TLV2541_14 [TI]

2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN;
TLV2541_14
型号: TLV2541_14
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN

文件: 总31页 (文件大小:1132K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
D
D
D
D
D
D
D
Maximum Throughput . . . 140/200 KSPS  
TLV2542: Dual Channels With  
Autosweep  
TLV2545: Single Channel With  
Pseudo-Differential Input  
Built-In Conversion Clock  
INL/DNL: 1 LSB Max, SINAD: 72 dB,  
SFDR: 85 dB, f = 20 kHz  
i
D
D
Low Power With Autopower Down  
Operating Current: 1 mA at 2.7 V, 1.5 mA  
at 5 V  
SPI/DSP-Compatible Serial Interface  
Single Supply: 2.7 Vdc to 5.5 Vdc  
Rail-to-Rail Analog Input With 500 kHz BW  
Autopower Down: 2 μA at 2.7 V, 5 μA  
at 5 V  
Three Options Available:  
TLV2541: Single Channel Input  
Small 8-Pin MSOP and SOIC Packages  
TOP VIEW  
TLV2541  
TOP VIEW  
TLV2542  
TOP VIEW  
TLV2545  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
CS  
VREF  
GND  
AIN  
SDO  
FS  
VDD  
SCLK  
CS  
VREF  
GND  
AIN0  
SDO  
SCLK  
VDD  
CS  
VREF  
GND  
SDO  
SCLK  
VDD  
AIN1  
AIN(+)  
AIN()  
description  
The TLV2541, TLV2542, and TLV2545 are a family of high performance, 12-bit, low power, miniature, CMOS  
analog-to-digital converters (ADC). The TLV254x family operates from a single 2.7-V to 5.5-V supply. Devices  
are available with single, dual, or single pseudo-differential inputs. Each device has a chip select (CS), serial  
clock (SCLK), and serial data output (SDO) that provides a direct 3-wire interface to the serial port of most  
popular host microprocessors (SPI interface). When interfaced with a TMS320t DSP, a frame sync signal (FS)  
can be used to indicate the start of a serial data frame on CS for all devices or FS for the TLV2541.  
TLV2541, TLV2542, and TLV2545 are designed to operate with very low power consumption. The power saving  
feature is further enhanced with an autopower-down mode. This product family features a high-speed serial link  
to modern host processors with SCLK up to 20 MHz. The maximum SCLK frequency is dependent upon the  
mode of operation (see Table 1). The TLV254x family uses the built-in oscillator as the conversion clock,  
providing a 3.5-μs conversion time.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
8-MSOP  
(DGK)  
8-SOIC  
(D)  
TLV2541CDGK (AGZ)  
TLV2542CDGK (AHB)  
TLV2545CDGK (AHD)  
TLV2541IDGK (AHA)  
TLV2542IDGK (AHC)  
TLV2545IDGK (AHE)  
0°C to 70°C  
TLV2541ID  
TLV2542ID  
TLV2545ID  
40°C to 85°C  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
TMS320 is a trademark of Texas Instruments.  
Copyright © 2000 2003, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
functional block diagram  
TLV2541  
TLV2542  
V
DD  
V
DD  
V
REF  
V
REF  
AIN0  
AIN1  
Mux  
LOW POWER  
12-BIT  
S/H  
AIN  
SDO  
SAR ADC  
LOW POWER  
SAR ADC  
S/H  
SDO  
OSC  
Conversion  
Clock  
OSC  
Conversion  
Clock  
SCLK  
CS  
CONTROL  
LOGIC  
CONTROL  
LOGIC  
SCLK  
CS  
FS  
GND  
GND  
TLV2545  
V
DD  
V
REF  
AIN (+)  
LOW POWER  
12-BIT  
SAR ADC  
S/H  
SDO  
AIN ()  
OSC  
Conversion  
Clock  
CONTROL  
LOGIC  
SCLK  
CS  
GND  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
Terminal Functions  
TLV2541  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
AIN  
NO.  
4
I
I
Analog input channel  
CS  
1
Chip select. A high-to-low transition on the CS input removes SDO from 3-state within a maximum setup time.  
CS can be used as the FS pin when a dedicated DSP serial port is used.  
FS  
7
3
5
8
I
I
DSP frame sync input. Indication of the start of a serial data frame. Tie this terminal to V if not used.  
DD  
GND  
SCLK  
SDO  
Ground return for the internal circuitry. Unless otherwise noted, all voltage measurements are with respect to GND.  
Output serial clock. This terminal receives the serial SCLK from the host processor.  
I
O
The 3-state serial output for the A/D conversion result. SDO is kept in the high-impedance state until CS falling edge  
or FS rising edge, whichever occurs first. The output format is MSB first.  
When FS is not used (FS = 1 at the falling edge of CS): The MSB is presented to the SDO pin after CS falling edge  
and output data is valid on the first falling edge of SCLK.  
When CS and FS are both used (FS = 0 at the falling edge of CS): The MSB is presented to the SDO pin after the  
falling edge of CS. When CS is tied/held low, the MSB is presented on SDO after the rising FS. Output data is valid  
on the first falling edge of SCLK. (This is typically used with an active FS from a DSP using a dedicated serial port.)  
V
V
6
2
I
I
Positive supply voltage  
External reference input  
DD  
REF  
TLV2542/45  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
AIN0 /AIN(+)  
AIN1/AIN ()  
CS  
NO.  
4
5
1
I
I
I
Analog input channel 0 for TLV2542—Positive input for TLV2545.  
Analog input channel 1 for TLV2542—Inverted input for TLV2545.  
Chip select. A high-to-low transition on CS removes SDO from 3-state within a maximum delay time. This pin can  
be connected to the frame sync of a DSP using a dedicated serial port.  
GND  
SCLK  
SDO  
3
7
8
I
I
Ground return for the internal circuitry. Unless otherwise noted, all voltage measurements are with respect to GND.  
Output serial clock. This terminal receives the serial SCLK from the host processor.  
O
The 3-state serial output for the A/D conversion result. SDO is kept in the high-impedance state when CS is high  
and presents output data after the CS falling edge until the LSB is presented. The output format is MSB first. SDO  
returns to the Hi-Z state after the 16th SCLK. Output data is valid on the falling SCLK edge.  
V
V
6
2
I
I
Positive supply voltage  
External reference input  
DD  
REF  
detailed description  
The TLV2541, TLV2542, and TLV2545 are successive approximation (SAR) ADCs utilizing a charge  
redistribution DAC. Figure 1 shows a simplified version of the ADC.  
The sampling capacitor acquires the signal on AIN during the sampling period. When the conversion process  
starts, the SAR control logic and charge redistribution DAC are used to add and subtract fixed amounts of charge  
from the sampling capacitor to bring the comparator into a balanced condition. When the comparator is  
balanced, the conversion is complete and the ADC output code is generated.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
detailed description (continued)  
Charge  
Redistribution  
DAC  
_
AIN  
Control  
Logic  
ADC Code  
+
GND/AIN()  
Figure 1. Simplified SAR Circuit  
serial interface  
OUTPUT DATA FORMAT  
MSB  
LSB  
D15D4  
Conversion result (OD11OD0)  
D3D0  
Don’t care  
The output data format is binary (unipolar straight binary).  
binary  
Zero-scale code = 000h, Vcode = GND  
Full-scale code = FFFh, Vcode = V  
1 LSB  
REF  
pseudo-differential inputs  
The TLV2545 operates in pseudo-differential mode. The inverted input is available on pin 5. It can have a  
maximum input ripple of 0.2 V. This is normally used for ground noise rejection.  
control and timing  
start of the cycle  
Each cycle may be started by either CS, FS, or a combination of both. The internal state machine requires one  
SCLK high-to-low transition to determine the state of these control signals so internal blocks can be powered  
up in an active cycle. Special care to SPI mode is necessary. Make sure there is at least one SCLK whenever  
CS (pin 1) is high to ensure proper operation.  
TLV2541  
D
Control via CS ( FS = 1 at the falling edge of CS)—The falling edge of CS is the start of the cycle. The MSB  
should be read on the first falling SCLK edge after CS is low. Output data changes on the rising edge of  
SCLK. This is typically used for a microcontroller with an SPI interface, although it can also be used for a  
DSP. The microcontroller SPI interface should be programmed for CPOL = 0 (serial clock referenced to  
ground) and CPHA = 1 (data is valid on the falling edge of the serial clock). At least one falling edge transition  
on SCLK is needed whenever CS is brought high.  
D
Control via FS (CS is tied/held low)—The MSB is presented after the rising edge of FS. The falling edge  
of FS is the start of the cycle. The MSB should be read on the first falling edge of SCLK after FS is low. This  
is the typical configuration when the ADC is the only device on the DSP serial port.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
control and timing (continued)  
D
Control via both CS and FS—The MSB is presented after the falling edge of CS. The falling edge of FS is  
the start of the sampling cycle. The MSB should be read on the first falling SCLK edge after FS is low. Output  
data changes on the rising edge of SCLK. This configuration is typically used for multiple devices connected  
to a TMS320 DSP.  
TLV2542/5  
All control is provided using CS (pin 1) on the TLV2542 and TLV2545. The cycle is started on the falling edge  
transition provided by either a CS signal from an SPI microcontroller or FS signal from a TMS320 DSP. Timing  
is similar to the TLV2541, with control via CS only.  
TLV2542 channel MUX reset cycle  
The TLV2542 uses CS to reset the analog input multiplexer. A short active CS cycle (4 to 7 SCLKs) resets the  
MUX to AIN0. When the CS cycle time is greater than 7 SCLKs in duration, as in the case for a complete  
conversion cycle (CS is low for 16 SCLKs plus maximum conversion time), the MUX toggles to the next channel  
(see Figure 4 for timing). One dummy conversion cycle is recommended after power up before attempting to  
reset the MUX.  
sampling  
The converter sample time is 12 SCLKs in duration, beginning on the fifth SCLK received after the converter  
has received a high-to-low CS transition (or a high-to-low FS transition for the TLV2541).  
conversion  
The TLV2541, TLV2542, and TLV2545 complete conversions in the following manner. The conversion is started  
after the 16th SCLK falling edge and takes 3.5 μs to complete. Enough time (for conversion) should be allowed  
before a rising CS or FS edge so that no conversion is terminated prematurely.  
TLV2542 input channel selection is toggled on each rising CS edge. The MUX channel can be reset to AIN0  
via CS as described in the earlier section and in Figure 4. The input is sampled for 12 SCLKs, converted, and  
the result is presented on SDO during the next cycle. Care should also be taken to allow enough time between  
samples to avoid prematurely terminating the cycle, which occurs on a rising CS transition if the conversion is  
not complete.  
The SDO data presented during a cycle is the result of the conversion of the sample taken during the previous  
cycle.  
timing diagrams/conversion cycles  
1
2
3
4
5
6
7
12  
13  
14  
15  
16  
1
SCLK  
CS  
FS  
t
t
(powerdown)  
(sample)  
t
c
OD11 OD10 OD9  
OD8  
OD7  
OD6  
OD5  
OD0  
SDO  
Figure 2. TLV2541 Timing: Control via CS (FS = 1)  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
timing diagrams/conversion cycles (continued)  
1
2
3
4
5
6
12  
13  
14  
15  
16  
1
SCLK  
CS  
FS  
t
t
(powerdown)  
(sample)  
t
c
OD11  
OD10 OD9  
OD8  
OD7  
OD6  
OD0  
SDO  
Figure 3. TLV2541 Timing: Control via CS and FS or FS Only  
1
2
3
4
5
1
4
12  
16  
1
4
12  
16  
SCLK  
CS  
>8 SCLKs, MUX Toggles to AIN1  
<8 SCLKs, MUX  
Resets to AIN0  
t
(powerdown)  
t
t
(sample)  
(sample)  
t
c
t
c
AIN0 Result  
OD11  
OD0  
SDO  
Figure 4. TLV2542 Reset Timing  
1
2
3
4
5
6
7
12  
13  
14  
15  
16  
1
SCLK  
CS  
t
t
(powerdown)  
(sample)  
t
c
OD11  
OD10  
OD9  
OD8  
OD7  
OD6  
OD5  
OD0  
OD10  
OD9  
OD11  
SDO  
Figure 5. TLV2542 and TLV2545 Timing  
using CS as the FS input  
When interfacing the TLV2541 with the TMS320 DSP, the FSR signal from the DSP may be connected to the  
CS input if this is the only device on the serial port. This saves one output terminal from the DSP. (Output data  
changes on the falling edge of SCLK. This is the default configuration for the TLV2542 and TLV2545.)  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
using CS as the FS input (continued)  
SCLK and conversion speed  
The input frequency of SCLK can range from 100 kHz to 20 MHz maximum. The ADC conversion uses a  
separate internal oscillator with a minimum frequency of 4 MHz. The conversion cycle takes 14 internal oscillator  
clocks to complete. This leads to a 3.5-μs conversion time. For a 20-MHz SCLK, the minimum total cycle time  
is given by: 16x(1/20M)+14x(1/4M)+one SCLK = 4.35 μs. An additional SCLK is added to account for the  
required CS and/or FS high time. These times specify the minimum cycle time for an active CS or FS signal.  
If violated, the conversion terminates, invalidating the next data output cycle. Table 1 gives the maximum SCLK  
frequency for a given supply voltage and operational mode.  
control via pin 1 (CS, SPI interface)  
All devices are compatible with this mode operation. A falling CS initiates the cycle (for TLV2541, the FS input  
is tied to V ). CS remains low for the entire cycle time (sample+convert+one SCLK) and can then be released.  
DD  
NOTE:  
IMPORTANT: A single SCLK is required whenever CS is high.  
control via pin 1 (CS, DSP interface)  
All devices are compatible with this mode of operation. The FS signal from a DSP is connected directly to the  
CS input of the ADC. A falling edge on the CS input initiates the cycle. (For the TLV2541, the FS input can be  
tied to V , although better performance can be achieved when using the FS input for control. Refer to the next  
DD  
section.) The CS input should remain low for the entire cycle time (sample+convert+one SCLK) and can then  
be released.  
NOTE:  
IMPORTANT: A single SCLK is required whenever CS is high. This should be of little consequence,  
since SCLK is normally always present when interfacing with a DSP.  
control via pin 1 and pin 7 (CS and FS or FS only, DSP interface)  
Only the TLV2541 is compatible with this mode of operation. The CS input to the ADC can be controlled via a  
general-purpose I/O pin from the DSP. The FS signal from the DSP is connected directly to the FS input of the  
ADC. A falling edge on CS, if used, releases the MSB on the SDO output. When CS is not used, the rising FS  
edge releases the MSB. The falling edge on the FS input while SCLK is high initiates the cycle. The CS and  
FS inputs should remain low for the entire cycle time (sample+convert+one SCLK) and can then be released.  
reference voltage  
An external reference is applied via V . The voltage level applied to this pin establishes the upper limit of the  
REF  
analog inputs to produce a full-scale reading. The value of V  
and the analog input should not exceed the  
REF  
positive supply or be less than GND, consistent with the specified absolute maximum ratings. The digital output  
is at full scale when the input signal is equal to or higher than V  
to or lower than GND.  
and at zero when the input signal is equal  
REF  
power down and power up  
Autopower down is built into these devices in order to reduce power consumption. The actual power savings  
depends on the inactive time between cycles and the power supply (loading) decoupling/storage capacitors.  
Power-down takes effect immediately after the conversion is complete. This is fast enough to provide some  
power savings between cycles with longer than 1 SCLK inactive time. The device power goes down to 5 μA  
within 0.5 μs. To achieve the lowest power-down current (deep powerdown) of 1 μA requires 2-ms inactive time  
between cycles. The power-down state is initiated at the end of conversion. These devices wake up immediately  
at the next falling edge of CS or the rising edge of FS.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
I
CC  
With 1-μF/0.1-μF Capacitor Between Supply and Ground  
V
DD  
= 5 V  
V
DD  
= 2.7 V  
0.5 μS  
2 mS  
1.5 mA  
0.95 mA  
5 μA  
1 μA  
2 μA  
1 μA  
t
Powerdown time S  
(Powerdown)  
Table 1. Modes of Operation and Data Throughput  
APPROXIMATE  
CONVERSION  
THROUGHPUT  
(ksps)  
MAX SCLK (MHz)  
(50/50 duty cycle)  
CONTROL PIN(s)/DEVICE  
V
DD  
= 2.7 V  
V
DD  
= 4.5 V  
V
DD  
= 2.7 V  
V = 4.5 V  
DD  
CS control only (TLV2541 only)  
For SPI interface  
10  
5
15  
8
175  
140  
200  
175  
For DSP interface (Use CS as FS)  
§
CS and FS control (TLV2541 only)  
DSP interface  
15  
20  
200  
200  
§
See Figure 29(a).  
See Figure 29(b).  
See Figure 29(c).  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)¶  
Supply voltage range, GND to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6.5 V  
DD  
Analog input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V + 0.3 V  
DD  
Reference input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V + 0.3 V  
DD  
Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V + 0.3 V  
DD  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 150°C  
J
Operating free-air temperature range, T : C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Storage temperature range, T  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
recommended operating conditions  
MIN NOM  
MAX  
UNIT  
Supply voltage, V  
2.7  
2
3.3  
5.5  
V
V
V
V
V
DD  
Positive external reference voltage input, V  
Analog input voltage (see Note 1)  
(see Note 1)  
V
DD  
V
DD  
REFP  
0
High level control input voltage, V  
2.1  
IH  
IL  
Low-level control input voltage, V  
0.6  
V
V
= REF = 4.5 V  
= REF = 2.7 V  
40  
70  
DD  
Setup time, CS falling edge before first SCLK falling edge,  
ns  
t
su(CSL-SCLKL)  
DD  
Hold time, CS falling edge after SCLK falling edge, t  
5
ns  
h(SCLKL-CSL)  
Delay time, delay from CS falling edge to FS rising edge, t  
(TLV2541 only)  
(TLV2541 only)  
0.5  
0.35  
7
SCLKs  
SCLKs  
d(CSL-FSH)  
Setup time, FS rising edge before SCLK falling edge, t  
su(FSH-SCLKL)  
Hold time, FS high after SCLK falling edge, t  
(TLV2541 only)  
0.65 SCLKs  
ns  
h(SCLKL-FSL)  
Pulse width CS high time, t  
Pulse width FS high time, t  
100  
0.75  
90  
w(H_CS)  
(TLV2541 only)  
SCLKs  
w(H_FS)  
SCLK cycle time, V = 3.6 V to 2.7 V, t  
(maximum tolerance of 40/60 duty cycle)  
(maximum tolerance of 40/60 duty cycle)  
10000  
10000  
ns  
ns  
DD  
c(SCLK)  
SCLK cycle time, V = 5.5 V to 4.5 V, t  
50  
DD  
c(SCLK)  
Pulse width low time, t  
0.4  
0.4  
0.6 SCLK  
0.6 SCLK  
w(L_SCLK)  
Pulse width high time, t  
w(H_SCLK)  
Hold time, hold from end of conversion to CS high, t  
(EOC is internal, indicates end of conversion  
h(EOC-CSH)  
0.05  
μs  
time, t )  
c
Active CS cycle time to reset internal MUX to AIN0, t  
(TLV2542 only)  
4
7
40  
70  
1
SCLKs  
ns  
(reset cycle)  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= REF = 4.5 V, 25-pF load  
= REF = 2.7 V, 25-pF load  
= REF = 4.5 V, 25-pF load  
= REF = 2.7 V, 25-pF load  
= REF = 4.5 V, 25-pF load  
= REF = 2.7 V, 25-pF load  
= REF = 4.5 V, 25-pF load  
= REF = 2.7 V, 25-pF load  
Delay time, delay from CS falling edge to SDO valid, t  
d(CSL-SDOV)  
Delay time, delay from FS falling edge to SDO valid, t  
(TLV2541 only)  
d(FSL-SDOV)  
ns  
ns  
ns  
1
11  
21  
30  
60  
Delay time, delay from SCLK rising edge to SDO valid,  
t
d(SCLKH-SDOV)  
Delay time, delay from 17th SCLK rising edge to SDO 3-state,  
t
d(SCLK17H-SDOZ)  
Conversion clock = internal  
oscillator  
Conversion time, t  
2.1  
2.6  
3.5  
μs  
c
Sampling time, t  
See Note 2  
300  
0
ns  
(sample)  
TLV2541/2/5C  
TLV2541/2/5I  
70  
85  
Operating free-air temperature, T  
°C  
A
40  
NOTES: 1. Analog input voltages greater than that applied to V  
to GND convert as all zeros(000000000000).  
convert as all ones (111111111111), while input voltages less than that applied  
REF  
2. Minimal t  
is given by 0.9 × 50 pF × (R + 0.5 kΩ), where R is the source output impedance.  
(sample)  
S S  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
electrical characteristics over recommended operating free-air temperature range,  
V
DD  
= V  
= 2.7 V to 5.5 V (unless otherwise noted)  
REF  
PARAMETER  
TEST CONDITIONS  
= 5.5 V, I = 0.2 mA at 30-pF load  
MIN  
2.4  
TYP  
MAX  
UNIT  
V
V
V
V
V
V
DD  
DD  
DD  
DD  
OH  
V
OH  
High-level output voltage  
Low-level output voltage  
V
= 2.7 V, I = -20 μA at 30-pF load  
V
DD  
0.2  
OH  
= 5.5 V, I = 0.8 mA at 30-pF load  
0.4  
0.1  
OL  
V
OL  
V
= 2.7 V, I = 20 μA at 30-pF load  
OL  
= V  
1
1  
2.5  
O
O
DD  
Off-state output current  
(high-impedance-state)  
CS = V  
I
I
I
μA  
μA  
μA  
DD  
OZ  
= 0  
2.5  
2.5  
High-level input current  
Low-level input current  
V = V  
DD  
0.005  
IH  
IL  
I
0.00  
V = 0 V  
2.5  
I
5
V
V
= 4.5 V to 5.5 V  
= 2.7 V to 3.3 V  
1.3  
1.5  
DD  
I
Operating supply current  
CS at 0 V  
mA  
CC  
0.85  
0.95  
DD  
For all digital inputs,  
0V 0.3 V or V V 0.3 V,  
5
2
1
I
I
DD  
Autopower-down current  
μA  
SCLK = 0, V = 4.5 V to 5.5 V, Ext ref  
DD  
t
0.5 μs  
(powerdown)  
V
DD  
= 2.7 V to 3.3 V, Ext ref  
I
CC(AUTOPWDN)  
For all digital inputs,  
0V 0.3 V or V V 0.3 V,  
I
I
DD  
Deep autopower-down current  
2 ms  
μA  
SCLK = 0, V = 4.5 V to 5.5 V, Ext ref  
DD  
t
(powerdown)  
V
= 2.7 V to 3.3 V  
1
1
DD  
Selected channel at V  
DD  
Selected analog input channel  
leakage current  
μA  
Selected channel at 0 V  
Analog inputs  
1  
20  
45  
5
50  
C
Input capacitance  
pF  
i
Control Inputs  
25  
V
DD  
V
DD  
= 5.5 V  
= 2.7 V  
500  
600  
Input on resistance  
Autopower down  
Ω
0.5  
SCLK  
All typical values are at V = 5 V, T = 25°C.  
DD  
A
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
ac specifications (fi = 20 kHz)  
PARAMETER  
TEST CONDITIONS  
MIN  
70  
TYP  
72  
MAX  
UNIT  
200 KSPS, V = V  
= 5.5 V  
= 2.7 V  
= 5.5 V  
= 2.7 V  
= 5.5 V  
= 2.7 V  
= 5.5 V  
= 2.7 V  
DD  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
SINAD  
THD  
Signal-to-noise ratio +distortion  
dB  
150 KSPS, V = V  
68  
71  
DD  
200 KSPS, V = V  
84  
84  
11.8  
11.6  
84  
84  
80  
80  
DD  
Total harmonic distortion  
Effective number of bits  
Spurious free dynamic range  
dB  
Bits  
dB  
150 KSPS, V = V  
DD  
200 KSPS, V = V  
DD  
ENOB  
SFDR  
150 KSPS, V = V  
DD  
200 KSPS, V = V  
80  
80  
DD  
150 KSPS, V = V  
DD  
Analog Input  
Full-power bandwidth, 3 dB  
1
MHz  
kHz  
Full-power bandwidth, 1 dB  
500  
external reference specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
2
TYP  
MAX  
UNIT  
V
Reference input voltage  
V
V
= 2.7 V to 5.5 V  
V
DD  
DD  
CS = 1, SCLK = 0  
100  
20  
MΩ  
kΩ  
= 5.5 V  
DD  
CS = 0, SCLK = 20 MHz  
CS = 1, SCLK = 0  
25  
Reference input impedance  
Reference current  
100  
20  
MΩ  
kΩ  
V
DD  
= 2.7 V  
CS = 0, SCLK = 20 MHz  
CS = 0, SCLK = 20 MHz  
CS = 0, SCLK = 20 MHz  
CS = 1, SCLK = 0  
25  
100  
50  
V
V
= V  
= V  
= 5.5 V,  
= 2.7 V,  
400  
200  
15  
DD  
REF  
μA  
DD  
REF  
5
20  
5
V
DD  
= V  
= 5.5 V  
= 2.7 V  
REF  
REF  
CS = 0, SCLK = 20 MHz  
CS = 1, SCLK = 0  
45  
45  
50  
Reference input capacitance  
pF  
V
15  
V
V
= V  
DD  
CS = 0, SCLK = 20 MHz  
20  
50  
V
REF  
Reference voltage  
= 2.7 V to 5.5 V  
V
DD  
DD  
dc specification, V = V  
= 2.7 V to 5.5 V, SCLK frequency = 20 MHz at 5 V, 15 MHz at 3 V (unless otherwise  
DD  
REF  
noted)  
PARAMETER  
Integral linearity error (see Note 4)  
Differential linearity error  
TEST CONDITIONS  
MIN  
TYP  
0.6  
MAX  
1
UNIT  
LSB  
LSB  
INL  
DNL  
See Note 3  
0.5  
1
TLV2541/42  
TLV2545  
1.5  
2.5  
2
E
O
E
G
E
t
Offset error (see Note 5)  
See Note 3  
See Note 3  
See Note 3  
LSB  
LSB  
LSB  
TLV2541/42  
TLV2545  
Gain error (see Note 5)  
5
TLV2541/42  
TLV2545  
2
Total unadjusted error (see Note 6)  
5
NOTES: 3. Analog input voltages greater than that applied to V  
convert as all ones (111111111111).  
REF  
4. Linear error is the maximum deviation from the best straight line through the A/D transfer characteristics.  
5. Zero error is the difference between 000000000000 and the converted output for zero input voltage: full-scale error is the difference  
between 111111111111 and the converted output for full-scale input voltage.  
6. Total unadjusted error comprises linearity, zero, and full-scale errors.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
PARAMETER MEASUREMENT INFORMATION  
t
(sample)  
t
c
t
w(H_SCLK)  
V
IH  
1
2
4
12  
16  
SCLK  
V
IL  
t
w(L_SCLK)  
t
t
(powerdown)  
su(CSL-SCLKL)  
CS  
t
t
t
h(SCLKL-FSL)  
w(H_CS)  
t
su(FSH-SCLKL)  
h(EOC-CSH)  
t
d(CSL-FSH)  
t
d(SCLKH-SDOV)  
FS  
t
t
d(SCLK17H-SDOZ)  
w(H_FS)  
OD11  
OD0  
SDO  
t
d(CSL-SDOV)  
Figure 6. TLV2541 Critical Timing (Control via CS and FS or FS only)  
t
(sample)  
t
su(CSLSCLKL)  
t
c
1
2
4
12  
16  
SCLK  
t
(powerdown)  
CS  
t
d(SCLK17H-SDOZ)  
t
d(SCLKH-SDOV)  
OD11  
OD10  
OD9  
OD0  
SDO  
t
h(EOCCSH)  
t
d(CSL-SDOV)  
Figure 7. TLV2541 Critical Timing (Control via CS only, FS = 1)  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
PARAMETER MEASUREMENT INFORMATION  
t
(sample)  
t
c
1
1
4
12  
16  
SCLK  
CS  
t
(reset cycle)  
MUX = AIN0  
t
w(H_CS)  
t
h(EOC-CSH)  
t
d(SCLKH-SDOV)  
t
d(CSL-SDOV)  
OD11  
OD0  
OD11  
SDO  
t
t
d(SCLK17H-SDOZ)  
d(CSL-SDOV)  
Figure 8. TLV2542 Reset Cycle Critical Timing  
t
t
c
t
(sample)  
w(H_SCLK)  
V
IH  
1
2
4
12  
16  
SCLK  
V
IL  
t
w(L_SCLK)  
t
h(SCLKL-CSL)  
t
(powerdown)  
t
su(CSL-SCLKL)  
CS  
t
w(H_CS)  
t
t
h(EOC-CSH)  
d(SCLKH-SDOV)  
t
d(SCLK17H-SDOZ)  
OD11  
OD8  
OD0  
SDO  
t
d(CSL-SDOV)  
Figure 9. TLV2542 and TLV2545 Conversion Cycle Critical Timing  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY  
vs  
FREE-AIR TEMPERATURE  
INTEGRAL NONLINEARITY  
vs  
FREE-AIR TEMPERATURE  
0.7  
0.65  
0.6  
0.6  
V
DD  
= REF = 2.7 V  
150 KSPS  
V
DD  
= REF = 5.5 V  
200 KSPS  
0.55  
0.5  
40  
40  
25  
90  
25  
90  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 10  
Figure 11  
DIFFERENTIAL NONLINEARITY  
vs  
DIFFERENTIAL NONLINEARITY  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
0.35  
0.6  
0.5  
V
DD  
= REF = 5.5 V  
V
DD  
= REF = 2.7 V  
150 KSPS  
200 KSPS  
0.4  
0.3  
0.2  
0.3  
0.1  
0
0.25  
40  
25  
90  
40  
25  
90  
T
A
Free-air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 12  
Figure 13  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
OFFSET ERROR  
vs  
FREE-AIR TEMPERATURE  
GAIN ERROR  
vs  
FREE-AIR TEMPERATURE  
0.5  
0.4  
0.3  
0.2  
0.9  
V
DD  
= REF = 2.7 V  
150 KSPS  
V
DD  
= REF = 5.5 V  
200 KSPS  
0.85  
0.1  
0
0.8  
40  
40  
25  
90  
25  
90  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 14  
Figure 15  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
1.5  
V
DD  
= REF = 5.5 V  
200 KSPS  
1.4  
1.3  
1.2  
40  
25  
90  
T
A
Free-Air Temperature °C  
Figure 16  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODES  
1
V
DD  
= REF = 2.7 V  
150 KSPS  
0.5  
0
0.5  
1  
1
4095  
Digital Output Codes  
Figure 17  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODES  
1
V
DD  
= REF = 2.7 V  
150 KSPS  
0.5  
0
0.5  
1  
1
4095  
Digital Output Codes  
Figure 18  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODES  
1
V
DD  
= REF = 5.5 V  
200 KSPS  
0.5  
0
0.5  
1  
1
4095  
Digital Output Codes  
Figure 19  
DIFFERENTIAL NONLINEARITY ERROR  
vs  
DIGITAL OUTPUT CODES  
1
V
DD  
= REF = 5.5 V  
200 KSPS  
0.5  
0
0.5  
1  
1
4095  
Digital Output Codes  
Figure 20  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
2048 POINTS FAST FOURIER TRANSFORM (FFT)  
0
V
= REF = 2.7 V  
150 KSPS  
DD  
20  
40  
f = 20 kHz  
i
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
f Input Frequency KHz  
Figure 21  
2048 POINTS FAST FOURIER TRANSFORM (FFT)  
0
V
DD  
= REF = 5.5 V  
200 KSPS  
20  
f = 20 kHz  
i
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
f Input Frequency KHz  
Figure 22  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
SIGNAL-TO-NOISE + DISTORTION  
SIGNAL-TO-NOISE + DISTORTION  
vs  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
75  
73  
71  
69  
75  
73  
71  
69  
V
DD  
= REF = 5.5 V  
200 KSPS  
V
DD  
= REF = 2.7 V  
150 KSPS  
67  
65  
67  
65  
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
f Input Frequency KHz  
f Input Frequency KHz  
Figure 23  
Figure 24  
EFFECTIVE NUMBER OF BITS  
EFFECTIVE NUMBER OF BITS  
vs  
vs  
INPUT FREQUENCY  
INPUT FREQUENCY  
12  
11.8  
11.6  
11.4  
12  
V
DD  
= REF = 2.7 V  
150 KSPS  
V
DD  
= REF = 5.5 V  
200 KSPS  
11.9  
11.8  
11.7  
11.6  
11.5  
11.4  
11.3  
11.2  
11.2  
11  
11.1  
11  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
20  
40  
60  
80  
100  
f Input Frequency KHz  
f Input Frequency KHz  
Figure 25  
Figure 26  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION  
vs  
INPUT FREQUENCY  
75  
V
DD  
= REF = 2.7 V  
150 KSPS  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
0
10  
20  
30  
40  
50  
60  
70  
80  
f Input Frequency KHz  
Figure 27  
TOTAL HARMONIC DISTORTION  
vs  
INPUT FREQUENCY  
70  
72  
74  
76  
78  
80  
82  
V
DD  
= REF = 5.5 V  
200 KSPS  
84  
86  
88  
90  
0
20  
40  
60  
80  
100  
f Input Frequency KHz  
Figure 28  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
APPLICATION INFORMATION  
V
DD  
V
DD  
10 kΩ  
TLV2541  
FS  
SDO  
V
DD  
MISO  
SS  
CS  
AIN  
SCLK  
GND  
SCLK  
V
REF  
SPI PORT  
EXT  
Reference  
(a)  
V
DD  
V
DD  
10 kΩ  
TLV2541  
FS  
SDO  
V
DD  
DR  
CLKX  
AIN  
CLKR  
SCLK  
FSX  
FSR  
CS  
GND  
V
REF  
DSP  
EXT  
Reference  
(b)  
V
DD  
TLV2541  
FS  
FSX  
FSR  
DR  
V
DD  
SDO  
AIN  
CLKX  
CLKR  
GPIO  
SCLK  
CS  
V
REF  
GND  
DSP  
EXT  
Reference  
(c)  
Figure 29. Typical TLV2541 Interface to a TMS320 DSP  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
TLV2541, TLV2542, TLV2545  
2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS,  
SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN  
SLAS245E MARCH 2000 REVISED APRIL 2010  
APPLICATION INFORMATION  
V
DD  
EXT  
Reference  
TMS320  
FSX  
10 kΩ  
10 kΩ  
V
DD  
CS  
SDO  
SCLK  
FSR  
DR  
CLKR  
V
REF  
CLKX  
TLV2542/45  
GND  
DSP  
AIN 0/AIN (+)  
AIN 1/AIN ()  
For TLV2545 only  
Figure 30. Typical TLV2542/45 Interface to a TMS320 DSP  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Oct-2013  
PACKAGING INFORMATION  
Orderable Device  
TLV2541CDGK  
TLV2541CDGKG4  
TLV2541CDGKR  
TLV2541CDGKRG4  
TLV2541ID  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
80  
Green (RoHS  
& no Sb/Br)  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
AGZ  
AGZ  
AGZ  
AGZ  
2541I  
2541I  
AHA  
AHA  
AHA  
AHA  
2541I  
2541I  
AHB  
AHB  
AHB  
AHB  
2542I  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DGK  
DGK  
DGK  
D
80  
2500  
2500  
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
TLV2541IDG4  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
TLV2541IDGK  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
80  
Green (RoHS  
& no Sb/Br)  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAU  
TLV2541IDGKG4  
TLV2541IDGKR  
TLV2541IDGKRG4  
TLV2541IDR  
80  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
2500  
2500  
80  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
TLV2541IDRG4  
TLV2542CDGK  
TLV2542CDGKG4  
TLV2542CDGKR  
TLV2542CDGKRG4  
TLV2542ID  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
Green (RoHS  
& no Sb/Br)  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAU  
80  
Green (RoHS  
& no Sb/Br)  
0 to 70  
2500  
2500  
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Oct-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
TLV2542IDG4  
TLV2542IDGK  
TLV2542IDGKG4  
TLV2542IDGKR  
TLV2542IDGKRG4  
TLV2542IDR  
ACTIVE  
SOIC  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
2542I  
AHC  
AHC  
AHC  
AHC  
2542I  
2542I  
AHD  
AHD  
2545I  
2545I  
AHE  
AHE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DGK  
DGK  
DGK  
DGK  
D
80  
80  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
2500  
2500  
80  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
TLV2542IDRG4  
TLV2545CDGK  
TLV2545CDGKG4  
TLV2545ID  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
Green (RoHS  
& no Sb/Br)  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAU  
80  
Green (RoHS  
& no Sb/Br)  
0 to 70  
75  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TLV2545IDG4  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
TLV2545IDGK  
TLV2545IDGKG4  
VSSOP  
VSSOP  
DGK  
DGK  
80  
Green (RoHS  
& no Sb/Br)  
CU NIPDAUAG  
CU NIPDAUAG  
80  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Oct-2013  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Aug-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV2541CDGKR  
TLV2541IDGKR  
TLV2541IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
8
8
8
2500  
2500  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
6.4  
5.3  
5.3  
6.4  
3.4  
3.4  
5.2  
3.4  
3.4  
5.2  
1.4  
1.4  
2.1  
1.4  
1.4  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
TLV2542CDGKR  
TLV2542IDGKR  
TLV2542IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Aug-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV2541CDGKR  
TLV2541IDGKR  
TLV2541IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
8
8
8
2500  
2500  
2500  
2500  
2500  
2500  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
TLV2542CDGKR  
TLV2542IDGKR  
TLV2542IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TLV2542

2.7 V TO 5.5 V, LOW POWER, 12-BIT, 200 KSPS, SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN
TI

TLV2542CDGK

2.7 V TO 5.5 V, LOW POWER, 12-BIT, 200 KSPS, SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN
TI

TLV2542CDGKG4

2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS, SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN
TI

TLV2542CDGKR

2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS, SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN
TI

TLV2542CDGKRG4

2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS, SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN
TI

TLV2542ID

2.7 V TO 5.5 V, LOW POWER, 12-BIT, 200 KSPS, SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN
TI

TLV2542IDG4

2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS, SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN
TI

TLV2542IDGK

2.7 V TO 5.5 V, LOW POWER, 12-BIT, 200 KSPS, SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN
TI

TLV2542IDGKG4

2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS, SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN
TI

TLV2542IDGKR

2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS, SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN
TI

TLV2542IDGKRG4

2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS, SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN
TI

TLV2542IDR

2.7-V TO 5.5-V, LOW-POWER, 12-BIT, 140/200 KSPS, SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH AUTOPOWER DOWN
TI