TLV2464A-EP [TI]

增强型产品四路、6V、6.4MHz、1.5mV 失调电压、RRIO 运算放大器;
TLV2464A-EP
型号: TLV2464A-EP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

增强型产品四路、6V、6.4MHz、1.5mV 失调电压、RRIO 运算放大器

放大器 运算放大器 放大器电路
文件: 总33页 (文件大小:866K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢄꢇ ꢈꢉ ꢊ  
ꢍꢇꢎ ꢏꢁꢐ ꢑ ꢍ ꢁ ꢑ ꢒꢈꢊꢑ ꢒ ꢉꢓ ꢓꢇꢏ ꢁ ꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀꢖ ꢑ ꢕ ꢀꢊ ꢕꢀ  
ꢑ ꢊꢉꢓ ꢇꢀ ꢏꢑ ꢔꢇꢁ ꢇꢎ ꢊꢁ ꢏꢍ ꢏꢉ ꢓꢗ ꢒ ꢏꢀ ꢘ ꢗꢘꢕ ꢀꢙ ꢑ ꢒꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
D
Controlled Baseline  
− One Assembly/Test Site, One Fabrication  
Site  
D
D
D
D
D
Supply Current . . . 500 µA/channel  
Input Offset Voltage . . . 100 µV  
Input Noise Voltage . . . 11 nV/Hz  
Slew Rate . . . 1.6 V/µs  
Micropower Shutdown Mode  
(TLV2460/3) . . . 0.3 µA/Channel  
D
D
Extended Temperature Performance of  
−55°C to 125°C  
Enhanced Diminishing Manufacturing  
Sources (DMS) Support  
D
Universal Operational Amplifier EVM  
D
D
D
D
D
Enhanced Product Change Notification  
Qualification Pedigree  
TLV2460  
D PACKAGE  
(TOP VIEW)  
Rail-to-Rail Output Swing  
Gain Bandwidth Product . . . 6.4 MHz  
80 mA Output Drive Capability  
NC  
IN−  
SHDN  
1
2
3
4
8
7
6
5
Component qualification in accordance with JEDEC and industry  
standards to ensure reliable operation over an extended  
temperature range. This includes, but is not limited to, Highly  
Accelerated Stress Test (HAST) or biased 85/85, temperature  
cycle, autoclave or unbiased HAST, electromigration, bond  
intermetallic life, and mold compound life. Such qualification  
testing should not be viewed as justifying use of this component  
beyond specified performance and environmental limits.  
V
+
DD  
IN+  
OUT  
NC  
GND  
description  
The TLV246x is a family of low-power rail-to-rail input/output operational amplifiers specifically designed for  
portable applications. The input common-mode voltage range extends beyond the supply rails for maximum  
dynamic range in low-voltage systems. The amplifier output has rail-to-rail performance with high-output-drive  
capability, solving one of the limitations of older rail-to-rail input/output operational amplifiers. This rail-to-rail  
dynamic range and high output drive make the TLV246x ideal for buffering analog-to-digital converters.  
The operational amplifier has 6.4 MHz of bandwidth and 1.6 V/µs of slew rate with only 500 µA of supply current,  
providing good ac performance with low power consumption. Devices are available with an optional shutdown  
terminal, which places the amplifier in an ultralow supply current mode (I  
the operational-amplifier output is placed in a high-impedance state. DC applications are also well served with  
= 0.3 µA/ch). While in shutdown,  
DD  
an input noise voltage of 11 nV/Hz and input offset voltage of 100 µV.  
ORDERING INFORMATION  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
PACKAGE  
T
A
D
D
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
TLV2462AQDREP  
TLV2463AQDREP  
TLV2462AMDREP  
TLV2464AMDREP  
TLV2464AMPWREP  
2462AE  
−40°C to 125°C  
−55°C to 125°C  
V2463AQE  
2462AM  
D
D
V2464AME  
2464AME  
PW  
Some of the TLV246x family, along with packaging options, are in the Product Preview stage of  
development. Contact the local Texas Instruments sales office for availability.  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines  
are available at www.ti.com/sc/package.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢧ  
Copyright 2005, Texas Instruments Incorporated  
ꢣ ꢧ ꢤ ꢣꢜ ꢝꢱ ꢟꢞ ꢢ ꢪꢪ ꢨꢢ ꢠ ꢢ ꢡ ꢧ ꢣ ꢧ ꢠ ꢤ ꢬ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢋ ꢇꢈꢉ ꢊ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇꢈ ꢉꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇꢈꢉ ꢊ  
ꢍꢇꢎ ꢏ ꢁꢐ ꢑꢍ ꢁ ꢑꢒꢈꢊ ꢑꢒ ꢉ ꢓ ꢓꢇ ꢏ ꢁꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀ ꢖꢑ ꢕꢀ ꢊꢕ ꢀ  
ꢑꢊ ꢉ ꢓꢇꢀ ꢏ ꢑꢔ ꢇ ꢁ ꢇꢎ ꢊꢁ ꢏ ꢍꢏ ꢉ ꢓꢗ ꢒ ꢏ ꢀꢘ ꢗ ꢘꢕꢀ ꢙꢑ ꢒ ꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
TLV246x PACKAGE PINOUTS  
TLV2461  
D or PW PACKAGE  
(TOP VIEW)  
TLV2462  
D or PW PACKAGE  
(TOP VIEW)  
NC  
IN−  
NC  
V
1
2
3
4
8
7
6
5
1OUT  
1IN−  
1IN+  
GND  
V
+
DD  
1
2
3
4
8
7
6
5
+
2OUT  
2IN−  
2IN+  
DD  
IN+  
OUT  
NC  
GND  
TLV2464  
TLV2463  
D or PW PACKAGE  
D or PW PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN−  
1IN+  
GND  
NC  
V
+
1OUT  
1IN−  
1IN+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
4OUT  
4IN−  
4IN+  
GND  
3IN+  
3IN−  
3OUT  
DD  
2OUT  
2IN−  
2IN+  
NC  
V
+
DD  
2IN+  
2IN−  
1SHDN  
NC  
2SHDN  
NC  
8
8
2OUT  
NC − No internal connection  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢄꢇ ꢈꢉ ꢊ  
ꢍꢇꢎ ꢏꢁꢐ ꢑ ꢍ ꢁ ꢑ ꢒꢈꢊꢑ ꢒ ꢉꢓ ꢓꢇꢏ ꢁ ꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀꢖ ꢑ ꢕ ꢀꢊ ꢕꢀ  
ꢑ ꢊꢉꢓ ꢇꢀ ꢏꢑ ꢔꢇꢁ ꢇꢎ ꢊꢁ ꢏꢍ ꢏꢉ ꢓꢗ ꢒ ꢏꢀ ꢘ ꢗꢘꢕ ꢀꢙ ꢑ ꢒꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Differential input voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
DD  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.2 V to V  
+ 0.2 V  
200 mA  
175 mA  
ID  
DD  
Input current, I (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
O
Total input current, I (into V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 mA  
I
DD+  
Total output current, I (out of GND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 mA  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
O
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C  
A
Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values, except differential voltages, are with respect to GND.  
THERMAL RESISTANCE TABLE  
θ
θ
JC  
(°C/W)  
JA  
(°C/W, 0 Air Flow)  
PACKAGE  
High K  
Low K  
42.4  
High K  
Low K  
D (8)  
D (14)  
39.4  
97.1  
165.5  
51.5  
53.7  
86.2  
133.5  
230.5  
131.4  
PW (8)  
PW (14)  
65.1  
69.4  
149.4  
111.7  
45.8  
46.6  
NOTE: Thermal resistances are not production tested and are for  
informational purposes only.  
1e+08  
1e+07  
805C 1.7e+07 Hrs (1.9e+03 years)  
905C 5.2e+06 Hrs (5.9e+02 years)  
1005C 1.7e+06 Hrs (1.9e+02 years)  
1105C 5.8e+05 Hrs (66 years)  
1e+06  
100000  
10000  
1000  
1205C 2.1e+05 Hrs (24 years)  
1305C 8.2e+04 Hrs (9.3 years)  
1405C 3.3e+04 Hrs (3.7 years)  
80  
90  
100  
110  
120  
130  
140  
150  
Degrees C Continous − T  
J
Figure 1. Wirebond Life Estimation Plot  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢋ ꢇꢈꢉ ꢊ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇꢈ ꢉꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇꢈꢉ ꢊ  
ꢍꢇꢎ ꢏ ꢁꢐ ꢑꢍ ꢁ ꢑꢒꢈꢊ ꢑꢒ ꢉ ꢓ ꢓꢇ ꢏ ꢁꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀ ꢖꢑ ꢕꢀ ꢊꢕ ꢀ  
ꢑꢊ ꢉ ꢓꢇꢀ ꢏ ꢑꢔ ꢇ ꢁ ꢇꢎ ꢊꢁ ꢏ ꢍꢏ ꢉ ꢓꢗ ꢒ ꢏ ꢀꢘ ꢗ ꢘꢕꢀ ꢙꢑ ꢒ ꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
recommended operating conditions  
MIN  
2.7  
MAX  
UNIT  
Single supply  
Split supply  
6
3
Supply voltage, V  
DD  
V
V
1.35  
−0.2  
2
Common-mode input voltage range, V  
ICR  
V
+0.2  
DD  
V
V
IH  
Shutdown on/off voltage level  
V
0.7  
IL  
Operating free-air temperature, T  
−40  
125  
°C  
A
Relative to voltage on the GND terminal of the device.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢄꢇ ꢈꢉ ꢊ  
ꢍꢇꢎ ꢏꢁꢐ ꢑ ꢍ ꢁ ꢑ ꢒꢈꢊꢑ ꢒ ꢉꢓ ꢓꢇꢏ ꢁ ꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀꢖ ꢑ ꢕ ꢀꢊ ꢕꢀ  
ꢑ ꢊꢉꢓ ꢇꢀ ꢏꢑ ꢔꢇꢁ ꢇꢎ ꢊꢁ ꢏꢍ ꢏꢉ ꢓꢗ ꢒ ꢏꢀ ꢘ ꢗꢘꢕ ꢀꢙ ꢑ ꢒꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
electrical characteristics at specified free-air temperature, V  
= 3 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1500  
1700  
T
A
UNIT  
25°C  
150  
V
IO  
Input offset voltage  
µV  
V
V
= 3 V,  
Full range  
V
R
= 1.5 V,  
= 50 Ω  
DD  
IC  
S
= 1.5 V,  
O
Temperature coefficient of input  
offset voltage  
α
VIO  
2
µV/°C  
nA  
25°C  
Full range  
25°C  
2.8  
7
75  
14  
75  
I
IO  
Input offset current  
Input bias current  
V
V
= 3 V,  
V
R
= 1.5 V,  
= 50 Ω  
DD  
IC  
S
= 1.5 V,  
4.4  
2.9  
2.7  
0.1  
0.3  
50  
O
I
IB  
nA  
Full range  
25°C  
I
I
= 2.5 mA  
= 10 mA  
= 1.5 V,  
OH  
Full range  
25°C  
2.8  
2.5  
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
OL  
OH  
Full range  
25°C  
V
V
I
I
= 2.5 mA  
= 10 mA  
IC  
OL  
Full range  
25°C  
0.2  
0.5  
V
= 1.5 V,  
IC  
OL  
Full range  
25°C  
Sourcing  
Sinking  
Full range  
25°C  
20  
20  
I
I
Short-circuit output current  
Output current  
mA  
mA  
OS  
40  
Full range  
25°C  
Measured 1 V from rail  
= 10 kΩ  
40  
O
25°C  
90  
89  
105  
Large-signal differential voltage  
amplification  
A
VD  
R
dB  
L
Full range  
25°C  
9
10  
r
Differential input resistance  
i(d)  
Common-mode input  
capacitance  
c
z
f = 10 kHz  
25°C  
7
pF  
i(c)  
o
Closed-loop output impedance  
f = 100 kHz,  
A
= 10  
25°C  
25°C  
33  
80  
V
66  
60  
80  
75  
85  
80  
V
R
= 0 V to 3 V,  
= 50 Ω  
ICR  
S
CMRR  
Common-mode rejection ratio  
dB  
Full range  
25°C  
85  
95  
V
= 2.7 V to 6 V,  
V
V
= V  
= V  
/2,  
/2,  
DD  
IC  
DD  
No load  
Full range  
25°C  
Supply voltage rejection ratio  
k
dB  
SVR  
(V  
DD  
/V )  
IO  
V
= 3 V to 5 V,  
DD  
No load  
IC  
DD  
Full range  
25°C  
0.5 0.575  
I
I
Supply current (per channels)  
V
O
= 1.5 V,  
No load  
mA  
DD  
Full range  
25°C  
0.9  
0.3  
2.5  
Supply current in shutdown  
(TLV2460, TLV2463)  
SHDN < 0.7 V,  
Per channel in shutdown  
µA  
DD(SHDN)  
Full range  
Full range is −40°C to 125°C for the Q suffix and −55°C to 125°C for the M suffix.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢋ ꢇꢈꢉ ꢊ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇꢈ ꢉꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇꢈꢉ ꢊ  
ꢍꢇꢎ ꢏ ꢁꢐ ꢑꢍ ꢁ ꢑꢒꢈꢊ ꢑꢒ ꢉ ꢓ ꢓꢇ ꢏ ꢁꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀ ꢖꢑ ꢕꢀ ꢊꢕ ꢀ  
ꢑꢊ ꢉ ꢓꢇꢀ ꢏ ꢑꢔ ꢇ ꢁ ꢇꢎ ꢊꢁ ꢏ ꢍꢏ ꢉ ꢓꢗ ꢒ ꢏ ꢀꢘ ꢗ ꢘꢕꢀ ꢙꢑ ꢒ ꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
operating characteristics at specified free-air temperature, V  
= 3 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
T
A
25°C  
1
1.6  
V
R
= 2 V,  
C
= 160 pF,  
L
O(PP)  
= 10 kΩ  
SR  
Slew rate at unity gain  
V/µs  
Full  
range  
0.8  
L
f = 100 Hz  
f = 1 kHz  
f = 1 kHz  
25°C  
25°C  
25°C  
16  
11  
nV/Hz  
pA/Hz  
V
I
Equivalent input noise voltage  
Equivalent input noise current  
n
0.13  
n
A
= 1  
0.006%  
0.02%  
0.08%  
7.6  
V
Total harmonic distortion plus  
noise  
V
R
= 2 V,  
= 10 k, f = 1 kHz  
O(PP)  
L
A
V
= 10  
= 100  
THD + N  
25°C  
25°C  
A
V
Both channels  
t
Amplifier turnon time  
A
V
= 1, R = 10 kΩ  
µs  
Channel 1 only,  
Channel 2 on  
(on)  
L
7.65  
333  
328  
Both channels  
Channel 1 only,  
Channel 2 on  
t
(off)  
Amplifier turnoff time  
A
V
= 1, R = 10 kΩ  
25°C  
25°C  
ns  
L
Channel 2 only,  
Channel 1 on  
329  
5.2  
R
= 10 k,  
L
Gain-bandwidth product  
MHz  
f = 10 kHz, C = 160 pF  
L
V
= 2 V,  
= −1, C = 10 pF,  
0.1%  
1.47  
1.78  
1.77  
1.98  
(STEP)PP  
A
V
L
0.01%  
0.1%  
R
= 10 kΩ  
L
t
s
Settling time  
25°C  
µs  
V
= 2 V,  
= −1, C = 56 pF,  
(STEP)PP  
A
V
L
0.01%  
R
= 10 kΩ  
= 10 k,  
L
φ
m
Phase margin at unity gain  
Gain margin  
25°C  
25°C  
44°  
R
C
= 160 pF  
L
L
7
dB  
Full range is −40°C to 125°C for the Q suffix and −55°C to 125°C for the M suffix.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢄꢇ ꢈꢉ ꢊ  
ꢍꢇꢎ ꢏꢁꢐ ꢑ ꢍ ꢁ ꢑ ꢒꢈꢊꢑ ꢒ ꢉꢓ ꢓꢇꢏ ꢁ ꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀꢖ ꢑ ꢕ ꢀꢊ ꢕꢀ  
ꢑ ꢊꢉꢓ ꢇꢀ ꢏꢑ ꢔꢇꢁ ꢇꢎ ꢊꢁ ꢏꢍ ꢏꢉ ꢓꢗ ꢒ ꢏꢀ ꢘ ꢗꢘꢕ ꢀꢙ ꢑ ꢒꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1500  
1700  
T
A
UNIT  
25°C  
150  
V
IO  
Input offset voltage  
µV  
Full range  
V
V
= 5 V,  
V
R
= 2.5,  
= 50 Ω  
DD  
IC  
S
= 2.5 V,  
O
Temperature coefficient of input offset  
voltage  
α
VIO  
25°C  
2
µV/°C  
nA  
25°C  
Full range  
25°C  
0.3  
7
60  
14  
60  
I
IO  
Input offset current  
Input bias current  
V
V
= 5 V,  
V
R
= 2.5 V,  
= 50 Ω  
DD  
IC  
S
= 2.5 V,  
1.3  
4.9  
4.8  
0.1  
0.2  
145  
100  
O
I
IB  
nA  
Full range  
25°C  
I
I
= 2.5 mA  
= 10 mA  
= 2.5 V,  
OH  
Full range  
25°C  
4.8  
4.7  
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
OL  
OH  
Full range  
25°C  
V
I
I
= 2.5 mA  
= 10 mA  
IC  
IC  
OL  
Full range  
25°C  
0.2  
0.3  
V
V
= 2.5 V,  
OL  
Full range  
25°C  
Sourcing  
Sinking  
Full range  
25°C  
60  
60  
I
I
Short-circuit output current  
Output current  
mA  
OS  
Full range  
25°C  
Measured at 1 V from rail  
80  
mA  
dB  
O
25°C  
92  
90  
109  
Large-signal differential voltage  
amplification  
V
IC  
V
O
= 2.5 V,  
= 1 V to 4 V  
R
= 10 k,  
L
A
VD  
Full range  
25°C  
9
10  
r
Differential input resistance  
pF  
i(d)  
c
z
Common-mode input capacitance  
Closed-loop output impedance  
f = 10 kHz  
25°C  
7
29  
85  
i(c)  
o
f = 100 kHz,  
A
V
= 10  
25°C  
25°C  
71  
60  
80  
75  
85  
80  
V
R
= 0 V to 5 V,  
= 50 Ω  
ICR  
CMRR  
Common-mode rejection ratio  
dB  
dB  
dB  
mA  
µA  
Full range  
25°C  
S
85  
95  
V
= 2.7 V to 6 V,  
V
= V  
= V  
/2,  
/2,  
DD  
IC  
DD  
No load  
Full range  
25°C  
Supply voltage rejection ratio  
k
SVR  
(V  
DD  
/V )  
IO  
V
= 3 V to 5 V,  
V
IC  
DD  
No load  
DD  
Full range  
25°C  
0.55  
1
0.65  
1
I
I
Supply current (per channel)  
V
O
= 2.5 V,  
No load,  
DD  
Full range  
25°C  
Supply current in shutdown  
(TLV2460, TLV2463)  
SHDN < 0.7 V, Per channels in  
shutdown  
DD(SHDN)  
Full range  
3
Full range is −40°C to 125°C for the Q suffix and −55°C to 125°C for the M suffix.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢋ ꢇꢈꢉ ꢊ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇꢈ ꢉꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇꢈꢉ ꢊ  
ꢍꢇꢎ ꢏ ꢁꢐ ꢑꢍ ꢁ ꢑꢒꢈꢊ ꢑꢒ ꢉ ꢓ ꢓꢇ ꢏ ꢁꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀ ꢖꢑ ꢕꢀ ꢊꢕ ꢀ  
ꢑꢊ ꢉ ꢓꢇꢀ ꢏ ꢑꢔ ꢇ ꢁ ꢇꢎ ꢊꢁ ꢏ ꢍꢏ ꢉ ꢓꢗ ꢒ ꢏ ꢀꢘ ꢗ ꢘꢕꢀ ꢙꢑ ꢒ ꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
operating characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
T
A
25°C  
1
1.6  
V
R
= 2 V,  
C
= 160 pF,  
L
O(PP)  
= 10 kΩ  
SR  
Slew rate at unity gain  
V/µs  
Full  
range  
0.8  
L
f = 100 Hz  
f = 1 kHz  
25°C  
25°C  
25°C  
14  
11  
nV/Hz  
pA/Hz  
V
I
Equivalent input noise voltage  
Equivalent input noise current  
n
f = 100 Hz  
0.13  
n
A
= 1  
0.004%  
0.01%  
0.04%  
7.6  
V
V
R
= 4 V,  
O(PP)  
= 10 k,  
A
V
= 10  
= 100  
THD + N Total harmonic distortion plus noise  
25°C  
L
f = 10 kHz  
A
V
Both channels  
Channel 1 only,  
Channel 2 on  
7.65  
t
Amplifier turnon time  
A
= 1, R = 10 kΩ  
25°C  
µs  
(on)  
(off)  
V
L
Channel 2 only,  
Channel 1 on  
7.25  
333  
328  
Both channels  
Channel 1 only,  
Channel 2 on  
t
Amplifier turnoff time  
A
V
= 1, R = 10 kΩ  
25°C  
25°C  
ns  
L
Channel 2 only,  
Channel 1 on  
329  
f = 10 kHz,  
= 160 pF  
R = 10 k,  
L
Gain-bandwidth product  
6.4  
1.53  
1.83  
3.13  
3.33  
MHz  
C
L
V
= 2 V,  
= 2 V,  
(STEP)PP  
0.1%  
A
= −1,  
= 10 pF,  
= 10 kΩ  
V
C
R
L
L
0.01%  
0.1%  
t
s
Settling time  
25°C  
µs  
V
(STEP)PP  
A
= −1,  
= 56 pF,  
= 10 kΩ  
V
C
R
L
L
0.01%  
φ
m
Phase margin at unity gain  
Gain margin  
25°C  
25°C  
45°  
R
= 10 k,  
C = 160 pF  
L
L
7
dB  
Full range is −40°C to 125°C for the Q suffix and −55°C to 125°C for the M suffix.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢄꢇ ꢈꢉ ꢊ  
ꢍꢇꢎ ꢏꢁꢐ ꢑ ꢍ ꢁ ꢑ ꢒꢈꢊꢑ ꢒ ꢉꢓ ꢓꢇꢏ ꢁ ꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀꢖ ꢑ ꢕ ꢀꢊ ꢕꢀ  
ꢑ ꢊꢉꢓ ꢇꢀ ꢏꢑ ꢔꢇꢁ ꢇꢎ ꢊꢁ ꢏꢍ ꢏꢉ ꢓꢗ ꢒ ꢏꢀ ꢘ ꢗꢘꢕ ꢀꢙ ꢑ ꢒꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
1, 2  
3, 4  
3, 4  
5, 6  
7, 8  
9, 10  
11, 12  
11, 12  
13  
V
Input offset voltage  
Input bias current  
Input offset current  
vs Common-mode input voltage  
IO  
I
I
vs Free-air temperature  
vs Free-air temperature  
vs High-level output current  
vs Low-level output current  
vs Frequency  
IB  
IO  
V
V
V
High-level output voltage  
Low-level output voltage  
Peak-to-peak output voltage  
Open-loop gain  
OH  
OL  
O(PP)  
vs Frequency  
Phase  
vs Frequency  
A
VD  
Differential voltage amplification  
Capacitive load  
vs Load resistance  
vs Load resistance  
vs Frequency  
14  
Z
o
Output impedance  
15, 16  
17  
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
vs Frequency  
k
vs Frequency  
18, 19  
20  
SVR  
vs Supply voltage  
vs Free-air temperature  
I
Supply current  
DD  
21  
Amplifier turnon characteristics  
Amplifier turnoff characteristics  
Supply current turnon  
Supply current turnoff  
Shutdown supply current  
Slew rate  
22  
23  
24  
25  
vs Free-air temperature  
vs Supply voltage  
26  
SR  
27  
vs Frequency  
28, 29  
30, 31  
V
n
Equivalent input noise voltage  
vs Common-mode input voltage  
THD  
Total harmonic distortion  
vs Frequency  
32, 33  
34, 35  
11, 12  
THD+N  
Total harmonic distortion plus noise  
vs Peak-to-peak signal amplitude  
vs Frequency  
φ
m
Phase margin  
vs Load capacitance  
vs Free-air temperature  
vs Supply voltage  
36  
37  
38  
Gain bandwidth product  
vs Free-air temperature  
39  
Large signal follower  
Small signal follower  
Inverting large signal  
Inverting small signal  
40, 41  
42, 43  
44, 45  
46, 47  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢋ ꢇꢈꢉ ꢊ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇꢈ ꢉꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇꢈꢉ ꢊ  
ꢍꢇꢎ ꢏ ꢁꢐ ꢑꢍ ꢁ ꢑꢒꢈꢊ ꢑꢒ ꢉ ꢓ ꢓꢇ ꢏ ꢁꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀ ꢖꢑ ꢕꢀ ꢊꢕ ꢀ  
ꢑꢊ ꢉ ꢓꢇꢀ ꢏ ꢑꢔ ꢇ ꢁ ꢇꢎ ꢊꢁ ꢏ ꢍꢏ ꢉ ꢓꢗ ꢒ ꢏ ꢀꢘ ꢗ ꢘꢕꢀ ꢙꢑ ꢒ ꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
1
0.8  
0.6  
0.4  
1
0.8  
0.6  
0.4  
V
T
= 3 V  
= 25°C  
DD  
A
V
T
A
= 5 V  
= 25°C  
DD  
0.2  
0
0.2  
0
−0.2  
−0.4  
−0.6  
−0.2  
−0.4  
−0.6  
−0.8  
−1  
−0.8  
−1  
0
0.5  
1
1.5  
2
2.5  
3
0
1
2
3
4
5
V
ICR  
− Common-Mode Input Voltage − V  
V
ICR  
− Common-Mode Input Voltage − V  
Figure 2  
Figure 3  
INPUT BIAS AND INPUT OFFSET CURRENT  
INPUT BIAS AND INPUT OFFSET CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
5
4.5  
4
6
5
4
3
V
= 3 V  
DD  
V = 1.5 V  
V
= 5 V  
DD  
V = 2.5 V  
I
I
IB  
I
I
IB  
3.5  
3
2.5  
2
2
1
1.5  
1
0.5  
0
I
IO  
I
IO  
0
−0.5  
−1  
−55 −35 −15  
5
25  
45  
65  
85 105 125  
−55 −35 −15  
5
25  
45  
65  
85 105 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 4  
Figure 5  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢄꢇ ꢈꢉ ꢊ  
ꢍꢇꢎ ꢏꢁꢐ ꢑ ꢍ ꢁ ꢑ ꢒꢈꢊꢑ ꢒ ꢉꢓ ꢓꢇꢏ ꢁ ꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀꢖ ꢑ ꢕ ꢀꢊ ꢕꢀ  
ꢑ ꢊꢉꢓ ꢇꢀ ꢏꢑ ꢔꢇꢁ ꢇꢎ ꢊꢁ ꢏꢍ ꢏꢉ ꢓꢗ ꢒ ꢏꢀ ꢘ ꢗꢘꢕ ꢀꢙ ꢑ ꢒꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
3
5
V
= 3 V  
DC  
DD  
V
= 5 V  
DC  
DD  
4.5  
4
2.5  
T
A
= −55°C  
T = −55°C  
A
3.5  
3
2
1.5  
1
T
T
= 125°C  
A
T = 125°C  
A
2.5  
= 85°C  
A
T
A
= 85°C  
2
T
= 25°C  
A
T
A
= 25°C  
1.5  
1
T
= −40°C  
A
T = −40°C  
A
0.5  
0
0.5  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
0
20 40 60 80 100 120 140 160 180 200  
I
− High-Level Output Current − mA  
OH  
I
− High-Level Output Current − mA  
OH  
Figure 6  
Figure 7  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
3
4.5  
4
V
DD  
= 3 V  
DC  
V
DD  
= 5 V  
DC  
2.5  
T
= −40°C  
T
= −40°C  
A
A
3.5  
3
2
1.5  
1
T
= 25°C  
= 85°C  
A
T
= 25°C  
= 85°C  
A
2.5  
2
T
T
A
T
T
A
A
A
= 125°C  
= 125°C  
1.5  
1
0.5  
0
T
= −55°C  
A
0.5  
0
T
A
= −55°C  
0
10  
20  
30  
40  
50  
60  
70  
0
20  
40  
60  
80  
100 120 140 160  
I
− Low-Level Output Current − mA  
OL  
I
− Low-Level Output Current − mA  
OL  
Figure 8  
Figure 9  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢋ ꢇꢈꢉ ꢊ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇꢈ ꢉꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇꢈꢉ ꢊ  
ꢍꢇꢎ ꢏ ꢁꢐ ꢑꢍ ꢁ ꢑꢒꢈꢊ ꢑꢒ ꢉ ꢓ ꢓꢇ ꢏ ꢁꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀ ꢖꢑ ꢕꢀ ꢊꢕ ꢀ  
ꢑꢊ ꢉ ꢓꢇꢀ ꢏ ꢑꢔ ꢇ ꢁ ꢇꢎ ꢊꢁ ꢏ ꢍꢏ ꢉ ꢓꢗ ꢒ ꢏ ꢀꢘ ꢗ ꢘꢕꢀ ꢙꢑ ꢒ ꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
PEAK-TO-PEAK OUTPUT VOLTAGE  
PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
3
2.5  
2
5.5  
5
V
= 3 V  
DD  
= −10  
V
= 5 V  
DD  
A = −10  
V
A
V
THD = 1%  
= 10 kΩ  
THD = 1%  
R = 10 kΩ  
L
4.5  
4
R
L
3.5  
3
1.5  
2.5  
2
1.5  
1
1
0.5  
0
0.5  
0
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 10  
Figure 11  
OPEN-LOOP GAIN AND PHASE  
vs  
FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
40°  
V
R
C
= 1.5 V  
= 10 kΩ  
= 0  
DD  
L
L
20°  
0°  
T
A
= 25°C  
−20°  
−40°  
−60°  
−80°  
−100°  
A
VD  
30  
20  
Phase  
−120°  
−140°  
−160°  
−180°  
−200°  
10  
0
−10  
−20  
10  
100  
1k  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
Figure 12  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ  
ꢄꢅ  
ꢍꢇꢎ ꢏꢁꢐ ꢑ ꢍ ꢁ ꢑ ꢒꢈꢊꢑ ꢒ ꢉꢓ ꢓꢇꢏ ꢁ ꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀꢖ ꢑ ꢕ ꢀꢊ ꢕꢀ  
ꢑ ꢊꢉꢓ ꢇꢀ ꢏꢑ ꢔꢇꢁ ꢇꢎ ꢊꢁ ꢏꢍ ꢏꢉ ꢓꢗ ꢒ ꢏꢀ ꢘ ꢗꢘꢕ ꢀꢙ ꢑ ꢒꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
OPEN-LOOP GAIN AND PHASE  
vs  
FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
40°  
20°  
0°  
V
R
C
= 2.5 V  
= 10 kΩ  
= 0  
DD  
L
L
T
A
= 25°C  
−20°  
−40°  
−60°  
−80°  
−100°  
A
VD  
30  
20  
Phase  
−120°  
−140°  
−160°  
−180°  
−200°  
10  
0
−10  
−20  
10  
100  
1k  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
Figure 13  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
CAPACITIVE LOAD  
vs  
LOAD RESISTANCE  
vs  
LOAD RESISTANCE  
180  
160  
140  
120  
100  
80  
10000  
1000  
100  
T
= 25°C  
A
Phase Margin < 30°  
V
= 2.5 V  
DD  
V
DD  
= 1.5 V  
60  
Phase Margin > 30°  
40  
V
= 5 V  
DD  
Phase Margin = 30°  
= 25°C  
20  
T
A
0
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
R
− Load Resistance − Ω  
L
R − Load Resistance − Ω  
L
Figure 14  
Figure 15  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢋ ꢇꢈꢉ ꢊ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇꢈ ꢉꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇꢈꢉ ꢊ  
ꢍꢇꢎ ꢏ ꢁꢐ ꢑꢍ ꢁ ꢑꢒꢈꢊ ꢑꢒ ꢉ ꢓ ꢓꢇ ꢏ ꢁꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀ ꢖꢑ ꢕꢀ ꢊꢕ ꢀ  
ꢑꢊ ꢉ ꢓꢇꢀ ꢏ ꢑꢔ ꢇ ꢁ ꢇꢎ ꢊꢁ ꢏ ꢍꢏ ꢉ ꢓꢗ ꢒ ꢏ ꢀꢘ ꢗ ꢘꢕꢀ ꢙꢑ ꢒ ꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
OUTPUT IMPEDANCE  
OUTPUT IMPEDANCE  
vs  
vs  
FREQUENCY  
FREQUENCY  
1000  
100  
10  
1000  
100  
10  
V
T
A
= 1.5 V  
= 25°C  
DD  
V
T
A
= 2.5 V  
= 25°C  
DD  
A
V
= 100  
A
V
= 100  
= 10  
1
1
A
V
= 10  
= 1  
A
V
0.1  
A
V
0.1  
A
V
= 1  
0.01  
0.01  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 16  
Figure 17  
COMMON-MODE REJECTION RATIO  
vs  
FREQUENCY  
90  
85  
80  
75  
V
V
= 5 V  
DD  
= 2.5 V  
IC  
V
V
= 3 V  
DD  
= 1.5 V  
IC  
70  
65  
60  
10  
100  
1k  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
Figure 18  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢄꢇ ꢈꢉ ꢊ  
ꢍꢇꢎ ꢏꢁꢐ ꢑ ꢍ ꢁ ꢑ ꢒꢈꢊꢑ ꢒ ꢉꢓ ꢓꢇꢏ ꢁ ꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀꢖ ꢑ ꢕ ꢀꢊ ꢕꢀ  
ꢑ ꢊꢉꢓ ꢇꢀ ꢏꢑ ꢔꢇꢁ ꢇꢎ ꢊꢁ ꢏꢍ ꢏꢉ ꢓꢗ ꢒ ꢏꢀ ꢘ ꢗꢘꢕ ꢀꢙ ꢑ ꢒꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
SUPPLY-VOLTAGE REJECTION RATIO  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
110  
100  
90  
80  
70  
+k  
SVR  
+k  
SVR  
V
T
A
=
1.5 V  
DD  
V
T
=
2.5 V  
DD  
A
= 25°C  
= 25°C  
−k  
SVR  
90  
80  
70  
60  
−k  
SVR  
60  
50  
40  
+k  
SVR  
+k  
SVR  
50  
40  
−k  
SVR  
−k  
SVR  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 19  
Figure 20  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
0.8  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
I
= 125°C  
DD  
I
= 85°C  
DD  
0.7  
0.6  
V
= 5 V  
DD  
V = 2.5 V  
I
0.5  
0.40  
0.30  
V
= 3 V  
DD  
V = 1.5 V  
I
I
I
= 25°C  
DD  
I
= −55°C  
DD  
= −40°C  
DD  
0.20  
0.10  
0.35  
0.30  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
−55 −35 −15  
5
25  
45  
65  
85 105 125  
V
DD  
− Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 21  
Figure 22  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢋ ꢇꢈꢉ ꢊ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇꢈ ꢉꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇꢈꢉ ꢊ  
ꢍꢇꢎ ꢏ ꢁꢐ ꢑꢍ ꢁ ꢑꢒꢈꢊ ꢑꢒ ꢉ ꢓ ꢓꢇ ꢏ ꢁꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀ ꢖꢑ ꢕꢀ ꢊꢕ ꢀ  
ꢑꢊ ꢉ ꢓꢇꢀ ꢏ ꢑꢔ ꢇ ꢁ ꢇꢎ ꢊꢁ ꢏ ꢍꢏ ꢉ ꢓꢗ ꢒ ꢏ ꢀꢘ ꢗ ꢘꢕꢀ ꢙꢑ ꢒ ꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
AMPLIFIER WITH A SHUTDOWN PULSE  
TURNON CHARACTERISTICS  
AMPLIFIER WITH A SHUTDOWN PULSE  
TURNOFF CHARACTERISTICS  
5
4
3
2
1
0
3
2
5
4
3
2
1
0
3
2
V
R
= 5 V  
= 10 kΩ  
= 1  
DD  
L
Shutdown Pin  
Shutdown Pin  
A
V
A
T
= 25°C  
Amplifier Output  
Amplifier Output  
V
R
= 5 V  
= 10 kΩ  
= 1  
DD  
L
A
V
A
1
0
T
= 25°C  
1
0
−5  
−3  
−1  
1
3
5
7
9
11  
−5  
−3  
−1  
1
3
5
7
t − Time − µs  
t − Time − µs  
Figure 23  
Figure 24  
SUPPLY CURRENT WITH A SHUTDOWN PULSE  
TURNON CHARACTERISTICS  
1
5.5  
Shutdown Pin  
0.8  
4.5  
3.5  
2.5  
1.5  
0.6  
0.4  
Supply Current  
0.2  
0
V
= 5 V  
DD  
V = 2.5 V  
0.5  
I
A
= 1  
= 25°C  
V
T
A
−0.2  
−0.5  
−0.4  
−0.2  
0
0.2  
0.4  
0.6  
t − Time − µs  
Figure 25  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ  
ꢄꢅ  
ꢍꢇꢎ ꢏꢁꢐ ꢑ ꢍ ꢁ ꢑ ꢒꢈꢊꢑ ꢒ ꢉꢓ ꢓꢇꢏ ꢁ ꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀꢖ ꢑ ꢕ ꢀꢊ ꢕꢀ  
ꢑ ꢊꢉꢓ ꢇꢀ ꢏꢑ ꢔꢇꢁ ꢇꢎ ꢊꢁ ꢏꢍ ꢏꢉ ꢓꢗ ꢒ ꢏꢀ ꢘ ꢗꢘꢕ ꢀꢙ ꢑ ꢒꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
TURNOFF SUPPLY CURRENT  
WITH A SHUTDOWN PULSE  
1
5.5  
4.5  
V
= 5 V  
DD  
V = 2.5 V  
I
Shutdown Pin  
A
= 1  
= 25°C  
V
A
0.8  
T
0.6  
0.4  
3.5  
2.5  
Supply Current  
0.2  
0
1.5  
0.5  
−0.2  
−0.4  
−0.5  
0.6  
−0.2  
0
0.2  
0.4  
t − Time − µs  
Figure 26  
SHUTDOWN SUPPLY CURRENT  
vs  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
3
2.5  
2
1.8  
1.75  
1.7  
1.65  
1.6  
V
= 5 V  
DD  
V = 2.5 V  
SR+  
I
1.5  
1
1.55  
SR−  
V
= 3 V  
DD  
1.5  
1.45  
1.4  
0.5  
V = 1.5 V  
I
V
C
= 2 V  
= 160 pF  
= 1  
= 10 kΩ  
= 25°C  
O(PP)  
L
0
−0.5  
−1  
A
V
R
L
1.35  
1.3  
T
A
−55 −35 −15  
5
25  
45  
65  
85 105 125  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
T
A
− Free-Air Temperature − °C  
V
DD  
− Supply Voltage − V  
Figure 27  
Figure 28  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢋ ꢇꢈꢉ ꢊ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇꢈ ꢉꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇꢈꢉ ꢊ  
ꢍꢇꢎ ꢏ ꢁꢐ ꢑꢍ ꢁ ꢑꢒꢈꢊ ꢑꢒ ꢉ ꢓ ꢓꢇ ꢏ ꢁꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀ ꢖꢑ ꢕꢀ ꢊꢕ ꢀ  
ꢑꢊ ꢉ ꢓꢇꢀ ꢏ ꢑꢔ ꢇ ꢁ ꢇꢎ ꢊꢁ ꢏ ꢍꢏ ꢉ ꢓꢗ ꢒ ꢏ ꢀꢘ ꢗ ꢘꢕꢀ ꢙꢑ ꢒ ꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
EQUIVALENT INPUT NOISE VOLTAGE  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
18  
17  
18  
17  
V
= 3 V  
DD  
= 10  
V
= 5 V  
DD  
A = 10  
V
A
V
V = 1.5 V  
I
A
V = 2.5 V  
I
T
= 25°C  
T = 25°C  
A
16  
15  
14  
16  
15  
14  
13  
12  
13  
12  
11  
10  
11  
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 29  
Figure 30  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
20  
20  
15  
14  
13  
12  
V
= 3 V  
DD  
= 10  
V
= 5 V  
DD  
A = 10  
V
A
V
f = 1 kHz  
f = 1 kHz  
15  
14  
13  
12  
T
A
= 25°C  
T
A
= 25°C  
11  
10  
11  
10  
0
0.5  
1
1.5  
2
2.5  
3
0
1
2
3
4
5
V
ICR  
− Common-Mode Input Voltage − V  
V
ICR  
− Common-Mode Input Voltage − V  
Figure 31  
Figure 32  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢄꢇ ꢈꢉ ꢊ  
ꢍꢇꢎ ꢏꢁꢐ ꢑ ꢍ ꢁ ꢑ ꢒꢈꢊꢑ ꢒ ꢉꢓ ꢓꢇꢏ ꢁ ꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀꢖ ꢑ ꢕ ꢀꢊ ꢕꢀ  
ꢑ ꢊꢉꢓ ꢇꢀ ꢏꢑ ꢔꢇꢁ ꢇꢎ ꢊꢁ ꢏꢍ ꢏꢉ ꢓꢗ ꢒ ꢏꢀ ꢘ ꢗꢘꢕ ꢀꢙ ꢑ ꢒꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
FREQUENCY  
FREQUENCY  
0.5  
0.1  
1
V
V
R
=
1.5 V  
= 2 V  
DD  
O(PP)  
L
V
V
=
2.5 V  
= 4 V  
DD  
O(PP)  
L
= 10 kΩ  
R = 10 kΩ  
A
= 100  
= 10  
= 1  
V
0.1  
A
V
= 100  
= 10  
= 1  
A
V
A
V
0.010  
0.001  
A
V
0.010  
0.001  
A
V
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 33  
Figure 34  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
PEAK-TO-PEAK SIGNAL AMPLITUDE  
PEAK-TO-PEAK SIGNAL AMPLITUDE  
1
1
R
= 250 Ω  
V
= 3 V  
L
DD  
= 1  
R
= 250 Ω  
A
L
V
TA = 25°C  
R
= 2 kΩ  
L
R
= 2 kΩ  
L
0.1  
0.1  
R
= 10 kΩ  
L
R
= 10 kΩ  
L
0.010  
0.001  
0.010  
0.001  
R
= 100 kΩ  
R
= 100 kΩ  
L
L
V
= 5 V  
DD  
= 1  
A
V
A
T
= 25°C  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
3
3.2  
4
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9  
Peak-to-Peak Signal Amplitude − V  
5
Peak-to-Peak Signal Amplitude − V  
Figure 35  
Figure 36  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢋ ꢇꢈꢉ ꢊ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇꢈ ꢉꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇꢈꢉ ꢊ  
ꢍꢇꢎ ꢏ ꢁꢐ ꢑꢍ ꢁ ꢑꢒꢈꢊ ꢑꢒ ꢉ ꢓ ꢓꢇ ꢏ ꢁꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀ ꢖꢑ ꢕꢀ ꢊꢕ ꢀ  
ꢑꢊ ꢉ ꢓꢇꢀ ꢏ ꢑꢔ ꢇ ꢁ ꢇꢎ ꢊꢁ ꢏ ꢍꢏ ꢉ ꢓꢗ ꢒ ꢏ ꢀꢘ ꢗ ꢘꢕꢀ ꢙꢑ ꢒ ꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
PHASE MARGIN  
vs  
FREE-AIR TEMPERATURE  
vs  
LOAD CAPACITANCE  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
55  
50  
V
T
R
=
2.5 V  
DD  
A
L
R
C
= 10 kΩ  
= 160 pF  
L
L
= 25°C  
= 10 kΩ  
R
= 50 Ω  
null  
V
V
=
=
2.5 V  
1.5 V  
DD  
45  
40  
R
= 20 Ω  
null  
DD  
R
= 0 Ω  
null  
35  
30  
10  
100  
1k  
10k  
100k  
−55 −35 −15  
5
25  
45  
65  
85 105 125  
C
L
− Load Capacitance − pF  
T
A
− Free-Air Temperature − °C  
Figure 37  
Figure 38  
GAIN BANDWIDTH PRODUCT  
GAIN BANDWIDTH PRODUCT  
vs  
FREE-AIR TEMPERATURE  
vs  
SUPPLY VOLTAGE  
5
5
C
R
= 160 pF  
= 10 kΩ  
L
L
R
C
= 10 kΩ  
= 160 pF  
L
L
4.75  
f = 10 kHz  
4.75  
4.5  
4.25  
4
T
A
= 25°C  
V
=
2.5 V  
DD  
4.5  
4.25  
4
3.75  
3.5  
V
DD  
= 1.5 V  
3.75  
3.5  
3.25  
3
2.5  
3
3.5  
4
4.5  
5
5.5  
6
−55 −35 −15  
5
25  
45  
65  
85 105 125  
V
DD  
− Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 39  
Figure 40  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢄꢇ ꢈꢉ ꢊ  
ꢍꢇꢎ ꢏꢁꢐ ꢑ ꢍ ꢁ ꢑ ꢒꢈꢊꢑ ꢒ ꢉꢓ ꢓꢇꢏ ꢁ ꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀꢖ ꢑ ꢕ ꢀꢊ ꢕꢀ  
ꢑ ꢊꢉꢓ ꢇꢀ ꢏꢑ ꢔꢇꢁ ꢇꢎ ꢊꢁ ꢏꢍ ꢏꢉ ꢓꢗ ꢒ ꢏꢀ ꢘ ꢗꢘꢕ ꢀꢙ ꢑ ꢒꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
LARGE SIGNAL FOLLOWER  
LARGE SIGNAL FOLLOWER  
2.2  
2
3.7  
3.3  
Input  
Input  
1.8  
1.6  
1.4  
1.2  
2.9  
2.5  
2.1  
Output  
Output  
V
V
= 5 V  
DD  
I(PP)  
V
V
= 3 V  
DD  
I(PP)  
Input  
Input  
= 2 V  
V = 2.5 V  
= 1 V  
V = 1.5 V  
I
R
C
I
R
C
= 10 kΩ  
= 160 pF  
= 1  
L
L
Output  
Output  
= 10 kΩ  
= 160 pF  
= 1  
L
L
1.7  
1.3  
A
V
A
1
A
V
A
T
= 25°C  
T
= 25°C  
0.8  
−2  
0
2
4
6
8
10 12 14 16 18  
−2  
0
2
4
6
8
10 12 14 16 18  
t − Time − µs  
t − Time − µs  
Figure 41  
Figure 42  
SMALL SIGNAL FOLLOWER  
SMALL SIGNAL FOLLOWER  
1.6  
2.6  
2.55  
2.5  
1.55  
1.5  
Input  
Input  
Output  
Output  
1.45  
1.4  
2.45  
2.4  
V
V
= 3 V  
= 100 mV  
V
V
= 5 V  
= 100 mV  
DD  
I(PP)  
DD  
I(PP)  
C
A
T
A
= 160 pF  
= 1  
= 25°C  
C
A
T
A
= 160 pF  
= 1  
= 25°C  
L
V
L
V
V = 1.5 V  
V = 2.5 V  
I
I
R
= 10 kΩ  
R = 10 kΩ  
L
L
−0.2  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
−0.2  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
t − Time − µs  
t − Time − µs  
Figure 43  
Figure 44  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢋ ꢇꢈꢉ ꢊ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇꢈ ꢉꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇꢈꢉ ꢊ  
ꢍꢇꢎ ꢏ ꢁꢐ ꢑꢍ ꢁ ꢑꢒꢈꢊ ꢑꢒ ꢉ ꢓ ꢓꢇ ꢏ ꢁꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀ ꢖꢑ ꢕꢀ ꢊꢕ ꢀ  
ꢑꢊ ꢉ ꢓꢇꢀ ꢏ ꢑꢔ ꢇ ꢁ ꢇꢎ ꢊꢁ ꢏ ꢍꢏ ꢉ ꢓꢗ ꢒ ꢏ ꢀꢘ ꢗ ꢘꢕꢀ ꢙꢑ ꢒ ꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
TYPICAL CHARACTERISTICS  
INVERTING LARGE SIGNAL  
INVERTING LARGE SIGNAL  
Input  
4
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
Input  
3.5  
3
V
V
= 3 V  
= 1 V  
V
V
= 5 V  
= 2 V  
DD  
I(PP)  
DD  
I(PP)  
V = 1.5 V  
V = 2.5 V  
I
I
R
C
= 10 kΩ  
= 160 pF  
= −1  
R
C
= 10 kΩ  
= 160 pF  
= −1  
L
L
L
L
2.5  
2
A
A
V
A
V
A
T
= 25°C  
T
= 25°C  
Output  
Output  
1.5  
1
0.7  
0.5  
−0.2  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
−0.2  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
t − Time − µs  
t − Time − µs  
Figure 45  
Figure 46  
INVERTING SMALL SIGNAL  
INVERTING SMALL SIGNAL  
1.6  
1.55  
1.5  
2.6  
Input  
Input  
2.55  
2.5  
V
V
= 3 V  
DD  
I(PP)  
V
V
= 5 V  
DD  
I(PP)  
= 100 mV  
V = 1.5 V  
= 100 mV  
V = 2.5 V  
I
R
C
I
R
C
= 10 kΩ  
= 160 pF  
= −1  
L
L
= 10 kΩ  
= 160 pF  
= −1  
L
L
A
V
A
A
V
A
T
= 25°C  
T
= 25°C  
1.45  
1.4  
2.45  
2.4  
Output  
Output  
−0.2  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
−0.2  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
t − Time − µs  
t − Time − µs  
Figure 47  
Figure 48  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢄꢇ ꢈꢉ ꢊ  
ꢍꢇꢎ ꢏꢁꢐ ꢑ ꢍ ꢁ ꢑ ꢒꢈꢊꢑ ꢒ ꢉꢓ ꢓꢇꢏ ꢁ ꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀꢖ ꢑ ꢕ ꢀꢊ ꢕꢀ  
ꢑ ꢊꢉꢓ ꢇꢀ ꢏꢑ ꢔꢇꢁ ꢇꢎ ꢊꢁ ꢏꢍ ꢏꢉ ꢓꢗ ꢒ ꢏꢀ ꢘ ꢗꢘꢕ ꢀꢙ ꢑ ꢒꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
PARAMETER MEASUREMENT INFORMATION  
R
_
+
null  
R
L
C
L
Figure 49  
APPLICATION INFORMATION  
driving a capacitive load  
When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the  
device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater  
than 10 pF, it is recommended that a resistor be placed in series (R  
) with the output of the amplifier, as  
NULL  
shown in Figure 49. A minimum value of 20 should work well for most applications.  
R
F
R
G
_
R
NULL  
Input  
Output  
LOAD  
+
C
Figure 50. Driving a Capacitive Load  
offset voltage  
The output offset voltage, (V ) is the sum of the input offset voltage (V ) and both input bias currents (I ) times  
OO  
IO  
IB  
the corresponding gains. The following schematic and formula can be used to calculate the output offset  
voltage:  
R
F
I
IB−  
R
G
+
+
V
I
V
O
R
S
I
IB+  
R
R
F
F
V
+ V  
1 ) ǒ Ǔ " I  
R
1 ) ǒ Ǔ " I  
R
ǒ Ǔ ǒ Ǔ  
OO  
IO  
IB)  
S
IB–  
F
R
R
G
G
Figure 51. Output Offset Voltage Model  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢋ ꢇꢈꢉ ꢊ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇꢈ ꢉꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇꢈꢉ ꢊ  
ꢍꢇꢎ ꢏ ꢁꢐ ꢑꢍ ꢁ ꢑꢒꢈꢊ ꢑꢒ ꢉ ꢓ ꢓꢇ ꢏ ꢁꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀ ꢖꢑ ꢕꢀ ꢊꢕ ꢀ  
ꢑꢊ ꢉ ꢓꢇꢀ ꢏ ꢑꢔ ꢇ ꢁ ꢇꢎ ꢊꢁ ꢏ ꢍꢏ ꢉ ꢓꢗ ꢒ ꢏ ꢀꢘ ꢗ ꢘꢕꢀ ꢙꢑ ꢒ ꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
APPLICATION INFORMATION  
general configurations  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often  
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier  
(see Figure 51).  
R
R
F
G
V
1
O
+
V
I
R1  
V
C1  
f
+
–3dB  
2pR1C1  
R
O
F
1
ǒ
Ǔ
+
ǒ
1 )  
Ǔ
V
R
1 ) sR1C1  
I
G
Figure 52. Single-Pole Low-Pass Filter  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.  
Failure to do this can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
+
–3dB  
2pRC  
C2  
R
F
1
R
=
G
R
F
2 −  
)
R
(
Q
G
Figure 53. 2-Pole Low-Pass Sallen-Key Filter  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢄꢇ ꢈꢉ ꢊ  
ꢍꢇꢎ ꢏꢁꢐ ꢑ ꢍ ꢁ ꢑ ꢒꢈꢊꢑ ꢒ ꢉꢓ ꢓꢇꢏ ꢁ ꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀꢖ ꢑ ꢕ ꢀꢊ ꢕꢀ  
ꢑ ꢊꢉꢓ ꢇꢀ ꢏꢑ ꢔꢇꢁ ꢇꢎ ꢊꢁ ꢏꢍ ꢏꢉ ꢓꢗ ꢒ ꢏꢀ ꢘ ꢗꢘꢕ ꢀꢙ ꢑ ꢒꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
APPLICATION INFORMATION  
shutdown function  
Two members of the TLV246x family (TLV2460/3) have a shutdown terminal for conserving battery life in  
portable applications. When the shutdown terminal is tied low, the supply current is reduced to 0.3 µA/channel,  
the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the  
shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care  
should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place  
the operational amplifier into shutdown. The shutdown terminal threshold is always referenced to V /2.  
DD  
Therefore, when operating the device with split supply voltages (e.g. 2.5 V), the shutdown terminal needs to  
be pulled to V − (not GND) to disable the operational amplifier.  
DD  
The amplifier’s output with a shutdown pulse is shown in Figures 22, 23, 24, and 25. The amplifier is powered  
with a single 5-V supply and configured as a noninverting configuration with a gain of 5. The amplifier turnon  
and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output  
waveform. The times for the single, dual, and quad are listed in the data tables.  
circuit layout considerations  
To achieve the levels of high performance of the TLV246x, follow proper printed-circuit board design techniques.  
A general set of guidelines is given in the following.  
D
Ground planes − It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and  
output, the ground plane can be removed to minimize the stray capacitance.  
D
Proper power supply decoupling − Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic  
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers  
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal  
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply  
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less  
effective. The designer should strive for distances of less than 0.1 inches between the device power  
terminals and the ceramic capacitors.  
D
D
Sockets − Sockets can be used but are not recommended. The additional lead inductance in the socket pins  
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board  
is the best implementation.  
Short trace runs/compact part placements − Optimum high performance is achieved when stray series  
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,  
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of  
the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at  
the input of the amplifier.  
D
Surface-mount passive components − Using surface-mount passive components is recommended for high  
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be  
kept as short as possible.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢋ ꢇꢈꢉ ꢊ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇꢈ ꢉꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢇꢈꢉ ꢊ  
ꢍꢇꢎ ꢏ ꢁꢐ ꢑꢍ ꢁ ꢑꢒꢈꢊ ꢑꢒ ꢉ ꢓ ꢓꢇ ꢏ ꢁꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀ ꢖꢑ ꢕꢀ ꢊꢕ ꢀ  
ꢑꢊ ꢉ ꢓꢇꢀ ꢏ ꢑꢔ ꢇ ꢁ ꢇꢎ ꢊꢁ ꢏ ꢍꢏ ꢉ ꢓꢗ ꢒ ꢏ ꢀꢘ ꢗ ꢘꢕꢀ ꢙꢑ ꢒ ꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
APPLICATION INFORMATION  
general power dissipation considerations  
For a given θ , the maximum power dissipation is shown in Figure 53 and is calculated by the following formula:  
JA  
T
–T  
MAX  
A
P
+
ǒ Ǔ  
D
q
JA  
Where:  
P
= Maximum power dissipation of THS246x IC (watts)  
= Absolute maximum junction temperature (150°C)  
= Free-ambient air temperature (°C)  
D
T
MAX  
T
A
θ
= θ + θ  
JA  
JC CA  
θ
θ
= Thermal coefficient from junction to case  
JC  
= Thermal coefficient from case to ambient air (°C/W)  
CA  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
2
T
= 150°C  
PDIP Package  
J
Low-K Test PCB  
1.75  
θ
= 104°C/W  
JA  
1.5  
1.25  
1
MSOP Package  
Low-K Test PCB  
SOIC Package  
Low-K Test PCB  
θ
= 260°C/W  
JA  
θ
= 176°C/W  
JA  
0.75  
0.5  
SOT-23 Package  
Low-K Test PCB  
0.25  
0
θ
= 324°C/W  
JA  
−5540 −25 −10  
5
20 35 50 65 80 95 110 125  
T
A
− Free-Air Temperature − °C  
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.  
Figure 54. Maximum Power Dissipation vs Free-Air Temperature  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢇꢈꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢄꢇ ꢈꢉ ꢊ  
ꢍꢇꢎ ꢏꢁꢐ ꢑ ꢍ ꢁ ꢑ ꢒꢈꢊꢑ ꢒ ꢉꢓ ꢓꢇꢏ ꢁ ꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀꢖ ꢑ ꢕ ꢀꢊ ꢕꢀ  
ꢑ ꢊꢉꢓ ꢇꢀ ꢏꢑ ꢔꢇꢁ ꢇꢎ ꢊꢁ ꢏꢍ ꢏꢉ ꢓꢗ ꢒ ꢏꢀ ꢘ ꢗꢘꢕ ꢀꢙ ꢑ ꢒꢔ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim PartsRelease 8, the model generation  
software used with Microsim PSpice. The Boyle macromodel (see Note 2) and subcircuit in Figure 54 are  
generated using the TLV246x typical electrical and operating characteristics at T = 25°C. Using this  
A
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most  
cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Intergrated Circuit Operational Amplifiers”, IEEE  
Journal of Solid-State Circuits, SC-9, 353 (1974).  
99  
EGND  
+
FB  
RO2  
C2  
R2  
VB  
6
3
7
V
DD+  
+
+
9
VLIM  
RSS  
VD  
ISS  
CSS  
+
8
GA  
GCM  
RP  
53  
10  
2
1
IN −  
IN+  
DC  
RO1  
J1  
J2  
OUT  
5
DLN  
DE  
11  
12  
92  
54  
C1  
91  
90  
DP  
+
+
+
+
RD1  
RD2  
DLP  
VLP  
VLN  
VE  
HLIM  
4
GND  
.SUBCKT TLV246X 1 2 3 4 5  
RD1  
RD2  
R01  
R02  
RP  
3
11  
12  
5
2.8964E3  
2.8964E3  
5.6000  
C1  
11  
6
12  
7
2.46034E−12  
3
C2  
10.0000E−12  
8
CSS  
DC  
10  
5
99  
53  
5
91  
90  
3
0
99  
443.21E−15  
7
99  
4
6.2000  
DY  
DY  
DX  
DX  
DX  
3
8.9127  
10.610E6  
DC 0  
DC .7836  
DC .7436  
DC 0  
DC 117  
DC 117  
DE  
54  
90  
92  
4
RSS  
VB  
10  
9
99  
0
DLP  
DLN  
DP  
VC  
VE  
VLIM  
VLP  
VLN  
3
53  
4
54  
7
EGND  
FB  
99  
7
POLY (2) (3,0) (4,0) 0 .5 .5  
POLY (5) VB VC VE VLP  
8
91  
0
0
+ VLN 0 21.600E6 −1E3 1E3 22E6 −22E6  
92  
GA  
6
0
6
4
0
2
1
9
11  
10  
12 345.26E−6  
99 15.4226E−9  
.MODEL DX D (IS=800.00E−18)  
GCM  
ISS  
HLIM  
J1  
0
.MODEL DY D (IS=800.00E−18 Rs = 1m Cjo=10p)  
10  
90  
11  
12  
6
DC 18.850E−6  
VLIM 1K  
10 JX1  
10 JX2  
100.00E3  
.MODEL JX1 NJF (IS=1.0000E−12 BETA=6.3239E−3  
+ VTO=1)  
.MODEL JX2 NJF (IS=1.0000E−12 BETA=6.3239E−3  
J2  
R2  
+ VTO=1)  
.ENDS  
Figure 55. Boyle Macromodels and Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢍꢇꢎ ꢏ ꢁꢐ ꢑꢍ ꢁ ꢑꢒꢈꢊ ꢑꢒ ꢉ ꢓ ꢓꢇ ꢏ ꢁꢈꢀꢑ ꢈꢓꢇꢏ ꢁ ꢏꢔ ꢊꢕꢀ ꢖꢑ ꢕꢀ ꢊꢕ ꢀ  
ꢁꢂ  
SGLS132C − AUGUST 2002 − REVISED OCTOBER 2005  
macromodel information (continued)  
.subckt TLV_246Y 1 2 3 4 5 6  
rp  
3
71  
99  
4
8.9127  
c1  
11  
72  
10  
70  
54  
90  
92  
4
12  
7
2.4603E−12  
rss  
rs1  
rs2  
rs3  
rs4  
s1  
10  
10.610E6  
1G  
c2  
10.000E−12  
6
6
6
6
css  
dc  
99  
53  
70  
91  
90  
3
443.21E−15  
4
1G  
dy  
dy  
dx  
dx  
dx  
4
1G  
de  
4
1G  
dlp  
dln  
dp  
71  
70  
10  
74  
9
4
6 4 s1x  
6 4 s1x  
6 4 s1x  
6 4 s2x  
dc 0  
s2  
5
s3  
74  
4
egnd  
fb  
99  
7
0
poly(2) (3,0) (4,0) 0 .5 .5  
poly(5) vb vc ve vlp vln 0  
s4  
99  
vb  
0
21.600E6 −1E3 1E3 22E6 −22E6  
vc  
3
53  
4
dc .7836  
dc .7436  
dc 0  
dc 117  
dc 117  
ga  
72  
0
0
11 12 345.26E−6  
10 99 15.422E−9  
dc 18.850E−6  
vlim 1K  
10 jx1  
10 jx2  
ve  
54  
7
gcm  
iss  
hlim  
j1  
72  
4
vlim  
vlp  
8
74  
90  
11  
12  
72  
3
91  
0
0
0
vln  
92  
2
.model dx D(Is=800.00E−18)  
j2  
r2  
rd1  
rd2  
ro1  
ro2  
1
.model dy D(Is=800.00E−18 Rs=1m Cjo=10p)  
9
100.00E3  
2.8964E3  
2.8964E3  
5.6000  
.model jx1 NJF(Is=1.0000E−12 Beta=6.3239E−3 Vto=−1)  
.model jx2 NJF(Is=1.0000E−12 Beta=6.3239E−3 Vto=−1)  
.model s1x VSWITCH(Roff=1E8 Ron=1.0 Voff=2.5 Von=0.0)  
.model s2x VSWITCH(Roff=1E8 Ron=1.0 Voff=0 Von=2.5)  
.ends  
11  
12  
70  
99  
3
8
7
6.2000  
Figure 54. Boyle Macromodels and Subcircuit (Continued)  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Oct-2009  
PACKAGING INFORMATION  
Orderable Device  
TLV2462AMDREP  
TLV2462AQDREP  
TLV2464AMDREP  
TLV2464AMDREPG4  
TLV2464AMPWREP  
V62/03619-03XE  
V62/03619-06XE  
V62/03619-07YE  
V62/03619-07ZE  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
SOIC  
D
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
14  
14  
14  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
SOIC  
PW  
D
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
14  
14  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV2462A-EP, TLV2464A-EP :  
Catalog: TLV2462A, TLV2464A  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Oct-2009  
Automotive: TLV2462A-Q1, TLV2464A-Q1  
Military: TLV2462AM  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Military - QML certified for Military and Defense Applications  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV2462AMDREP  
TLV2462AQDREP  
TLV2464AMDREP  
TLV2464AMPWREP  
SOIC  
SOIC  
D
D
8
8
2500  
2500  
2500  
2000  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
16.4  
12.4  
6.4  
6.4  
6.5  
6.9  
5.2  
5.2  
9.0  
5.6  
2.1  
2.1  
2.1  
1.6  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
16.0  
12.0  
Q1  
Q1  
Q1  
Q1  
SOIC  
D
14  
14  
TSSOP  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV2462AMDREP  
TLV2462AQDREP  
TLV2464AMDREP  
TLV2464AMPWREP  
SOIC  
SOIC  
D
D
8
8
2500  
2500  
2500  
2000  
367.0  
367.0  
333.2  
367.0  
367.0  
367.0  
345.9  
367.0  
35.0  
35.0  
28.6  
35.0  
SOIC  
D
14  
14  
TSSOP  
PW  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All  
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

TLV2464A-Q1

FAMILY OF LOW POWER RAIL TO RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2464AID

FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2464AIDG4

FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2464AIDR

FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2464AIDRG4

FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2464AIN

FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2464AINE4

FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2464AINR

FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2464AIPW

FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2464AIPWG4

FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2464AIPWR

FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2464AIPWRG4

FAMILY OF LOW-POWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI