TLV2702_14 [TI]

FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS AND PUSH-PULL COMPARATORS;
TLV2702_14
型号: TLV2702_14
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS AND PUSH-PULL COMPARATORS

放大器
文件: 总23页 (文件大小:431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV2702  
TLV2704  
SLOS340B – DECEMBER 2000 – REVISED AUGUST 2001  
FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS AND  
PUSH-PULL COMPARATORS  
The TLV270x’s low supply current is coupled with  
FEATURES  
extremely low input bias currents enabling them to be  
used with mega-ohm resistors making them ideal for  
portable, long active life, applications. DC accuracy is  
ensured with a low typical offset voltage as low as  
390µV, CMRR of 90 dB, and minimum open loop gain  
of 130 V/mV at 2.7 V.  
D
Micro-Power Operation . . . 1.4 µA  
Input Common-Mode Range Exceeds the  
Rails . . . –0.1 V to V + 5 V  
D
CC  
D
D
D
D
Supply Voltage Range . . . 2.5 V to 16 V  
Rail-to-Rail Input/Output (Amplifier)  
Reverse Battery Protection Up to 18 V  
The maximum recommended supply voltage is as high  
as 16 V and ensured operation down to 2.5 V, with  
electrical characteristics specified at 2.7 V, 5 V, and  
15 V. The 2.5-V operation makes it compatible with  
Li-Ion battery-powered systems and many micro-power  
microcontrollersavailabletodayincludingTI’sMSP430.  
Gain Bandwidth Product . . . 5.5 kHz  
(Amplifier)  
D
Push-Pull CMOS Output Stage (Comparator)  
Specified Temperature Range  
D
– T = –40°C to 125°C . . . Industrial Grade  
A
All members are available in PDIP and SOIC with the  
duals, one op-amp and one comparator, in the small  
MSOP package and quads, two operational amplifiers  
and two comparators, in the TSSOP package.  
D
D
Ultrasmall Packaging  
– 8-Pin MSOP (TLV2702)  
Universal Op-Amp EVM (See the SLOU060 For  
More Information)  
+
APPLICATIONS  
D
D
D
Portable Battery Monitoring  
Consumer Medical Electronics  
Security Detection Systems  
SUPPLY CURRENT  
vs  
DESCRIPTION  
SUPPLY VOLTAGE  
2.5  
The TLV270x combines sub-micropower operational  
amplifier and comparator into a single package that  
produces excellent micropower signal conditioning with  
only 1.4 µA of supply current. This combination gives  
thedesignermoreboardspaceandreducespartcounts  
in systems that require an operational amplifier and  
comparator. The low supply current makes it an ideal  
choice for battery powered portable applications where  
quiescent current is the primary concern. Reverse  
battery protection guards the amplifier from an  
over-current condition due to improper battery  
installation. For harsh environments, the inputs can be  
taken 5 V above the positive supply rail without damage  
to the device.  
2.25  
2
1.75  
1.5  
1.25  
1
Op Amp  
0.75  
V = V /2  
I
CC  
Comparator  
0.5  
V
T
= –1 V  
= 25°C  
ID  
A
0.25  
0
2
4
6
8
10 12 14  
0
16  
V
– Supply Voltage – V  
CC  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright 2001, Texas Instruments Incorporated  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
A SELECTION OF OUTPUT COMPARATORS  
V
(V)  
V
I
/Ch  
GBW  
(kHz)  
SR  
(V/µs)  
t
t
t
f
RAIL-TO-  
RAIL  
OUTPUT  
STAGE  
CC  
IO  
CC  
(µA)  
PLH  
PHL  
DEVICE  
(µV)  
390  
390  
390  
600  
250  
250  
(µs)  
56  
55  
(µs)  
83  
30  
(µs)  
TLV270x  
TLV230x  
TLV240x  
TLV224x  
TLV340x  
TLV370x  
2.5 16  
2.5 16  
2.5 16  
2.5 12  
2.5 16  
2.5 16  
1.4  
1.4  
5.5  
5.5  
5.5  
5.5  
0.0025  
0.0025  
0.0025  
0.002  
8
I/O  
I/O  
I/O  
I/O  
I
PP  
OD  
5
880  
1
5
0.47  
0.56  
55  
56  
30  
83  
OD  
PP  
8
I
All specifications are typical values measured at 5 V.  
ICC is specified as one op-amp and one comparator.  
TLV2702 AVAILABLE OPTIONS  
PACKAGED DEVICES  
MSOP  
V
max  
IO  
T
A
SMALL OUTLINE  
(D)  
PLASTIC DIP  
(P)  
AT 25°C  
MSOP  
SYMBOLS  
(DGK)  
-40°C to 125°C  
4000 µV  
TLV2702ID  
TLV2702IDGK  
xxTIAQF  
TLV2702IP  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g.,  
TLV2702IDR).  
TLV2704 AVAILABLE OPTIONS  
PACKAGED DEVICES  
V
IO  
max  
T
A
SMALL OUTLINE  
(D)  
TSSOP  
(PW)  
PLASTIC DIP  
(N)  
AT 25°C  
40°C to 125°C  
4000 µV  
TLV2704ID  
TLV2704IPW  
TLV2704IN  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part  
number (e.g., TLV2704IDR).  
TLV270x PACKAGE PINOUTS  
TLV2704  
D, N, OR PW PACKAGE  
(TOP VIEW)  
TLV2702  
D, DGK, OR P PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
C1OUT  
C1IN–  
C1IN+  
A2OUT  
A2IN–  
A2IN+  
GND  
AOUT  
AIN–  
AIN+  
GND  
V
CC  
1
2
3
4
8
7
6
5
COUT  
CIN–  
CIN+  
V
CC  
C2IN+  
C2IN–  
C2OUT  
A1IN+  
A1IN–  
A1OUT  
8
2
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Differential input voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 V  
CC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
ID  
CC  
Input voltage range, V (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to V  
Input current range, I (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA  
Output current range, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
+ 5 V  
I
CC  
I
O
Operating free-air temperature range, T : I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 125°C  
A
Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to GND  
2. Input voltage range is limited to 20 V max or V + 5 V, whichever is smaller.  
CC  
DISSIPATION RATING TABLE  
25°C  
Θ
Θ
T
A
T = 125°C  
A
POWER RATING  
JC  
JA  
PACKAGE  
POWER RATING  
(°C/W)  
(°C/W)  
D (8)  
38.3  
176  
710 mW  
142 mW  
D (14)  
26.9  
122.3  
1022 mW  
204.4 mW  
DGK (8)  
N (14)  
54.2  
32  
259.9  
78  
481 mW  
1600 mW  
1200 mW  
720 mW  
96.2 mW  
320.5 mW  
240.4 mW  
144 mW  
P (8)  
41  
104  
PW (14)  
29.3  
173.6  
recommended operating conditions  
MIN  
MAX  
16  
UNIT  
Single supply  
2.5  
±1.25  
0.1  
Supply voltage, V  
V
CC  
Split supply  
±8  
Common-mode input voltage range, V  
ICR  
Amplifier and comparator  
V
+5  
CC  
125  
V
Operating free-air temperature, T  
40  
°C  
A
3
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
electrical characteristics at recommended operating conditions, V  
otherwise noted)  
= 2.7, 5 V, and 15 V (unless  
CC  
amplifier dc performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
4000  
6000  
T
UNIT  
A
25°C  
Full range  
25°C  
390  
V
IO  
Input offset voltage  
Offset voltage draft  
µV  
V
O
= V /2 V,  
CC  
V
= V /2 V, R = 50 Ω  
CC S  
IC  
α
3
µV/°C  
VIO  
25°C  
55  
52  
73  
V
V
V
= 2.7 V  
= 5 V  
CC  
CC  
CC  
Full range  
25°C  
60  
80  
90  
CMRR Common-mode rejection ratio  
V
= 0 to V , R = 50 Ω  
dB  
IC  
CC  
S
Full range  
25°C  
55  
66  
= 15 V  
= 500 kΩ  
Full range  
25°C  
60  
130  
30  
400  
1000  
1800  
120  
120  
V
V
V
= 2.7 V,  
V
V
= 1.5 V,  
= 3 V,  
R
L
CC  
CC  
CC  
O(pp)  
O(pp)  
L
Full range  
25°C  
300  
100  
400  
120  
90  
Large-signal differential voltage  
amplification  
A
VD  
= 5 V,  
R
= 500 kΩ  
V/mV  
Full range  
25°C  
= 15 V,  
V
= 8 V, R = 500 kΩ  
O(pp) L  
Full range  
25°C  
V
= 2.7 to 5 V  
= 5 to 15 V  
CC  
CC  
Full range  
25°C  
85  
Power supply rejection ratio  
PSRR  
V
= V /2 V, No load  
CC  
dB  
IC  
(V /V  
CC IO  
)
94  
V
Full range  
90  
Full range is 40°C to 125°C.  
amplifier and comparator input characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
250  
300  
700  
500  
550  
1700  
T
A
UNIT  
25°C  
0 to 70°C  
Full range  
25°C  
25  
I
I
Input offset current  
Input bias current  
pA  
IO  
IB  
V
R
= V /2 V,  
CC  
= 50 Ω  
V
= V /2 V  
IC CC  
O
S
100  
0 to 70°C  
Full range  
25°C  
pA  
r
Differential input resistance  
300  
3
MΩ  
i(d)  
C
Common-mode input capacitance  
f = 100 kHz  
25°C  
pF  
i(c)  
Full range is 40°C to 125°C.  
4
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
electrical characteristics at recommended operating conditions, V  
otherwise noted) (continued)  
= 2.7, 5 V, and 15 V (unless  
CC  
amplifier output characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
2.55  
2.5  
TYP  
MAX  
T
A
UNIT  
25°C  
Full range  
25°C  
2.65  
V
CC  
V
CC  
V
CC  
= 2.7 V  
= 5 V  
4.85  
4.8  
4.95  
V
I
= V /2,  
CC  
= 50 µA  
IC  
OH  
V
V
High-level output voltage  
V
OH  
Full range  
25°C  
14.8 14.95  
14.8  
= 15 V  
Full range  
25°C  
180  
260  
300  
Low-level output voltage  
V
IC  
= V /2,  
CC  
I = 50 µA  
OL  
mV  
OL  
Full range  
25°C  
I
O
Output current  
V
O
= 0.5 V from rail  
±200  
µA  
kΩ  
Z
O
Closed-loop output impedance  
f = 100 Hz,  
A
V
= 10  
25°C  
1.2  
Full range is 40°C to 125°C.  
amplifier dynamic performance  
PARAMETER  
TEST CONDITIONS  
T
MIN  
TYP  
5.5  
2.5  
60°  
15  
MAX  
UNIT  
kHz  
A
UGBW  
SR  
Unity gain bandwidth  
Slew rate at unity gain  
Phase margin  
R
= 500 k,  
C
C
= 100 pF  
= 100 pF  
25°C  
25°C  
L
L
L
V
O(pp)  
= 0.8 V,  
R
C
= 500 k,  
V/ms  
L
L
φM  
R
= 500 k,  
= 100 pF  
25°C  
25°C  
L
Gain margin  
dB  
ms  
V
V
A
V
= 2.7 or 5 V,  
CC  
(STEP)PP  
= 1 V,  
C
R
= 100 pF,  
= 100 kΩ  
0.1%  
1.84  
L
L
= 1,  
t
s
Settling time  
V
V
A
V
= 15 V,  
0.1%  
6.1  
32  
CC  
(STEP)PP  
= 1,  
= 1 V,  
C
R
= 100 pF,  
= 100 kΩ  
L
L
0.01%  
f = 0.1 to 10 Hz  
f = 100 Hz  
5.3  
µV  
pp  
Equivalent input noise  
voltage  
V
25°C  
25°C  
n
500  
nV/Hz  
Equivalent input noise  
current  
I
n
f = 100 Hz  
8
fA/Hz  
supply current  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.4  
MAX  
T
A
UNIT  
V
= 2.7 V or 5 V  
25°C  
25°C  
CC  
CC  
Supply current (one op-amp and one  
comparator)  
1.4  
1.9  
3.7  
I
V
V
= V /2  
CC  
µA  
CC  
O
V
= 15 V  
Full range  
25°C  
Reverse supply current  
= 18 V, V = 0 V, V = open  
50  
nA  
CC  
I
O
Full range is 40°C to 125°C.  
5
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
electrical characteristics at recommended operating conditions, V  
otherwise noted) (continued)  
= 2.7, 5 V, and 15 V (unless  
CC  
comparator dc performance  
T
PARAMETER  
MIN  
TYP MAX  
UNIT  
TEST CONDITIONS  
A
25°C  
Full range  
25°C  
250 5000  
V
Input offset voltage  
Offset voltage drift  
µV  
IO  
7000  
V
IC  
= V /2,  
CC  
R
= 50 Ω  
S
α
3
µV/°C  
VIO  
25°C  
55  
72  
V
CC  
V
CC  
V
CC  
= 2.7 V  
= 5 V  
Full range  
25°C  
50  
60  
55  
65  
60  
76  
88  
V
R
= 0 to V  
= 50 Ω  
,
IC  
S
CC  
CMRR Common-mode rejection ratio  
dB  
Full range  
25°C  
= 15 V  
Full range  
Large-signal differential voltage  
amplification  
A
25°C  
1000  
100  
V/mV  
dB  
VD  
25°C  
Full range  
25°C  
75  
70  
85  
80  
V
V
= 2.7 to 5 V  
= 5 to 15 V  
CC  
Power supply rejection ratio  
V
= V /2 V,  
CC  
IC  
PSRR  
(V /V  
CC IO  
)
No load  
105  
CC  
Full range  
Full range is 40°C to 125°C.  
comparator output characteristics  
PARAMETER  
T
A
MIN  
TYP MAX  
UNIT  
TEST CONDITIONS  
r
Differential input resistance  
25°C  
25°C  
300  
MΩ  
i(d)  
V
V
320  
450  
V
V
= V /2,  
CC  
I
I
= 50 µA,  
= 50 µA,  
CC  
IC  
ID  
OL  
V
High-level output voltage  
mV  
mV  
OH  
= 1 V  
Full range  
25°C  
CC  
80  
200  
300  
V
V
= V /2,  
CC  
= 1 V  
IC  
ID  
OL  
V
Low-level output voltage  
OL  
Full range  
Full range is 40°C to 125°C.  
switching characteristics at recommended operating conditions, V  
otherwise noted)  
= 2.7 V, 5 V, 15 V (unless  
CC  
PARAMETER  
TEST CONDITIONS  
Overdrive = 2 mV  
T
MIN  
TYP  
240  
64  
MAX  
UNIT  
A
Propagation response time, low-to-  
high-level output  
Overdrive = 10 mV  
Overdrive = 50 mV  
Overdrive = 2 mV  
Overdrive = 10 mV  
Overdrive = 50 mV  
t
25°C  
(PLH)  
(PHL)  
f = 10 kHz,  
= 100 mV,  
36  
V
C
STEP  
L
µs  
= 10 pF,  
= 2.7 V  
167  
67  
Propagation response time, high-to-  
low-level output  
V
CC  
t
25°C  
37  
t
t
Rise time  
Fall time  
C
C
= 10 pF,  
= 10 pF,  
V
V
= 2.7 V  
= 2.7 V  
25°C  
25°C  
7
µs  
µs  
r
L
L
CC  
9
f
CC  
NOTE: The propagation response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.  
Propagation responses are longer at higher supply voltages, refer to Figure 18 through Figure 36 for further details.  
6
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
1, 2  
V
Input offset voltage  
Input bias current  
vs Common-mode input voltage  
vs Free-air temperature  
IO  
3, 5, 7  
4, 6  
I
I
I
IB  
vs Common-mode input voltage  
vs Free-air temperature  
3, 5, 7  
4, 6  
Input offset current  
Supply current  
IO  
vs Common-mode input voltage  
vs Supply voltage  
8
CC  
vs Free-air temperature  
9
Amplifier  
CMRR  
Common-mode rejection ratio  
High-level output voltage  
Low-level output voltage  
Output voltage, peak-to-peak  
Power supply rejection ratio  
Voltage noise over a 10 Second Period  
Phase margin  
vs Frequency  
10  
11, 13  
12, 14  
15  
V
V
V
vs High-level output current  
vs Low-level output current  
vs Frequency  
OH  
OL  
O(PP)  
PSRR  
vs Frequency  
16  
17  
φ
m
vs Capacitive load  
vs Frequency  
18  
A
VD  
Differential voltage gain  
19  
Phase  
vs Frequency  
19  
Gain-bandwidth product  
vs Supply voltage  
vs Free-air temperature  
20  
SR  
Slew rate  
21  
Large-signal follower pulse response  
Small-signal follower pulse response  
Large-signal inverting pulse response  
Small-signal inverting pulse response  
22  
23  
24  
25  
Comparator  
V
High-level output voltage  
Low-level output voltage  
Output rise/fall time  
vs High-level output current  
vs Low-level output current  
vs Supply voltage  
26, 28  
27, 29  
OH  
OL  
V
30  
Low-to-high level output response for various input overdrives  
High-to-low level output response for various input overdrives  
31, 33, 35  
32, 34, 36  
7
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
AMPLIFIER AND COMPARATOR TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
INPUT BIAS / OFFSET CURRENT  
vs  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
600  
500  
400  
300  
200  
100  
0
100  
1400  
1200  
1000  
800  
600  
400  
200  
0
V
V
= 2.7 V  
CC  
= 1.35 V  
V
T
A
= 2.7 V  
CC  
= 25°C  
IC  
0
100  
200  
300  
400  
I
IO  
I
IB  
100  
200  
V
T
A
= 5 V  
CC  
= 25 °C  
200  
40 25 10  
5
20 35 50 65 80 95 110 125  
0.2 0.4 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2  
0.10.2 0.6 1.0 1.4 1.8 2.2 2.6 2.9  
T
A
Free-Air Temperature °C  
V
Common-Mode Input Voltage V  
ICR  
V
Common-Mode Input Voltage V  
ICR  
Figure 1  
Figure 2  
Figure 3  
INPUT BIAS/OFFSET CURRENT  
INPUT BIAS/OFFSET CURRENT  
INPUT BIAS/OFFSET CURRENT  
vs  
vs  
vs  
COMMON MODE INPUT  
VOLTAGE  
COMMON-MODE INPUT  
VOLTAGE  
FREE-AIR TEMPERATURE  
600  
500  
400  
300  
200  
100  
0
400  
350  
300  
250  
200  
150  
100  
50  
200  
150  
100  
50  
V
V
= 5 V  
CC  
= 2.5 V  
V
T
A
= 2.7 V  
V
= 5 V  
CC  
= 25 °C  
CC  
T = 25 °C  
A
IC  
I
IO  
0
I
I
IO  
I
IO  
50  
100  
150  
0
I
IB  
I
50  
100  
150  
IB  
100  
200  
IB  
40 25 10  
5
20 35 50 65 80 95 110 125  
0.2 0.6 1.0 1.4 1.8 2.2 2.6 2.9  
0.1  
0.2 0.4 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2  
T
A
Free-Air Temperature °C  
V
Common Mode Input Voltage V  
V
Common Mode Input Voltage V  
ICR  
ICR  
Figure 5  
Figure 4  
Figure 6  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
INPUT BIAS/OFFSET CURRENT  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
2
1200  
1000  
800  
2.5  
V
= 15 V  
CC  
2.25  
T
= 125°C  
A
T
1.75  
2
1.5  
= 70°C  
A
1.75  
1.25  
1.5  
I
IB  
600  
1
1.25  
V
= 2.7, 5, & 15 V  
CC  
400  
200  
T
= 0°C  
A
1
0.75  
0.5  
0.25  
0
Op Amp  
V = V /2  
A
Comparator  
V = 1 V  
ID  
T
= 40°C  
0.75  
A
I
V
CC  
= 1  
Op Amp  
I
T
= 25°C  
IO  
0.5  
A
V = V /2  
I
CC  
Comparator  
= 1 V  
0
0.25  
V
ID  
10 12 14  
0
200  
40 25 10  
2
4
6
8
0
16  
40 25 10  
5
20 35 50 65 80 95 110 125  
5 20 35 50 65 80 95 110 125  
V
Supply Voltage V  
T
Free-Air Temperature °C  
T
Free-Air Temperature °C  
CC  
A
A
Figure 8  
Figure 7  
Figure 9  
8
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
AMPLIFIER TYPICAL CHARACTERISTICS  
COMMON-MODE REJECTION RATIO  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
FREQUENCY  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
120  
100  
80  
60  
40  
20  
0
V
T
= 2.7 V  
CC  
V
= 2.7 V  
CC  
=25 °C  
= 0 °C  
= 40°C  
A
T
A
T
A
T
= 40°C  
A
T
T
T
T
= 0°C  
A
A
A
A
= 25 °C  
= 70 °C  
= 125 °C  
T
T
= 70 °C  
= 125 °C  
A
A
0
50  
100  
150  
200  
0
50  
100  
150  
200  
1
10  
100  
1k  
10k  
f Frequency Hz  
I
High-Level Output Current µA  
I
Low-Level Output Current µA  
OH  
OL  
Figure 10  
Figure 11  
Figure 12  
OUTPUT VOLTAGE  
PEAK-TO-PEAK  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
FREQUENCY  
5.0  
4.5  
4.0  
3.5  
3.0  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
16  
14  
12  
10  
8
V
= 5 V  
CC  
V
= 15 V  
V
= 5 V  
CC  
CC  
T
= 40°C  
A
T
= 0 °C  
= 40°C  
A
T
A
T
= 0°C  
A
T
T
T
= 25 °C  
= 70 °C  
= 125 °C  
A
A
A
T
= 25 °C  
= 70 °C  
= 125 °C  
6
A
T
A
R
C
T
A
= 100 kΩ  
= 100 pF  
= 25°C  
L
L
4
V
= 5 V  
CC  
T
A
2
V
= 2.7 V  
CC  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
10  
100  
1k  
I
High-Level Output Current µA  
I
Low-Level Output Current µA  
f Frequency Hz  
OH  
OL  
Figure 13  
Figure 14  
Figure 15  
POWER SUPPLY REJECTION RATIO  
PHASE MARGIN  
vs  
VOLTAGE NOISE  
vs  
OVER A 10 SECOND PERIOD  
FREQUENCY  
CAPACITIVE LOAD  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4
3
V
= 5 V  
CC  
f = 0.1 Hz to 10 Hz  
= 25°C  
V
T
A
= 2.7, 5, & 15 V  
CC  
= 25°C  
T
A
2
1
80  
0
70  
1  
2  
3  
V
= 2.7, 5, & 15 V  
CC  
60  
R = 500 kΩ  
L
A
T
= 25°C  
50  
40  
4  
10  
100  
1k  
10k  
10  
100  
1k  
10k  
0
1
2
3
4
5
6
7
8
9
10  
f Frequency Hz  
C
Capacitive Load pF  
t Time s  
L
Figure 16  
Figure 17  
Figure 18  
9
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
AMPLIFIER TYPICAL CHARACTERISTICS  
DIFFERENTIAL VOLTAGE GAIN AND PHASE  
GAIN BANDWIDTH PRODUCT  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
vs  
vs  
FREQUENCY  
SUPPLY VOLTAGE  
60  
50  
135  
90  
7
6
5
4
3
2
1
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
T
A
= 25°C  
R
C
= 100 kΩ  
= 100 pF  
L
L
SR+  
40  
30  
20  
10  
f = 1kHz  
V
= 5, 15 V  
CC  
V
= 2.7 V  
CC  
45  
V
= 2.7, 5, 15 V  
CC  
SR–  
0
0
V
=2.7, 5, 15 V  
CC  
L
L
R =500 kΩ  
C =100 pF  
10  
T
=25°C  
A
20  
45  
10k  
10  
100  
1k  
2.5 4.0 5.5 7.0 8.5 10.0 11.5 13.0 14.5 16.0  
40 25 10  
5
20 35 50 65 80 95 110 125  
f Frequency Hz  
V
Supply Voltage V  
CC  
T
A
Free-Air Temperature °C  
Figure 19  
Figure 20  
Figure 21  
SMALL-SIGNAL FOLLOWER  
PULSE RESPONSE  
LARGE-SIGNAL FOLLOWER  
PULSE RESPONSE  
4
3
2
120  
100  
80  
300  
150  
V
= 5 V  
= 1  
= 100 kΩ  
= 100 pF  
= 25°C  
V
CC  
IN  
A
V
V
IN  
R
0
L
L
C
T
V
= 2.7, 5,  
CC  
& 15 V  
150  
1
0
A
A
= 1  
= 100 kΩ  
= 100 pF  
V
4
R
C
L
L
3
1  
60  
V
O
T = 25°C  
A
2
V
O
40  
1
20  
0
0
0
1
2
3
4
5
6
0
100 1200 300 400 500  
t Time ms  
t Time µs  
Figure 22  
Figure 23  
LARGE-SIGNAL INVERTING  
PULSE RESPONSE  
SMALL-SIGNAL INVERTING  
PULSE RESPONSE  
50  
4
3
2
1
0
200  
100  
0
V
IN  
V
IN  
V
= 2.7,  
CC  
5, & 15 V  
= 1  
= 100 kΩ  
= 100 pF  
0.5  
V
A
= 5 V  
CC  
= 1  
A
0.0  
V
1  
V
100  
R
C
T
A
L
L
R
C
T
A
= 100 kΩ  
= 100 pF  
= 25°C  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
L
L
0
= 25°C  
50  
100  
150  
V
O
V
O
1  
0
1
2
3
4
5
6
7
0
0
200 400 600 800 1000 1200  
t Time ms  
t Time ms  
Figure 24  
Figure 25  
10  
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
COMPARATOR TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
V
V
= 2.7 V  
V
V
= 2.7 V  
CC  
= 1 V  
CC  
= 1 V  
ID  
ID  
T
= 125°C  
A
T
A
= 40°C  
T
A
= 0°C  
T
= 70°C  
= 25°C  
A
T
A
T
A
= 25°C  
T
= 0°C  
A
T
= 70°C  
A
T
A
= 40°C  
T
= 125°C  
A
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
I
High-Level Output Current mA  
I
Low-Level Output Current mA  
OH  
OL  
Figure 26  
Figure 27  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
5
5
V
V
= 5 V  
CC  
= 1 V  
V
V
= 5 V  
CC  
= 1 V  
4.5  
4
ID  
4.5  
4
ID  
T
= 40°C  
A
T
= 125°C  
A
3.5  
3
3.5  
3
T
A
= 0°C  
T
= 70°C  
A
T
A
= 25°C  
2.5  
2
2.5  
2
T
= 25°C  
A
T
= 70°C  
A
1.5  
1
1.5  
1
T
= 0°C  
A
T
= 125°C  
T = 40°C  
A
A
0.5  
0
0.5  
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
0
0.4 0.8  
1.2  
1.6  
2.0 2.4  
2.8  
I
High-Level Output Current mA  
OH  
I
Low-Level Output Current mA  
OL  
Figure 28  
Figure 29  
OUTPUT RISE/FALL TIME  
vs  
SUPPLY VOLTAGE  
120  
100  
80  
V
= 1 V to 1 V  
Input Rise/Fall Time = 4 µs  
= 10 pF  
= 25°C  
ID  
C
L
T
A
60  
Fall Time  
40  
20  
0
Rise Time  
10 12.5  
0
2.5  
5
7.5  
15  
V
Supply Voltage V  
CC  
Figure 30  
11  
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
TYPICAL CHARACTERISTICS  
LOW-TO-HIGH OUTPUT RESPONSE  
HIGH-TO-LOW LEVEL OUTPUT RESPONSE  
FOR VARIOUS INPUT OVERDRIVES  
FOR VARIOUS INPUT OVERDRIVES  
3
2.7  
2.4  
2.1  
1.8  
3
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
50 mV  
1.5  
1.2  
0.9  
0.6  
0.3  
0
50 mV  
10 mV  
2 mV  
2 mV  
10 mV  
0.3  
0.05  
0
0.15  
0.10  
0.05  
V
= 2.7 V  
CC  
= 10 pF  
C
T
L
0.05  
0.10  
0.15  
= 25°C  
V
= 2.7 V  
A
CC  
C
= 10 pF  
L
0
T
A
= 25°C  
0.05  
0
25 50 75 100125150175200225250275 300  
0
25 50 75 100125150175200225250275300  
t Time µs  
t Time µs  
Figure 31  
Figure 32  
LOW-TO-HIGH LEVEL OUTPUT RESPONSE  
HIGH-TO-LOW LEVEL OUTPUT RESPONSE  
FOR VARIOUS INPUT OVERDRIVES  
FOR VARIOUS INPUT OVERDRIVES  
6
6
5
5
4
4
50 mV  
50 mV  
3
3
2 mV  
2 mV  
10 mV  
2
10 mV  
2
1
0
1
0
0.05  
0
V
C
T
A
= 5 V  
= 10 pF  
= 25°C  
CC  
L
0.10  
0.05  
0
V
C
T
A
= 5 V  
CC  
= 10 pF  
0.05  
0.10  
0.15  
L
= 25°C  
0.05  
0
25 50 75 100125150175200225250275300  
0
25 50 75100125150175200225250275300  
t Time µs  
t Time µs  
Figure 33  
Figure 34  
LOW-TO-HIGH LEVEL OUTPUT RESPONSE  
HIGH-TO-LOW LEVEL OUTPUT RESPONSE  
FOR VARIOUS INPUT OVERDRIVES  
FOR VARIOUS INPUT OVERDRIVES  
16  
16  
14  
14  
12  
10  
12  
10  
50 mV  
8
6
8
6
4
2
0
50 mV  
2 mV  
10 mV  
10 mV  
2 mV  
4
2
0
V
= 15 V  
= 10 pF  
= 25°C  
CC  
L
C
T
0.04  
0
0.04  
0.08  
0.12  
A
0.12  
0.08  
0.04  
V
= 15 V  
= 10 pF  
= 25°C  
CC  
L
C
T
A
0
0.04  
0
50 100 150 200 250 300 350 400  
0
25 50 75 100125150175200225250275300  
t Time µs  
t Time µs  
Figure 35  
Figure 36  
12  
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
APPLICATION INFORMATION  
reverse battery protection  
The TLV2702/4 are protected against reverse battery voltage up to 18 V. When subjected to reverse battery  
condition the supply current is typically less than 100 nA at 25°C (inputs grounded and outputs open). This  
current is determined by the leakage of 6 Schottky diodes and will therefore increase as the ambient  
temperature increases.  
When subjected to reverse battery conditions and negative voltages applied to the inputs or outputs, the input  
ESD structure will turn onthis current should be limited to less than 10 mA. If the inputs or outputs are referred  
to ground, rather than midrail, no extra precautions need be taken.  
common-mode input range  
The TLV2702/4 has rail-rail input and outputs. For common-mode inputs from 0.1 V to V  
differential pair will provide the gain.  
0.8 V a PNP  
CC  
For inputs between V  
0.8 V and V , two NPN emitter followers buffering a second PNP differential pair  
CC  
CC  
provide the gain. This special combination of NPN/PNP differential pair enables the inputs to be taken 5 V above  
the rails; because as the inputs go above V , the NPNs switch from functioning as transistors to functioning  
CC  
as diodes. This will lead to an increase in input bias current. The second PNP differential pair continues to  
function normally as the inputs exceed V  
.
CC  
The TLV2702/4 has a negative common-input range that exceeds ground by 100 mV. If the inputs are taken  
much below this, reduced open loop gain will be observed with the ultimate possibility of phase inversion.  
offset voltage  
Theoutputoffsetvoltage,(V )isthesumoftheinputoffsetvoltage(V )andbothinputbiascurrents(I )times  
OO  
IO  
IB  
the corresponding gains. The following schematic and formula can be used to calculate the output offset  
voltage.  
R
F
I
IB–  
R
G
+
V
I
V
O
+
R
S
I
IB+  
R
R
F
F
V
+ V  
1 ) ǒ Ǔ " I  
R
1 ) ǒ Ǔ " I  
R
ǒ Ǔ ǒ Ǔ  
OO  
IO  
IB)  
S
IB–  
F
R
R
G
G
Figure 37. Output Offset Voltage Model  
13  
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
APPLICATION INFORMATION  
general configurations  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often  
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier  
(see Figure 38).  
R
R
F
G
V
1
O
+
V
I
R1  
V
C1  
f
+
3dB  
2pR1C1  
R
O
F
1
ǒ
Ǔ
+
ǒ
1 )  
Ǔ
V
R
1 ) sR1C1  
I
G
Figure 38. Single-Pole Low-Pass Filter  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.  
Failure to do this can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
+
3dB  
2pRC  
C2  
R
F
1
R
=
G
R
F
2 –  
)
(
R
Q
G
Figure 39. 2-Pole Low-Pass Sallen-Key Filter  
14  
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
APPLICATION INFORMATION  
circuit layout considerations  
ToachievethelevelsofhighperformanceoftheTLV270x, followproperprinted-circuitboarddesigntechniques.  
A general set of guidelines is given in the following.  
D
Ground planesIt is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and  
output, the ground plane can be removed to minimize the stray capacitance.  
D
Proper power supply decouplingUse a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic  
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers  
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal  
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply  
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less  
effective. The designer should strive for distances of less than 0.1 inches between the device power  
terminals and the ceramic capacitors.  
D
D
SocketsSocketscanbeusedbutarenotrecommended. Theadditionalleadinductanceinthesocketpins  
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board  
is the best implementation.  
Short trace runs/compact part placementsOptimum high performance is achieved when stray series  
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,  
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of  
the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at  
the input of the amplifier.  
D
Surface-mount passive componentsUsing surface-mount passive components is recommended for high  
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be  
kept as short as possible.  
15  
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
general power dissipation considerations  
Foragivenθ , themaximumpowerdissipationisshowninFigure40andiscalculatedbythefollowingformula:  
JA  
T
T  
MAX  
A
P
+
ǒ Ǔ  
D
q
JA  
Where:  
P
= Maximum power dissipation of TLV270x IC (watts)  
= Absolute maximum junction temperature (150°C)  
= Free-ambient air temperature (°C)  
D
T
MAX  
T
A
θ
= θ + θ  
JA  
JC CA  
θ
θ
= Thermal coefficient from junction to case  
JC  
= Thermal coefficient from case to ambient air (°C/W)  
CA  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
2
T
= 150°C  
PDIP Package  
J
Low-K Test PCB  
1.75  
1.5  
1.25  
1
θ
= 104°C/W  
JA  
MSOP Package  
Low-K Test PCB  
SOIC Package  
Low-K Test PCB  
θ
= 260°C/W  
JA  
θ
= 176°C/W  
JA  
0.75  
0.5  
0.25  
0
5540 25 10  
5
20 35 50 65 80 95 110 125  
T
A
Free-Air Temperature °C  
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.  
Figure 40. Maximum Power Dissipation vs Free-Air Temperature  
16  
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
APPLICATION INFORMATION  
amplifier macromodel information  
Macromodel information provided was derived using Microsim Parts Release 8, the model generation  
software used with Microsim PSpice . The Boyle macromodel (see Note 2) and subcircuit in Figure 41 are  
generated using the TLV270x typical electrical and operating characteristics at T = 25°C. Using this  
A
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most  
cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 3: G. R. Boyle, B. M. Cohn, D. O. Pederson, andJ. E. Solomon, MacromodelingofIntegratedCircuitOperationalAmplifiers, IEEEJournal  
of Solid-State Circuits, SC-9, 353 (1974).  
3
99  
V
CC+  
+
egnd  
ree  
ro2  
cee  
fb  
rp  
rc1  
11  
rc2  
12  
c1  
7
+
1
2
c2  
vlim  
8
IN+  
+
r2  
9
6
vc  
+
q1  
q2  
IN–  
vb  
ga  
ro1  
gcm  
ioff  
53  
dp  
14  
13  
V
OUT  
re1  
re2  
dlp  
dln  
5
91  
90  
92  
10  
+
hlim  
+
iee  
dc  
vlp  
vln  
V
CC–  
+
+ 54  
4
de  
ve  
.subckt 270X_5VX 1 2 3 4 5  
rc1  
rc2  
re1  
re2  
ree  
ro1  
ro2  
rp  
3
3
11 978.81E3  
12 978.81E3  
*
c1  
c2  
11 12 9.8944E12  
30.000E12  
13 10 30.364E3  
14 10 30.364E3  
10 99 3.6670E9  
6
7
cee 10 99 8.8738E12  
dc  
5
53 dy  
dy  
8
5
10  
de  
dlp  
dln  
dp  
54  
5
7
99 10  
90 91 dx  
92 90 dx  
4
3
4
0
1.4183E6  
dc  
vb  
9
0
3
0
dx  
poly(2) (3,0) (4,0) 0 .5 .5  
vc  
ve  
vlim  
vlp  
vln  
3
53 dc .88315  
egnd 99  
fb  
ga  
54  
7
4
8
0
dc .88315  
dc  
dc 540  
7
6
99 poly(5) vb vc ve vlp vln 0 61.404E6 1E3 1E3 61E6 61E6  
0
0
6
4
6
0
2
1
9
11 12 1.0216E6  
10 99 10.216E12  
dc 54.540E9  
dc 5e12  
91  
0
gcm  
iee  
ioff  
0
92 dc 540  
10  
0
.model dx D(Is=800.00E18)  
.model dy D(Is=800.00E18 Rs=1m Cjo=10p)  
.model qx1 NPN(Is=800.00E18 Bf=27.270E21)  
.model qx2 NPN(Is=800.0000E18 Bf=27.270E21)  
.ends  
hlim 90  
vlim 1K  
q1  
q2  
r2  
11  
12  
6
13 qx1  
14 qx2  
100.00E3  
Figure 41. Boyle Macromodels and Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
17  
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°ā8°  
0.044 (1,12)  
A
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
18  
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
MECHANICAL INFORMATION  
DGK (R-PDSO-G8)  
PLASTIC SMALL-OUTLINE PACKAGE  
0,38  
0,25  
M
0,65  
8
0,25  
5
0,15 NOM  
3,05  
2,95  
4,98  
4,78  
Gage Plane  
0,25  
0°ā6°  
1
4
0,69  
3,05  
2,95  
0,41  
Seating Plane  
0,10  
0,15  
0,05  
1,07 MAX  
4073329/B 04/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-187  
19  
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
MECHANICAL INFORMATION  
N (R-PDIP-T**)  
PLASTIC DUAL-IN-LINE PACKAGE  
16 PINS SHOWN  
PINS **  
14  
16  
18  
20  
DIM  
0.775  
(19,69)  
0.775  
(19,69)  
0.920  
(23,37)  
0.975  
(24,77)  
A MAX  
A
16  
9
0.745  
(18,92)  
0.745  
(18,92)  
0.850  
(21,59)  
0.940  
(23,88)  
A MIN  
0.260 (6,60)  
0.240 (6,10)  
1
8
0.070 (1,78) MAX  
0.325 (8,26)  
0.300 (7,62)  
0.035 (0,89) MAX  
0.020 (0,51) MIN  
0.015 (0,38)  
Gauge Plane  
0.200 (5,08) MAX  
Seating Plane  
0.010 (0,25) NOM  
0.125 (3,18) MIN  
0.100 (2,54)  
0.010 (0,25)  
0.430 (10,92) MAX  
0.021 (0,53)  
0.015 (0,38)  
M
14/18 PIN ONLY  
4040049/D 02/00  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001 (20-pin package is shorter than MS-001).  
20  
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
MECHANICAL INFORMATION  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE PACKAGE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.310 (7,87)  
0.290 (7,37)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°ā15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
4040082/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
21  
www.ti.com  
TLV2702  
TLV2704  
SLOS340B DECEMBER 2000 REVISED AUGUST 2001  
MECHANICAL INFORMATION  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°ā8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
22  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its products to the specifications applicable at the time of sale in accordance with  
TIsstandardwarranty. TestingandotherqualitycontroltechniquesareutilizedtotheextentTIdeemsnecessary  
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except  
those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customers applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
products or services might be or are used. TIs publication of information regarding any third partys products  
or services does not constitute TIs approval, license, warranty or endorsement thereof.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation  
or reproduction of this information with alteration voids all warranties provided for an associated TI product or  
service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.  
Resale of TIs products or services with statements different from or beyond the parameters stated by TI for  
that product or service voids all express and any implied warranties for the associated TI product or service,  
is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.  
Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2001, Texas Instruments Incorporated  

相关型号:

TLV2704

FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS AND PUSH-PULL COMPARATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2704ID

Op Amp (2) + Push-Pull Comparator (2) Combo IC 14-SOIC -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2704ID

QUAD OP-AMP, 6000uV OFFSET-MAX, 0.0055MHz BAND WIDTH, PDSO14, GREEN, PLASTIC, SOIC-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

TLV2704IDRG4

IC,OP-AMP,DUAL,CMOS,SOP,14PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2704IN

FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS AND PUSH-PULL COMPARATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2704IN

QUAD OP-AMP, 6000 uV OFFSET-MAX, 0.0055 MHz BAND WIDTH, PDIP14, ROHS COMPLIANT, PLASTIC, DIP-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

TLV2704IPW

FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS AND PUSH-PULL COMPARATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2704IPWG4

IC,OP-AMP,DUAL,CMOS,TSSOP,14PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2704IPWR

QUAD OP-AMP, 6000uV OFFSET-MAX, 0.0055MHz BAND WIDTH, PDSO14, PLASTIC, TSSOP-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

TLV2704IPWRG4

IC,OP-AMP,DUAL,CMOS,TSSOP,14PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV271

550-UA/CH 3-MHZ RAIL TO RAIL OUTPUT OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV271-Q1

FAMILY OF 500-UA/CH 3-MHZ RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI