TLV2401CDBVTG4 [TI]

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION; 家庭880 -NA /通道轨到轨输入/输出运算放大器,具有电池反接保护
TLV2401CDBVTG4
型号: TLV2401CDBVTG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
家庭880 -NA /通道轨到轨输入/输出运算放大器,具有电池反接保护

电池 运算放大器 放大器电路 光电二极管 输出元件 输入元件
文件: 总33页 (文件大小:1335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV2401, TLV2402, TLV2404  
FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT  
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION  
SLOS244B – FEBRUARY 2000 – REVISED NOVEMBER 2000  
Operational Amplifier  
Micro-Power Operation . . . < 1 µA/Channel  
Input Common-Mode Range Exceeds the  
Rails . . . –0.1 V to V + 5 V  
CC  
+
Reverse Battery Protection Up To 18 V  
Rail-to-Rail Input/Output  
Gain Bandwidth Product . . . 5.5 kHz  
Supply Voltage Range . . . 2.5 V to 16 V  
Specified Temperature Range  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
– T = 0°C to 70°C . . . Commercial Grade  
A
– T = –40°C to 125°C . . . Industrial Grade  
A
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
A
V
T
A
= 1  
V
Ultrasmall Packaging  
– 5-Pin SOT-23 (TLV2401)  
– 8-Pin MSOP (TLV2402)  
= V  
/ 2  
CC  
IN  
= 25 °C  
Universal OpAmp EVM (Refer to the EVM  
Selection Guide SLOU060)  
description  
The TLV240x family of single-supply operational  
amplifiers has the lowest supply current available  
today at only 880 nA per channel. Reverse battery  
protection guards the amplifier from an over-  
current condition due to improper battery  
installation. For harsh environments, the inputs  
can be taken 5 V above the positive supply rail  
without damage to the device.  
0
2
4
6
8
10 12 14 16  
V
– Supply Voltage – V  
CC  
The low supply current is coupled with extremely low input bias currents enabling them to be used with mega-Ω  
resistors making them ideal for portable, long active life, applications. DC accuracy is ensured with a low typical  
offset voltage as low as 390 µV, CMRR of 120 dB and minimum open loop gain of 130 V/mV at 2.7 V.  
The maximum recommended supply voltage is as high as 16 V and ensured operation down to 2.5 V, with  
electrical characteristics specified at 2.7 V, 5 V and 15 V. The 2.5-V operation makes it compatible with Li-Ion  
battery-powered systems and many micro-power microcontrollers available today including TI’s MSP430.  
All members are available in PDIP and SOIC with the singles in the small SOT-23 package, duals in the MSOP,  
and quads in TSSOP.  
SELECTION OF SINGLE SUPPLY OPERATIONAL AMPLIFIER PRODUCTS  
V
(V)  
V
BW  
(MHz)  
SLEW RATE  
I
/ch  
CC  
IO  
CC  
DEVICE  
RAIL-TO-RAIL  
(mV)  
0.390  
0.600  
0.450  
0.020  
0.200  
(V/µs)  
(µA)  
0.880  
1
TLV240x  
TLV224x  
TLV2211  
TLV245x  
TLV225x  
2.5–16  
2.5–12  
2.7–10  
2.7–6  
2.7–8  
0.005  
0.005  
0.065  
0.22  
0.002  
0.002  
0.025  
0.110  
0.12  
I/O  
I/O  
O
13  
23  
I/O  
O
0.2  
35  
All specifications are typical values measured at 5 V.  
This device also offers 18-V reverse battery protection and 5-V over-the-rail operation on the inputs.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2401, TLV2402, TLV2404  
FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT  
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION  
SLOS244B – FEBRUARY 2000 – REVISED NOVEMBER 2000  
TLV2401 AVAILABLE OPTIONS  
PACKAGED DEVICES  
V
max  
IO  
T
A
SMALL OUTLINE  
(D)  
SOT-23  
(DBV)  
PLASTIC DIP  
(P)  
AT 25°C  
SYMBOLS  
0°C to 70°C  
TLV2401CD  
TLV2401ID  
TLV2401CDBV  
TLV2401IDBV  
VAWC  
VAWI  
1500 µV  
-40°C to 125°C  
TLV2401IP  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g.,  
TLV2401CDR).  
TLV2402 AVAILABLE OPTIONS  
PACKAGED DEVICES  
V
max  
IO  
T
A
SMALL OUTLINE  
(D)  
MSOP  
PLASTIC DIP  
(P)  
AT 25°C  
SYMBOLS  
(DGK)  
0°C to 70°C  
TLV2402CD  
TLV2402ID  
TLV2402CDGK  
TLV2402IDGK  
xxTIAIX  
xxTIAIY  
1500 µV  
40°C to 125°C  
TLV2402IP  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g.,  
TLV2402CDR).  
TLV2404 AVAILABLE OPTIONS  
PACKAGED DEVICES  
V
IO  
max  
T
A
SMALL OUTLINE  
(D)  
PLASTIC DIP  
(N)  
TSSOP  
(PW)  
AT 25°C  
0°C to 70°C  
TLV2404CD  
TLV2404ID  
TLV2404CN  
TLV2404IN  
TLV2404CPW  
TLV2404IPW  
1500 µV  
40°C to 125°C  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part  
number (e.g., TLV2404CDR).  
TLV240x PACKAGE PINOUTS  
TLV2401  
D OR P PACKAGE  
(TOP VIEW)  
TLV2402  
D, DGK, OR P PACKAGE  
(TOP VIEW)  
TLV2401  
DBV PACKAGE  
(TOP VIEW)  
1
2
3
5
4
V
CC  
OUT  
NC  
IN–  
NC  
1OUT  
1IN–  
1IN+  
GND  
V
CC  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
V
2OUT  
2IN–  
2IN+  
CC  
GND  
IN+  
IN+  
OUT  
NC  
GND  
IN–  
TLV2404  
D, N, OR PW PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN–  
1IN+  
4OUT  
4IN–  
4IN+  
GND  
3IN+  
3IN–  
3OUT  
V
CC  
2IN+  
2IN–  
8
2OUT  
NC – No internal connection  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2401, TLV2402, TLV2404  
FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT  
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION  
SLOS244B – FEBRUARY 2000 – REVISED NOVEMBER 2000  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Differential input voltage range, V  
Input current range, I (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA  
Output current range, I  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 V  
CC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 V  
ID  
I
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA  
O
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 125°C  
Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values, except differential voltages, are with respect to GND  
DISSIPATION RATING TABLE  
Θ
Θ
T
25°C  
T = 125°C  
A
POWER RATING  
JC  
JA  
A
PACKAGE  
POWER RATING  
(°C/W)  
(°C/W)  
D (8)  
38.3  
176  
710 mW  
142 mW  
D (14)  
DBV (5)  
DGK (8)  
N (14)  
26.9  
55  
122.6  
324.1  
259.9  
78  
1022 mW  
385 mW  
481 mW  
1600 mW  
1200 mW  
204.4 mW  
77.1 mW  
96.2 mW  
320.5 mW  
240.4 mW  
54.2  
32  
P (8)  
41  
104  
PW (14)  
29.3  
173.6  
720 mW  
144 mW  
recommended operating conditions  
MIN  
MAX  
16  
UNIT  
V
Single supply  
2.5  
±1.25  
–0.1  
0
Supply voltage, V  
CC  
Split supply  
±8  
Common-mode input voltage range, V  
ICR  
V
+5  
70  
V
CC  
C-suffix  
I-suffix  
Operating free-air temperature, T  
°C  
A
40  
125  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2401, TLV2402, TLV2404  
FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT  
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION  
SLOS244B – FEBRUARY 2000 – REVISED NOVEMBER 2000  
electrical characteristics at recommended operating conditions, V  
otherwise noted)  
= 2.7, 5 V, and 15 V (unless  
CC  
dc performance  
PARAMETER  
Input offset voltage  
Offset voltage draft  
TEST CONDITIONS  
= V /2 V,  
= V /2 V,  
CC  
= 50 Ω  
MIN  
TYP  
MAX  
1200  
1500  
T
UNIT  
µV  
A
25°C  
Full range  
25°C  
390  
V
V
R
O
IC  
S
CC  
V
IO  
α
3
µV/°C  
VIO  
25°C  
63  
60  
120  
V
V
V
= 2.7 V  
= 5 V  
CC  
CC  
CC  
Full range  
25°C  
70  
120  
120  
V
R
= 0 to V  
= 50 Ω  
,
IC  
S
CC  
CMRR Common-mode rejection ratio  
dB  
Full range  
25°C  
63  
80  
= 15 V  
Full range  
25°C  
75  
130  
30  
400  
V
CC  
V
CC  
V
CC  
= 2.7 V,  
= 5 V,  
V
V
= 1 V,  
= 3 V,  
R
R
= 500 kΩ  
= 500 kΩ  
O(pp)  
O(pp)  
L
Full range  
25°C  
300  
100  
1000  
120  
1000  
1800  
Large-signal differential voltage  
amplification  
A
VD  
V/mV  
L
Full range  
25°C  
= 15 V,  
V
= 6 V, R = 500 kΩ  
O(pp) L  
Full range  
Full range is 0°C to 70°C for the C suffix and –40°C to 125°C for the I suffix. If not specified, full range is 40°C to 125°C.  
input characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
250  
300  
400  
300  
350  
900  
T
A
UNIT  
25°C  
Full range  
25°C  
25  
I
Input offset current  
Input bias current  
TLV240xC  
TLV240xI  
pA  
IO  
IB  
V
V
R
= V /2 V,  
CC  
= V /2 V,  
CC  
O
IC  
S
100  
= 50 Ω  
I
TLV240xC  
TLV240xI  
pA  
Full range  
r
Differential input resistance  
25°C  
25°C  
300  
3
MΩ  
i(d)  
C
Common-mode input capacitance  
f = 100 kHz  
pF  
i(c)  
Full range is 0°C to 70°C for the C suffix and –40°C to 125°C for the I suffix. If not specified, full range is 40°C to 125°C.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2401, TLV2402, TLV2404  
FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT  
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION  
SLOS244B – FEBRUARY 2000 – REVISED NOVEMBER 2000  
electrical characteristics at recommended operating conditions, V  
otherwise noted) (continued)  
= 2.7, 5 V, and 15 V (unless  
CC  
output characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
2.65  
2.63  
4.95  
4.93  
TYP  
MAX  
T
A
UNIT  
25°C  
Full range  
25°C  
2.68  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.7 V  
= 5 V  
4.98  
V
I
= V /2,  
CC  
IC  
OH  
= –2 µA  
Full range  
25°C  
14.95 14.98  
= 15 V  
= 2.7 V  
= 5 V  
Full range 14.93  
V
OH  
High-level output voltage  
V
25°C  
Full range  
25°C  
2.62  
2.6  
2.65  
4.95  
4.92  
4.9  
V
= V /2,  
CC  
= –50 µA  
IC  
I
Full range  
25°C  
OH  
14.92 14.95  
= 15 V  
Full range  
25°C  
14.9  
90  
150  
180  
230  
260  
V
IC  
= V /2,  
CC  
I
I
= 2 µA  
OL  
OL  
Full range  
25°C  
V
OL  
Low-level output voltage  
Output current  
mV  
180  
V
V
= V /2,  
CC  
= 50 µA  
IC  
Full range  
25°C  
I
O
= 0.5 V from rail  
±200  
µA  
O
Full range is 0°C to 70°C for the C suffix and –40°C to 125°C for the I suffix. If not specified, full range is 40°C to 125°C.  
power supply  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
950  
T
A
UNIT  
25°C  
Full range  
25°C  
880  
V
= 2.7 V or 5 V  
= 15 V  
CC  
CC  
1290  
990  
I
Supply current (per channel)  
Reverse supply current  
V
= V /2  
CC  
nA  
CC  
O
900  
V
Full range  
1350  
V
V
= –18 V,  
= Open circuit  
V
= 0 V,  
IN  
CC  
O
25°C  
25°C  
50  
nA  
100  
96  
120  
V
V
= 2.7 to 5 V,  
CC  
IC  
dB  
dB  
dB  
TLV240xC  
TLV240xI  
= V /2 V,  
CC  
Full range  
Power supply rejection ratio  
No load,  
PSRR  
85  
(V /V  
CC IO  
)
25°C  
100  
100  
120  
V
= 5 to 15 V,  
V
= V /2 V,  
IC CC  
CC  
No load  
Full range  
Full range is 0°C to 70°C for the C suffix and –40°C to 125°C for the I suffix. If not specified, full range is 40°C to 125°C.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2401, TLV2402, TLV2404  
FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT  
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION  
SLOS244B – FEBRUARY 2000 – REVISED NOVEMBER 2000  
electrical characteristics at recommended operating conditions, V  
otherwise noted) (continued)  
= 2.7, 5 V, and 15 V (unless  
CC  
dynamic performance  
PARAMETER  
TEST CONDITIONS  
T
MIN  
TYP  
5.5  
2.5  
60°  
15  
MAX  
UNIT  
kHz  
A
UGBW  
SR  
Unity gain bandwidth  
Slew rate at unity gain  
Phase margin  
R
= 500 k,  
C
C
= 100 pF  
= 100 pF  
25°C  
25°C  
L
L
L
V
O(pp)  
= 0.8 V,  
R
C
= 500 k,  
V/ms  
L
L
φM  
R
= 500 k,  
= 100 pF  
25°C  
25°C  
L
Gain margin  
dB  
ms  
V
V
A
V
= 2.7 or 5 V,  
CC  
(STEP)PP  
= 1 V,  
C
R
= 100 pF,  
= 100 kΩ  
0.1%  
1.84  
L
L
= –1,  
t
s
Settling time  
V
V
A
V
= 15 V,  
CC  
(STEP)PP  
= –1,  
0.1%  
6.1  
32  
= 1 V,  
C
R
= 100 pF,  
= 100 kΩ  
L
L
0.01%  
noise/distortion performance  
PARAMETER  
Equivalent input noise voltage  
Equivalent input noise current  
TEST CONDITIONS  
f = 10 Hz  
T
MIN  
TYP  
800  
500  
8
MAX  
UNIT  
A
V
nV/Hz  
fA/Hz  
n
f = 100 Hz  
25°C  
I
n
f = 100 Hz  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2401, TLV2402, TLV2404  
FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT  
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION  
SLOS244B – FEBRUARY 2000 – REVISED NOVEMBER 2000  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
Input Offset Voltage  
Input Bias Current  
vs Common-mode input voltage  
vs Free-air temperature  
vs Common-mode input voltage  
vs Free-air temperature  
vs Common-mode input voltage  
vs Frequency  
1, 2, 3  
4, 6, 8  
5, 7, 9  
4, 6, 8  
5, 7, 9  
10  
IO  
I
IB  
I
IO  
Input Offset Current  
CMRR  
Common-mode rejection ratio  
High-level output voltage  
Low-level output voltage  
Output voltage peak-to-peak  
Output impedance  
V
V
V
vs High-level output current  
vs Low-level output current  
vs Frequency  
11, 13, 15  
12, 14, 16  
17  
OH  
OL  
O(PP)  
o
Z
vs Frequency  
18  
I
Supply current  
vs Supply voltage  
19  
CC  
PSRR  
Power supply rejection ratio  
Differential voltage gain  
Phase  
vs Frequency  
20  
A
VD  
vs Frequency  
21  
vs Frequency  
21  
Gain-bandwidth product  
Slew rate  
vs Supply voltage  
22  
SR  
vs Free-air temperature  
vs Capacitive load  
23  
φ
m
Phase margin  
24  
Gain margin  
vs Capacitive load  
25  
Supply current  
vs Reverse voltage  
26  
Voltage noise over a 10 Second Period  
Large signal follower pulse response  
Small signal follower pulse response  
Large signal inverting pulse response  
Small signal inverting pulse response  
Crosstalk  
27  
28, 29, 30  
31  
32, 33, 34  
35  
vs Frequency  
36  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2401, TLV2402, TLV2404  
FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT  
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION  
SLOS244B – FEBRUARY 2000 – REVISED NOVEMBER 2000  
TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE  
vs  
INPUT OFFSET VOLTAGE  
vs  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT  
VOLTAGE  
COMMON-MODE INPUT  
VOLTAGE  
COMMON-MODE INPUT  
VOLTAGE  
100  
0
400  
300  
1400  
1200  
1000  
800  
600  
400  
200  
0
V
T
= 2.7 V  
V
T
= 15 V  
= 25 °C  
CC  
= 25°C  
CC  
A
A
200  
100  
–100  
–200  
–300  
–400  
0
–100  
–200  
–300  
–400  
V
T
A
= 5 V  
CC  
= 25 °C  
–200  
0.4 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2  
–0.1  
2.0  
–0.1  
4.2  
6.4  
8.6 10.8 13.0 15.2  
––00.2.10 0.20 0.60 1.00 1.40 1.80 2.20 2.60 2.9  
V
– Common-Mode Input Voltage – V  
V
– Common-Mode Input Voltage –V  
ICR  
V
– Common-Mode Input Voltage – V  
ICR  
ICR  
Figure 1  
Figure 2  
Figure 3  
INPUT BIAS / OFFSET CURRENT  
INPUT BIAS / OFFSET CURRENT  
vs  
INPUT BIAS / OFFSET CURRENT  
vs  
vs  
COMMON MODE INPUT  
VOLTAGE  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
400  
350  
300  
250  
200  
150  
100  
50  
V
V
= 2.7 V  
V
V
= 5 V  
V
T
= 2.7 V  
CC  
= 1.35 V  
CC  
= 2.5 V  
IC  
CC  
= 25 °C  
IC  
A
I
I
IO  
I
I
IO  
IO  
0
I
–50  
–100  
–150  
I
IB  
IB  
–100  
–200  
–100  
–200  
IB  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
–0.2 0.2 0.6 1.0 1.4 1.8 2.2 2.6 2.9  
–0.1  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
V
– Common Mode Input Voltage – V  
ICR  
Figure 4  
Figure 5  
Figure 6  
INPUT BIAS / OFFSET CURRENT  
INPUT BIAS / OFFSET CURRENT  
INPUT BIAS / OFFSET CURRENT  
vs  
vs  
vs  
COMMON-MODE INPUT  
VOLTAGE  
COMMON-MODE INPUT  
VOLTAGE  
FREE-AIR TEMPERATURE  
200  
150  
100  
50  
700  
600  
500  
400  
300  
200  
100  
0
250  
200  
150  
100  
50  
V
V
= 15 V  
V
T
= 15 V  
= 25 °C  
V
T
= 5 V  
CC  
= 7.5 V  
CC  
A
CC  
= 25 °C  
IC  
A
I
IO  
I
IO  
0
0
I
IO  
–50  
–100  
–150  
–50  
–100  
–150  
I
I
IB  
IB  
–100  
–200  
I
IB  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
2
–0.1  
0.4 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2  
–0.2 2.0  
–0.1  
4.2  
6.4  
8.6 10.8 13.0 15.2  
T
A
– Free-Air Temperature – °C  
V
– Common Mode Input Voltage – V  
ICR  
V
– Common-Mode Input Voltage –V  
ICR  
Figure 7  
Figure 8  
Figure 9  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2401, TLV2402, TLV2404  
FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT  
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION  
SLOS244B – FEBRUARY 2000 – REVISED NOVEMBER 2000  
TYPICAL CHARACTERISTICS  
COMMON-MODE REJECTION RATIO  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
FREQUENCY  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
120  
100  
80  
60  
40  
20  
0
V
T
= 2.7 V  
CC  
V
= 2.7 V  
CC  
= 25 °C  
= 0 °C  
= –40°C  
A
T
A
T
A
T
= –40°C  
A
T
T
T
T
= –0°C  
A
A
A
A
= 25 °C  
= 70 °C  
= 125 °C  
T
T
= 70 °C  
= 125 °C  
A
A
0
50  
100  
150  
200  
0
50  
100  
150  
200  
1
10  
100  
1k  
10k  
f – Frequency – Hz  
I
– High-Level Output Current – µA  
I
– Low-Level Output Current – µA  
OH  
OL  
Figure 10  
Figure 11  
Figure 12  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
5.0  
4.5  
4.0  
3.5  
3.0  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
15.0  
14.5  
14.0  
13.5  
13  
V
= 5 V  
CC  
V
= 5 V  
CC  
T
= –40°C  
A
T
= 0 °C  
= –40°C  
A
T
A
T
= –0°C  
A
T
= –0°C  
A
T
= 25 °C  
= 70 °C  
T = 125 °C  
A
A
T
T
T
= 25 °C  
= 70 °C  
= 125 °C  
A
A
A
T
= 25 °C  
= 70 °C  
= 125 °C  
A
T
A
T
A
T
A
T
A
= –40°C  
V
= 15 V  
50  
CC  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
0
100  
150  
200  
I
– High-Level Output Current – µA  
I
– Low-Level Output Current – µA  
I
– High-Level Output Current – µA  
OH  
OL  
OH  
Figure 13  
Figure 14  
Figure 15  
OUTPUT VOLTAGE  
PEAK-TO-PEAK  
vs  
OUTPUT IMPEDANCE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
FREQUENCY  
FREQUENCY  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
16  
14  
12  
10  
8
10k  
1k  
V
= 15 V  
CC  
V
= 15 V  
CC  
AV = 10  
T
= –40°C  
A
T
= –0°C  
A
AV = 1  
T
= 25 °C  
= 70 °C  
= 125 °C  
A
6
T
A
T
A
R
C
T
A
= 100 kΩ  
= 100 pF  
= 25°C  
L
L
4
V
= 5 V  
CC  
100  
10  
2
V
= 2.7 V  
CC  
0
V
= 2.7, 5, & 15 V  
CC  
= 25°C  
T
A
0
50  
100  
150  
200  
100  
1k  
10k  
10  
100  
1k  
I
– Low-Level Output Current – µA  
f – Frequency – Hz  
f – Frequency – Hz  
OL  
Figure 16  
Figure 18  
Figure 17  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2401, TLV2402, TLV2404  
FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT  
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION  
SLOS244B – FEBRUARY 2000 – REVISED NOVEMBER 2000  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
POWER SUPPLY REJECTION RATIO  
vs  
FREQUENCY  
120  
110  
100  
90  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
T
A
= 2.7, 5, & 15 V  
CC  
= 25°C  
80  
T
= 125°C  
= 70 °C  
= 25 °C  
= 0 °C  
A
70  
T
A
T
60  
A
T
A
T
A
= –40°C  
50  
A
V
= 1  
V
= V  
/ 2  
IN  
CC  
40  
0
2
4
6
8
10 12 14 16  
10  
100  
1k  
10k  
f – Frequency – Hz  
V
– Supply Voltage – V  
CC  
Figure 19  
Figure 20  
DIFFERENTIAL VOLTAGE GAIN AND PHASE  
GAIN BANDWIDTH PRODUCT  
vs  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
7
6
5
4
3
2
1
0
60  
50  
135  
90  
T
R
C
= 25°C  
= 100 kΩ  
= 100 pF  
A
L
L
f = 1 kHz  
40  
30  
20  
10  
45  
0
0
V
R
C
= 2.7, 5, & 15 V  
= 500 kΩ  
= 100 pF  
CC  
L
L
–10  
T
= 25°C  
A
–20  
–45  
10k  
2.5 4.0 5.5 7.0 8.5 10.0 11.5 13.0 14.5 16.0  
10  
100  
1k  
f – Frequency – Hz  
V
– Supply Voltage –V  
CC  
Figure 21  
Figure 22  
SLEW RATE  
vs  
PHASE MARGIN  
vs  
FREE-AIR TEMPERATURE  
CAPACITIVE LOAD  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
SR+  
V
= 5, 15 V  
CC  
V
= 2.7 V  
CC  
V
= 2.7, 5, & 15 V  
CC  
V
R
T
A
= 2.7, 5, & 15 V  
= 500 kΩ  
= 25°C  
SR–  
CC  
L
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
10  
100  
1k  
10k  
T
A
– Free-Air Temperature – °C  
C
– Capacitive Load – pF  
L
Figure 23  
Figure 24  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2401, TLV2402, TLV2404  
FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT  
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION  
SLOS244B – FEBRUARY 2000 – REVISED NOVEMBER 2000  
TYPICAL CHARACTERISTICS  
GAIN MARGIN  
SUPPLY CURRENT  
vs  
REVERSE VOLTAGE  
vs  
CAPACITIVE LOAD  
25  
20  
15  
10  
5
60  
55  
R = 500 kΩ  
L
T = 25°C  
A
T
= 25°C  
A
50  
45  
40  
V
= 15 V  
CC  
35  
30  
25  
20  
15  
10  
V
= 2.7 & 5 V  
CC  
5
0
0
–18 –16 –14 –12 –10 –8 –6 –4 –2  
0
10  
100  
1k  
10k  
C
– Capacitive Load – pF  
L
V
– Reverse Voltage – V  
CC  
Figure 25  
Figure 26  
LARGE SIGNAL FOLLOWER  
PULSE RESPONSE  
VOLTAGE NOISE  
OVER A 10 SECOND PERIOD  
2
4
3
V
= 5 V  
CC  
f = 0.1 Hz to 10 Hz  
= 25°C  
1
0
V
IN  
T
A
2
1
V
= 2.7 V  
CC  
A
R
C
= 1  
V
L
L
2
–1  
0
= 100 kΩ  
= 100 pF  
= 25°C  
–1  
–2  
–3  
–4  
1
T
A
V
O
2
0
0
1
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10  
t – Time – ms  
t – Time – s  
Figure 27  
Figure 28  
LARGE SIGNAL FOLLOWER  
PULSE RESPONSE  
LARGE SIGNAL FOLLOWER  
PULSE RESPONSE  
4
3
2
15  
V
A
R
= 15 V  
= 1  
= 100 kΩ  
= 100 pF  
= 25°C  
V
A
R
= 5 V  
= 1  
= 100 kΩ  
= 100 pF  
= 25°C  
CC  
V
L
L
CC  
V
L
L
15  
10  
5
10  
5
V
IN  
V
IN  
C
T
C
T
A
1
0
A
0
4
–5  
3
–1  
2
V
V
O
6
O
1
0
0
0
2
4
8
10 12 14 16  
0
1
2
3
4
5
6
t – Time – ms  
t – Time – ms  
Figure 29  
Figure 30  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2401, TLV2402, TLV2404  
FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT  
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION  
SLOS244B – FEBRUARY 2000 – REVISED NOVEMBER 2000  
TYPICAL CHARACTERISTICS  
SMALL SIGNAL FOLLOWER  
PULSE RESPONSE  
LARGE SIGNAL INVERTING  
PULSE RESPONSE  
120  
100  
80  
3
2
300  
150  
V
IN  
V
IN  
0
1
0
V
= 2.7, 5,  
CC  
& 15 V  
–150  
V
A
R
= 2.7 V  
0.5  
CC  
A
= 1  
= 100 kΩ  
= 100 pF  
= –1  
V
V
L
L
R
C
= 100 kΩ  
= 100 pF  
= 25°C  
L
L
0.0  
–1  
C
T
60  
V
O
T = 25°C  
A
–0.5  
–1.0  
–1.5  
–2  
A
40  
20  
V
3
O
0
0
100 1200 300 400 0 500  
t – Time – µs  
0
1
2
4
5
6
7
t – Time – ms  
Figure 31  
Figure 32  
LARGE SIGNAL INVERTING  
PULSE RESPONSE  
LARGE SIGNAL INVERTING  
PULSE RESPONSE  
4
3
12  
9
V
IN  
V
IN  
2
6
1
3
0.5  
0
0
V
A
R
C
T
A
= 15 V  
= –1  
= 100 kΩ  
= 100 pF  
V
A
R
= 5 V  
= –1  
= 100 kΩ  
= 100 pF  
= 25°C  
CC  
V
L
L
CC  
V
L
L
0.0  
2
–1  
–3  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
0
C
T
–2  
–4  
–6  
–8  
–10  
–12  
= 25°C  
A
V
V
O
O
–1  
0
1
2
3
4
5
6
7
0
5
10 15 20 25 30 35  
t – Time – ms  
t – Time – ms  
Figure 33  
Figure 34  
CROSSTALK  
vs  
FREQUENCY  
SMALL SIGNAL INVERTING  
PULSE RESPONSE  
50  
0
–20  
200  
100  
0
V
V
= 2.7,  
IN  
CC  
5, & 15 V  
All Channels  
R
C
V
= 100 kΩ  
= 100 pF  
= 1 V  
V
= 2.7, 5,  
L
L
IN  
–40  
CC  
& 15 V  
= –1  
V
= 15 V  
CC  
A
PP  
V
–60  
–100  
R
= 100 kΩ  
L
C
T
A
= 100 pF  
= 25°C  
L
0
–80  
V
= 2.7, 5 V  
CC  
–50  
–100  
–150  
–100  
–120  
–140  
V
O
00  
0
200 400 600 800 1000 1200  
t – Time – ms  
10  
100  
1k  
10k  
f – Frequency –Hz  
Figure 35  
Figure 36  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2401, TLV2402, TLV2404  
FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT  
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION  
SLOS244B – FEBRUARY 2000 – REVISED NOVEMBER 2000  
APPLICATION INFORMATION  
reverse battery protection  
The TLV2401/2/4 are protected against reverse battery voltage up to 18 V. When subjected to reverse battery  
condition the supply current is typically less than 100 nA at 25°C (inputs grounded and outputs open). This  
current is determined by the leakage of 6 Schottky diodes and will therefore increase as the ambient  
temperature increases.  
When subjected to reverse battery conditions and negative voltages applied to the inputs or outputs, the input  
ESD structure will turn on—this current should be limited to less than 10 mA. If the inputs or outputs are referred  
to ground, rather than midrail, no extra precautions need be taken.  
common-mode input range  
The TLV2401/2/4 has rail-to-rail input and outputs. For common-mode inputs from –0.1 V to V – 0.8 V a PNP  
CC  
differential pair will provide the gain.  
For inputs between V  
– 0.8 V and V , two NPN emitter followers buffering a second PNP differential pair  
CC  
CC  
provide the gain. This special combination of NPN/PNP differential pair enables the inputs to be taken 5 V above  
the rails, because as the inputs go above V , the NPNs switch from functioning as transistors to functioning  
CC  
as diodes. This will lead to an increase in input bias current. The second PNP differential pair continues to  
function normally as the inputs exceed V  
.
CC  
The TLV2401/2/4 has a negative common-input range that exceeds ground by 100 mV. If the inputs are taken  
much below this, reduced open loop gain will be observed with the ultimate possibility of phase inversion.  
offset voltage  
Theoutputoffsetvoltage,(V )isthesumoftheinputoffsetvoltage(V )andbothinputbiascurrents(I )times  
OO  
IO  
IB  
the corresponding gains. The following schematic and formula can be used to calculate the output offset  
voltage:  
R
F
I
IB–  
R
G
+
+
V
I
V
O
R
S
I
IB+  
R
R
R
R
F
F
V
V
1
I
R
1
I
R
OO  
IO  
IB  
S
IB–  
F
G
G
Figure 37. Output Offset Voltage Model  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2401, TLV2402, TLV2404  
FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT  
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION  
SLOS244B – FEBRUARY 2000 – REVISED NOVEMBER 2000  
APPLICATION INFORMATION  
general configurations  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often  
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier  
(see Figure 38).  
R
R
F
G
V
1
O
+
V
I
R1  
V
C1  
f
–3dB  
2 R1C1  
R
O
F
1
1
V
R
1
sR1C1  
I
G
Figure 38. Single-Pole Low-Pass Filter  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.  
Failure to do this can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
–3dB  
2 RC  
C2  
R
F
1
R
=
G
R
F
2 –  
)
(
R
Q
G
Figure 39. 2-Pole Low-Pass Sallen-Key Filter  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2401, TLV2402, TLV2404  
FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT  
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION  
SLOS244B – FEBRUARY 2000 – REVISED NOVEMBER 2000  
APPLICATION INFORMATION  
circuit layout considerations  
ToachievethelevelsofhighperformanceoftheTLV240x, followproperprinted-circuitboarddesigntechniques.  
A general set of guidelines is given in the following.  
Ground planes – It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and  
output, the ground plane can be removed to minimize the stray capacitance.  
Proper power supply decoupling – Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic  
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers  
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal  
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply  
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less  
effective. The designer should strive for distances of less than 0.1 inches between the device power  
terminals and the ceramic capacitors.  
SocketsSockets can be used but are not recommended. The additional lead inductance in the socket pins  
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board  
is the best implementation.  
Short trace runs/compact part placements – Optimum high performance is achieved when stray series  
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,  
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of  
the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at  
the input of the amplifier.  
Surface-mount passive components – Using surface-mount passive components is recommended for high  
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be  
kept as short as possible.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2401, TLV2402, TLV2404  
FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT  
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION  
SLOS244B – FEBRUARY 2000 – REVISED NOVEMBER 2000  
APPLICATION INFORMATION  
general power dissipation considerations  
Foragivenθ , themaximumpowerdissipationisshowninFigure40andiscalculatedbythefollowingformula:  
JA  
T
–T  
MAX  
A
P
D
JA  
Where:  
P
= Maximum power dissipation of THS240x IC (watts)  
= Absolute maximum junction temperature (150°C)  
= Free-ambient air temperature (°C)  
D
T
MAX  
T
A
θ
= θ + θ  
JA  
JC CA  
θ
θ
= Thermal coefficient from junction to case  
JC  
= Thermal coefficient from case to ambient air (°C/W)  
CA  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
2
T
= 150°C  
PDIP Package  
J
Low-K Test PCB  
1.75  
1.5  
1.25  
1
θ
= 104°C/W  
JA  
MSOP Package  
Low-K Test PCB  
SOIC Package  
Low-K Test PCB  
θ
= 260°C/W  
JA  
θ
= 176°C/W  
JA  
0.75  
0.5  
SOT-23 Package  
Low-K Test PCB  
0.25  
0
θ
= 324°C/W  
JA  
–5540 –25 –10  
5
20 35 50 65 80 95 110 125  
T
A
– Free-Air Temperature – °C  
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.  
Figure 40. Maximum Power Dissipation vs Free-Air Temperature  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV2401, TLV2402, TLV2404  
FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT  
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION  
SLOS244B – FEBRUARY 2000 – REVISED NOVEMBER 2000  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts Release 8, the model generation  
software used with Microsim PSpice . The Boyle macromodel (see Note 2) and subcircuit in Figure 41 are  
generated using the TLV240x typical electrical and operating characteristics at T = 25°C. Using this  
A
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most  
cases):  
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, andJ. E. Solomon, “MacromodelingofIntegratedCircuitOperationalAmplifiers”, IEEEJournal  
of Solid-State Circuits, SC-9, 353 (1974).  
3
99  
V
CC+  
+
egnd  
ree  
ro2  
cee  
fb  
rp  
rc1  
11  
rc2  
12  
c1  
7
+
1
2
c2  
vlim  
8
IN+  
IN–  
+
r2  
9
6
vc  
+
q1  
q2  
vb  
ga  
ro1  
gcm  
ioff  
53  
dp  
14  
13  
V
OUT  
re1  
re2  
dlp  
dln  
5
91  
90  
92  
10  
+
+
iee  
dc  
vlp  
hlim  
vln  
V
CC–  
+
+ 54  
4
de  
ve  
.subckt 240X_5V–X 1 2 3 4 5  
*
rc1  
rc2  
re1  
re2  
ree  
ro1  
ro2  
rp  
3
3
11 978.81E3  
12 978.81E3  
c1  
c2  
11 12 9.8944E–12  
30.000E–12  
13 10 30.364E3  
14 10 30.364E3  
10 99 3.6670E9  
6
7
cee 10 99 8.8738E–12  
dc  
5
53 dy  
8
5
10  
de  
dlp  
dln  
dp  
54 5 dy  
90 91 dx  
92 90 dx  
7
99 10  
3
4
0
1.4183E6  
dc  
vb  
9
0
4
3
dx  
vc  
ve  
vlim  
vlp  
vln  
3
53 dc .88315  
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5  
54  
7
4
8
0
dc .88315  
dc  
dc 540  
fb  
7
6
0
99 poly(5) vb vc ve vlp vln 0 61.404E6 –1E3 1E3 61E6 –61E6  
0
ga  
0
6
11 12 1.0216E–6  
10 99 10.216E–12  
91  
0
gcm  
iee  
ioff  
92 dc 540  
10 4 dc 54.540E–9  
.model dx D(Is=800.00E–18)  
0
6
dc 5e–12  
.model dy D(Is=800.00E–18 Rs=1m Cjo=10p)  
.model qx1 NPN(Is=800.00E–18 Bf=27.270E21)  
.model qx2 NPN(Is=800.0000E–18 Bf=27.270E21)  
.ends  
hlim 90 0 vlim 1K  
q1  
q2  
r2  
11  
12 1 14 qx2  
100.00E3  
2
13 qx1  
6
9
Figure 41. Boyle Macromodels and Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Aug-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TLV2401CD  
TLV2401CDBVR  
TLV2401CDBVRG4  
TLV2401CDBVT  
TLV2401CDBVTG4  
TLV2401CDG4  
TLV2401CDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
D
DBV  
DBV  
DBV  
DBV  
D
8
5
5
5
5
8
8
8
8
5
5
5
5
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
75  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
2500  
2500  
75  
Green (RoHS  
& no Sb/Br)  
TLV2401CDRG4  
TLV2401ID  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
TLV2401IDBVR  
TLV2401IDBVRG4  
TLV2401IDBVT  
TLV2401IDBVTG4  
TLV2401IDG4  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
DBV  
D
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
75  
Green (RoHS  
& no Sb/Br)  
TLV2401IDR  
SOIC  
D
2500  
2500  
Green (RoHS  
& no Sb/Br)  
TLV2401IDRG4  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
TLV2401IP  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
P
P
8
8
50  
50  
Pb-Free (RoHS)  
Pb-Free (RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
TLV2401IPE4  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Aug-2012  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TLV2402CD  
TLV2402CDG4  
TLV2402CDGK  
TLV2402CDGKG4  
TLV2402CDGKR  
TLV2402CDGKRG4  
TLV2402CDR  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
80  
Green (RoHS  
& no Sb/Br)  
80  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
2500  
2500  
75  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
TLV2402CDRG4  
TLV2402ID  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
TLV2402IDG4  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
TLV2402IDGK  
TLV2402IDGKG4  
TLV2402IDGKR  
TLV2402IDGKRG4  
TLV2402IDR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
80  
Green (RoHS  
& no Sb/Br)  
80  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
TLV2402IDRG4  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
TLV2402IP  
TLV2402IPE4  
TLV2404AIN  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
PDIP  
P
P
N
8
8
50  
50  
Pb-Free (RoHS)  
Pb-Free (RoHS)  
TBD  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
OBSOLETE  
14  
Call TI  
Call TI  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Aug-2012  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TLV2404CD  
TLV2404CDG4  
TLV2404CPW  
TLV2404CPWG4  
TLV2404CPWR  
TLV2404CPWRG4  
TLV2404ID  
SOIC  
SOIC  
D
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
50  
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
PW  
PW  
D
90  
Green (RoHS  
& no Sb/Br)  
90  
Green (RoHS  
& no Sb/Br)  
2000  
2000  
50  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
TLV2404IDG4  
TLV2404IDR  
SOIC  
D
50  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
2500  
2500  
Green (RoHS  
& no Sb/Br)  
TLV2404IDRG4  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
TLV2404IN  
TLV2404INE4  
TLV2404IPW  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
N
N
14  
14  
14  
25  
25  
90  
Pb-Free (RoHS)  
Pb-Free (RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-1-260C-UNLIM  
TSSOP  
PW  
Green (RoHS  
& no Sb/Br)  
TLV2404IPWG4  
TLV2404IPWR  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
14  
14  
14  
90  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
TLV2404IPWRG4  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Aug-2012  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV2402 :  
Automotive: TLV2402-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Sep-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV2401CDBVR  
TLV2401CDBVT  
TLV2401CDR  
TLV2401IDBVR  
TLV2401IDBVT  
TLV2401IDR  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
5
3000  
250  
180.0  
180.0  
330.0  
180.0  
180.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
9.0  
9.0  
3.15  
3.15  
6.4  
3.2  
3.2  
5.2  
3.2  
3.2  
5.2  
5.2  
3.4  
5.2  
3.4  
5.2  
5.6  
9.0  
5.6  
1.4  
1.4  
2.1  
1.4  
1.4  
2.1  
2.1  
1.4  
2.1  
1.4  
2.1  
1.6  
2.1  
1.6  
4.0  
4.0  
8.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
8
2500  
3000  
250  
12.4  
9.0  
12.0  
8.0  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
3.15  
3.15  
6.4  
5
9.0  
8.0  
8
2500  
2500  
2500  
2500  
2500  
2500  
2000  
2500  
2000  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
16.4  
12.4  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
12.0  
TLV2401IDR  
SOIC  
D
8
6.4  
TLV2402CDGKR  
TLV2402CDR  
TLV2402IDGKR  
TLV2402IDR  
VSSOP  
SOIC  
DGK  
D
8
5.3  
8
6.4  
VSSOP  
SOIC  
DGK  
D
8
5.3  
8
6.4  
TLV2404CPWR  
TLV2404IDR  
TSSOP  
SOIC  
PW  
D
14  
14  
14  
6.9  
6.5  
TLV2404IPWR  
TSSOP  
PW  
6.9  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Sep-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV2401CDBVR  
TLV2401CDBVT  
TLV2401CDR  
TLV2401IDBVR  
TLV2401IDBVT  
TLV2401IDR  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
5
3000  
250  
182.0  
182.0  
340.5  
182.0  
182.0  
340.5  
367.0  
358.0  
340.5  
358.0  
340.5  
367.0  
367.0  
367.0  
182.0  
182.0  
338.1  
182.0  
182.0  
338.1  
367.0  
335.0  
338.1  
335.0  
338.1  
367.0  
367.0  
367.0  
20.0  
20.0  
20.6  
20.0  
20.0  
20.6  
35.0  
35.0  
20.6  
35.0  
20.6  
35.0  
38.0  
35.0  
8
2500  
3000  
250  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
5
8
2500  
2500  
2500  
2500  
2500  
2500  
2000  
2500  
2000  
TLV2401IDR  
SOIC  
D
8
TLV2402CDGKR  
TLV2402CDR  
TLV2402IDGKR  
TLV2402IDR  
VSSOP  
SOIC  
DGK  
D
8
8
VSSOP  
SOIC  
DGK  
D
8
8
TLV2404CPWR  
TLV2404IDR  
TSSOP  
SOIC  
PW  
D
14  
14  
14  
TLV2404IPWR  
TSSOP  
PW  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

TLV2401CDG4

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2401CDR

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2401CDRG4

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2401CP

FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2401ID

FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2401IDBV

FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2401IDBVR

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2401IDBVRG4

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2401IDBVT

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2401IDBVTG4

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2401IDG4

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2401IDR

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI