TLV2772-Q1 [TI]

汽车级、双路、5.5V、5.1MHz、高压摆率 (10.5V/μs) 运算放大器;
TLV2772-Q1
型号: TLV2772-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车级、双路、5.5V、5.1MHz、高压摆率 (10.5V/μs) 运算放大器

放大器 高压 运算放大器 放大器电路
文件: 总41页 (文件大小:828K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢄꢅ ꢊꢆ ꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘ ꢗꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
D
D
Qualified for Automotive Applications  
D
D
D
Rail-to-Rail Output  
Customer-Specific Configuration Control  
Can Be Supported Along With  
Major-Change Approval  
360 µV Input Offset Voltage  
Low Distortion Driving 600-Ω  
0.005% THD+N  
D
D
D
High Slew Rate . . . 10.5 V/µs Typ  
High-Gain Bandwidth . . . 5.1 MHz Typ  
Supply Voltage Range 2.5 V to 5.5 V  
D
D
D
D
D
D
1 mA Supply Current (Per Channel)  
17 nV/Hz Input Noise Voltage  
2 pA Input Bias Current  
Characterized From T = −55°C to 125°C  
A
Available in MSOP and SOT-23 Packages  
Micropower Shutdown Mode . . . I  
< 1 µA  
DD  
description  
The TLV277x CMOS operational amplifier family combines high slew rate and bandwidth, rail-to-rail output  
swing, high output drive, and excellent dc-precision. The device provides 10.5 V/µs of slew rate and 5.1 MHz  
of bandwidth while only consuming 1 mA of supply current per channel. This ac-performance is much higher  
than current competitive CMOS amplifiers. The rail-to-rail output swing and high output drive make these  
devices a good choice for driving the analog input or reference of analog-to-digital converters. These devices  
also have low distortion while driving a 600-load for use in telecom systems.  
These amplifiers have a 360-µV input offset voltage, a 17 nV/Hz input noise voltage, and a 2-pA input bias  
current for measurement, medical, and industrial applications. The TLV277x family is also specified across an  
extended temperature range (−40°C to 125°C), making it useful for automotive systems.  
These devices operate from a 2.5-V to 5.5-V single supply voltage and are characterized at 2.7 V and 5 V. The  
single-supply operation and low power consumption make these devices a good solution for portable  
applications. The following table lists the packages available.  
FAMILY PACKAGE TABLE  
NUMBER  
OF  
CHANNELS  
PACKAGE TYPES  
UNIVERSAL  
EVM BOARD  
DEVICE  
SHUTDOWN  
SOIC TSSOP SOT−23  
TLV2770  
TLV2771  
TLV2772  
TLV2773  
TLV2774  
TLV2775  
1
1
2
2
4
4
8
8
8
5
Yes  
See the EVM  
Selection Guide  
(SLOU060)  
8
14  
14  
16  
14  
16  
Yes  
Yes  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢧ  
Copyright 2005 Texas Instruments Incorporated  
ꢣ ꢧ ꢤ ꢣꢜ ꢝꢯ ꢟꢞ ꢢ ꢪꢪ ꢨꢢ ꢠ ꢢ ꢡ ꢧ ꢣ ꢧ ꢠ ꢤ ꢐ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢋꢊꢌ ꢍ ꢁꢎ ꢏꢋ ꢃ ꢐ ꢄꢆꢂ ꢑꢍ ꢒ ꢑꢆꢓ ꢁꢔ ꢕꢆꢖꢊꢀꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗꢀ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
A SELECTION OF SINGLE-SUPPLY OPERATIONAL AMPLIFIER PRODUCTS  
V
(V)  
BW  
(MHz)  
SLEW RATE  
I
(per channel)  
(µA)  
DD  
DD  
DEVICE  
RAIL-TO-RAIL  
(V/µs)  
TLV277X  
TLV247X  
TLV245X  
TLV246X  
2.5 − 6  
2.7 − 6  
2.7 − 6  
2.7 − 6  
5.1  
2.8  
10.5  
1.5  
1000  
600  
23  
O
I/O  
I/O  
I/O  
0.22  
6.4  
0.11  
1.6  
550  
All specifications measured at 5 V.  
ORDERING INFORMATION  
V
max  
IO  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
T
A
AT 25°C  
PACKAGE  
(mV)  
§
2.5  
1.6  
2.5  
2.5  
1.6  
SOIC (D)  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
TLV2770QDRQ1  
−40°C to 125°C  
−40°C to 125°C  
§
SOIC (D)  
TLV2770AQDRQ1  
SOT−23  
TLV2771QDBVRQ1  
VBPQ  
§
TLV2771QDRQ1  
SOIC (D)  
§
SOIC (D)  
TLV2771AQDRQ1  
SOIC (D)  
TLV2772QDRQ1  
TLV2772QI  
TLV2772QI  
TLV2772AQ  
TLV2772AQ  
2.5  
1.6  
TSSOP (PW)  
SOIC (D)  
TLV2772QPWRQ1  
TLV2772AQDRQ1  
TLV2772AQPWRQ1  
−40°C to 125°C  
−40°C to 125°C  
−40°C to 125°C  
TSSOP (PW)  
SOIC (D)  
§
TLV2773QDRQ1  
2.5  
1.6  
§
TLV2773AQDRQ1  
SOIC (D)  
§
TLV2774QDRQ1  
SOIC (D)  
2.7  
2.1  
2.7  
2.1  
§
TLV2774QPWRQ1  
TSSOP (PW)  
SOIC (D)  
§
TLV2774AQDRQ1  
§
§
TSSOP (PW)  
SOIC (D)  
TLV2774AQPWRQ1  
§
TLV2775QDRQ1  
§
TLV2775QPWRQ1  
TSSOP (PW)  
SOIC (D)  
−40°C to 125°C  
§
TLV2775AQDRQ1  
TSSOP (PW)  
TLV2775AQPWRQ1  
§
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available  
at www.ti.com/sc/package.  
Product Preview  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗ ꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
TLV277x PACKAGE PINOUTS  
TLV2770  
TLV2771  
TLV2771  
DBV PACKAGE  
(TOP VIEW)  
D PACKAGE  
(TOP VIEW)  
D PACKAGE  
(TOP VIEW)  
1
2
3
5
V
DD  
OUT  
GND  
NC  
IN−  
SHDN  
NC  
IN−  
NC  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
V
V
DD  
DD  
IN+  
OUT  
NC  
IN+  
OUT  
NC  
GND  
GND  
4
IN−  
IN+  
TLV2774  
TLV2773  
D OR PW PACKAGE  
(TOP VIEW)  
D PACKAGE  
(TOP VIEW)  
TLV2772  
D OR PW PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN−  
1IN+  
GND  
NC  
V
1OUT  
1IN−  
1IN+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
4OUT  
4IN−  
4IN+  
GND  
3IN+  
3IN−  
3OUT  
DD  
2OUT  
2IN−  
2IN+  
NC  
1OUT  
1IN−  
1IN+  
GND  
V
1
2
3
4
8
7
6
5
DD  
2OUT  
2IN−  
2IN+  
V
DD  
2IN+  
2IN−  
1SHDN  
NC  
2SHDN  
NC  
8
8
2OUT  
TLV2775  
D OR PW PACKAGE  
(TOP VIEW)  
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
4IN+  
V
GND  
DD  
2IN+  
2IN−  
3IN+  
3IN−  
2OUT  
3OUT  
3/4SHDN  
1/2SHDN  
NC − No internal connection  
This device is in the Product Preview stage of development. Contact your local Texas Instruments sales office for availability.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢋꢊꢌ ꢍ ꢁꢎ ꢏꢋ ꢃ ꢐ ꢄꢆꢂ ꢑꢍ ꢒ ꢑꢆꢓ ꢁꢔ ꢕꢆꢖꢊꢀꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗꢀ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Input voltage range, V (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V  
V
ID  
DD  
DD  
I
Input current, I (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 mA  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
O
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
DD+  
Total current out of GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Duration of short-circuit current (at or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to GND.  
2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought  
below GND − 0.3 V.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
ESD RATING TABLE  
Human Body Model  
Charged-Device Model  
Machine Model  
2 (H1C)  
1 (C5)  
kV  
V
(4)  
ESD rating  
150 (M2)  
NOTE 4: ESD protection level per AEC Q100 Classification TLV2771QDBVRQ1  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
POWER RATING  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
A
D
725 mW  
5.8 mW/°C  
3.5 mW/°C  
5.6 mW/°C  
464 mW  
377 mW  
145 mW  
DBV  
PW  
437 mW  
280 mW  
227 mW  
87 mW  
700 mW  
448 mW  
364 mW  
140 mW  
recommended operating conditions  
Q SUFFIX  
UNIT  
MIN  
2.5  
MAX  
Supply voltage, V  
DD  
6
V
V
Input voltage range, V  
GND  
GND  
−40  
V
V
1.3  
I
DD+  
Common-mode input voltage, V  
IC  
1.3  
V
DD+  
Operating free-air temperature, T  
125  
°C  
A
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗ ꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
electrical characteristics at specified free-air temperature, V  
= 2.7 V (unless otherwise noted)  
DD  
TLV2771-Q1  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
mV  
A
MIN  
TYP MAX  
25°C  
0.48  
0.53  
2.5  
2.7  
V
V
= 0, V = 0, R = 50 Ω  
IC  
O
S
V
IO  
Input offset voltage  
=
1.35 V, No load  
Full range  
DD  
Temperature coefficient of input  
offset voltage  
25°C to  
125°C  
α
2
µV/°C  
pA  
VIO  
25°C  
Full range  
25°C  
1
2
60  
125  
60  
I
IO  
Input offset current  
Input bias current  
V
= 0, V = 0, R = 50 Ω  
IC  
O
S
2
I
IB  
pA  
Full range  
25°C  
6
350  
2.6  
2.5  
2.4  
2.1  
0.1  
0.2  
0.21  
0.6  
380  
I
I
= 0.675 mA  
= 2.2 mA  
OH  
Full range  
25°C  
V
High-level output voltage  
Low-level output voltage  
V
OH  
OL  
OH  
Full range  
25°C  
V
V
= 1.35 V, I  
= 0.675 mA  
IC  
OL  
OL  
Full range  
25°C  
V
V
= 1.35 V, I  
= 2.2 mA  
IC  
Full range  
25°C  
}
20  
13  
Large-signal differential voltage  
amplification  
V
IC  
V
O
= 1.35 V, R = 10 kΩ ,  
= 0.6 V to 2.1 V  
L
A
VD  
V/mV  
Full range  
25°C  
12  
10  
r
Differential input resistance  
pF  
i(d)  
c
z
Common-mode input capacitance  
Closed-loop output impedance  
f = 10 kHz  
f = 100 kHz, A = 10  
25°C  
8
25  
84  
82  
89  
84  
1
i(c)  
o
25°C  
V
25°C  
60  
60  
70  
70  
V
R
= 0 to 1.5 V, V = V  
= 50 Ω  
/2,  
DD  
IC  
O
CMRR  
Common-mode rejection ratio  
Supply voltage rejection ratio  
dB  
dB  
Full range  
25°C  
S
V
= 2.7 V to 5 V, V = V /2,  
IC DD  
DD  
k
SVR  
(V  
DD  
/V  
IO  
)
No load  
Full range  
25°C  
2
2
I
Supply current (per channel)  
V
O
= V  
DD  
/2, No load  
mA  
DD  
Full range  
Full range is − 40°C to 125°C for Q level part.  
Referenced to 1.35 V  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
operating characteristics at specified free-air temperature, V  
= 2.7 V (unless otherwise noted)  
DD  
TLV2771-Q1  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/µs  
T
A
MIN  
5
TYP MAX  
25°C  
9
6
SR  
Slew rate at unity gain  
Equivalent input noise voltage  
V
= 0.8 V, C = 100 pF, R = 10 kΩ  
O(PP) L L  
Full range  
25°C  
4.7  
f = 1 kHz  
21  
nV/Hz  
V
n
f = 10 kHz  
25°C  
17  
f = 0.1 Hz to 1 Hz  
25°C  
0.33  
0.86  
0.6  
µV  
µV  
Peak-to-peak equivalent input  
noise voltage  
V
I
N(PP)  
f = 0.1 Hz to 10 Hz  
f = 100 Hz  
25°C  
Equivalent input noise current  
25°C  
fA/Hz  
n
A
= 1  
0.0085%  
V
Total harmonic distortion plus  
noise  
A
V
= 10  
= 100  
0.025%  
0.12%  
4.8  
THD + N  
R
= 600 , f = 1 kHz  
25°C  
L
A
V
Gain-bandwidth product  
Settling time  
25°C  
25°C  
MHz  
f = 10 kHz, R = 600 , C = 100 pF  
L
L
A
= −1,  
0.1%  
0.186  
3.92  
V
Step = 0.85 V to 1.85 V,  
t
s
µs  
0.01%  
25°C  
R
R
= 600 , C = 100 pF  
L
L
L
φ
m
Phase margin at unity gain  
Gain margin  
25°C  
25°C  
46°  
= 600 , C = 100 pF  
L
12  
dB  
Full range is 40°C to 125°C.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗ ꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLV2771-Q1  
TEST  
PARAMETER  
CONDITIONS  
T
UNIT  
mV  
A
MIN  
TYP MAX  
25°C  
0.5  
0.6  
2.5  
2.7  
V
IC  
V
O
= 0, No load  
V
IO  
Input offset voltage  
= 0, R = 50 , V  
= 2.5 V  
Full range  
S
DD  
Temperature coefficient of input  
offset voltage  
25°C to  
125°C  
α
2
µV/°C  
pA  
VIO  
25°C  
Full range  
25°C  
1
2
60  
125  
60  
I
IO  
Input offset current  
Input bias current  
V
= 0, V = 0, R = 50 , V  
= 2.5 V  
IC  
O
S
DD  
2
I
IB  
pA  
Full range  
25°C  
6
350  
4.9  
4.8  
4.7  
4.4  
0.1  
0.2  
0.21  
0.6  
450  
I
I
= 1.3 mA  
= 4.2 mA  
OH  
Full range  
25°C  
V
High-level output voltage  
Low-level output voltage  
V
OH  
OL  
OH  
Full range  
25°C  
V
IC  
V
IC  
V
IC  
= 2.5 V, I  
= 2.5 V, I  
= 1.3 mA  
= 4.2 mA  
OL  
Full range  
25°C  
V
V
OL  
Full range  
25°C  
20  
13  
Large-signal differential voltage  
amplification  
A
VD  
= 2.5 V, R = 10 kΩ , V = 1 V to 4 V  
V/mV  
L
O
Full range  
25°C  
12  
10  
r
Differential input resistance  
pF  
i(d)  
c
z
Common-mode input capacitance  
Closed-loop output impedance  
f = 10 kHz  
f = 100 kHz, A = 10  
25°C  
8
20  
96  
93  
89  
84  
1
i(c)  
o
25°C  
V
25°C  
60  
60  
70  
70  
V
IC  
V
O
= 0 to 3.7 V,  
CMRR Common-mode rejection ratio  
dB  
dB  
= V  
DD  
/2, R = 50 Ω  
S
Full range  
25°C  
Supply voltage rejection ratio  
V
V
= 2.7 V to 5 V,  
DD  
IC  
k
SVR  
(V  
DD  
/V  
IO  
)
= V  
/2, No load  
Full range  
25°C  
DD  
2
2
I
Supply current (per channel)  
V
O
= V  
DD  
/2, No load  
mA  
DD  
Full range  
Full range is − 40°C to 125°C for Q level part.  
Referenced to 2.5 V  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
operating characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLV2771-Q1  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/µs  
T
A
MIN  
5
TYP MAX  
25°C  
10.5  
6
SR  
Slew rate at unity gain  
Equivalent input noise voltage  
V
= 1.5 V, C = 100 pF, R = 10 kΩ  
O(PP) L L  
Full range  
25°C  
4.7  
f = 1 kHz  
17  
nV/Hz  
V
n
f = 10 kHz  
25°C  
12  
f = 0.1 Hz to 1 Hz  
25°C  
0.33  
0.86  
0.6  
µV  
µV  
Peak-to-peak equivalent input  
noise voltage  
V
I
N(PP)  
f = 0.1 Hz to 10 Hz  
f = 100 Hz  
25°C  
Equivalent input noise current  
25°C  
fA/Hz  
n
A
= 1  
0.005%  
V
Total harmonic distortion plus  
noise  
R = 600 ,  
L
A
V
= 10  
0.016%  
0.095%  
5.1  
THD + N  
25°C  
f = 1 kHz  
A
V
= 100  
Gain-bandwidth product  
Settling time  
25°C  
25°C  
MHz  
f = 10 kHz, R = 600 , C = 100 pF  
L
L
A
V
= −1,  
0.1%  
0.134  
1.97  
Step = 1.5 V to 3.5 V,  
t
s
µs  
0.01%  
25°C  
R
R
= 600 , C = 100 pF  
L
L
L
φ
m
Phase margin at unity gain  
Gain margin  
25°C  
25°C  
46°  
= 600 , C = 100 pF  
L
12  
dB  
Full range is 40°C to 125°C.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗ ꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
electrical characteristics at specified free-air temperature, V  
= 2.7 V (unless otherwise noted)  
DD  
TLV2772-Q1  
TLV2772A-Q1  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP MAX  
25°C  
0.44  
0.47  
2.5  
2.7  
0.44  
0.47  
1.6  
1.9  
V
IO  
Input offset voltage  
mV  
Full range  
Temperature  
coefficient of input  
offset voltage  
25°C  
to  
125°C  
α
VIO  
2
2
µV/°C  
V
V
R
=
= 0,  
= 50 Ω  
1.35 V,  
DD  
IC  
S
V
O
= 0,  
25°C  
Full range  
25°C  
1
2
2
6
60  
125  
60  
1
2
2
6
60  
125  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
IB  
Full range  
350  
350  
0
to  
1.4  
0.3  
to  
1.7  
0
to  
1.4  
0.3  
to  
1.7  
25°C  
Common-mode  
input voltage range  
V
CMRR > 60 dB,  
R
= 50 Ω  
V
V
ICR  
S
0
to  
1.4  
0.3  
to  
1.7  
0
to  
1.4  
0.3  
to  
1.7  
Full range  
25°C  
Full range  
25°C  
2.6  
2.4  
2.6  
2.4  
I
I
= 0.675 mA  
= 2.2 mA  
= 1.35 V,  
OH  
2.45  
2.1  
2.45  
2.1  
High-level output  
voltage  
V
V
OH  
OH  
Full range  
25°C  
0.1  
0.1  
V
V
I
I
= 0.675 mA  
= 2.2 mA  
IC  
OL  
Full range  
25°C  
0.2  
0.6  
0.2  
0.6  
Low-level output  
voltage  
V
OL  
0.21  
0.21  
= 1.35 V,  
IC  
OL  
Full range  
Large-signal  
differential voltage  
amplification  
25°C  
20  
13  
380  
20  
13  
380  
V
IC  
V
O
= 1.35 V,  
= 0.6 V to 2.1 V  
R
= 10 k,  
L
A
VD  
V/mV  
Full range  
Differential input  
resistance  
12  
10  
12  
10  
pF  
r
25°C  
25°C  
25°C  
i(d)  
Common-mode  
input capacitance  
c
z
f = 10 kHz,  
8
8
i(c)  
o
Closed-loop  
output impedance  
f = 100 kHz,  
A
V
= 10  
25  
25  
25°C  
60  
60  
84  
82  
60  
60  
84  
82  
Common-mode  
rejection ratio  
V
R
= V (min),  
ICR  
V
= 1.5 V,  
IC  
S
O
CMRR  
dB  
dB  
= 50 Ω  
Full range  
Supply voltage  
rejection ratio  
25°C  
70  
70  
89  
70  
70  
89  
V
= 2.7 V to 5 V,  
V
IC  
= V /2,  
DD  
DD  
k
SVR  
No load  
Full range  
84  
1
84  
1
(V  
/V )  
DD  
IO  
25°C  
2
2
2
2
Supply current  
(per channel)  
I
V
O
= 1.5 V,  
No load  
mA  
DD  
Full range  
Full range is −40°C to 125°C for Q level part.  
Referenced to 1.35 V  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
operating characteristics at specified free-air temperature, V  
= 2.7 V (unless otherwise noted)  
DD  
TLV2772-Q1  
TYP MAX  
TLV2772A-Q1  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
25°C  
5
9
5
9
V
R
= 0.8 V,  
C
= 100 pF,  
L
O(PP)  
= 10 kΩ  
SR  
Slew rate at unity gain  
V/µs  
Full  
range  
4.7  
6
4.7  
6
L
f = 1 kHz  
25°C  
25°C  
21  
17  
21  
17  
Equivalent input  
noise voltage  
nV/Hz  
V
n
f = 10 kHz  
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
25°C  
25°C  
0.33  
0.86  
0.33  
0.86  
µV  
µV  
V
I
N(PP)  
f = 0.1 Hz to 10 Hz  
f = 100 Hz  
Equivalent input  
noise current  
25°C  
0.6  
0.6  
fA/Hz  
n
A
= 1  
0.0085%  
0.025%  
0.12%  
0.0085%  
0.025%  
0.12%  
V
Total harmonic  
distortion plus noise  
R = 600 ,  
L
A
V
= 10  
THD + N  
25°C  
f = 1 kHz  
A
= 100  
R = 600 ,  
L
V
Gain-bandwidth  
product  
f = 10 kHz,  
25°C  
25°C  
4.8  
4.8  
MHz  
C
= 100 pF  
L
A
V
= −1,  
0.1%  
0.186  
0.186  
Step = 0.85 V to  
1.85 V,  
t
s
Settling time  
µs  
R
C
= 600 ,  
= 100 pF  
L
L
0.01%  
25°C  
3.92  
3.92  
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
46°  
46°  
R
= 600 ,  
C = 100 pF  
L
L
Gain margin  
12  
12  
dB  
Full range is −40°C to 125°C for Q level part.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗ ꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLV2772-Q1  
TLV2772A-Q1  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP MAX  
25°C  
0.36  
0.4  
2.5  
2.7  
0.36  
0.4  
1.6  
1.9  
V
IO  
Input offset voltage  
mV  
Full range  
Temperature  
coefficient of input  
offset voltage  
25°C  
to  
125°C  
α
VIO  
2
2
µV/°C  
V
V
=
2.5 V,  
V
R
= 0,  
= 50 Ω  
DD  
= 0,  
O
S
IC  
25°C  
Full range  
25°C  
1
2
2
6
60  
125  
60  
1
2
2
6
60  
125  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
IB  
Full range  
350  
350  
0
to  
3.7  
0.3  
to  
3.8  
0
to  
3.7  
0.3  
to  
3.8  
25°C  
Common-mode  
input voltage range  
V
CMRR > 60 dB,  
R
= 50 Ω  
S
V
V
ICR  
0
to  
3.7  
0.3  
to  
3.8  
0
to  
3.7  
0.3  
to  
3.8  
Full range  
25°C  
Full range  
25°C  
4.9  
4.7  
4.9  
4.7  
I
I
= 1.3 mA  
= 4.2 mA  
= 2.5 V,  
OH  
4.8  
4.4  
4.8  
4.4  
High-level output  
voltage  
V
V
OH  
OH  
Full range  
25°C  
0.1  
0.1  
V
V
I
I
= 1.3 mA  
= 4.2 mA  
IC  
OL  
Full range  
25°C  
0.2  
0.6  
0.2  
0.6  
Low-level output  
voltage  
V
OL  
0.21  
0.21  
= 2.5 V,  
IC  
OL  
Full range  
Large-signal  
differential voltage  
amplification  
25°C  
20  
13  
450  
20  
13  
450  
V
IC  
V
O
= 2.5 V,  
= 1 V to 4 V  
R
= 10 k,  
L
A
VD  
V/mV  
Full range  
Differential input  
resistance  
12  
10  
12  
10  
pF  
r
25°C  
25°C  
25°C  
i(d)  
Common-mode  
input capacitance  
c
z
f = 10 kHz,  
8
8
i(c)  
o
Closed-loop  
output impedance  
f = 100 kHz,  
A
V
= 10  
20  
20  
25°C  
60  
60  
96  
93  
60  
60  
96  
93  
Common-mode  
rejection ratio  
V
R
= V (min),  
ICR  
V
= 3.7 V,  
IC  
S
O
CMRR  
dB  
dB  
= 50 Ω  
Full range  
Supply voltage  
rejection ratio  
25°C  
70  
70  
89  
70  
70  
89  
V
= 2.7 V to 5 V,  
V
IC  
= V /2,  
DD  
DD  
k
SVR  
No load  
Full range  
84  
1
84  
1
(V  
/V )  
DD  
IO  
25°C  
2
2
2
2
Supply current  
(per channel)  
I
V
O
= 1.5 V,  
No load  
mA  
DD  
Full range  
Full range is −40°C to 125°C for Q level part.  
Referenced to 2.5 V  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
operating characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLV2772-Q1  
TYP MAX  
TLV2772A-Q1  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
25°C  
5
10.5  
5
10.5  
V
R
= 1.5 V,  
C
= 100 pF,  
L
O(PP)  
= 10 kΩ  
SR  
Slew rate at unity gain  
V/µs  
Full  
range  
4.7  
6
4.7  
6
L
f = 1 kHz  
25°C  
25°C  
17  
12  
17  
12  
Equivalent input  
noise voltage  
nV/Hz  
V
n
f = 10 kHz  
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
25°C  
25°C  
0.33  
0.86  
0.33  
0.86  
µV  
µV  
V
I
N(PP)  
f = 0.1 Hz to 10 Hz  
f = 100 Hz  
Equivalent input  
noise current  
25°C  
0.6  
0.6  
fA/Hz  
n
A
= 1  
0.005%  
0.016%  
0.095%  
0.005%  
0.016%  
0.095%  
V
Total harmonic  
distortion plus noise  
R = 600 ,  
L
A
V
= 10  
THD + N  
25°C  
f = 1 kHz  
A
= 100  
R = 600 ,  
L
V
Gain-bandwidth  
product  
f = 10 kHz,  
25°C  
25°C  
5.1  
5.1  
MHz  
C
= 100 pF  
L
A
V
= −1,  
0.1%  
0.134  
0.134  
Step = 1.5 V to  
3.5 V,  
t
s
Settling time  
µs  
R
C
= 600 ,  
= 100 pF  
L
L
0.01%  
25°C  
1.97  
1.97  
Phase margin at unity  
gain  
φ
m
25°C  
25°C  
46°  
46°  
R
= 600 ,  
C = 100 pF  
L
L
Gain margin  
12  
12  
dB  
Full range is −40°C to 125°C for Q level part.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗ ꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
Distribution  
vs Common-mode input voltage  
Distribution  
1, 2  
3, 4  
5, 6  
V
IO  
Input offset voltage  
I
/I  
Input bias and input offset currents  
High-level output voltage  
vs Free-air temperature  
vs High-level output current  
vs Low-level output current  
vs Frequency  
7
IB IO  
V
V
V
8, 9  
OH  
Low-level output voltage  
10, 11  
12, 13  
OL  
Maximum peak-to-peak output voltage  
O(PP)  
vs Supply voltage  
vs Free-air temperature  
14  
15  
I
Short-circuit output current  
Output voltage  
OS  
V
vs Differential input voltage  
16  
O
A
VD  
Large-signal differential voltage amplification and phase margin vs Frequency  
17, 18  
vs Load resistance  
vs Free-air temperature  
19  
20, 21  
A
Differential voltage amplification  
Output impedance  
VD  
o
z
vs Frequency  
22, 23  
vs Frequency  
vs Free-air temperature  
24  
25  
CMRR  
Common-mode rejection ratio  
k
Supply-voltage rejection ratio  
Supply current (per channel)  
vs Frequency  
26, 27  
28  
SVR  
I
vs Supply voltage  
DD  
vs Load capacitance  
vs Free-air temperature  
29  
30  
SR  
Slew rate  
V
V
V
V
V
Voltage-follower small-signal pulse response  
Voltage-follower large-signal pulse response  
Inverting small-signal pulse response  
Inverting large-signal pulse response  
Equivalent input noise voltage  
31, 32  
33, 34  
35, 36  
37, 38  
39, 40  
41  
O
O
O
O
n
vs Frequency  
Noise voltage (referred to input)  
Total harmonic distortion plus noise  
Gain-bandwidth product  
Over a 10-second period  
vs Frequency  
THD + N  
42, 43  
44  
vs Supply voltage  
vs Load capacitance  
B
1
Unity-gain bandwidth  
45  
φ
m
Phase margin  
Gain margin  
vs Load capacitance  
vs Load capacitance  
46  
47  
Amplifier with shutdown pulse turnon/off characteristics  
Supply current with shutdown pulse turnon/off characteristics  
Shutdown supply current  
48−50  
51−53  
54  
vs Free-air temperature  
vs Frequency  
Shutdown forward/reverse isolation  
55, 56  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢋꢊꢌ ꢍ ꢁꢎ ꢏꢋ ꢃ ꢐ ꢄꢆꢂ ꢑꢍ ꢒ ꢑꢆꢓ ꢁꢔ ꢕꢆꢖꢊꢀꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗꢀ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLV2772  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2772  
INPUT OFFSET VOLTAGE  
40  
40  
V
R
T
A
= 2.7 V  
= 10 kΩ  
= 25°C  
DD  
L
V
= 5 V  
DD  
L
R = 10 kΩ  
T = 25°C  
A
35  
30  
35  
30  
25  
20  
25  
20  
15  
10  
5
15  
10  
5
0
0
−2.5 −2 −1.5 −1 −0.5  
0
0.5  
1
1.5  
2
2.5  
−2.5 −2 −1.5 −1 −0.5  
0
0.5  
1
1.5  
2
2.5  
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 1  
Figure 2  
INPUT OFFSET VOLTAGE  
vs  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
2
2
V
T
A
= 2.7 V  
DD  
= 25°C  
V
T
= 5 V  
DD  
= 25°C  
1.5  
1
A
1.5  
1
0.5  
0
0.5  
0
−0.5  
−1  
−0.5  
−1  
−1.5  
−2  
−1.5  
−2  
−1 −0.5  
−1 −0.5  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
V
IC  
− Common-Mode Input Voltage − V  
V
IC  
− Common-Mode Input Voltage − V  
Figure 3  
Figure 4  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗ ꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLV2772  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2772  
INPUT OFFSET VOLTAGE  
35  
30  
35  
30  
V
T
A
= 2.7 V  
DD  
= 25°C to 125°C  
V
= 5 V  
DD  
T = 25°C to 125°C  
A
25  
20  
15  
25  
20  
15  
10  
5
10  
5
0
0
−6  
−3  
0
3
6
9
12  
−6  
−3  
0
3
6
9
12  
α
VIO  
− Temperature Coefficient − µV/°C  
α
VIO  
− Temperature Coefficient − µV/°C  
Figure 5  
Figure 6  
INPUT BIAS AND OFFSET CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
vs  
FREE-AIR TEMPERATURE  
0.20  
0.15  
0.10  
3
V
V
V
= 5 V  
= 0  
= 0  
= 50 Ω  
DD  
IC  
O
V
= 2.7 V  
DD  
2.5  
R
S
I
IB  
2
T
A
= −40°C  
1.5  
T
A
= 125°C  
1
0.05  
0
T
= 25°C  
A
I
IO  
0.5  
0
T
= 85°C  
A
−75 −50  
−25  
0
25  
50  
75  
100 125  
0
5
10  
15  
20  
25  
T
A
− Free-Air Temperature − °C  
I
− High-Level Output Current − mA  
OH  
Figure 7  
Figure 8  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢋꢊꢌ ꢍ ꢁꢎ ꢏꢋ ꢃ ꢐ ꢄꢆꢂ ꢑꢍ ꢒ ꢑꢆꢓ ꢁꢔ ꢕꢆꢖꢊꢀꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗꢀ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
5
4.5  
4
3
V
T
A
= 5 V  
DD  
= 25°C  
V
DD  
= 2.7 V  
2.5  
T
= 125°C  
A
T
A
= −40°C  
3.5  
3
T
A
= 85°C  
T
A
= 25°C  
2
2.5  
1.5  
T
A
= 125°C  
2
T
A
= 25°C  
1
1.5  
T
A
= 85°C  
1
T
A
= −40°C  
0.5  
0
0.5  
0
0
5
10 15 20 25 30 35 40 45 50 55  
0
5
10  
15  
20  
25  
30  
I
− High-Level Output Current − mA  
OH  
I
− Low-Level Output Current − mA  
OL  
Figure 9  
Figure 10  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
FREQUENCY  
3
2.5  
2
5
4
V
DD  
= 5 V  
R = 10 kΩ  
L
V
= 5 V  
T
= 125°C  
DD  
1% THD  
A
T
A
= 85°C  
3
2
1
0
1.5  
1
V
= 2.7 V  
DD  
2% THD  
T
= 25°C  
A
T
A
= −40°C  
0.5  
0
0
10  
20  
30  
40  
50  
100  
1000  
10000  
I
− Low-Level Output Current − mA  
OL  
f − Frequency − kHz  
Figure 12  
Figure 11  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗ ꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
TYPICAL CHARACTERISTICS  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
FREQUENCY  
SUPPLY VOLTAGE  
5
60  
THD = 5%  
V
V
T
= V  
DD  
DD  
= 25°C  
/2  
/2  
O
IC  
A
4.5  
4
R
T
A
= 600 Ω  
= 25°C  
L
= V  
45  
30  
V
ID  
= −100 mV  
3.5  
3
V
DD  
= 5 V  
15  
0
2.5  
2
V
DD  
= 2.7 V  
−15  
1.5  
1
−30  
−45  
−60  
V
= 100 mV  
ID  
0.5  
0
100  
1000  
f − Frequency − kHz  
10000  
2
3
4
5
6
7
V
DD  
− Supply Voltage − V  
Figure 13  
Figure 14  
SHORT-CIRCUIT OUTPUT CURRENT  
OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
60  
40  
5
4
3
R
T
A
= 600 Ω  
= 25°C  
L
V
DD  
= 5 V  
V
ID  
= −100 mV  
20  
V
V
= 5 V  
DD  
= 2.5 V  
V
DD  
= 2.7 V  
0
O
2
1
0
−20  
−40  
−60  
V
= 100 mV  
ID  
−75 −50  
−25  
0
25  
50  
75 100  
125  
−1000 −750 −500 −250  
0
250 500 750 1000  
T
A
− Free-Air Temperature − °C  
V
ID  
− Differential Input Voltage − µV  
Figure 15  
Figure 16  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢋꢊꢌ ꢍ ꢁꢎ ꢏꢋ ꢃ ꢐ ꢄꢆꢂ ꢑꢍ ꢒ ꢑꢆꢓ ꢁꢔ ꢕꢆꢖꢊꢀꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗꢀ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION  
AND PHASE MARGIN  
vs  
FREQUENCY  
100  
300  
240  
180  
120  
60  
V
= 2.7 V  
= 600 Ω  
= 600 pF  
= 25°C  
DD  
L
L
R
C
T
80  
60  
A
A
VD  
40  
Phase  
20  
0
0
20  
40  
60  
90  
100  
1k  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
Figure 17  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION  
AND PHASE MARGIN  
vs  
FREQUENCY  
100  
300  
V
R
C
= 5 V  
= 600 Ω  
= 600 pF  
= 25°C  
DD  
L
L
80  
60  
240  
180  
120  
60  
T
A
A
VD  
40  
Phase  
20  
0
0
20  
40  
60  
90  
100  
1k  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
Figure 18  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗ ꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
LOAD RESISTANCE  
FREE-AIR TEMPERATURE  
250  
200  
150  
100  
50  
1000  
100  
10  
T
A
= 25°C  
R
= 10 kΩ  
L
R
= 1 MΩ  
= 600 Ω  
L
V
DD  
= 2.7 V  
V
= 5 V  
DD  
R
L
1
V
V
V
= 2.7 V  
= 1.35 V  
DD  
IC  
O
= 0.6 V to 2.1 V  
0
0.1  
−75 −50  
0.1  
1
10  
100  
1000  
−25  
0
25  
50  
75 100  
125  
R
− Load Resistance − kΩ  
L
T
A
− Free-Air Temperature − °C  
Figure 20  
Figure 19  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
OUTPUT IMPEDANCE  
vs  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
1000  
100  
10  
100  
R
= 10 kΩ  
V
T
A
= 2.7 V  
= 25°C  
L
DD  
R
= 1 MΩ  
L
10  
1
A
V
= 100  
R
= 600 Ω  
L
A
= 10  
= 1  
V
A
V
1
0.10  
0.01  
V
V
V
= 5 V  
= 2.5 V  
= 1 V to 4 V  
DD  
IC  
O
0.1  
−75 −50  
−25  
0
25  
50  
75 100  
125  
100  
1k  
10k  
100k  
1M  
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 21  
Figure 22  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢋꢊꢌ ꢍ ꢁꢎ ꢏꢋ ꢃ ꢐ ꢄꢆꢂ ꢑꢍ ꢒ ꢑꢆꢓ ꢁꢔ ꢕꢆꢖꢊꢀꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗꢀ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
TYPICAL CHARACTERISTICS  
OUTPUT IMPEDANCE  
vs  
COMMON-MODE REJECTION RATIO  
vs  
FREQUENCY  
FREQUENCY  
100  
10  
90  
80  
70  
60  
50  
40  
V
T
= 2.5 V  
= 25°C  
V
= 1.35 V  
DD  
A
V
= 2.7 V  
IC  
and 2.5 V  
DD  
T
A
= 25°C  
V
DD  
= 5 V  
A
v
= 100  
1
A
= 10  
= 1  
v
A
v
0.1  
0.01  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 23  
Figure 24  
COMMON-MODE REJECTION RATIO  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
120  
115  
120  
100  
V
T
A
= 2.7 V  
= 25°C  
DD  
k
SVR+  
110  
105  
100  
95  
k
SVR−  
80  
60  
V
DD  
= 2.7 V  
40  
90  
V
DD  
= 5 V  
20  
0
85  
80  
−40 −20  
0
20  
40 60  
80 100 120 140  
10  
100  
1k  
10k  
100k  
1M  
10M  
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 25  
Figure 26  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗ ꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
TYPICAL CHARACTERISTICS  
SUPPLY VOLTAGE REJECTION RATIO  
SUPPLY CURRENT (PER CHANNEL)  
vs  
vs  
FREQUENCY  
SUPPLY VOLTAGE  
120  
100  
1.6  
1.4  
1.2  
1
V
T
A
= 5 V  
= 25°C  
DD  
T
= 125°C  
= 85°C  
A
k
SVR+  
T
A
k
T
A
= 25°C  
SVR−  
80  
60  
40  
T
A
= 0°C  
T
A
= 40°C  
0.8  
0.6  
0.4  
20  
0
0.2  
0
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
f − Frequency − Hz  
V
DD  
− Supply Voltage − V  
Figure 27  
Figure 28  
SLEW RATE  
vs  
LOAD CAPACITANCE  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
16  
14  
14  
13  
12  
11  
10  
9
V
= 5 V  
= −1  
= 25°C  
DD  
SR+  
SR−  
V
R
C
= 2.7 V  
DD  
L
L
A
V
A
= 10 kΩ  
= 100 pF  
= 1  
T
A
V
12  
10  
8
6
4
2
0
8
10  
100  
1k  
10k  
100k  
−75 −50  
−25  
0
25  
50  
75 100  
125  
C
− Load Capacitance − pF  
L
T
A
− Free-Air Temperature − °C  
Figure 29  
Figure 30  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢋꢊꢌ ꢍ ꢁꢎ ꢏꢋ ꢃ ꢐ ꢄꢆꢂ ꢑꢍ ꢒ ꢑꢆꢓ ꢁꢔ ꢕꢆꢖꢊꢀꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗꢀ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
TYPICAL CHARACTERISTICS  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL PULSE RESPONSE  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL PULSE RESPONSE  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
V
R
C
= 2.7 V  
V
R
C
= 5 V  
DD  
L
L
DD  
L
L
= 600 Ω  
= 100 pF  
= 1  
= 600 Ω  
= 100 pF  
= 1  
AV  
AV  
T
= 25°C  
T
= 25°C  
A
A
−20  
−20  
−40  
−60  
−40  
−60  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
t − Time − µs  
t − Time − µs  
Figure 31  
Figure 32  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL PULSE RESPONSE  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL PULSE RESPONSE  
3
2.5  
2
6
5
4
3
2
1
0
V
R
C
= 2.7 V  
V
R
C
= 5 V  
DD  
L
L
DD  
L
L
= 600 Ω  
= 100 pF  
= 1  
= 600 Ω  
= 100 pF  
= 1  
AV  
AV  
T
= 25°C  
T
= 25°C  
A
A
1.5  
1
0.5  
0
−0.5  
−1  
−1  
−2  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
t − Time − µs  
t − Time − µs  
Figure 33  
Figure 34  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗ ꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
TYPICAL CHARACTERISTICS  
INVERTING SMALL-SIGNAL  
PULSE RESPONSE  
INVERTING SMALL-SIGNAL  
PULSE RESPONSE  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
V
R
C
= 2.7 V  
DD  
L
L
V
R
C
= 5 V  
= 600 Ω  
= 100 pF  
= −1  
DD  
L
L
= 600 Ω  
= 100 pF  
= −1  
AV  
AV  
T
= 25°C  
A
T
= 25°C  
A
−20  
−20  
−40  
−60  
−40  
−60  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
t − Time − µs  
t − Time − µs  
Figure 35  
Figure 36  
INVERTING LARGE-SIGNAL  
PULSE RESPONSE  
INVERTING LARGE-SIGNAL  
PULSE RESPONSE  
3
2.5  
2
4
3.5  
3
1.5  
1
2.5  
2
0.5  
0
1.5  
1
V
R
C
= 2.7 V  
DD  
L
L
V
R
C
= 5 V  
DD  
L
L
= 600 Ω  
= 100 pF  
= −1  
= 600 Ω  
= 100 pF  
= −1  
−0.5  
−1  
0.5  
1
AV  
AV  
T
= 25°C  
A
T
= 25°C  
A
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
t − Time − µs  
t − Time − µs  
Figure 37  
Figure 38  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢋꢊꢌ ꢍ ꢁꢎ ꢏꢋ ꢃ ꢐ ꢄꢆꢂ ꢑꢍ ꢒ ꢑꢆꢓ ꢁꢔ ꢕꢆꢖꢊꢀꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗꢀ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
TYPICAL CHARACTERISTICS  
EQUIVALENT INPUT NOISE VOLTAGE  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
160  
140  
120  
100  
80  
140  
120  
100  
80  
V
R
T
A
= 2.7 V  
= 20 Ω  
= 25°C  
DD  
S
V
R
S
T
A
= 5 V  
= 20 Ω  
= 25°C  
DD  
60  
40  
20  
0
60  
40  
20  
0
10  
100  
1k  
10k  
10  
100  
1k  
10k  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 39  
Figure 40  
NOISE VOLTAGE  
OVER A 10 SECOND PERIOD  
V
= 5 V  
DD  
f = 0.1 Hz to 10 Hz  
300  
200  
100  
T
A
= 25°C  
GND  
−100  
−200  
−300  
0
1
2
3
4
5
6
7
8
9
10  
t − Time − s  
Figure 41  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗ ꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
10  
1
10  
1
V
R
T
A
= 2.7 V  
= 600 Ω  
= 25°C  
V
R
L
= 5 V  
= 600 Ω  
T = 25°C  
A
DD  
L
DD  
A
= 100  
= 10  
v
A = 100  
v
0.1  
0.1  
A
v
A
= 10  
= 1  
v
A
v
= 1  
0.01  
0.01  
A
v
0.001  
0.001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 42  
Figure 43  
GAIN-BANDWIDTH PRODUCT  
UNITY-GAIN BANDWIDTH  
vs  
LOAD CAPACITANCE  
vs  
SUPPLY VOLTAGE  
5.2  
5
5
4
3
2
1
0
R
C
= 600 Ω  
= 100 pF  
L
L
V
= 5 V  
= 600 Ω  
= 25°C  
DD  
L
R
T
f = 10 kHz  
T
A
A
= 25°C  
4.8  
4.6  
4.4  
4.2  
4
R
= 100  
= 50  
null  
R
null  
R
= 20  
1k  
null  
R
= 0  
null  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
10  
100  
10k  
100k  
V
DD  
− Supply Voltage − V  
C
− Load Capacitance − pF  
L
Figure 44  
Figure 45  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢋꢊꢌ ꢍ ꢁꢎ ꢏꢋ ꢃ ꢐ ꢄꢆꢂ ꢑꢍ ꢒ ꢑꢆꢓ ꢁꢔ ꢕꢆꢖꢊꢀꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗꢀ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
GAIN MARGIN  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
90  
0
V
R
T
A
= 5 V  
= 600 Ω  
= 25°C  
V
= 5 V  
DD  
L
DD  
L
R = 600 Ω  
T = 25°C  
A
80  
70  
60  
50  
40  
30  
20  
10  
0
5
10  
15  
20  
R
= 100 Ω  
null  
R
= 50 Ω  
null  
R
= 0  
null  
R
= 20 Ω  
null  
R
= 100 Ω  
null  
25  
30  
R
= 50 Ω  
= 20 Ω  
null  
R
= 0  
null  
R
null  
35  
40  
10  
100  
1k  
10k  
100K  
10  
100  
1k  
10k  
100K  
C
− Load Capacitance − pF  
C
− Load Capacitance − pF  
L
L
Figure 47  
Figure 46  
TLV2770  
TLV2773  
AMPLIFIER WITH SHUTDOWN PULSE  
TURNON/OFF CHARACTERISTICS  
AMPLIFIER WITH SHUTDOWN PULSE  
TURNON/OFF CHARACTERISTICS  
8
7
6
4
8
7
8
6
SHDN = V  
DD  
SHDN = V  
DD  
6
5
2
0
6
5
4
2
V
= 5 V  
= 5  
= 25°C  
DD  
SHDN = GND  
SHDN = GND  
A
V
A
4
3
2
1
0
−2  
−4  
−6  
−8  
4
3
2
1
0
V
= 5 V  
0
DD  
= 5  
T
A
V
A
Channel 1 Switched  
T
= 25°C  
−2  
−4  
−6  
Channel 2 SHDN MODE  
Channel 1  
V
O
V
O
−10  
−12  
−8  
−1  
14  
−10  
−2.5  
−1  
15  
−4 −2  
0
2
4
6
8
10  
12  
0
2.5  
5
7.5  
10  
12.5  
t − Time − µs  
t − Time − µs  
Figure 48  
Figure 49  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗ ꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
TYPICAL CHARACTERISTICS  
TLV2775 − CHANNEL 1  
TLV2770  
AMPLIFIER WITH SHUTDOWN PULSE  
TURNON/OFF CHARACTERISTICS  
SUPPLY CURRENT WITH SHUTDOWN PULSE  
TURNON/OFF CHARACTERISTICS  
6
8
7
24  
21  
8
6
SHDN = V  
DD  
4
2
SHDN = V  
DD  
6
5
18  
15  
4
2
0
V
= 5 V  
= 5  
= 25°C  
DD  
SHDN = GND  
SHDN = GND  
A
V
A
4
3
2
12  
9
0
−2  
−4  
−6  
−8  
T
Channel 1/2 Switched  
V
= 5 V  
DD  
= 5  
−2  
−4  
−6  
Channel 3/4 SHDN MODE  
A
V
A
T
= 25°C  
6
Channel 1  
1
3
I
V
O
DD  
0
0
−8  
−10  
−12  
−10  
−2.5  
−1  
15  
−3  
14  
0
2.5  
5
7.5  
10  
12.5  
−4 −2  
0
2
4
6
8
10 12  
t − Time − µs  
t − Time − µs  
Figure 50  
Figure 51  
TLV2773  
TLV2775  
SUPPLY CURRENT WITH SHUTDOWN PULSE  
SUPPLY CURRENT WITH SHUTDOWN PULSE  
TURNON/OFF CHARACTERISTICS  
6
TURNON/OFF CHARACTERISTICS  
6
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
SHDN = V  
SHDN = V  
DD  
DD  
3
3
0
0
SHDN = GND  
SHDN = GND  
−3  
−3  
V
= 5 V  
V
= 5 V  
DD  
= 5  
DD  
= 5  
A
A
V
A
−6  
−9  
−6  
−9  
V
A
T
= 25°C  
T
= 25°C  
Channel 1/2 Switched  
Channel 3/4 SHDN MODE  
Channel 1 Switched  
Channel 2 SHDN MODE  
−12  
−15  
−18  
−12  
−15  
−18  
I
I
DD  
DD  
0
−3  
15  
−3  
15  
−5 −2.5  
0
2.5  
5
7.5  
10 12.5  
−5 −2.5  
0
2.5  
5
7.5  
10 12.5  
t − Time − µs  
t − Time − µs  
Figure 52  
Figure 53  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢋꢊꢌ ꢍ ꢁꢎ ꢏꢋ ꢃ ꢐ ꢄꢆꢂ ꢑꢍ ꢒ ꢑꢆꢓ ꢁꢔ ꢕꢆꢖꢊꢀꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗꢀ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
TYPICAL CHARACTERISTICS  
SHUTDOWN SUPPLY CURRENT  
vs  
TLV2770  
SHUTDOWN FORWARD ISOLATION  
FREE-AIR TEMPERATURE  
vs  
7
6
5
4
3
FREQUENCY  
140  
A
R
= 5  
= OPEN  
V
L
SHDN = GND  
V
= 2.7 V  
120  
100  
80  
I(PP)  
V
I(PP)  
= 0.1 V  
V
DD  
5 V  
60  
40  
20  
2
SHDN MODE  
= 1  
V
2.7 V  
50  
A
V
DD  
V
R
C
T
= 2.7 V  
DD  
L
L
1
0
= 10 kΩ  
= 20 pF  
= 25°C  
0
A
−75 −50  
−25  
0
25  
75 100  
125  
−20  
2
10  
3
10  
4
10  
5
10  
10  
10  
6
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 54  
Figure 55  
TLV2770  
SHUTDOWN REVERSE ISOLATION  
vs  
FREQUENCY  
140  
120  
100  
80  
V
= 2.7 V  
I(PP)  
V
I(PP)  
= 0.1 V  
60  
40  
20  
SHDN MODE  
= 1  
A
V
V
R
C
= 2.7 V  
DD  
L
L
= 10 kΩ  
= 20 pF  
= 25°C  
0
T
A
−20  
2
10  
3
4
5
10  
10  
10  
10  
10  
6
f − Frequency − Hz  
Figure 56  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗ ꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
PARAMETER MEASUREMENT INFORMATION  
R
_
+
null  
R
L
C
L
Figure 57  
driving a capacitive load  
When the amplifier is configured in this manner, capacitive loading directly on the output decreases the device’s  
phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than  
10 pF, it is recommended that a resistor be placed in series (R  
) with the output of the amplifier, as shown  
NULL  
in Figure 58. A minimum value of 20 should work well for most applications.  
R
F
R
G
_
R
NULL  
Input  
Output  
LOAD  
+
C
Figure 58. Driving a Capacitive Load  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢋꢊꢌ ꢍ ꢁꢎ ꢏꢋ ꢃ ꢐ ꢄꢆꢂ ꢑꢍ ꢒ ꢑꢆꢓ ꢁꢔ ꢕꢆꢖꢊꢀꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗꢀ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
APPLICATION INFORMATION  
offset voltage  
The output offset voltage, (V ) is the sum of the input offset voltage (V ) and both input bias currents (I ) times  
OO  
IO  
IB  
the corresponding gains. The following schematic and formula can be used to calculate the output offset  
voltage:  
R
F
R
R
I
IB−  
F
F
V
+ V  
1 ) ǒ Ǔ " I  
R
1 ) ǒ Ǔ " I  
R
ǒ Ǔ ǒ Ǔ  
R
G
OO  
IO  
IB)  
S
IB–  
F
R
R
G
G
+
+
V
I
V
O
R
S
I
IB+  
Figure 59. Output Offset Voltage Model  
general configurations  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often  
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier  
(see Figure 60).  
R
R
F
G
1
f
+
–3dB  
2pR1C1  
V
O
V
R
F
+
O
1
V
I
ǒ
Ǔ
+
ǒ
1 )  
Ǔ
R1  
V
R
1 ) sR1C1  
I
G
C1  
Figure 60. Single-Pole Low-Pass Filter  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.  
Failure to do this can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
+
–3dB  
2pRC  
C2  
R
F
1
R
=
G
R
F
2 −  
)
R
(
Q
G
Figure 61. 2-Pole Low-Pass Sallen-Key Filter  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗ ꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
APPLICATION INFORMATION  
using the TLV2772 as an accelerometer interface  
The schematic, shown in Figure 62, shows the ACH04-08-05 interfaced to the TLV1544 10-bit analog-to-digital  
converter (ADC).  
The ACH04-08-05 is a shock sensor designed to convert mechanical acceleration into electrical signals. The  
sensor contains three piezoelectric sensing elements oriented to simultaneously measure acceleration in three  
orthogonal, linear axes (x, y, z). The operating frequency is 0.5 Hz to 5 kHz. The output is buffered with an  
internal JFET and has a typical output voltage of 1.80 mV/g for the x and y axis and 1.35 mV/g for the z axis.  
Amplification and frequency shaping of the shock sensor output is done by the TLV2772 rail-to-rail operational  
amplifier. The TLV2772 is ideal for this application as it offers high input impedance, good slew rate, and  
excellent dc precision. The rail-to-rail output swing and high output drive are perfect for driving the analog input  
of the TLV1544 ADC.  
C2  
2.2 nF  
1.23 V R3  
10 kΩ  
R4  
100 kΩ  
3 V  
R2  
1 MΩ  
1 Axis ACH04−08−05  
3 V  
R5  
1 kΩ  
C1  
0.22 µF  
8
2
3
+
_
1
Output to  
TLV1544 (ADC)  
1/2  
TLV2772  
C3  
0.22 µF  
4
R1  
100 kΩ  
Signal Conditioning  
3 V  
R6  
2.2 kΩ  
1.23 V  
Shock Sensor  
1.23 V  
C
TLV431  
R
A
Voltage Reference  
Figure 62. Accelerometer Interface Schematic  
The sensor signal must be amplified and frequency-shaped to provide a signal the ADC can properly convert  
into the digital domain. Figure 62 shows the topology used in this application for one axis of the sensor. This  
system is powered from a single 3-V supply. Configuring the TLV431 with a 2.2-kresistor produces a reference  
voltage of 1.23 V. This voltage is used to bias the operational amplifier and the internal JFETs in the shock  
sensor.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢋꢊꢌ ꢍ ꢁꢎ ꢏꢋ ꢃ ꢐ ꢄꢆꢂ ꢑꢍ ꢒ ꢑꢆꢓ ꢁꢔ ꢕꢆꢖꢊꢀꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗꢀ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
APPLICATION INFORMATION  
gain calculation  
Since the TLV2772 is capable of rail-to-rail output using a 3-V supply, V = 0 (min) to 3 V (max). With no signal  
O
from the sensor, nominal V = reference voltage = 1.23 V. Therefore, the maximum negative swing from nominal  
O
is 0 V − 1.23 V = −1.23 V and the maximum positive swing is 3 V − 1.23 V = 1.77 V. By modeling the shock sensor  
as a low impedance voltage source with output of 2.25 mV/g (max) in the x and y axis and 1.7 mV/g (max) in  
the z axis, the gain of the circuit is calculated by equation 1.  
Output Swing  
Sensor Signal   Acceleration  
Gain +  
(1)  
To avoid saturation of the operational amplifier, the gain calculations are based on the maximum negative swing  
of −1.23 V and the maximum sensor output of 2.25 mV/g (x and y axis) and 1.70 mV/g (z axis).  
* 1.23 V  
2.25 mVńg   * 50 g  
Gain (x, y) +  
+ 10.9  
(2)  
and  
–1.23 V  
1.70 mVńg   –50 g  
Gain (z) +  
+ 14.5  
(3)  
By selecting R3 = 10 kand R4 = 100 k, in the x and y channels, a gain of 11 is realized. By selecting  
R3 = 7.5 kand R4 = 100 k, in the z channel, a gain of 14.3 is realized. The schematic shows the configuration  
for either the x- or y-axis.  
bandwidth calculation  
To calculate the component values for the frequency shaping characteristics of the signal conditioning circuit,  
1 Hz and 500 Hz are selected as the minimum required 3-dB bandwidth.  
To minimize the value of the input capacitor (C1) required to set the lower cutoff frequency requires a large value  
resistor for R2 is required. A 1-Mresistor is used in this example. To set the lower cutoff frequency, the required  
capacitor value for C1 is:  
1
C1 +  
+ 0.159 µF  
(4)  
2p f  
R
2
LOW  
Using a value of 0.22 µF, a more common value of capacitor, the lower cutoff frequency is 0.724 Hz.  
To minimize the phase shift in the feedback loop caused by the input capacitance of the TLV2772, it is best to  
minimize the value of the feedback resistor R4. However, to reduce the required capacitance in the feedback  
loop a large value for R4 is required. Therefore, a compromise for the value of R4 must be made. In this circuit,  
a value of 100 khas been selected. To set the upper cutoff frequency, the required capacitor value for C2 is:  
1
C2 +  
+ 3.18 µF  
(5)  
2p f  
R
4
HIGH  
Using a 2.2-nF capacitor, the upper cutoff frequency is 724 Hz.  
R5 and C3 also cause the signal response to roll off. Therefore, it is beneficial to design this roll-off point to begin  
at the upper cutoff frequency. Assuming a value of 1 kfor R5, the value for C3 is calculated to be  
0.22 µF.  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗ ꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
APPLICATION INFORMATION  
circuit layout considerations  
To achieve the levels of high performance of the TLV277x, follow proper printed-circuit board design techniques.  
A general set of guidelines is given in the following.  
D
Ground planes—It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and  
output, the ground plane can be removed to minimize the stray capacitance.  
D
Proper power supply decoupling—Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic  
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers  
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal  
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply  
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less  
effective. The designer should strive for distances of less than 0.1 inches between the device power  
terminals and the ceramic capacitors.  
D
D
Sockets—Sockets can be used but are not recommended. The additional lead inductance in the socket pins  
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board  
is the best implementation.  
Short trace runs/compact part placements—Optimum high performance is achieved when stray series  
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,  
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of  
the amplifier. Its length should be kept as short as possible. This helps to minimize stray capacitance at the  
input of the amplifier.  
D
Surface-mount passive components—Using surface-mount passive components is recommended for high  
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be  
kept as short as possible.  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢋꢊꢌ ꢍ ꢁꢎ ꢏꢋ ꢃ ꢐ ꢄꢆꢂ ꢑꢍ ꢒ ꢑꢆꢓ ꢁꢔ ꢕꢆꢖꢊꢀꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗꢀ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
APPLICATION INFORMATION  
general power dissipation considerations  
For a given θ , the maximum power dissipation is shown in Figure 63 and is calculated by the following formula:  
JA  
T
–T  
MAX  
q
A
P
+
ǒ Ǔ  
D
JA  
Where:  
P
= Maximum power dissipation of TLV277x IC (watts)  
= Absolute maximum junction temperature (150°C)  
= Free-ambient air temperature (°C)  
D
T
MAX  
T
A
θ
= θ + θ  
JA  
JC CA  
θ
θ
= Thermal coefficient from junction-to-case  
JC  
= Thermal coefficient from case to ambient air (°C/W)  
CA  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
2
T
= 150°C  
PDIP Package  
J
Low-K Test PCB  
1.75  
θ
= 104°C/W  
JA  
1.5  
1.25  
1
MSOP Package  
Low-K Test PCB  
SOIC Package  
Low-K Test PCB  
θ
= 260°C/W  
JA  
θ
= 176°C/W  
JA  
0.75  
0.5  
SOT-23 Package  
Low-K Test PCB  
0.25  
0
θ
= 324°C/W  
JA  
−5540 −25 −10  
5
20 35 50 65 80 95 110 125  
T
A
− Free-Air Temperature − °C  
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.  
Figure 63.  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢄ ꢅ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄꢄ ꢅꢊ ꢆꢇ ꢈ  
ꢋꢊ ꢌꢍ ꢁꢎ ꢏ ꢋ ꢃ ꢐꢄ ꢆꢂ ꢑꢍ ꢒꢑ ꢆꢓꢁ ꢔꢕꢆꢖꢊꢀ ꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗ ꢀ  
ꢏ ꢘꢔꢖ ꢊꢀ ꢍꢏ ꢙꢊꢁ ꢊꢌ ꢘꢁ ꢍꢋ ꢍꢔ ꢖꢓ ꢕ ꢍꢀ ꢑ ꢓꢑꢗ ꢀꢚ ꢏ ꢕꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
APPLICATION INFORMATION  
shutdown function  
Three members of the TLV277x family (TLV2770/3/5) have a shutdown terminal for conserving battery life in  
portable applications. When the shutdown terminal is tied low, the supply current is reduced to 0.8 µA/channel,  
the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the  
shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care  
needs to be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place  
the operational amplifier into shutdown. The shutdown terminal threshold is always referenced to V /2.  
DD  
Therefore, when operating the device with split supply voltages (e.g. 2.5 V), the shutdown terminal needs to  
be pulled to V − (not GND) to disable the operational amplifier.  
DD  
The amplifier’s output with a shutdown pulse is shown in Figure 48 through Figure 50. The amplifier is powered  
with a single 5-V supply and configured as a noninverting configuration with a gain of 5. The amplifier turnon  
and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output  
waveform. The times for the single, dual, and quad are listed in the data tables. The bump on the rising edge  
of the TLV2770 output waveform is due to the start-up circuit on the bias generator. For the dual and quad  
(TLV2773/5), this bump is attributed to the bias generator’s start-up circuit as well as the crosstalk between the  
other channel(s), which are in shutdown.  
Figure 55 and Figure 56 show the amplifier’s forward and reverse isolation in shutdown. The operational  
amplifier is powered by 1.35-V supplies and configured as a voltage follower (A = 1). The isolation  
V
performance is plotted across frequency for both 0.1-V and 2.7-V input signals. During normal operation,  
PP  
PP  
the amplifier would not be able to handle a 2.7-V input signal with a supply voltage of 1.35 V since it exceeds  
PP  
the common-mode input voltage range (V  
shutdown even under a worst case scenario.  
). However, this curve illustrates that the amplifier remains in  
ICR  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢆꢇꢈ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢄ ꢅ ꢊꢆꢇ ꢈ  
ꢋꢊꢌ ꢍ ꢁꢎ ꢏꢋ ꢃ ꢐ ꢄꢆꢂ ꢑꢍ ꢒ ꢑꢆꢓ ꢁꢔ ꢕꢆꢖꢊꢀꢔ ꢖꢊꢍ ꢁ ꢆꢀꢏ ꢆꢖꢊꢍ ꢁ ꢏ ꢗꢀ ꢘꢗꢀ  
ꢏꢘ ꢔ ꢖꢊꢀ ꢍ ꢏꢙ ꢊ ꢁ ꢊꢌ ꢘꢁ ꢍ ꢋꢍ ꢔ ꢖꢓ ꢕ ꢍ ꢀꢑ ꢓ ꢑꢗꢀ ꢚꢏ ꢕ ꢙ  
SGLS179B− SEPTEMBER 2003 − REVISED APRIL 2006  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim PartsRelease 8, the model generation  
software used with Microsim PSpice. The Boyle macromodel (see Note 4) and subcircuit in Figure 64 are  
generated using the TLV2772 typical electrical and operating characteristics at T = 25°C. Using this  
A
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most  
cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
Quiescent power dissipation  
Input bias current  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
99  
dln  
3
egnd  
+
V
DD+  
92  
9
fb  
css  
dp  
rss  
+
91  
90  
iss  
ro2  
hlim  
+
+
vb  
dlp  
rp  
2
vlp  
vln  
+
10  
+
vc  
IN−  
IN+  
r2  
C2  
j1  
j2  
7
6
53  
+
1
vlim  
11  
dc  
12  
ga  
gcm  
8
5
C1  
ro1  
rd1  
rd2  
de  
54  
4
GND  
+
ve  
OUT  
dc  
* TLV2772 operational amplifier macromodel subcircuit  
* created using Parts release 8.0 on 12/12/97 at 10:08  
* Parts is a MicroSim product.  
iss  
3
10  
0
145.50E−6  
hlim  
j1  
90  
11  
12  
6
vlim 1K  
10 jx1  
2
*
j2  
r2  
rd1  
rd2  
ro1  
ro2  
rp  
rss  
vb  
vc  
ve  
vlim  
vlp  
vln  
.model  
.model dy  
.model jx1  
1
9
10 jx2  
* connections: noninverting input  
100.00E3  
5.3052E3  
5.3052E3  
17.140  
17.140  
4.5455E3  
1.3746E6  
dc 0  
*
|
inverting input  
4
11  
12  
5
*
| | positive power supply  
| | | negative power supply  
| | | | output  
4
*
8
*
7
99  
4
*
| | | | |  
1 2 3 4 5  
3
.subckt TLV2772  
10  
9
99  
0
*
c1  
11  
6
12  
7
99  
53  
5
91  
90  
3
0
99  
2.8868E-12  
3
53  
4
dc .82001  
dc .82001  
dc 0  
c2  
10.000E−12  
54  
7
css  
dc  
10  
5
2.6302E−12  
8
dy  
91  
0
0
dc 47  
dc 47  
de  
dlp  
dln  
dp  
egnd  
fb  
54  
90  
92  
4
99  
7
dy  
92  
dx  
dx  
D(Is=800.00E−18)  
dx  
D(Is=800.00E−18 Rs=1m Cjo=10p)  
PJF(Is=2.2500E−12 Beta=244.20E−6  
+ Vto=−.99765)  
dx  
poly(2) (3,0) (4,0) 0 .5 .5  
poly(5) vb vc ve vlp vln 0  
.model jx2  
.ends  
PJF(Is=1.7500E−12 Beta=244.20E−6  
+ Vto=−1.002350)  
15.513E6 −1E3 1E3 16E6 −16E6  
11 12 188.50E−6  
ga  
gcm  
6
0
0
6
10 99 9.4472E−9  
*$  
Figure 64. Boyle Macromodel and Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-May-2007  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TLV2771QDBVRQ1  
ACTIVE  
SOT-23  
DBV  
5
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2772AQDRQ1  
TLV2772AQPWRQ1  
TLV2772QDRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
TSSOP  
SOIC  
D
PW  
D
8
8
8
8
2500  
2000  
2500  
2000  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
TLV2772QPWRQ1  
TSSOP  
PW  
CU NIPDAU Level-1-220C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

TLV2772A

2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS
TI

TLV2772A-EP

FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2772A-Q1

汽车级、双路、5.5V、5.1MHz、1.6mV 失调电压、高压摆率 (10.5V/μs) 运算放大器
TI

TLV2772AID

FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2772AIDG4

FAMILY OF 2.7-HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2772AIDGK

2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT DUAL OPERATIONAL AMPLIFIERS
TI

TLV2772AIDR

FAMILY OF 2.7-HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2772AIDRG4

FAMILY OF 2.7-HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2772AIP

FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2772AIPE4

FAMILY OF 2.7-HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2772AM

采用 CDIP 封装的军用级、双路、6V、5.1MHz、1.6mV 失调电压、高压摆率 (10.5V/μs) 运算放大器
TI

TLV2772AM-D

采用 SOIC 封装的军用级、双路、6V、5.1MHz、1.6mV 失调电压、高压摆率 (10.5V/μs) 运算放大器
TI