C  
IOS  
INPUT IMPEDANCE  
1013 || 3  
1013 || 6  
ZID  
ZIC  
NOISE  
En  
Differential  
Ω || pF  
Ω || pF  
Common-mode  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
4
300  
1
μVPP  
en  
Input voltage noise density  
Input current noise density  
nV/Hz  
fA/Hz  
in  
f = 1 kHz  
OPEN-LOOP GAIN  
At VS = 5.5 V, 100 mV VO (V+) – 100 mV,  
RL = 100 kΩ  
130  
120  
AOL  
Open-loop voltage gain  
dB  
At VS = 5.5 V, 500 mV VO (V+) – 500 mV,  
RL = 10 kΩ  
80  
OUTPUT  
VO  
Voltage output swing from rail  
Short-circuit current  
RL = 10 kΩ  
25  
mV  
mA  
ISC  
10  
CLOAD  
Capacitive load drive  
See Figure 10  
FREQUENCY RESPONSE  
GBP  
SR  
Gain bandwidth product  
12  
0.005  
250  
kHz  
V/µs  
µs  
Slew rate  
G = 1  
tOR  
Overload recovery time  
VIN × gain = VS  
POWER SUPPLY  
VS  
IQ  
Specified voltage range  
Quiescent current  
1.8  
5.5  
V
IO = 0 mA, at VS = 5.5 V  
800  
1300  
nA  
TEMPERATURE  
Specified range  
Operating range  
–40  
–40  
85  
°C  
°C  
TA  
125  
6
Copyright © 2016, Texas Instruments Incorporated  
TLV369, TLV2369  
www.ti.com.cn  
ZHCSF19 MAY 2016  
6.7 Typical Characteristics  
at TA = 25°C, VS = 5 V, and RL = 100 kΩ connected to VS / 2 (unless otherwise noted)  
100  
80  
60  
40  
20  
0
20  
40  
60  
80  
100  
Time (500 ms/div)  
Common-Mode Voltage (V)  
10 typical units shown, VS = 5 V  
Figure 2. 0.1-Hz to 10-Hz Noise  
Figure 1. Normalized Offset Voltage vs  
Common-Mode Voltage  
3
2.5  
2
140  
120  
100  
80  
180  
135  
90  
RL = 10 kΩ  
RL = 100 kΩ  
Gain  
1.5  
1
60  
40  
Phase  
20  
45  
0.5  
0
0
–20  
0.001 0.01  
0
10k 20k  
0.1  
1
10  
100  
1k  
75  
50  
25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Temperature (°C)  
VS = 5.5 V  
Figure 3. Open-Loop Gain and Phase vs Frequency  
Figure 4. Open-Loop Gain vs Temperature  
120  
25  
20  
RL = 10 kΩ  
100  
80  
15  
10  
5
60  
0
-5  
40  
-10  
-15  
-20  
-25  
RL = 10 kΩ  
20  
0
10  
100  
1k  
10k 20k  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Temperature (°C)  
Figure 5. Common-Mode Rejection Ratio vs Frequency  
Figure 6. Output Voltage Swing from Rail vs Temperature  
Copyright © 2016, Texas Instruments Incorporated  
7
 
 
TLV369, TLV2369  
ZHCSF19 MAY 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, and RL = 100 kΩ connected to VS / 2 (unless otherwise noted)  
3
2.5  
2
10k  
1k  
100  
10  
1.5  
1
1
0.5  
0
0.1  
0.01  
100  
1k  
2k  
–50  
–25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Temperature (°C)  
Figure 7. Maximum Output Voltage vs Frequency  
Figure 8. Input Bias Current vs Temperature  
20  
18  
16  
14  
12  
10  
8
10G  
1G  
100k  
10k  
1k  
G = –1  
G = 1  
6
4
100  
10  
2
0
0
10  
100  
1k  
10k  
100k  
1G  
10  
100  
Frequency (Hz)  
Capacitive Load (pF)  
Figure 9. Open-Loop Output Impedance vs Frequency  
Figure 10. Small-Signal Overshoot vs Capacitive Load  
Time (100 μs/div)  
Time (250 μs/div)  
CL = 20 pF  
Figure 11. Small-Signal Step Response  
Figure 12. Large-Signal Step Response  
8
Copyright © 2016, Texas Instruments Incorporated  
TLV369, TLV2369  
www.ti.com.cn  
ZHCSF19 MAY 2016  
Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, and RL = 100 kΩ connected to VS / 2 (unless otherwise noted)  
Input  
Output  
Time (500 μs/div)  
Figure 13. Overload Recovery  
Copyright © 2016, Texas Instruments Incorporated  
9
TLV369, TLV2369  
ZHCSF19 MAY 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLVx369 family of operational amplifiers minimizes power consumption and operates on supply voltages as  
low as 1.8 V. The zero-crossover distortion circuitry enables high linearity over the full input common-mode  
range, achieving true rail-to-rail input from a 1.8-V to 5.5-V single supply.  
7.2 Functional Block Diagram  
V+  
Low-Noise  
Charge Pump  
Bias Circuitry  
+IN  
-IN  
OUT  
Input Stage Load  
Bias Circuitry  
V-  
10  
Copyright © 2016, Texas Instruments Incorporated  
TLV369, TLV2369  
www.ti.com.cn  
ZHCSF19 MAY 2016  
7.3 Feature Description  
7.3.1 Operating Voltage  
The TLV369 series os op amps are fully specified and tested from 1.8 V to 5.5 V (±0.9 V to ±2.75 V). Parameters  
that vary significantly with supply voltage are described in the Typical Characteristics section.  
7.3.2 Input Common-Mode Voltage Range  
The TLV369 family is designed to eliminate the input offset transition region typically present in most rail-to-rail,  
complementary-stage operational amplifiers, allowing the TLV369 family of amplifiers to provide superior  
common-mode performance over the entire input range.  
The input common-mode voltage range of the TLV369 family typically extends to each supply rail. CMRR is  
specified from the negative rail to the positive rail; see Figure 1, Normalized Offset Voltage vs Common-Mode  
Voltage.  
7.3.3 Protecting Inputs from Overvoltage  
Input currents are typically 10 pA. However, large inputs (greater than 500 mV beyond the supply rails) can  
cause excessive current to flow in or out of the input pins. Therefore, in addition to keeping the input voltage  
between the supply rails, the input current must also be limited to less than 10 mA. This limiting is easily  
accomplished with an input resistor, as shown in Figure 14.  
A current-limiting resistor is required if the input voltage  
exceeds the supply rails by ³ 0.5 V.  
5 V  
IOVERLOAD  
10 mA, max  
TLV369  
VOUT  
VIN  
5 kW  
Copyright © 2016, Texas Instruments Incorporated  
Figure 14. Input Current Protection for Voltages That Exceed the Supply Voltage  
7.4 Device Functional Modes  
The TLV369 family has a single functional mode. These devices are powered on as long as the power-supply  
voltage is between 1.8 V (±0.9 V) and 5.5 V (±2.75 V).  
Copyright © 2016, Texas Instruments Incorporated  
11  
 
TLV369, TLV2369  
ZHCSF19 MAY 2016  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
When designing for ultra-low power, choose system components carefully. To minimize current consumption,  
select large-value resistors. Any resistors can react with stray capacitance in the circuit and the input capacitance  
of the operational amplifier. These parasitic RC combinations can affect the stability of the overall system. Use of  
a feedback capacitor assures stability and limits overshoot or gain peaking.  
8.2 Typical Application  
A typical application for an operational amplifier is an inverting amplifier, as shown in Figure 15. An inverting  
amplifier takes a positive voltage on the input and outputs a signal inverted to the input, making a negative  
voltage of the same magnitude. In the same manner, the amplifier also makes negative input voltages positive on  
the output. In addition, amplification can be added by selecting the input resistor RI and the feedback resistor RF.  
RF  
VSUP+  
RI  
VOUT  
+
VIN  
VSUP-  
Copyright © 2016, Texas Instruments Incorporated  
Figure 15. Application Schematic  
8.2.1 Design Requirements  
The supply voltage must be chosen to be larger than the input voltage range and the desired output range. The  
limits of the input common-mode range (VCM) and the output voltage swing to the rails (VO) must also be  
considered. For instance, this application scales a signal of ±0.5 V (1 V) to ±1.8 V (3.6 V). Setting the supply at  
±2.5 V is sufficient to accommodate this application.  
12  
Copyright © 2016, Texas Instruments Incorporated  
 
TLV369, TLV2369  
www.ti.com.cn  
ZHCSF19 MAY 2016  
Typical Application (continued)  
8.2.2 Detailed Design Procedure  
Determine the gain required by the inverting amplifier using Equation 1 and Equation 2:  
VOUT  
AV  
=
V
IN  
(1)  
(2)  
1.8  
AV  
=
= -3.6  
-0.5  
When the desired gain is determined, choose a value for RI or RF. Choosing a value in the kilohm range is  
desirable for general-purpose applications because the amplifier circuit uses currents in the milliamp range. This  
milliamp current range ensures that the device does not draw too much current. The trade-off is that very large  
resistors (100s of kilohms) draw the smallest current but generate the highest noise. Very small resistors (100s of  
ohms) generate low noise but draw high current. This example uses 10 kΩ for RI, meaning 36 kΩ is used for RF.  
These values are determined by Equation 3:  
RF  
AV = -  
RI  
(3)  
8.2.3 Application Curve  
2
1.5  
1
Input  
Output  
0.5  
0
-0.5  
-1  
-1.5  
-2  
Time  
Figure 16. Inverting Amplifier Input and Output  
Copyright © 2016, Texas Instruments Incorporated  
13  
 
 
 
TLV369, TLV2369  
ZHCSF19 MAY 2016  
www.ti.com.cn  
8.3 System Examples  
8.3.1 Battery Monitoring  
The low operating voltage and quiescent current of the TLV369 series make the family an excellent choice for  
battery-monitoring applications, as shown in Figure 17.  
RF  
R1  
+IN  
+
IBIAS  
OUT  
TLV369  
VSTATUS  
VBATT  
-IN  
VREF  
RBIAS  
R2  
REF1112  
Copyright © 2016, Texas Instruments Incorporated  
Figure 17. Battery Monitor  
In this circuit, VSTATUS is high as long as the battery voltage remains above 2 V. A low-power reference is used to  
set the trip point. Resistor values are selected as follows:  
1. Selecting RF: Select RF such that the current through RF is approximately 1000 times larger than the  
maximum bias current over temperature, as given by Equation 4:  
VREF  
RF =  
1000 (IBMAX  
)
1.2 V  
1000 (50 pA)  
=
= 24 MW » 20 MW  
(4)  
(5)  
2. Choose the hysteresis voltage, VHYST. For battery-monitoring applications, 50 mV is adequate.  
3. Calculate R1 as calculated by Equation 5:  
V
HYST  
50 mV  
R = RF  
= 20 MW  
= 420 kW  
1
V
2.4 V  
BATT  
4. Select a threshold voltage for VIN rising (VTHRS) = 2.0 V.  
5. Calculate R2 as given by Equation 6:  
1
R =  
2
V
THRS  
1
1
-
-
R1 R1  
(V )  
BATT  
1
=
2 V  
1
1
-
-
420 kW 20 MW  
(
)
1.2 V ´ 420 kW  
= 650 kW  
(6)  
6. Calculate RBIAS: The minimum supply voltage for this circuit is 1.8 V. The REF1112 has a current  
requirement of 1.2 μA (max). Providing the REF1112 with 2 μA of supply current assures proper operation.  
Therefore, RBIAS is as given by Equation 7.  
V
BATTMIN  
1.8 V  
R
=
=
= 0.9 MW  
BIAS  
I
2 mA  
BIAS  
(7)  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
 
 
TLV369, TLV2369  
www.ti.com.cn  
ZHCSF19 MAY 2016  
System Examples (continued)  
8.3.2 Window Comparator  
Figure 18 shows the TLV2369 used as a window comparator. The threshold limits are set by VH and VL, with VH  
greater than VL. When VIN is less than VH, the output of A1 is low. When VIN is greater than VL, the output of A2  
is low. Therefore, both op amp outputs are at 0 V as long as VIN is between VH and VL. This architecture results  
in no current flowing through either diode, Q1 is in cutoff, with the base voltage at 0 V, and VOUT forced high.  
3 V  
3 V  
R1  
VH  
D1(2)  
A1  
1/2  
3V  
TLV2369  
R2  
R7  
5.1 kW  
VOUT  
RIN  
(1)  
R5  
2 kW  
10 kW  
Q1(3)  
VIN  
R6  
5.1 kW  
3 V  
1/2  
3 V  
D2(2)  
A2  
R3  
R4  
TLV2369  
VL  
Copyright © 2016, Texas Instruments Incorporated  
Figure 18. TLV2369 as a Window Comparator  
If VIN falls below VL, the output of A2 is high, current flows through D2, and VOUT is low. Likewise, if VIN rises  
above VH, the output of A1 is high, current flows through D1, and VOUT is low. The window comparator threshold  
voltages are set as shown by Equation 8 and Equation 9:  
R2  
V =  
H
R1 + R2  
(8)  
R4  
V =  
L
R3 + R4  
(9)  
9 Power Supply Recommendations  
The TLV369 family is specified for operation from 1.8 V to 5.5 V (±0.9 V to ±2.75 V); many specifications apply  
from –40°C to +125°C. The Typical Characteristics section presents parameters that can exhibit significant  
variance with regard to operating voltage or temperature.  
CAUTION  
Supply voltages larger than 7 V can permanently damage the device (see the Absolute  
Maximum Ratings table).  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement; see the Layout  
Guidelines section.  
Copyright © 2016, Texas Instruments Incorporated  
15  
 
 
 
TLV369, TLV2369  
ZHCSF19 MAY 2016  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the  
operational amplifier. Use bypass capacitors to reduce the coupled noise by providing low-impedance  
power sources local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of the circuitry is one of the simplest and most  
effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to  
ground planes. A ground plane helps distribute heat and reduces electromagnetic interference (EMI)  
noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of  
the ground current. For more detailed information, see Circuit Board Layout Techniques, SLOA089.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicularly is much  
better than crossing in parallel with the noisy trace.  
Place the external components as close to the device as possible. Keep RF and RG close to the inverting  
input in order to minimize parasitic capacitance, as shown in Figure 19.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
10.2 Layout Example  
VS+  
Run the input traces as  
far away from the supply  
lines as possible.  
VIN  
VSœ  
+IN  
V+  
GND  
Vœ  
Use a low-ESR, ceramic  
bypass capacitor.  
Use a low-ESR,  
ceramic bypass  
capacitor.  
RG  
OUT  
VOUT  
œIN  
GND  
RF  
Place components close to the device and  
to each other to reduce parasitic errors.  
Copyright © 2016, Texas Instruments Incorporated  
Figure 19. Operational Amplifier Board Layout for Noninverting Configuration  
VIN  
+
RG  
VOUT  
RF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 20. Schematic Representation of Figure 19  
16  
版权 © 2016, Texas Instruments Incorporated  
 
TLV369, TLV2369  
www.ti.com.cn  
ZHCSF19 MAY 2016  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
使用 TLVx369 时,建议参考下列相关文档,文档下载地址为 www.ti.com.cn(除非另外注明)。  
REF1112 数据表》,SBOS283  
《电路板布局布线技巧》SLOA089  
《运算放大器应用 手册》SBOA092  
《模拟工程师速查参考》SLWY038  
11.1.1.1 相关链接  
1 列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,以及样片或购买的快速访问。  
1. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TLV369  
TLV2369  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
17  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV2369IDGKR  
TLV2369IDGKT  
TLV2369IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
5
5
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
13JV  
13JV  
NIPDAUAG  
NIPDAU  
NIPDAU  
NIPDAU  
2500 RoHS & Green  
3000 RoHS & Green  
TL2369  
12K  
TLV369IDCKR  
TLV369IDCKT  
SC70  
DCK  
DCK  
SC70  
250  
RoHS & Green  
12K  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV2369IDGKR

适用于成本敏感型应用的双路、800nA、1.8V、RRIO 零交叉失真运算放大器 | DGK | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2369IDGKT

适用于成本敏感型应用的双路、800nA、1.8V、RRIO 零交叉失真运算放大器 | DGK | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2369IDR

适用于成本敏感型应用的双路、800nA、1.8V、RRIO 零交叉失真运算放大器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2370

FAMILY OF 550- UA/CH 3-MHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2370ID

FAMILY OF 550- UA/CH 3-MHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2370IDBV

FAMILY OF 550- UA/CH 3-MHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2370IDBVR

FAMILY OF 550-uA/Ch 3-MHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2370IDBVRG4

FAMILY OF 550-uA/Ch 3-MHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2370IDBVT

FAMILY OF 550-uA/Ch 3-MHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2370IDBVTG4

FAMILY OF 550-uA/Ch 3-MHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2370IDG4

FAMILY OF 550-uA/Ch 3-MHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2370IDR

FAMILY OF 550-uA/Ch 3-MHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI