TLV2442AQDRQ1 [TI]

Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS; 高级LinCMOSâ ?? ¢轨到轨输出,宽输入电压运算放大器
TLV2442AQDRQ1
型号: TLV2442AQDRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
高级LinCMOSâ ?? ¢轨到轨输出,宽输入电压运算放大器

运算放大器 放大器电路 光电二极管 输出元件 输入元件
文件: 总35页 (文件大小:1067K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
www.ti.com ........................................................................................................................................... SGLS181CSEPTEMBER 2003REVISED AUGUST 2009  
Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE  
OPERATIONAL AMPLIFIERS  
1
FEATURES  
23  
Qualified for Automotive Applications  
Low Noise: 16 nV/Hz Typ at f = 1 kHz  
ESD Protection Exceeds 2000 V Per  
Low Input Offset Voltage:  
MIL-STD-883, Method 3015; Exceeds 200 V  
Using Machine Model (C = 200 pF, R = 0)  
950 µV Max at TA = 25°C (TLV244xA)  
Low Input Bias Current: 1 pA (Typ)  
600-Output Drive  
Output Swing Includes Both Supply Rails  
Extended Common-Mode Input Voltage Range:  
0 V to 4.25 V (Min) at 5-V Single Supply  
High-Gain Bandwidth: 1.8 MHz (Typ)  
Low Supply Current: 750 µA Per Channel (Typ)  
Macromodel Included  
No Phase Inversion  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
DESCRIPTION  
HIGH-LEVEL OUTPUT CURRENT  
The TLV244x and TLV244xA are low-voltage  
operational amplifiers from Texas Instruments. The  
common-mode input voltage range of these devices  
has been extended over typical standard CMOS  
amplifiers, making them suitable for a wide range of  
applications. In addition, these devices do not phase  
invert when the common-mode input is driven to the  
supply rails. This satisfies most design requirements  
3
V
DD  
= 3 V  
2.5  
2
without paying  
a premium for rail-to-rail input  
T = 40°C  
A
performance. They also exhibit rail-to-rail output  
performance for increased dynamic range in single-  
or split-supply applications. This family is fully  
characterized at 3-V and 5-V supplies and is  
optimized for low-voltage operation. Both devices  
offer comparable ac performance while having lower  
noise, input offset voltage, and power dissipation than  
existing CMOS operational amplifiers. The TLV244x  
has increased output drive over previous rail-to-rail  
operational amplifiers and can drive 600-loads for  
telecommunications applications.  
1.5  
1
T = 125°C  
A
0.5  
0
T = 85°C T = 25°C  
A
A
0
2
4
6
8
10  
12  
I
− High-Level Output Current − mA  
OH  
The other members in the TLV244x family are the  
low-power, TLV243x, and micro-power, TLV2422,  
versions.  
Figure 1.  
The TLV244x, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for  
high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and  
low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In  
addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when  
interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV244xA is available with a  
maximum input offset voltage of 950 µV.  
If the design requires single operational amplifiers, see the TI TLV2211/21/31. This is a family of rail-to-rail output  
operational amplifiers in the SOT-23 package. Their small size and low power consumption make them ideal for  
high-density battery-powered equipment.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
Advanced LinCMOS is a trademark of Texas Instruments.  
PSpice, Parts are trademarks of MicroSim.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2003–2009, Texas Instruments Incorporated  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
SGLS181CSEPTEMBER 2003REVISED AUGUST 2009........................................................................................................................................... www.ti.com  
ORDERING INFORMATION(1)  
VIOmax  
AT 25C  
ORDERABLE PART  
NUMBER  
TA  
PACKAGE(2)  
TOP-SIDE MARKING  
SOIC – D  
Reel of 2500  
Reel of 2000  
Reel of 2500  
Reel of 2500  
Reel of 2000  
Reel of 2000  
TLV2442AQDRQ1  
TLV2442AQPWRQ1  
TLV2442QDGKRQ1  
TLV2442QDRQ1  
2442AQ  
2442AQ  
OBR  
950 µV  
Dual  
TSSOP – PW  
MSOP – DGK  
SOIC – D  
–40°C to 125°C  
2.5 mV  
Dual  
2442Q1  
2442Q1  
2444AQ  
TSSOP – PW  
TSSOP – PW  
TLV2442QPWRQ1  
TLV2444AQPWRQ1  
950 µV  
Quad  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
TLV2442  
D, DGK, OR PW PACKAGE  
(TOP VIEW)  
TLV2444  
PW PACKAGE  
(TOP VIEW)  
1OUT  
1IN-  
V
DD+  
1
2
3
4
8
7
6
5
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN-  
4OUT  
4IN-  
2OUT  
2IN-  
1IN+  
/GND  
1IN+  
4IN+  
V
2IN+  
DD-  
V
+
V
DD-  
/GND  
DD  
2IN+  
2IN-  
3IN+  
3IN-  
8
2OUT  
3OUT  
2
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
www.ti.com ........................................................................................................................................... SGLS181CSEPTEMBER 2003REVISED AUGUST 2009  
EQUIVALENT SCHEMATIC (EACH AMPLIFIER)  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
SGLS181CSEPTEMBER 2003REVISED AUGUST 2009........................................................................................................................................... www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
VDD  
VID  
VI  
Supply voltage(2)  
Differential input voltage(3)  
Input voltage (any input)(2)  
12 V  
±VDD  
–0.3 V to VDD  
±5 mA  
II  
Input current (any input)  
IO  
Output current  
±50 mA  
Total current into VDD+  
±50 mA  
Total current out of VDD–  
±50 mA  
Duration of short-circuit current at (or below) 25C(4)  
Continuous total dissipation  
Operating free-air temperature range  
Storage temperature range  
Unlimited  
See Dissipation Rating Table  
–40°C to 125°C  
–65°C to 150°C  
260°C  
TA  
Tstg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD–  
.
(3) Differential voltages are at IN+ with respect to IN–. Excessive current will flow if input is brought below VDD– – 0.3 V.  
(4) The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation  
rating is not exceeded.  
DISSIPATION RATINGS  
T
A 25°C  
DERATING FACTOR  
ABOVE TA = 25°C  
TA = 70°C  
POWER RATING  
TA = 85°C  
POWER RATING  
TA = 125°C  
POWER RATING  
PACKAGE  
POWER RATING  
D (8 pin)  
DGK (8 pin)  
PW (8 pin)  
PW (14 pin)  
725 mW  
5.8 mW/°C  
4.847 mW/°C  
4.2 mW/°C  
5.6 mW/°C  
464 mW  
388 mW  
336 mW  
634 mW  
377 mW  
315 mW  
273 mW  
547 mW  
145 mW  
121 mW  
105 mW  
317 mW  
606 mW  
525 mW  
720 mW  
RECOMMENDED OPERATING CONDITIONS  
MIN  
2.7  
MAX  
10  
UNIT  
V
VDD  
VI  
Supply voltage  
Input voltage  
VDD–  
VDD–  
–40  
VDD+ – 1  
VDD+ – 1  
125  
V
VIC  
TA  
Common-mode input voltage  
Operating free-air temperature  
V
°C  
4
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
www.ti.com ........................................................................................................................................... SGLS181CSEPTEMBER 2003REVISED AUGUST 2009  
ELECTRICAL CHARACTERISTICS  
VDD = 3 V, at specified free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
300  
2000  
TLV244x  
Full range  
25°C  
2500  
µV  
VIC = 1.5 V, VO = 1.5 V,  
RS = 50  
VIO  
Input offset voltage  
300  
2
950  
TLV244xA  
Full range  
1600  
Temperature coefficient of  
input offset voltage  
αVIO  
VIC = 1.5 V, VO = 1.5 V, RS = 50 Ω  
VIC = 1.5 V, VO = 1.5 V, RS = 50 Ω  
25°C to 85°C  
25°C  
µV/°C  
Input offset voltage  
long-term drift(2)  
0.002  
0.5  
µV/mo  
25°C  
Full range  
25°C  
IIO  
Input offset current  
Input bias current  
VIC = 1.5 V, VO = 1.5 V, RS = 50 Ω  
VIC = 1.5 V, VO = 1.5 V, RS = 50 Ω  
pA  
150  
1
IIB  
pA  
Full range  
260  
0 to –0.25 to  
25°C  
Common-mode input  
voltage range  
2.25  
2.5  
VICR  
|VIO| 8 mV, RS = 50 Ω  
V
V
Full range  
25°C  
0.2 to 2  
IO = –100 µA  
2.98  
2.5  
VOH  
High-level output voltage  
Low-level output voltage  
25°C  
IO = –3 mA  
Full range  
25°C  
2.25  
IO = 100 µA  
0.02  
0.63  
VOL  
VIC = 1.5 V  
25°C  
V
IO = 3 mA  
Full range  
25°C  
1
0.7  
0.4  
1
RL = 600 Ω  
RL = 1 MΩ  
Large-signal differential  
voltage amplification  
AVD  
VO = 1 V to 2 V  
Full range  
25°C  
V/mV  
750  
rid  
ri  
Differential input resistance  
25°C  
1000  
GΩ  
GΩ  
Common-mode input  
resistance  
25°C  
25°C  
25°C  
1000  
8
Common-mode input  
capacitance  
ci  
f = 10 kHz  
pF  
Closed-loop output  
impedance  
zo  
f = 1 MHz, AV = 10  
130  
75  
25°C  
Full range  
25°C  
65  
50  
80  
80  
Common-mode rejection  
ratio  
CMRR  
kSVR  
IDD  
VIC = VICR MIN, VO = VDD/2, RS = 50 Ω  
VDD = 2.7 V to 8 V, VIC = VDD/2, No load  
VO = 1.5 V, No load  
dB  
dB  
95  
Supply-voltage rejection  
ratio (ΔVDD±/ΔVIO  
)
Full range  
25°C  
725  
1100  
µA  
Supply current  
(per channel)  
Full range  
1100  
(1) Full range is –40°C to 125°C.  
(2) Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to  
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
SGLS181CSEPTEMBER 2003REVISED AUGUST 2009........................................................................................................................................... www.ti.com  
OPERATING CHARACTERISTICS  
VDD = 3 V, at specified free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
0.65  
0.4  
TYP  
MAX  
UNIT  
25°C  
1.3  
VO = 1 V to 2 V, RL = 600 ,  
CL = 100 pF  
SR  
Vn  
Slew rate at unity gain  
V/µs  
Full range  
f = 10 Hz  
170  
18  
Equivalent input  
noise voltage  
25°C  
nV/Hz  
f = 1 kHz  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
2.6  
5.1  
0.6  
0.08  
0.3  
2
Peak-to-peak equivalent input  
noise voltage  
Vn(PP)  
In  
25°C  
25°C  
µV  
Equivalent input noise current  
fA/Hz  
AV = 1  
Total harmonic distortion  
plus noise  
VO = 0.5 V to 2.5 V,  
RL = 600 , f = 1 kHz  
THD+N  
AV = 10  
25°C  
%
AV = 100  
Gain-bandwidth product  
f = 10 kHz, RL = 600 , CL = 100 pF  
25°C  
25°C  
1.75  
MHz  
MHz  
Maximum output-swing  
bandwidth  
VO(PP) = 1 V, RL = 600 , AV = 1,  
CL = 100 pF  
BOM  
0.9  
AV = –1,  
Step = –2.3 V to 2.3 V,  
RL = 600 , CL = 100 pF  
To 0.1%  
1.5  
3.2  
ts  
Settling time  
25°C  
µs  
To 0.01%  
φm  
Phase margin at unity gain  
Gain margin  
RL = 600 , CL = 100 pF  
RL = 600 , CL = 100 pF  
25°C  
25°C  
65  
9
°
dB  
(1) Full range is –40°C to 125°C.  
6
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
www.ti.com ........................................................................................................................................... SGLS181CSEPTEMBER 2003REVISED AUGUST 2009  
ELECTRICAL CHARACTERISTICS  
VDD = 5 V, at specified free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
300  
2000  
TLV244x  
Full range  
25°C  
2500  
µV  
VDD± = ±2.5 V, VIC = 0,  
VO = 0, RS = 50 Ω  
VIO  
Input offset voltage  
300  
2
950  
TLV244xA  
Full range  
1600  
Temperature coefficient of  
input offset voltage  
αVIO  
VDD± = ±2.5 V, VIC = 0, VO = 0, RS = 50 Ω  
VDD± = ±2.5 V, VIC = 0, VO = 0, RS = 50 Ω  
25°C to 85°C  
25°C  
µV/°C  
Input offset voltage  
long-term drift(2)  
0.002  
0.5  
µV/mo  
25°C  
Full range  
25°C  
IIO  
Input offset current  
Input bias current  
VDD± = ±2.5 V, VIC = 0, VO = 0, RS = 50 Ω  
VDD± = ±2.5 V, VIC = 0, VO = 0, RS = 50 Ω  
pA  
150  
1
IIB  
pA  
Full range  
260  
0 to –0.25 to  
25°C  
Common-mode input  
voltage range  
4.25  
4.5  
VICR  
|VIO| 5 mV, RS = 50 Ω  
V
V
Full range  
25°C  
0 to 4  
IOH = –100 µA  
IOH = –5 mA  
IOL = 100 µA  
4.97  
4.35  
VOH  
High-level output voltage  
Low-level output voltage  
25°C  
4
4
Full range  
25°C  
0.01  
0.8  
VOL  
VIC = 2.5 V  
IOL = 5 mA  
25°C  
V
Full range  
25°C  
1.25  
0.9  
0.5  
1.3  
RL = 600 (3)  
Large-signal differential  
voltage amplification  
VIC = 2.5 V,  
VO = 1 V to 4 V  
AVD  
Full range  
25°C  
V/mV  
RL = 1 M(3)  
950  
rid  
ri  
Differential input resistance  
25°C  
1000  
GΩ  
GΩ  
Common-mode input  
resistance  
25°C  
25°C  
25°C  
1000  
8
Common-mode input  
capacitance  
ci  
f = 10 kHz  
pF  
Closed-loop output  
impedance  
zo  
f = 1 MHz, AV = 10  
140  
75  
25°C  
Full range  
25°C  
70  
70  
80  
80  
Common-mode rejection  
ratio  
CMRR  
kSVR  
IDD  
VIC = VICR MIN, VO = VDD/2, RS = 50 Ω  
VDD = 4.4 V to 8 V, VIC = VDD/2, No load  
VO = 2.5 V, No load  
dB  
dB  
95  
Supply-voltage rejection  
ratio (ΔVDD/ΔVIO  
)
Full range  
25°C  
750  
1100  
µA  
Supply current  
(per channel)  
Full range  
1100  
(1) Full range is –40°C to 125°C.  
(2) Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to  
TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
(3) Referenced to 2.5 V  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
SGLS181CSEPTEMBER 2003REVISED AUGUST 2009........................................................................................................................................... www.ti.com  
OPERATING CHARACTERISTICS  
VDD = 5 V, at specified free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
0.75  
0.5  
TYP  
MAX  
UNIT  
VO = 0.5 V to 2.5 V, RL = 600 (2)  
,
25°C  
1.4  
SR  
Vn  
Slew rate at unity gain  
V/µs  
CL = 100 pF(2)  
Full range  
f = 10 Hz  
130  
16  
Equivalent input  
noise voltage  
25°C  
nV/Hz  
f = 1 kHz  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
1.8  
Peak-to-peak equivalent input  
noise voltage  
Vn(PP)  
In  
25°C  
25°C  
µV  
3.6  
Equivalent input noise current  
0.6  
fA/Hz  
AV = 1  
0.017  
0.17  
1.5  
Total harmonic distortion  
plus noise  
VO = 1.5 V to 3.5V,  
THD+N  
AV = 10  
25°C  
%
f = 1 kHz, RL = 600 (2)  
AV = 100  
f = 10 kHz, RL = 600 (2)  
,
Gain-bandwidth product  
25°C  
25°C  
1.81  
MHz  
MHz  
CL = 100 pF(2)  
Maximum output-swing  
bandwidth  
VO(PP) = 2 V, AV = 1, RL = 600 (2)  
,
BOM  
0.5  
1.5  
CL = 100 pF(2)  
AV = –1,  
To 0.1%  
Step = –0.5 V to 2.5 V,  
ts  
Settling time  
25°C  
µs  
RL = 600 (2)  
,
To 0.01%  
2.6  
CL = 100 pF(2)  
φm  
Phase margin at unity gain  
Gain margin  
RL = 600 (2), CL = 100 pF(2)  
RL = 600 (2), CL = 100 pF(2)  
25°C  
25°C  
68  
8
°
dB  
(1) Full range is –40°C to 125°C.  
(2) Referenced to 2.5 V  
8
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
www.ti.com ........................................................................................................................................... SGLS181CSEPTEMBER 2003REVISED AUGUST 2009  
TYPICAL CHARACTERISTICS  
Table of Graphs(1)  
FIGURE  
Distribution  
2, 3  
4, 5  
6, 7  
8
VIO  
Input offset voltage  
vs Common-mode input voltage  
Distribution  
αVIO  
IIB/IIO  
VOH  
Input offset voltage temperature coefficient  
Input bias and input offset currents  
High-level output voltage  
vs Free-air temperature  
vs High-level output current  
vs Low-level output current  
vs Frequency  
9, 10  
11, 12  
13  
VOL  
Low-level output voltage  
VO(PP)  
Maximum peak-to-peak output voltage  
vs Supply voltage  
14  
IOS  
VO  
Short-circuit output current  
vs Free-air temperature  
vs Differential input voltage  
vs Load resistance  
vs Frequency  
15  
Output voltage  
16, 17  
18  
Differential voltage amplification  
Large-signal differential voltage amplification and phase margin  
Large-signal differential voltage amplification  
Output impedance  
AVD  
19, 20  
21, 22  
23, 24  
25  
vs Free-air temperature  
vs Frequency  
zo  
vs Frequency  
CMRR  
Common-mode rejection ratio  
vs Free-air temperature  
vs Frequency  
26  
27, 28  
29  
kSVR  
IDD  
Supply-voltage rejection ratio  
Supply current  
vs Free-air temperature  
vs Supply voltage  
30  
vs Load capacitance  
vs Free-air temperature  
31  
SR  
Slew rate  
32  
Inverting large-signal pulse response  
Voltage-follower large-signal pulse response  
Inverting small-signal pulse response  
Voltage-follower small-signal pulse response  
Equivalent input noise voltage  
33, 34  
35, 36  
37, 38  
39, 40  
41, 42  
43  
VO  
Vn  
vs Frequency  
Noise voltage  
Over a 10-second period  
vs Frequency  
THD + N  
Total harmonic distortion plus noise  
44, 45  
46  
vs Free-air temperature  
vs Supply voltage  
vs Frequency  
Gain-bandwidth product  
Phase margin  
47  
19, 20  
48  
φm  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
Gain margin  
49  
B1  
Unity-gain bandwidth  
50  
(1) For all graphs where VDD = 5 V, all loads are referenced to 2.5 V.  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
SGLS181CSEPTEMBER 2003REVISED AUGUST 2009........................................................................................................................................... www.ti.com  
DISTRIBUTION OF TLV2442  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2442  
INPUT OFFSET VOLTAGE  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
868 Amplifiers From  
1 Wafer Lot  
= ±1.5 V  
868 Amplifiers From  
1 Wafer Lot  
V = ±2.5 V  
DD  
V
DD  
T
= 25°C  
T = 25°C  
A
A
6
6
4
4
2
0
2
0
V
IO  
− Input Offset Voltage − µV  
V
IO  
− Input Offset Voltage − µV  
Figure 2.  
Figure 3.  
INPUT OFFSET VOLTAGE  
vs  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
2
2
V
DD  
= 3 V  
V = 5 V  
DD  
T
A
= 25°C  
T
A
= 25°C  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
−0.5  
−1  
−0.5  
−1  
−1.5  
−2  
−1.5  
−2  
−0.5  
0
0.5  
1
1.5  
2
2.5  
3
−0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
V
IC  
− Common-Mode Input Voltage − V  
V
IC  
− Common-Mode Input Voltage − V  
Figure 4.  
Figure 5.  
10  
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
www.ti.com ........................................................................................................................................... SGLS181CSEPTEMBER 2003REVISED AUGUST 2009  
DISTRIBUTION OF TLV2442 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TLV2442 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
15  
12  
9
18  
15  
12  
9
32 Amplifiers From 2  
Wafer Lots  
32 Amplifiers From 1  
Wafer Lot  
V
DD  
= ±2.5 V  
V
DD  
= ±1.5 V  
P Package  
25°C to 125°C  
P Package  
25°C to 125°C  
6
6
3
3
0
0
−8 −7 −6 −5 −4 −3 −2 −1  
0
1
2
3
4
−8 −7 −6 −5 −4 −3 −2 −1  
0
1
2
3
4
αV − Temperature Coefficient − µV/°C  
αV − Temperature Coefficient − µV/°C  
IO  
IO  
Figure 6.  
Figure 7.  
INPUT BIAS AND INPUT OFFSET CURRENTS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
vs  
FREE-AIR TEMPERATURE  
HIGH-LEVEL OUTPUT CURRENT  
35  
30  
25  
20  
15  
10  
5
3
V
V
V
= ±2.5 V  
= 0  
= 0  
= 50 Ω  
DD  
V
= 3 V  
DD  
IC  
O
2.5  
2
R
S
T = 40°C  
A
I
IB  
1.5  
I
IO  
1
T = 125°C  
A
0.5  
0
T = 85°C T = 25°C  
A
A
0
25  
45  
T
65  
85  
105  
125  
0
2
4
6
8
10  
12  
− Free-Air Temperature − °C  
I
− High-Level Output Current − mA  
A
OH  
Figure 8.  
Figure 9.  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
SGLS181CSEPTEMBER 2003REVISED AUGUST 2009........................................................................................................................................... www.ti.com  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
3
5
4.5  
4
V
= 5 V  
V
DD  
= 3 V  
DD  
2.5  
2
T
A
= 125°C  
T
A
= 40°C  
3.5  
3
T
A
= 25°C  
T
A
= 85°C  
1.5  
1
2.5  
2
T
A
= 125°C  
T
= 25°C  
A
1.5  
1
T
= 85°C  
A
T
A
= 40°C  
0.5  
0
0.5  
0
0
5
10  
15  
20  
25  
0
2
4
6
8
10  
I
− High-Level Output Current − mA  
I
− Low-Level Output Current − mA  
OH  
OL  
Figure 10.  
Figure 11.  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
FREQUENCY  
2.5  
5
4
3
2
1
V
DD  
= 5 V  
R
L
= 600  
V
DD  
= 5 V  
2
1.5  
1
T
A
= 125°C  
V
DD  
= 3 V  
T
= 85°C  
A
T
= 25°C  
A
0.5  
0
T
A
= 40°C  
0
0
2
4
6
8
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
I
− Low-Level Output Current − mA  
f − Frequency − Hz  
OL  
Figure 12.  
Figure 13.  
12  
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
www.ti.com ........................................................................................................................................... SGLS181CSEPTEMBER 2003REVISED AUGUST 2009  
SHORT-CIRCUIT OUTPUT CURRENT  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
V
V
T
A
= V /2  
DD  
= V /2  
DD  
= 25°C  
O
V
V
= 5 V  
= 2.5 V  
DD  
IC  
O
V
ID  
= −100 mV  
V
ID  
= −100 mV  
0
−5  
0
−5  
−10  
−15  
−10  
−15  
V
ID  
= 100 mV  
V
7
= 100 mV  
ID  
−20  
−25  
−20  
−25  
2
3
4
5
6
8
9
10  
−75 −50 −25  
0
25  
50  
75  
100 125  
V
DD  
− Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 14.  
Figure 15.  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
DIFFERENTIAL INPUT VOLTAGE  
= 5 V  
DD  
3
2.5  
2
5
V
V
= 3 V  
V
V
DD  
= 1.5 V  
= 2.5 V  
IC  
IC  
R = 600  
T
A
R = 600  
L
T = 25°C  
A
L
4
3
= 25°C  
1.5  
1
2
1
0
0.5  
0
−1000 −750 −500 −250  
0
250 500 750 1000  
−1000 −750 −500 −250  
0
250 500 750 1000  
V
ID  
− Differential Input Voltage − µV  
V
ID  
− Differential Input Voltage − µV  
Figure 16.  
Figure 17.  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
SGLS181CSEPTEMBER 2003REVISED AUGUST 2009........................................................................................................................................... www.ti.com  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
LOAD RESISTANCE  
100  
V
O(PP)  
= 2 V  
T
A
= 25°C  
V
DD  
= 5 V  
V
DD  
= 3 V  
10  
1
0.1  
1
10  
100  
1000  
R − Load Resistance − kΩ  
L
Figure 18.  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE MARGIN  
vs  
FREQUENCY  
80  
180°  
135°  
V
R
C
= 3 V  
DD  
= 600 Ω  
= 600 pF  
= 25°C  
L
L
60  
40  
T
A
90°  
45°  
0°  
20  
0
−20  
−40  
−45°  
−90°  
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
Figure 19.  
14  
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
www.ti.com ........................................................................................................................................... SGLS181CSEPTEMBER 2003REVISED AUGUST 2009  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE MARGIN  
vs  
FREQUENCY  
80  
60  
180°  
135°  
V
R
C
= 5 V  
DD  
= 600 Ω  
= 600 pF  
= 25°C  
L
L
T
A
40  
90°  
45°  
0°  
20  
0
−20  
−40  
−45°  
−90°  
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
Figure 20.  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1000  
100  
10  
1000  
100  
10  
V
V
V
= 3 V  
= 2.5 V  
= 1 V to 4 V  
V
V
V
= 5 V  
= 2.5 V  
= 1 V to 4 V  
DD  
DD  
R = 1 M  
L
IC  
O
IC  
O
R = 1 M  
L
R = 600 Ω  
L
1
1
R = 600 Ω  
L
0.1  
0.1  
−75 −50 −25  
0
25  
50  
75  
100 125  
−75 −50 −25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 21.  
Figure 22.  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
SGLS181CSEPTEMBER 2003REVISED AUGUST 2009........................................................................................................................................... www.ti.com  
OUTPUT IMPEDANCE  
vs  
OUTPUT IMPEDANCE  
vs  
FREQUENCY  
FREQUENCY  
1000  
100  
10  
100  
10  
V
T
= 3 V  
= 25°C  
DD  
A = 100  
A
V
A = 100  
V
A
= 10  
V
A
= 10  
= 1  
V
1
A
V
= 1  
A
V
1
V
DD  
= 5 V  
T
A
= 25°C  
0.1  
100  
0.1  
100  
1 k  
10 k  
100 k  
1 M  
1 k  
10 k  
100 k  
1 M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 23.  
Figure 24.  
COMMON-MODE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
100  
90  
80  
70  
60  
100  
80  
V
= 5 V  
T
A
= 25°C  
DD  
V
V
= 5 V  
= 2.5 V  
DD  
IC  
V
V
= 3 V  
= 1.5 V  
DD  
60  
IC  
V
= 3 V  
DD  
40  
20  
0
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
−75 −50 −25  
0
25  
50  
75 100 125  
f − Frequency − Hz  
T
A
− Free-Air Temperature °C  
Figure 25.  
Figure 26.  
16  
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
www.ti.com ........................................................................................................................................... SGLS181CSEPTEMBER 2003REVISED AUGUST 2009  
SUPPLY-VOLTAGE REJECTION RATIO  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
80  
60  
40  
20  
0
100  
80  
V
T
A
= 5 V  
= 25°C  
DD  
V
T
A
= 3 V  
= 25°C  
DD  
60  
40  
20  
k
SVR+  
k
SVR+  
k
SVR−  
k
SVR−  
0
10  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 27.  
Figure 28.  
SUPPLY-VOLTAGE REJECTION RATIO  
SUPPLY CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
100  
2.5  
2
V
DD  
= 2.5 V to 8 V  
98  
96  
T
A
= 25°C  
T
A
= 85°C  
1.5  
1
T
A
= 40°C  
94  
92  
90  
0.5  
0
−75 −50 −25  
0
25  
50  
75 100 125  
0
2
4
6
8
10  
T
A
− Free-Air Temperature °C  
V
DD  
− Supply Voltage − V  
Figure 29.  
Figure 30.  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
SGLS181CSEPTEMBER 2003REVISED AUGUST 2009........................................................................................................................................... www.ti.com  
SLEW RATE  
vs  
SLEW RATE  
vs  
LOAD CAPACITANCE  
FREE-AIR TEMPERATURE  
3
3
2.5  
2
V
= 5 V  
DD  
V
R
C
= 5 V  
= 600  
= 100 pF  
= 1  
DD  
A = 1  
V
L
T
A
= 25°C  
L
2.5  
2
A
V
SR −  
SR +  
SR −  
SR +  
1.5  
1.5  
1
1
0.5  
0.5  
0
0
−75 −50 −25  
0
25  
50  
75 100 125  
10  
100  
1 k  
10 k  
100 k  
C − Load Capacitance − pF  
L
T
A
− Free-Air Temperature °C  
Figure 31.  
Figure 32.  
INVERTING LARGE-SIGNAL PULSE RESPONSE  
INVERTING LARGE-SIGNAL PULSE RESPONSE  
5
4
3
2
3
2
V
R
C
= 5 V  
= 2 k  
= 100 pF  
DD  
V
R
C
= 3 V  
= 2 k  
= 100 pF  
DD  
L
L
L
L
A = 1  
V
A = 1  
V
T
A
= 25°C  
T
A
= 25°C  
1
0
1
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
t − Time − µs  
t − Time − µs  
Figure 33.  
Figure 34.  
18  
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
www.ti.com ........................................................................................................................................... SGLS181CSEPTEMBER 2003REVISED AUGUST 2009  
VOLTAGE-FOLLOWER  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
5
4
3
2
V
R
C
= 5 V  
= 600  
= 100 pF  
= 1  
V
R
C
= 3 V  
= 600  
= 100 pF  
= 1  
DD  
DD  
L
L
L
L
A
A
V
V
T = 25°C  
A
T
A
= 25°C  
3
2
1
0
1
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
1
2
3
4
5
6
7
8
9
10  
t − Time − µs  
t − Time − µs  
Figure 35.  
Figure 36.  
INVERTING SMALL-SIGNAL PULSE RESPONSE  
INVERTING SMALL-SIGNAL PULSE RESPONSE  
1.58  
1.56  
1.54  
1.52  
2.58  
2.56  
2.54  
2.52  
2.5  
V
R
C
= 5 V  
= 600  
= 100 pF  
V
R
C
= 3 V  
= 600  
= 100 pF  
DD  
DD  
L
L
L
L
A = −1  
A = −1  
V
V
T
A
= 25°C  
T
A
= 25°C  
1.5  
1.48  
2.48  
1.46  
1.44  
2.46  
2.44  
0
1
2
3
4
5
6
7
9
10  
0
1
2
3
4
5
6
7
8
9
10  
8
t − Time − µs  
t − Time − µs  
Figure 37.  
Figure 38.  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
SGLS181CSEPTEMBER 2003REVISED AUGUST 2009........................................................................................................................................... www.ti.com  
VOLTAGE-FOLLOWER  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
1.58  
1.56  
1.54  
1.52  
1.5  
2.58  
2.56  
2.54  
V
R
C
= 5 V  
= 600  
= 100 pF  
DD  
V
= 3 V  
DD  
L
R = 600  
C = 100 pF  
L
L
L
A = −1  
V
A = −1  
V
T
A
= 25°C  
T
A
= 25°C  
2.52  
2.5  
1.48  
2.48  
2.46  
2.44  
1.46  
1.44  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4.5  
5
4
t − Time − µs  
t − Time − µs  
Figure 39.  
Figure 40.  
EQUIVALENT INPUT NOISE VOLTAGE  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
140  
120  
100  
80  
200  
180  
160  
140  
120  
V
= 3 V  
= 20  
= 25°C  
V
T
= 5 V  
= 20  
= 25°C  
DD  
DD  
R
T
R
S
S
A
A
100  
80  
60  
40  
20  
0
60  
40  
20  
0
10  
100  
1 k  
10 k  
10  
100  
1 k  
10 k  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 41.  
Figure 42.  
20  
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
www.ti.com ........................................................................................................................................... SGLS181CSEPTEMBER 2003REVISED AUGUST 2009  
NOISE VOLTAGE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
OVER A 10-SECOND PERIOD  
vs  
FREQUENCY  
2000  
1500  
1000  
500  
0
10  
V
= 5 V  
DD  
V
R
T
A
= 3 V  
= 600  
= 25°C  
DD  
f = 0.1 Hz to 10  
Hz T = 25°C  
L
A
A = 100  
V
1
−500  
A
V
= 10  
0.1  
−1000  
A
V
= 1  
−1500  
−2000  
0
1
2
3
4
5
6
7
8
9
10  
0.01  
10  
100  
1 k  
10 k  
100 k  
t − Time − s  
f − Frequency − Hz  
Figure 44.  
Figure 43.  
TOTAL HARMONIC DISTORTION PLUS NOISE  
GAIN-BANDWIDTH PRODUCT  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
10  
3
V
= 5 V  
= 600  
= 25°C  
R
C
= 600  
= 100 pF  
DD  
L
R
T
L
L
f = 10 kHz  
A
2.5  
A = 100  
V
1
2
A
V
= 10  
0.1  
1.5  
1
A
V
= 1  
0.01  
10  
100  
1 k  
10 k  
100 k  
−50  
−25  
0
25  
50  
75  
100  
125  
f − Frequency − Hz  
Figure 45.  
T
A
− Free-Air Temperature °C  
Figure 46.  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
SGLS181CSEPTEMBER 2003REVISED AUGUST 2009........................................................................................................................................... www.ti.com  
GAIN-BANDWIDTH PRODUCT  
PHASE MARGIN  
vs  
vs  
SUPPLY VOLTAGE  
LOAD CAPACITANCE  
2
1.9  
1.8  
1.7  
75°  
60°  
R = 600  
L
R
null  
= 100 Ω  
C
L
= 100 pF  
f = 10 kHz  
= 25°C  
T
A
45°  
30°  
R
null  
= 50 Ω  
R
null  
= 20 Ω  
R
null  
= 0  
15°  
0°  
1.6  
1.5  
R = 600 Ω  
L
T
= 25°C  
A
0
1
2
3
4
5
6
7
8
10  
100  
1 k  
10 k  
100 k  
|V  
DD  
| − Supply Voltage − V  
C − Load Capacitance − pF  
L
±
Figure 47.  
Figure 48.  
GAIN MARGIN  
vs  
UNITY-GAIN BANDWIDTH  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
25  
2
R = 600  
L
R = 600  
L
R
null  
= 50 Ω  
T
= 25°C  
A
T
= 25°C  
A
20  
15  
1.5  
R
null  
= 100 Ω  
R
null  
= 20 Ω  
1
10  
5
R
null  
= 0  
0.5  
0
0
10  
100  
1 K  
10 K  
100 K  
10  
100  
1 k  
10 k  
100 k  
C − Load Capacitance − pF  
L
C − Load Capacitance − pF  
L
Figure 49.  
Figure 50.  
22  
Submit Documentation Feedback  
Copyright © 2003–2009, Texas Instruments Incorporated  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
TLV2442-Q1, TLV2442A-Q1  
TLV2444A-Q1  
www.ti.com ........................................................................................................................................... SGLS181CSEPTEMBER 2003REVISED AUGUST 2009  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using PSpice™ Parts™ model generation software. The Boyle  
macromodel(2) and subcircuit in Figure 51 were generated using the TLV244x typical electrical and operating  
characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be  
generated to a tolerance of 20% (in most cases):  
(2) G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE  
Journal of Solid-State Circuits, SC-9, 353 (1974).  
Unity gain frequency  
Common-mode rejection ratio  
Phase margin  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
Quiescent power dissipation  
Input bias current  
Open-loop voltage amplification  
99  
DLN  
3
EGND  
+
V
CC+  
92  
9
FB  
+
91  
90  
RSS  
ISS  
RO2  
+
+
VB  
DLP  
RP  
2
VLP  
VLN  
HLIM  
+
10  
+
VC  
IN −  
IN+  
R2  
C2  
J1  
J2  
7
DP  
6
53  
+
1
VLIM  
11  
DC  
12  
RD2  
GA  
GCM  
8
C1  
RD1  
60  
RO1  
+
DE  
VAD  
5
54  
V
CC−  
+
4
VE  
OUT  
.SUBCKT TLV2442 1 2 3 4 5  
RD1  
60  
60  
8
11  
12  
5
2.653E3  
2.653E3  
50  
C1  
11  
6
12  
7
14E−12  
RD2  
R01  
R02  
RP  
C2  
60.00E−12  
DC  
5
53  
5
DX  
DX  
DX  
DX  
DX  
7
99  
4
50  
DE  
54  
90  
92  
4
3
4.310E3  
925.9E3  
−.5  
DLP  
DLN  
DP  
91  
90  
3
RSS  
VAD  
VB  
VC  
VE  
VLIM  
VLP  
VLN  
10  
60  
9
99  
4
0
DC 0  
EGND  
FB  
99  
7
0
99  
POLY (2) (3,0) (4,) 0 .5 .5  
POLY (5) VB VC VE VLP VLN 0  
3
53  
4
DC .78  
DC .78  
DC 0  
54  
7
+ 984.9E3 −1E6 1E6 1E6 −1E6  
8
0
GA  
6
0
6
11  
10  
12 377.0E−6  
99 134E−9  
91  
0
DC 1.9  
DC 9.4  
GCM  
ISS  
HLIM  
J1  
0
92  
3
10  
0
DC 216.0E−6  
VLIM 1K  
10 JX  
.MODEL DX D (IS=800.0E−18)  
90  
11  
12  
6
.MODEL JX PJF (IS=1.500E−12BETA=1.316E-3  
2
1
+ VTO=−.270)  
.ENDS  
J2  
10 JX  
100.OE3  
R2  
9
Figure 51. Boyle Macromodel and Subcircuit  
Copyright © 2003–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): TLV2442-Q1 TLV2442A-Q1 TLV2444A-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Aug-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TLV2442AQDRG4Q1  
TLV2442AQDRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
8
2500  
2500  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TLV2442AQPWRG4Q1  
TSSOP  
PW  
Green (RoHS  
& no Sb/Br)  
TLV2442AQPWRQ1  
TLV2442QDGKRQ1  
ACTIVE  
ACTIVE  
TSSOP  
VSSOP  
PW  
8
8
TBD  
Call TI  
Call TI  
DGK  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
TLV2442QDRG4Q1  
ACTIVE  
SOIC  
D
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
TLV2442QDRQ1  
ACTIVE  
ACTIVE  
SOIC  
D
8
8
TBD  
Call TI  
Call TI  
TLV2442QPWRG4Q1  
TSSOP  
PW  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
TLV2442QPWRQ1  
TLV2444AQPWRQ1  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
8
TBD  
Call TI  
Call TI  
14  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Aug-2012  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV2442-Q1, TLV2442A-Q1, TLV2444A-Q1 :  
Catalog: TLV2442, TLV2442A, TLV2444A  
Military: TLV2442M, TLV2442AM  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Military - QML certified for Military and Defense Applications  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Aug-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV2442QDGKRQ1  
TLV2442QPWRG4Q1  
VSSOP  
TSSOP  
DGK  
PW  
8
8
2500  
2000  
330.0  
330.0  
12.4  
12.4  
5.3  
7.0  
3.4  
3.6  
1.4  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Aug-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV2442QDGKRQ1  
TLV2442QPWRG4Q1  
VSSOP  
TSSOP  
DGK  
PW  
8
8
2500  
2000  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

TLV2442AQPW

Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
TI

TLV2442AQPWG4

Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
TI

TLV2442AQPWR

Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
TI

TLV2442AQPWRG4

Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
TI

TLV2442AQPWRG4Q1

Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
TI

TLV2442AQPWRQ1

Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
TI

TLV2442CD

Advanced LinCMOSE RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
TI

TLV2442CDG4

Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
TI

TLV2442CDR

Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
TI

TLV2442CDRG4

Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
TI

TLV2442CPW

Advanced LinCMOSE RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
TI

TLV2442CPWG4

Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
TI