TLV274QDRG4Q1 [TI]

Automotive-grade, quad, 16-V, 3-MHz operational amplifier | D | 14 | -40 to 125;
TLV274QDRG4Q1
型号: TLV274QDRG4Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Automotive-grade, quad, 16-V, 3-MHz operational amplifier | D | 14 | -40 to 125

放大器 光电二极管
文件: 总22页 (文件大小:515K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇ ꢅ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆꢇ ꢅ ꢈ ꢀꢁꢂ ꢃꢄ ꢉꢆ ꢇꢅ  
ꢑ ꢋꢒ ꢓꢔ ꢕ ꢆꢌ ꢖꢗ ꢘꢋꢍ ꢁ ꢆꢀꢏ ꢆꢘꢋꢍ ꢁ ꢏ ꢙꢀ ꢚ ꢙꢀ  
ꢏ ꢚꢛꢘ ꢋꢀ ꢍꢏ ꢜꢋꢁ ꢋꢌ ꢚ ꢁꢍ ꢊꢍ ꢛꢘ ꢝ  
ꢊꢋ  
µ
SGLS275 − OCTOBER 2004  
D
Qualification in Accordance With  
AEC-Q100  
D
D
D
D
Input Bias Current . . . 1 pA  
Specified Temperature Range  
−40°C to 125°C . . . Automotive Grade  
Ultrasmall Packaging  
D
Qualified for Automotive Applications  
D
Customer-Specific Configuration Control  
Can Be Supported Along With  
Major-Change Approval  
− 5-Pin SOT-23 (TLV271)  
Ideal Upgrade for TLC27x Family  
D
D
D
D
D
D
Rail-To-Rail Output  
Operational Amplifier  
Wide Bandwidth . . . 3 MHz  
High Slew Rate . . . 2 .4 V/µs  
Supply Voltage Range . . . 2.7 V to 16 V  
Supply Current . . . 550 µA/Channel  
Input Noise Voltage . . . 39 nV/Hz  
+
Contact Texas Instruments for details. Q100 qualification data  
available on request.  
description  
The TLV27x takes the minimum operating supply voltage down to 2.7 V over the extended automotive  
temperature range while adding the rail-to-rail output swing feature. This makes it an ideal alternative to the  
TLC27x family for applications where rail-to-rail output swings are essential. The TLV27x also provides 3-MHz  
bandwidth from only 550 µA.  
Like the TLC27x, the TLV27x is fully specified for 5-V and 5-V supplies. The maximum recommended supply  
voltage is 16 V, which allows the devices to be operated from a variety of rechargeable cells ( 8 V supplies down  
to 1.35 V).  
The CMOS inputs enable use in high-impedance sensor interfaces, with the lower voltage operation making  
an attractive alternative for the TLC27x in battery-powered applications.  
The 2.7-V operation makes it compatible with Li-Ion powered systems and the operating supply voltage range  
of many micropower microcontrollers available today including Texas Instruments MSP430.  
SELECTION OF SIGNAL AMPLIFIER PRODUCTS†  
RAIL-  
V
(µV)  
Iq/Ch  
GBW  
SR  
IO  
DEVICE  
TLV27x  
V
(V)  
I
IB  
(pA)  
SHUTDOWN  
TO-  
SINGLES/DUALS/QUADS  
DD  
(µA)  
(MHz)  
(V/µs)  
RAIL  
2.7−16  
3−16  
500  
1100  
500  
300  
150  
250  
300  
550  
675  
550  
1100  
550  
600  
725  
1
1
1
1
3
2.4  
3.6  
2.4  
3.6  
1.6  
1.5  
1.4  
O
I/O  
O
S/D/Q  
S/D/Q  
S/D/Q  
D/Q  
TLC27x  
1.7  
3
TLV237x  
TLC227x  
TLV246x  
TLV247x  
TLV244x  
2.7−16  
4−16  
Yes  
2.2  
6.4  
2.8  
1.8  
2.7−6  
2.7−6  
2.7−10  
1300  
Yes  
Yes  
I/O  
I/O  
O
S/D/Q  
S/D/Q  
D/Q  
2
1
Typical values measured at 5 V, 25°C  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢪ  
Copyright 2001−2004, Texas Instruments Incorporated  
ꢦ ꢪ ꢧ ꢦꢟ ꢠꢳ ꢢꢡ ꢥ ꢭꢭ ꢫꢥ ꢣ ꢥ ꢤ ꢪ ꢦ ꢪ ꢣ ꢧ ꢯ  
ꢧꢟ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢏꢚ ꢛ ꢘꢋꢀ ꢍ ꢏꢜ ꢋ ꢁ ꢋꢌ ꢚꢁ ꢍ ꢊꢍ ꢛ ꢘꢝ  
µ  
SGLS275 − OCTOBER 2004  
FAMILY PACKAGE TABLE  
PACKAGE TYPES  
NUMBER OF  
CHANNELS  
UNIVERSAL  
EVM BOARD  
DEVICE  
TLV271  
SOT-23 TSSOP MSOP  
SOIC  
1
2
4
8
8
5
14  
8
See the EVM  
Selection Guide  
(SLOU060)  
TLV272  
TLV274  
14  
Product Preview  
TLV271 AVAILABLE OPTIONS  
PACKAGED DEVICES  
SOT-23  
V
IO  
MAX AT  
25°C  
T
A
SMALL OUTLINE  
(D)  
(DBV)  
SYMBOL  
40°C to 125°C  
5 mV  
TLV271QDRQ1  
TLV271QDBVRQ1  
271Q  
TLV272 AVAILABLE OPTIONS  
PACKAGED DEVICES  
MSOP  
V
IO  
MAX AT  
25°C  
T
A
SMALL OUTLINE  
(D)  
(DGK)  
SYMBOL  
40°C to 125°C  
5 mV  
TLV272QDRQ1  
TLV272QDGKRQ1  
Product Preview  
TLV274 AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
V
IO  
MAX AT 25°C  
SMALL OUTLINE  
TSSOP  
(PW)  
(D)  
40°C to 125°C  
5 mV  
TLV274QDRQ1  
TLV274QPWRQ1  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇ ꢅ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆꢇ ꢅ ꢈ ꢀꢁꢂ ꢃꢄ ꢉꢆ ꢇꢅ  
ꢑ ꢋꢒ ꢓꢔ ꢕ ꢆꢌ ꢖꢗ ꢘꢋꢍ ꢁ ꢆꢀꢏ ꢆꢘꢋꢍ ꢁ ꢏ ꢙꢀ ꢚ ꢙꢀ  
ꢏ ꢚꢛꢘ ꢋꢀ ꢍꢏ ꢜꢋꢁ ꢋꢌ ꢚ ꢁꢍ ꢊꢍ ꢛꢘ ꢝ  
µ  
SGLS275 − OCTOBER 2004  
(1)  
TLV27x PACKAGE PINOUTS  
TLV271  
TLV271  
D PACKAGE  
(TOP VIEW)  
DBV PACKAGE  
(TOP VIEW)  
1
2
3
5
4
V
DD  
OUT  
GND  
NC  
IN−  
NC  
1
2
3
4
8
7
6
5
V
DD  
IN+  
OUT  
NC  
GND  
IN−  
IN+  
TLV274  
TLV272  
D OR PW PACKAGE  
D OR DGK PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
1OUT  
1IN−  
1IN+  
GND  
V
DD  
1
2
3
4
8
7
6
5
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
4IN+  
GND  
3IN+  
3IN−  
3OUT  
2OUT  
2IN−  
2IN+  
V
DD  
2IN+  
2IN−  
8
2OUT  
NC − No internal connection  
(1) SOT−23 may or may not be indicated  
TYPICAL PIN 1 INDICATORS  
Pin 1  
Pin 1  
Pin 1  
Pin 1  
Printed or  
Molded Dot  
Stripe  
Bevel Edges  
Molded ”U” Shape  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢅ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢆꢇ ꢅ ꢈ ꢀꢁꢂ ꢃ ꢄꢉ ꢆꢇ ꢅ  
ꢏꢚ ꢛ ꢘꢋꢀ ꢍ ꢏꢜ ꢋ ꢁ ꢋꢌ ꢚꢁ ꢍ ꢊꢍ ꢛ ꢘꢝ  
µ  
SGLS275 − OCTOBER 2004  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Differential input voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.5 V  
DD  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
ID  
DD  
Input voltage range, V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.2 V to V  
Input current range, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 mA  
Output current range, I  
+ 0.2 V  
I
DD  
I
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
O
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
A
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values, except differential voltages, are with respect to GND.  
DISSIPATION RATING TABLE  
θ
θ
T
25°C  
T = 25°C  
A
POWER RATING  
JC  
JA  
A
PACKAGE  
(°C/W)  
(°C/W)  
POWER RATING  
D (8)  
38.3  
176  
710 mW  
396 mW  
D (14)  
DBV (5)  
DGK (8)  
PW (14)  
26.9  
55  
122.3  
324.1  
259.96  
173.6  
1022 mW  
385 mW  
481 mW  
720 mW  
531 mW  
201 mW  
250 mW  
374 mW  
54.23  
29.3  
recommended operating conditions  
MIN  
MAX  
16  
UNIT  
Single supply  
Split supply  
2.7  
1.35  
0
Supply voltage, V  
DD  
V
8
Common-mode input voltage range, V  
ICR  
V
DD  
−1.35  
125  
V
Operating free-air temperature, T  
Q-suffix  
−40  
°C  
A
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇ ꢅ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆꢇ ꢅ ꢈ ꢀꢁꢂ ꢃꢄ ꢉꢆ ꢇꢅ  
ꢑ ꢋꢒ ꢓꢔ ꢕ ꢆꢌ ꢖꢗ ꢘꢋꢍ ꢁ ꢆꢀꢏ ꢆꢘꢋꢍ ꢁ ꢏ ꢙꢀ ꢚ ꢙꢀ  
ꢏ ꢚꢛꢘ ꢋꢀ ꢍꢏ ꢜꢋꢁ ꢋꢌ ꢚ ꢁꢍ ꢊꢍ ꢛꢘ ꢝ  
µ
SGLS275 − OCTOBER 2004  
electrical characteristics at specified free-air temperature, V  
otherwise noted)  
= 2.7 V, 5 V, and 15 V (unless  
DD  
dc performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
T
A
UNIT  
25°C  
Full range  
25°C  
0.5  
5
7
V
Input offset voltage  
Offset voltage drift  
mV  
V
R
= V /2,  
= 10 kΩ,  
V
R
= V /2,  
= 50 Ω  
IO  
IC  
L
DD  
O DD  
S
α
VIO  
2
µV/°C  
25°C  
53  
54  
58  
57  
67  
66  
95  
76  
80  
82  
77  
79  
70  
V
R
= 0 to V −1.35V,  
DD  
IC  
S
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 2.7 V  
= 5 V  
= 50 Ω  
Full range  
25°C  
80  
85  
V
R
= 0 to V −1.35V,  
DD  
= 50 Ω  
IC  
CMRR Common-mode rejection ratio  
dB  
Full range  
25°C  
S
V
R
= 0 to V −1.35V,  
DD  
= 50 Ω  
IC  
= 15 V  
= 2.7 V  
= 5 V  
Full range  
25°C  
S
106  
110  
115  
Full range  
25°C  
Large-signal differential voltage  
amplification  
V
= V /2,  
DD  
O(PP)  
A
VD  
dB  
R = 10 kΩ  
Full range  
25°C  
L
= 15 V  
Full range  
Full range is 40°C to 125°C. If not specified, full range is 40°C to 125°C.  
input characteristics  
PARAMETER  
TEST CONDITIONS  
T
MIN  
TYP  
MAX  
60  
UNIT  
A
25°C  
125°C  
25°C  
1
I
I
Input offset current  
pA  
IO  
1000  
60  
V
V
= 15 V,  
V = V /2,  
IC DD  
DD  
= V /2, R = 50 Ω  
1
O
DD  
S
Input bias current  
pA  
IB  
125°C  
25°C  
1000  
r
Differential input resistance  
1000  
8
GΩ  
i(d)  
C
Common-mode input capacitance  
f = 21 kHz  
25°C  
pF  
IC  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢏꢚ ꢛ ꢘꢋꢀ ꢍ ꢏꢜ ꢋ ꢁ ꢋꢌ ꢚꢁ ꢍ ꢊꢍ ꢛ ꢘꢝ  
µ  
SGLS275 − OCTOBER 2004  
electrical characteristics at specified free-air temperature, V  
otherwise noted)  
= 2.7 V, 5 V, and 15 V (unless  
DD  
output characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
2.55  
2.48  
4.9  
TYP  
MAX  
T
A
UNIT  
25°C  
Full range  
25°C  
2.58  
V
V
V
V
V
V
V
V
V
V
V
V
= 2.7 V  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
4.93  
V
V
V
V
= V /2, I  
DD  
= −1 mA  
= −5 mA  
= 1 mA  
= 5 V  
IC  
IC  
IC  
IC  
OH  
OH  
OL  
OL  
Full range  
25°C  
4.85  
14.92 14.96  
14.9  
= 15 V  
= 2.7 V  
= 5 V  
Full range  
25°C  
V
OH  
High-level output voltage  
V
1.88  
1.42  
4.58  
4.44  
14.7  
14.6  
2.1  
4.68  
14.8  
0.1  
Full range  
25°C  
= V /2, I  
DD  
Full range  
25°C  
= 15 V  
= 2.7 V  
= 5 V  
Full range  
25°C  
0.15  
0.22  
0.1  
Full range  
25°C  
0.05  
0.05  
0.5  
= V /2, I  
DD  
Full range  
25°C  
0.15  
0.08  
0.1  
= 15 V  
= 2.7 V  
= 5 V  
Full range  
25°C  
V
OL  
Low-level output voltage  
V
0.7  
Full range  
25°C  
1.15  
0.4  
0.28  
0.19  
= V /2, I  
DD  
= 5 mA  
Full range  
25°C  
0.54  
0.3  
= 15 V  
Full range  
25°C  
0.35  
Positive rail  
Negative rail  
Positive rail  
Negative rail  
Positive rail  
Negative rail  
4
5
V
O
V
O
V
O
= 0.5 V from rail, V  
= 0.5 V from rail, V  
= 0.5 V from rail, V  
= 2.7 V  
= 5 V  
DD  
DD  
DD  
25°C  
25°C  
7
I
O
Output current  
mA  
25°C  
8
25°C  
13  
12  
= 15 V  
25°C  
Full range is 40°C to 125°C. If not specified, full range is 40°C to 125°C.  
Depending on package dissipation rating  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇ ꢅ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆꢇ ꢅ ꢈ ꢀꢁꢂ ꢃꢄ ꢉꢆ ꢇꢅ  
ꢑ ꢋꢒ ꢓꢔ ꢕ ꢆꢌ ꢖꢗ ꢘꢋꢍ ꢁ ꢆꢀꢏ ꢆꢘꢋꢍ ꢁ ꢏ ꢙꢀ ꢚ ꢙꢀ  
ꢏ ꢚꢛꢘ ꢋꢀ ꢍꢏ ꢜꢋꢁ ꢋꢌ ꢚ ꢁꢍ ꢊꢍ ꢛꢘ ꢝ  
ꢁꢎ  
µ  
SGLS275 − OCTOBER 2004  
electrical characteristics at specified free-air temperature, V  
otherwise noted) (continued)  
= 2.7 V, 5 V, and 15 V (unless  
DD  
power supply  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP  
470  
MAX  
560  
UNIT  
V
V
= 2.7 V  
= 5 V  
25°C  
25°C  
DD  
550  
750  
660  
DD  
I
Supply current (per channel)  
V
V
= V /2  
DD  
µA  
DD  
O
25°C  
900  
V
= 15 V  
DD  
IC  
Full range  
25°C  
1200  
70  
80  
Supply voltage rejection ratio  
= 2.7 V to 15 V,  
V
= V /2,  
DD  
DD  
PSRR  
dB  
(V  
DD  
/V  
IO  
)
No load  
Full range  
65  
Full range is 40°C to 125°C. If not specified, full range is 40°C to 125°C.  
dynamic performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.4  
3
MAX  
UNIT  
T
A
25°C  
25°C  
V
V
= 2.7 V  
DD  
R
= 2 kΩ, C = 10 pF  
L
UGBW Unity gain bandwidth  
MHz  
L
= 5 V to 15 V  
DD  
25°C  
1.4  
1
2.1  
V
V
V
= 2.7 V  
V/µs  
V/µs  
V/µs  
DD  
DD  
DD  
Full range  
25°C  
1.4  
1.2  
1.9  
1.4  
2.4  
2.1  
V
C
= V /2,  
DD  
O(PP)  
L
SR  
Slew rate at unity gain  
= 5 V  
= 50 pF, R = 10 k,  
Full range  
25°C  
L
= 15 V  
Full range  
25°C  
φ
m
Phase margin  
Gain margin  
65  
18  
°
R
R
= 2 kΩ  
= 2 kΩ  
C
C
= 10 pF  
= 10 pF  
L
L
L
25°C  
dB  
L
V
V
C
= 2.7 V,  
DD  
= 1 V, A = −1,  
= 10 pF, R = 2 kΩ  
0.1%  
0.1%  
2.9  
2
(STEP)PP  
V
L
L
t
s
Settling time  
25°C  
µs  
V
V
C
= 5 V, 15 V,  
= 1 V, A = −1,  
= 47 pF, R = 2 kΩ  
DD  
(STEP)PP  
V
L
L
Full range is 40°C to 125°C. If not specified, full range is 40°C to 125°C.  
noise/distortion performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.02%  
0.05%  
0.18%  
0.02%  
0.09%  
0.5%  
39  
MAX  
UNIT  
T
A
A
V
= 1  
V
V
R
= 2.7 V,  
DD  
O(PP)  
L
A
= 10  
= 100  
= 1  
= V /2 V,  
DD  
25°C  
25°C  
V
= 2 k, f = 10 kHz  
A
V
THD + N Total harmonic distortion plus noise  
A
V
V
V
R
= 5 V, 5 V,  
= V /2 V,  
DD  
O(PP)  
A
V
= 10  
= 100  
DD  
= 2 k, f = 10K  
L
A
V
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
nV/Hz  
fA/Hz  
V
I
Equivalent input noise voltage  
Equivalent input noise current  
25°C  
25°C  
n
35  
0.6  
n
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢏꢚ ꢛ ꢘꢋꢀ ꢍ ꢏꢜ ꢋ ꢁ ꢋꢌ ꢚꢁ ꢍ ꢊꢍ ꢛ ꢘꢝ  
µ  
SGLS275 − OCTOBER 2004  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
1
CMRR  
Common-mode rejection ratio  
Input bias and offset current  
Low-level output voltage  
High-level output voltage  
Peak-to-peak output voltage  
Supply current  
vs Frequency  
vs Free-air temperature  
vs Low-level output current  
vs High-level output current  
vs Frequency  
2
V
V
V
3, 5, 7  
4, 6, 8  
9
OL  
OH  
O(PP)  
I
vs Supply voltage  
vs Frequency  
10  
DD  
PSRR  
Power supply rejection ratio  
Differential voltage gain & phase  
Gain-bandwidth product  
11  
A
VD  
vs Frequency  
12  
vs Free-air temperature  
vs Supply voltage  
vs Free-air temperature  
vs Capacitive load  
vs Frequency  
13  
14  
SR  
Slew rate  
15  
φ
m
Phase margin  
16  
V
n
Equivalent input noise voltage  
Voltage-follower large-signal pulse response  
Voltage-follower small-signal pulse response  
Inverting large-signal response  
Inverting small-signal response  
Crosstalk  
17  
18, 19  
20  
21, 22  
23  
vs Frequency  
24  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇ ꢅ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆꢇ ꢅ ꢈ ꢀꢁꢂ ꢃꢄ ꢉꢆ ꢇꢅ  
ꢑ ꢋꢒ ꢓꢔ ꢕ ꢆꢌ ꢖꢗ ꢘꢋꢍ ꢁ ꢆꢀꢏ ꢆꢘꢋꢍ ꢁ ꢏ ꢙꢀ ꢚ ꢙꢀ  
ꢊꢋ  
ꢁꢎ  
µ  
ꢚꢛꢘ ꢋꢀ ꢍꢏ ꢜꢋꢁ ꢋꢌ ꢚ ꢁꢍ ꢊꢍ ꢛꢘ ꢝ  
SGLS275 − OCTOBER 2004  
TYPICAL CHARACTERISTICS  
COMMON-MODE REJECTION RATIO  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
INPUT BIAS AND OFFSET CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
FREQUENCY  
2.80  
2.40  
2.00  
1.60  
1.20  
0.80  
0.40  
0.00  
300  
250  
200  
150  
100  
50  
120  
V
= 2.7 V  
DD  
V
V
= 2.7 V, 5 V and 10 V  
DD  
= V /2  
T
A
= 125 °C  
100  
80  
IC  
DD  
V
= 5 V, 10 V  
DD  
60  
V
= 2.7 V  
DD  
T
A
= 70 °C  
40  
20  
0
T
A
= 25 °C  
T
A
= 0 °C  
0
T
A
= 40 °C  
−50  
0
2
4
6
8
10 12 14 16 18 20 22 24  
10  
100  
1 k  
10 k  
100 k  
1 M  
−402510 5 20 35 50 65 80 95 110 125  
I
− Low-Level Output Current − mA  
OL  
f − Frequency − Hz  
T
A
− Free-Air Temperature − °C  
Figure 2  
Figure 1  
Figure 3  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
5.00  
5.00  
4.50  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
2.80  
2.40  
2.00  
1.60  
1.20  
0.80  
0.40  
0.00  
V
= 5 V  
V
= 5 V  
DD  
CC  
V
= 2.7 V  
DD  
4.50  
4.00  
3.50  
3.00  
T
= −40°C  
A
T
= 125 °C  
A
T
A
= 0°C  
T
=−40°C  
A
T
A
= 70 °C  
T
= 125°C  
= 70°C  
A
2.50  
2.00  
T
= 25°C  
T
A
A
T
= 25 °C  
A
T
= 25°C  
= 0°C  
A
1.50  
1.00  
0.50  
0.00  
T
A
= 70°C  
T
= 0 °C  
A
T
A
T
A
= −40 °C  
T
A
= 125°C  
0
5
10 15 20 25 30 35 40 45  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
0
1
2
3
4
5
6
7
8
9
10 11 12  
I
− Low-Level Output Current − mA  
I
− High-Level Output Current − mA  
I
− High-Level Output Current − mA  
OL  
OH  
OH  
Figure 5  
Figure 4  
Figure 6  
PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
FREQUENCY  
11  
10  
8
10  
8
V
= 10 V  
DD  
V
= 10 V  
V
= 10 V  
10  
9
DD  
DD  
T
A
=125°C  
A
V
= −10  
T
=70°C  
=25°C  
R
C
T
= 2 kΩ  
= 10 pF  
= 25°C  
8
A
L
L
A
T
A
= −40°C  
7
T
A
6
6
6
THD = 5%  
T
=0°C  
A
5
T
= 0°C  
A
4
4
V
= 5 V  
DD  
T
=−40°C  
4
A
T
= 25°C  
A
3
2
2
T
= 70°C  
2
1
0
A
V
= 2.7 V  
DD  
T
A
= 125°C  
0
0
10  
100  
1 k  
10 k 100 k 1 M  
10 M  
20  
40  
60  
80  
100  
120  
0
0
20  
40  
60  
80  
100  
120  
f − Frequency − Hz  
I
− Low-Level Output Current − mA  
I
− High-Level Output Current − mA  
OL  
OH  
Figure 8  
Figure 7  
Figure 9  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢅ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢆꢇ ꢅ ꢈ ꢀꢁꢂ ꢃ ꢄꢉ ꢆꢇ ꢅ  
ꢏꢚ ꢛ ꢘꢋꢀ ꢍ ꢏꢜ ꢋ ꢁ ꢋꢌ ꢚꢁ ꢍ ꢊꢍ ꢛ ꢘꢝ  
µ  
SGLS275 − OCTOBER 2004  
TYPICAL CHARACTERISTICS  
POWER SUPPLY REJECTION RATIO  
SUPPLY CURRENT  
vs  
vs  
FREQUENCY  
SUPPLY VOLTAGE  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
120  
100  
A
V
= 1  
T
A
= 25°C  
V
IC  
= V / 2  
DD  
T
A
= 125°C  
T
= 70°C  
V
= 5 V, 10 V  
A
DD  
80  
60  
V
= 2.7 V  
DD  
T
A
= 25°C  
40  
T
A
= 0°C  
T
A
= −40°C  
20  
0
10  
100  
1 k  
10 k  
100 k  
1 M  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
f − Frequency − Hz  
V
− Supply Voltage − V  
DD  
Figure 11  
Figure 10  
DIFFERENTIAL VOLTAGE GAIN AND PHASE  
GAIN BANDWIDTH PRODUCT  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
180  
135  
90  
120  
100  
80  
4.0  
3.5  
V
= 10 V  
Phase  
DD  
3.0  
2.5  
45  
60  
V
= 5 V  
DD  
0
40  
2.0  
1.5  
1.0  
Gain  
V
= 2.7 V  
DD  
−45  
−90  
−135  
−180  
20  
V
=5 V  
0
DD  
L
L
R =2 kΩ  
C =10 pF  
−20  
0.5  
0.0  
T
=25°C  
A
−40  
10  
−40 −2510  
5
20 35 50 65 80 95 110 125  
100  
1 k  
10 k 100 k 1 M  
10 M  
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 13  
Figure 12  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
PHASE MARGIN  
vs  
CAPACITIVE LOAD  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5 V  
DD  
R = 2 kΩ  
SR−  
3.0  
2.5  
2.0  
L
T
= 25°C  
= Open Loop  
A
SR−  
SR+  
A
V
R
= 100  
null  
SR+  
1.5  
1.0  
R
= 0  
null  
V
A
R
= 5 V  
= 1  
= 10 kΩ  
= 50 pF  
A
= 1  
DD  
V
L
L
V
L
L
R
C
T
= 10 kΩ  
= 50 pF  
= 25°C  
R
= 50  
null  
0.5  
0.0  
C
A
V = 3 V  
I
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
2.5  
4.5  
6.5  
8.5  
10.5 12.5 14.5  
10  
100  
1000  
T
A
− Free-Air Temperature − °C  
V
− Supply Voltage −V  
CC  
C
− Capacitive Load − pF  
L
Figure 15  
Figure 14  
Figure 16  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇ ꢅ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆꢇ ꢅ ꢈ ꢀꢁꢂ ꢃꢄ ꢉꢆ ꢇꢅ  
ꢑ ꢋꢒ ꢓꢔ ꢕ ꢆꢌ ꢖꢗ ꢘꢋꢍ ꢁ ꢆꢀꢏ ꢆꢘꢋꢍ ꢁ ꢏ ꢙꢀ ꢚ ꢙꢀ  
ꢏ ꢚꢛꢘ ꢋꢀ ꢍꢏ ꢜꢋꢁ ꢋꢌ ꢚ ꢁꢍ ꢊꢍ ꢛꢘ ꢝ  
ꢊꢋ  
ꢁꢎ  
µ  
SGLS275 − OCTOBER 2004  
TYPICAL CHARACTERISTICS  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
FREQUENCY  
100  
4
V
= 2.7, 5, 10 V  
DD  
= 25°C  
3
2
90  
80  
T
A
V
A
R
= 5 V  
= 1  
= 2 kΩ  
= 10 pF  
DD  
V
L
L
1
0
V
70  
60  
I
C
V = 3 V  
I
PP  
50  
T
= 25°C  
A
40  
30  
3
2
20  
1
0
V
O
10  
0
0
2
4
6
8
10 12 14 16 18  
10  
100  
1 k  
10 k  
100 k  
f − Frequency − Hz  
t − Time − µs  
Figure 18  
Figure 17  
VOLTAGE-FOLLOWER SMALL-SIGNAL  
PULSE RESPONSE  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
8
0.12  
6
0.08  
0.04  
0.00  
V
= 10 V  
DD  
= 1  
V
A
= 5 V  
= 1  
DD  
V
4
2
0
A
V
R
C
= 2 kΩ  
= 10 pF  
L
L
I
V
R
= 2 kΩ  
I
L
V
V
I
C
= 10 pF  
L
V = 6 V  
T
A
PP  
= 25°C  
V = 100 mV  
I
PP  
T
A
= 25°C  
0.12  
0.08  
0.04  
0.00  
6
4
2
0
V
O
O
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
0
2
4
6
8
10 12 14 16 18  
t − Time − µs  
t − Time − µs  
Figure 20  
Figure 19  
INVERTING LARGE-SIGNAL RESPONSE  
4
INVERTING LARGE-SIGNAL RESPONSE  
8
V
I
3
2
1
6
V
A
= 10 V  
= V = −1  
I
V
A
R
= 5 V  
= 1  
= 2 kΩ  
= 10 pF  
DD  
V
DD  
V
L
L
I
4
2
0
R
C
T
= 2 kΩ  
= 10 pF  
= 25°C  
L
L
A
V
I
C
0
V = 3 V  
PP  
T
A
= 25°C  
6
4
2
3
V
O
2
1
0
0
V
O
0
2
4
6
8
10 12 14 16  
0
2
4
6
8
10 12 14 16  
t − Time − µs  
t − Time − µs  
Figure 22  
Figure 21  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢅ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢆꢇ ꢅ ꢈ ꢀꢁꢂ ꢃ ꢄꢉ ꢆꢇ ꢅ  
ꢏꢚ ꢛ ꢘꢋꢀ ꢍ ꢏꢜ ꢋ ꢁ ꢋꢌ ꢚꢁ ꢍ ꢊꢍ ꢛ ꢘꢝ  
ꢑ ꢋꢒ ꢓ ꢔ ꢕ ꢆꢌꢖꢗ ꢘꢋ ꢍ ꢁꢆꢀꢏ ꢆꢘꢋꢍ ꢁ ꢏ ꢙꢀ ꢚꢙꢀ  
µ  
SGLS275 − OCTOBER 2004  
TYPICAL CHARACTERISTICS  
CROSSTALK  
vs  
FREQUENCY  
INVERTING SMALL-SIGNAL RESPONSE  
0
V
= 2.7, 5, & 15 V  
DD  
V = 1 V /2  
−20  
I
DD  
0.10  
A
V
= 1  
R
T
A
= 2 kΩ  
= 25°C  
L
−40  
−60  
V
= 5 V  
DD  
0.05  
0.00  
A
= V = −1  
V
I
V
I
R
C
= 2 kΩ  
= 10 pF  
L
L
V = 100 mV  
I
pp  
−80  
0.10  
0.05  
0.00  
T
= 25°C  
A
V
O
−100  
−120  
−140  
Crosstalk  
10  
100  
1 k  
10 k  
100 k  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
f − Frequency − Hz  
t − Time − µs  
Figure 24  
Figure 23  
APPLICATION INFORMATION  
driving a capacitive load  
When the amplifier is configured in this manner, capacitive loading directly on the output decreases the device’s  
phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than  
10 pF, it is recommended that a resistor be placed in series (R  
) with the output of the amplifier, as shown  
NULL  
in Figure 25. A minimum value of 20 should work well for most applications.  
R
F
R
G
R
NULL  
+
Input  
Output  
LOAD  
C
V
DD  
/2  
Figure 25. Driving a Capacitive Load  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇ ꢅ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆꢇ ꢅ ꢈ ꢀꢁꢂ ꢃꢄ ꢉꢆ ꢇꢅ  
ꢑ ꢋꢒ ꢓꢔ ꢕ ꢆꢌ ꢖꢗ ꢘꢋꢍ ꢁ ꢆꢀꢏ ꢆꢘꢋꢍ ꢁ ꢏ ꢙꢀ ꢚ ꢙꢀ  
ꢏ ꢚꢛꢘ ꢋꢀ ꢍꢏ ꢜꢋꢁ ꢋꢌ ꢚ ꢁꢍ ꢊꢍ ꢛꢘ ꢝ  
ꢊꢋ  
µ  
SGLS275 − OCTOBER 2004  
APPLICATION INFORMATION  
offset voltage  
The output offset voltage (V ) is the sum of the input offset voltage (V ) and both input bias currents (I ) times  
OO  
IO  
IB  
the corresponding gains. The following schematic and formula can be used to calculate the output offset  
voltage:  
R
F
I
IB−  
R
G
+
R
R
+
F
F
V
I
V
+ V  
1 ) ǒ Ǔ " I  
R
1 ) ǒ Ǔ " I  
R
V
O
ǒ Ǔ ǒ Ǔ  
OO  
IO  
IB)  
S
IB–  
F
R
R
G
G
R
S
I
IB+  
Figure 26. Output Offset Voltage Model  
general configurations  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often  
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier  
(see Figure 27).  
R
R
F
G
V
R
R
O
F
1
ǒ
Ǔ
+
+
ǒ
1 )  
Ǔ
V
1 ) sR1C1  
I
G
V
DD  
/2  
1
V
O
f
+
–3dB  
V
I
2pR1C1  
R1  
C1  
Figure 27. Single-Pole Low-Pass Filter  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task. For the best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency  
bandwidth. Failure to do this can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
+
–3dB  
2pRC  
C2  
R
F
1
R
=
G
R
F
2 −  
)
R
(
Q
G
V
DD  
/2  
Figure 28. 2-Pole Low-Pass Sallen-Key Filter  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢅ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢆꢇ ꢅ ꢈ ꢀꢁꢂ ꢃ ꢄꢉ ꢆꢇ ꢅ  
ꢏꢚ ꢛ ꢘꢋꢀ ꢍ ꢏꢜ ꢋ ꢁ ꢋꢌ ꢚꢁ ꢍ ꢊꢍ ꢛ ꢘꢝ  
ꢑ ꢋꢒ ꢓ ꢔ ꢕ ꢆꢌꢖꢗ ꢘꢋ ꢍ ꢁꢆꢀꢏ ꢆꢘꢋꢍ ꢁ ꢏ ꢙꢀ ꢚꢙꢀ  
µ
SGLS275 − OCTOBER 2004  
APPLICATION INFORMATION  
circuit layout considerations  
To achieve the levels of high performance of the TLV27x, follow proper printed-circuit board design techniques.  
A general set of guidelines is given in the following.  
D
Ground planes—It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and  
output, the ground plane can be removed to minimize the stray capacitance.  
D
Proper power supply decoupling—Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic  
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers  
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal  
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply  
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less  
effective. The designer should strive for distances of less than 0.1 inches between the device power  
terminals and the ceramic capacitors.  
D
D
Sockets—Sockets can be used but are not recommended. The additional lead inductance in the socket pins  
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board  
is the best implementation.  
Short trace runs/compact part placements—Optimum high performance is achieved when stray series  
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,  
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of  
the amplifier. Its length should be kept as short as possible. This helps to minimize stray capacitance at the  
input of the amplifier.  
D
Surface-mount passive components—Using surface-mount passive components is recommended for high  
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be  
kept as short as possible.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇ ꢅ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢃ ꢆꢇ ꢅ ꢈ ꢀꢁꢂ ꢃꢄ ꢉꢆ ꢇꢅ  
ꢑ ꢋꢒ ꢓꢔ ꢕ ꢆꢌ ꢖꢗ ꢘꢋꢍ ꢁ ꢆꢀꢏ ꢆꢘꢋꢍ ꢁ ꢏ ꢙꢀ ꢚ ꢙꢀ  
ꢏ ꢚꢛꢘ ꢋꢀ ꢍꢏ ꢜꢋꢁ ꢋꢌ ꢚ ꢁꢍ ꢊꢍ ꢛꢘ ꢝ  
ꢊꢋ  
ꢁꢎ  
µ  
SGLS275 − OCTOBER 2004  
APPLICATION INFORMATION  
general power dissipation considerations  
For a given θ , the maximum power dissipation is shown in Figure 29 and is calculated by the following formula:  
JA  
T
–T  
MAX  
A
P
+
ǒ Ǔ  
D
q
JA  
Where:  
P
= Maximum power dissipation of TLV27x IC (watts)  
= Absolute maximum junction temperature (150°C)  
= Free-ambient air temperature (°C)  
D
T
MAX  
T
A
θ
= θ + θ  
JA  
JC CA  
θ
θ
= Thermal coefficient from junction to case  
JC  
= Thermal coefficient from case to ambient air (°C/W)  
CA  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
2
T
= 150°C  
PDIP Package  
J
Low-K Test PCB  
1.75  
θ
= 104°C/W  
JA  
1.5  
1.25  
1
MSOP Package  
Low-K Test PCB  
SOIC Package  
Low-K Test PCB  
θ
= 260°C/W  
JA  
θ
= 176°C/W  
JA  
0.75  
0.5  
SOT-23 Package  
Low-K Test PCB  
0.25  
0
θ
= 324°C/W  
JA  
−5540 −25 −10  
5
20 35 50 65 80 95 110 125  
T
A
− Free-Air Temperature − °C  
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.  
Figure 29. Maximum Power Dissipation vs Free-Air Temperature  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇꢅ ꢈ ꢀ ꢁꢂ ꢃ ꢄꢃ ꢆꢇ ꢅ ꢈ ꢀꢁꢂ ꢃ ꢄꢉ ꢆꢇ ꢅ  
ꢏꢚ ꢛ ꢘꢋꢀ ꢍ ꢏꢜ ꢋ ꢁ ꢋꢌ ꢚꢁ ꢍ ꢊꢍ ꢛ ꢘꢝ  
ꢑ ꢋꢒ ꢓ ꢔ ꢕ ꢆꢌꢖꢗ ꢘꢋ ꢍ ꢁꢆꢀꢏ ꢆꢘꢋꢍ ꢁ ꢏ ꢙꢀ ꢚꢙꢀ  
µ  
SGLS275 − OCTOBER 2004  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim PartsRelease 9.1, the model generation  
software used with Microsim PSpice. The Boyle macromodel (see Note 2) and subcircuit in Figure 30 are  
generated using TLV27x typical electrical and operating characteristics at T = 25°C. Using this information,  
A
output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
3
99  
V
DD  
+
egnd  
rd1  
11  
rd2  
12  
rss  
ro2  
css  
fb  
rp  
c1  
7
+
c2  
vlim  
8
1
2
+
r2  
9
6
IN+  
IN−  
vc  
D
S
D
S
+
vb  
ga  
G
G
ro1  
gcm  
ioff  
53  
OUT  
dp  
5
dlp  
dln  
91  
90  
92  
10  
+
+
iss  
dc  
vlp  
hlim  
vln  
+
GND  
+ 54  
4
de  
ve  
*DEVICE=amp_tlv27x_highVdd,OP AMP,NJF,INT  
ga  
6
0
11 12 16.272E−6  
10 99 6.8698E−9  
dc 1.3371E−6  
vlim 1K  
* amp_tlv_27x_highVdd operational amplifier ”macromodel”  
gcm  
iss  
0
6
* subcircuit updated using Model Editor release 9.1 on 05/15/00  
* at 14:40 Model Editor is an OrCAD product.  
*
10  
90  
11  
12  
6
4
hlim  
j1  
J2  
r2  
rd1  
rd2  
ro1  
ro2  
rp  
rss  
vb  
vc  
ve  
vlim  
vlp  
vln  
.model  
.model dy  
.model jx1  
.model jx2  
.ends  
0
2
10 jx1  
* connections:  
non-inverting input  
| inverting input  
1
10 jx2  
*
*
*
*
*
9
100.00E3  
61.456E3  
61.456E3  
10  
| | positive power supply  
| | | negative power supply  
| | | | output  
3
11  
12  
5
3
8
| | | | |  
7
99  
4
10  
.subckt amp_tlv27x_highVdd 1 2 3 4 5  
*
3
150.51E3  
149.58E6  
dc 0  
10  
9
99  
0
c1  
11  
6
12 457.48E−15  
c2  
7
5.0000E−12  
3
53  
4
dc .78905  
dc .78905  
dc 0  
dc 14.200  
dc 14.200  
css  
dc  
10  
5
99 1.1431E−12  
53 dy  
54  
7
8
de  
54  
90  
92  
4
99  
7
5
dy  
91  
0
0
dlp  
dln  
dp  
egnd  
fb  
91 dx  
90 dx  
92  
dx  
D(Is=800.00E−18)  
3
0
dx  
D(Is=800.00E−18 Rs=1m Cjo=10p)  
poly(2) (3,0) (4,0) 0 .5 .5  
NJF(Is=500.00E−15 Beta=198.03E−6 Vto=−1)  
NJF(Is=500.00E−15 Beta=198.03E−6 Vto=−1)  
99 poly(5) vb vc ve vlp vln 0  
176.02E6 −1E3 1E3 180E6  
−180E6  
Figure 30. Boyle Macromodel and Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Feb-2005  
PACKAGING INFORMATION  
Orderable Device  
TLV271QDBVRQ1  
TLV271QDRQ1  
TLV272QDRQ1  
TLV274QDRQ1  
TLV274QPWRQ1  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOT-23  
DBV  
5
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
SOIC  
D
D
8
2500  
2500  
2500  
2000  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
8
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
SOIC  
D
14  
14  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
TSSOP  
PW  
None  
CU NIPDAU Level-1-250C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

TLV274QDRQ1

FAMILY OF 500-UA/CH 3-MHZ RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV274QPWRG4Q1

Automotive-grade, quad, 16-V, 3-MHz operational amplifier | PW | 14 | -40 to 125
TI

TLV274QPWRQ1

FAMILY OF 500-UA/CH 3-MHZ RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV2760

FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN
TI

TLV2760CD

FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN
TI

TLV2760CDR

FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN
TI

TLV2760ID

FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN
TI

TLV2760IDBV

FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN
TI

TLV2760IDBVR

FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN
TI

TLV2760IDBVRG4

Single 1.8-V, Micro-power, Rail-to-Rail, Single Supply Amplifier with Shutdown 6-SOT-23 -40 to 85
TI

TLV2760IDBVT

FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN
TI

TLV2760IDBVTG4

Single, 3.6-V, 500-kHz, RRIO operational amplifier with shutdown | DBV | 6 | -40 to 85
TI