TLV2782CDGKR [TI]

FAMILY OF 1.8V HIGH SPEED RAIL TO RAIL INPUT OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN; 家庭的1.8V高速轨至轨输入输出运算放大器,带有关断
TLV2782CDGKR
型号: TLV2782CDGKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

FAMILY OF 1.8V HIGH SPEED RAIL TO RAIL INPUT OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN
家庭的1.8V高速轨至轨输入输出运算放大器,带有关断

运算放大器 放大器电路 光电二极管 输出元件 输入元件
文件: 总32页 (文件大小:897K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢌ ꢍ  
ꢎꢍꢏꢐ ꢁꢑ ꢒ ꢎ ꢈ ꢓꢅ ꢂ ꢔꢐ ꢕꢔ ꢖꢗꢘꢙ ꢙꢚ ꢛꢍꢐ ꢁ ꢖꢀꢒ ꢖꢛꢍꢐ ꢁ ꢐꢜ ꢘꢝꢀ ꢞ ꢒ ꢝꢀ ꢘꢝ ꢀ  
ꢒ ꢘꢙꢛ ꢍꢀ ꢐꢒ ꢜꢍꢁ ꢍꢏ ꢘꢁ ꢐꢎ ꢐꢙ ꢛꢗ ꢟ ꢐꢀ ꢔ ꢗꢔꢝ ꢀꢚ ꢒ ꢟꢜ  
SLOS245E − MARCH 2000 − REVISED JANUARY 2005  
Operational Amplifier  
D
D
D
D
D
D
D
D
Supply Voltage Range . . . 1.8 V to 3.6 V  
Rail-to-Rail Input/Output  
+
High Bandwidth . . . 8 MHz  
High Slew Rate . . . 4.8 V/µs  
V
Exceeds Rails . . . −0.2 V to V + 0.2  
DD  
ICR  
DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE  
Supply Current . . . 650 µA/Channel  
Input Noise Voltage . . . 9 nV/Hz at 10 kHz  
Specified Temperature Range:  
0°C to 70°C . . . Commercial Grade  
−40°C to 125°C . . . Industrial Grade  
vs  
FREQUENCY  
80  
70  
240  
210  
180  
150  
120  
90  
V
= 1.8 V & 2.7 V  
DD  
R = 2 kΩ  
L
60  
50  
40  
30  
C
= 10 pF  
L
T
A
= 25° C  
D
D
Ultrasmall Packaging  
Phase  
Universal Operational Amplifier EVM  
60  
20  
10  
30  
description  
Gain  
1 M  
0
0
−10  
−20  
−30  
−30  
−60  
The TLV278x single supply operational amplifiers  
provide rail-to-rail input and output capability. The  
TLV278x takes the minimum operating supply  
voltage down to 1.8 V over the extended industrial  
temperature range (−40°C to 125°C) while adding  
−90  
−120  
−40  
1 k  
10 k  
100 k  
10 M  
f − Frequency − Hz  
the rail-to-rail output swing feature. The TLV278x also provides 8 MHz bandwidth from only 650 µA of supply  
current. The maximum recommended supply voltage is 3.6 V, which allows the devices to be operated from  
( 1.8 V supplies down to 0.9 V) two rechargeable cells.  
The combination of wide bandwidth, low noise, and low distortion makes it ideal for high speed and high  
resolution data converter applications.  
All members are available in PDIP, SOIC, and the newer, smaller SOT-23 (singles), MSOP (duals), and TSSOP  
(quads).  
FAMILY PACKAGE TABLE  
V
[V]  
V
I
/ch  
I
GBW  
[MHz]  
SLEW RATE  
V
I
O
RAIL-TO-  
RAIL  
DD  
IO  
DD  
IB  
n, 1 kHz  
DEVICE  
SHUTDOWN  
[µV]  
250  
550  
150  
250  
300  
360  
[µA]  
650  
20  
[pA]  
2.5  
3
[V/µs]  
[mA]  
10  
5
[nV/Hz]  
TLV278x(A)  
TLV276x(A)  
TLV246x(A)  
TLV247x(A)  
TLV244x(A)  
TLV277x(A)  
1.8−3.6  
1.8−3.6  
2.7−6  
8
5
18  
Y
Y
I/O  
I/O  
I/O  
I/O  
O
0.5  
6.4  
2.8  
1.81  
5.1  
0.23  
1.6  
95  
11  
15  
16  
17  
550  
600  
750  
1000  
1300  
2.5  
1
25  
20  
2
Y
2.7−6  
1.5  
Y
2.7−10  
2.5−5.5  
1.4  
Y
2
10.5  
6
O
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢬ  
Copyright 2000−2005, Texas Instruments Incorporated  
ꢨ ꢬ ꢩ ꢨꢡ ꢢꢴ ꢤꢣ ꢧ ꢯꢯ ꢭꢧ ꢥ ꢧ ꢦ ꢬ ꢨ ꢬ ꢥ ꢩ ꢓ  
1
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢍ  
ꢎꢍꢏ ꢐ ꢁꢑ ꢒꢎ ꢈ ꢓ ꢅ ꢂ ꢔꢐ ꢕ ꢔꢖꢗ ꢘꢙ ꢙ ꢚ ꢛꢍ ꢐ ꢁꢖꢀꢒ ꢖꢛꢍꢐ ꢁ ꢐꢜ ꢘꢝꢀ ꢞꢒ ꢝꢀ ꢘꢝ ꢀ  
ꢒꢘ ꢙ ꢛꢍꢀ ꢐ ꢒꢜ ꢍ ꢁ ꢍꢏ ꢘꢁ ꢐ ꢎꢐ ꢙ ꢛꢗ ꢟ ꢐ ꢀꢔ ꢗ ꢔꢝꢀ ꢚꢒ ꢟ ꢜ  
SLOS245E − MARCH 2000 − REVISED JANUARY 2005  
(1)  
TLV2780 and TLV2781 AVAILABLE OPTIONS  
PACKAGED DEVICES  
SOT-23  
V
max  
IO  
T
A
SMALL OUTLINE  
PLASTIC DIP  
(P)  
AT 25°C  
(D)  
(DBV)‡  
SYMBOL  
TLV2780CD  
TLV2781CD  
TLV2780CDBV  
TLV2781CDBV  
VASC  
VATC  
0°C to 70°C  
3000 µV  
3000 µV  
2000 µV  
TLV2780ID  
TLV2781ID  
TLV2780IDBV  
TLV2781IDBV  
VASI  
VATI  
TLV2780IP  
TLV2781IP  
-40°C to 125°C  
TLV2780AID  
TLV2781AID  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2780CDR).  
This package is only available taped and reeled. For standard quantities (3,000 pieces per reel), add an R suffix (i.e., TLV2780CDBVR). For  
smaller quantities (250 pieces per mini-reel), add a T suffix to the part number (e.g. TLV2780CDBVT).  
(1)  
TLV2782 and TLV2783 AVAILABLE OPTIONS  
PACKAGED DEVICES  
MSOP  
V
max  
SMALL  
OUTLINE  
(D)  
PLASTIC  
DIP  
PLASTIC  
DIP  
IO  
T
A
AT 25°C  
(DGK)  
SYMBOL  
(DGS)  
SYMBOL  
(N)  
(P)  
TLV2782CD  
TLV2783CD  
TLV2782CDGK  
xxTIADL  
0°C to 70°C  
3000 µV  
3000 µV  
2000 µV  
TLV2783CDGS  
xxTIADN  
TLV2782ID  
TLV2783ID  
TLV2782IDGK  
xxTIADM  
TLV2782IP  
TLV2783IDGS  
xxTIADO  
TLV2783IN  
40°C to 125°C  
TLV2782AID  
TLV2783AID  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2782CDR).  
(1)  
TLV2784 and TLV2785 AVAILABLE OPTIONS  
PACKAGED DEVICES  
V
max  
IO  
T
A
SMALL OUTLINE  
PLASTIC DIP  
(N)  
TSSOP  
(PW)  
AT 25°C  
3000 µV  
3000 µV  
2000 µV  
(D)  
TLV2784CD  
TLV2785CD  
TLV2784CPW  
TLV2785CPW  
0°C to 70°C  
TLV2784ID  
TLV2785ID  
TLV2784IN  
TLV2785IN  
TLV2784IPW  
TLV2785IPW  
40°C to 125°C  
TLV2784AID  
TLV2785AID  
TLV2784AIPW  
TLV2785AIPW  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number  
(e.g., TLV2784CDR).  
1. For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website  
at www.ti.com.  
2
WWW.TI.COM  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢌ ꢍ  
ꢎꢍꢏꢐ ꢁꢑ ꢒ ꢎ ꢈ ꢓꢅ ꢂ ꢔꢐ ꢕꢔ ꢖꢗꢘꢙ ꢙꢚ ꢛꢍꢐ ꢁ ꢖꢀꢒ ꢖꢛꢍꢐ ꢁ ꢐꢜ ꢘꢝꢀ ꢞ ꢒ ꢝꢀ ꢘꢝ ꢀ  
ꢒ ꢘꢙꢛ ꢍꢀ ꢐꢒ ꢜꢍꢁ ꢍꢏ ꢘꢁ ꢐꢎ ꢐꢙ ꢛꢗ ꢟ ꢐꢀ ꢔ ꢗꢔꢝ ꢀꢚ ꢒ ꢟꢜ  
SLOS245E − MARCH 2000 − REVISED JANUARY 2005  
TLV278x PACKAGE PINOUTS  
TLV2780  
D OR P PACKAGE  
(TOP VIEW)  
TLV2781  
DBV PACKAGE  
(TOP VIEW)  
TLV2780  
DBV PACKAGE  
(TOP VIEW)  
1
2
3
1
2
3
5
V
DD  
6
5
4
V
DD  
OUT  
GND  
OUT  
GND  
NC  
IN−  
SHDN  
1
2
3
4
8
7
6
5
V
DD  
SHDN  
IN−  
IN+  
OUT  
NC  
GND  
4
IN−  
IN+  
IN+  
TLV2783  
DGS PACKAGE  
(TOP VIEW)  
TLV2781  
D OR P PACKAGE  
(TOP VIEW)  
TLV2782  
D, DGK, OR P PACKAGE  
(TOP VIEW)  
1
1OUT  
1IN−  
1IN+  
GND  
1SHDN  
V
DD  
2OUT  
2IN−  
2IN+  
10  
NC  
IN−  
NC  
1
2
3
4
8
7
6
5
1OUT  
1IN−  
1IN+  
GND  
V
DD  
1
2
3
4
8
7
6
5
2
9
V
2OUT  
2IN−  
2IN+  
DD  
3
8
4
IN+  
OUT  
NC  
7
GND  
5
6
2SHDN  
TLV2785  
TLV2784  
TLV2783  
D, N, OR PW PACKAGE  
D, N, OR PW PACKAGE  
D OR N PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
(TOP VIEW)  
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1OUT  
1IN−  
1IN+  
GND  
NC  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN−  
1IN+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
4OUT  
4IN−  
4IN+  
GND  
3IN+  
3IN−  
3OUT  
DD  
2OUT  
2IN−  
2IN+  
NC  
4IN+  
V
GND  
DD  
V
DD  
2IN+  
2IN−  
3IN+  
2IN+  
2IN−  
3IN−  
1SHDN  
NC  
2SHDN  
NC  
2OUT  
3OUT  
3/4SHDN  
8
8
2OUT  
1/2SHDN  
NC − No internal connection  
3
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢍ  
ꢎꢍꢏ ꢐ ꢁꢑ ꢒꢎ ꢈ ꢓ ꢅ ꢂ ꢔꢐ ꢕ ꢔꢖꢗ ꢘꢙ ꢙ ꢚ ꢛꢍ ꢐ ꢁꢖꢀꢒ ꢖꢛꢍꢐ ꢁ ꢐꢜ ꢘꢝꢀ ꢞꢒ ꢝꢀ ꢘꢝ ꢀ  
ꢒꢘ ꢙ ꢛꢍꢀ ꢐ ꢒꢜ ꢍ ꢁ ꢍꢏ ꢘꢁ ꢐ ꢎꢐ ꢙ ꢛꢗ ꢟ ꢐ ꢀꢔ ꢗ ꢔꢝꢀ ꢚꢒ ꢟ ꢜ  
SLOS245E − MARCH 2000 − REVISED JANUARY 2005  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Differential input voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V  
DD  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
ID  
DD  
Input current, I (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
10 mA  
10 mA  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
O
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : C-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values, except differential voltages, are with respect to GND.  
DISSIPATION RATING TABLE  
Θ
Θ
T
25°C  
T = 125°C  
A
POWER RATING  
JC  
JA  
A
PACKAGE  
POWER RATING  
(°C/W)  
(°C/W)  
D (8)  
38.3  
176  
710 mW  
142 mW  
D (14)  
D (16)  
26.9  
25.7  
55  
122.3  
114.7  
324.1  
294.3  
259.9  
1022 mW  
1090 mW  
385 mW  
425 mW  
481 mW  
204.4 mW  
218 mW  
77.1 mW  
85 mW  
DBV (5)  
DBV (6)  
DGK (8)  
55  
54.2  
96.2 mW  
DGS (10)  
N (14, 16)  
P (8)  
54.1  
32  
257.7  
78  
485 mW  
1600 mW  
1200 mW  
720 mW  
774 mW  
97 mW  
320.5 mW  
240.4 mW  
144 mW  
41  
104  
PW (14)  
PW (16)  
29.3  
28.7  
173.6  
161.4  
154.9 mW  
recommended operating conditions  
MIN  
1.8  
MAX  
3.6  
UNIT  
Single supply  
Split supply  
Supply voltage, V  
DD  
V
V
0.9  
1.8  
Common-mode input voltage range, V  
ICR  
−0.2  
0
V
+0.2  
70  
DD  
C-suffix  
I-suffix  
Operating free-air temperature, T  
°C  
A
40  
125  
V
V
< 2.7 V  
0.75V  
DD  
DD  
2
V
V
IH  
= 2.7 to 3.6 V  
Shutdown on/off voltage level  
V
DD  
0.6  
IL  
Relative to GND.  
4
WWW.TI.COM  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢌ ꢍ  
ꢎꢍꢏꢐ ꢁꢑ ꢒ ꢎ ꢈ ꢓꢅ ꢂ ꢔꢐ ꢕꢔ ꢖꢗꢘꢙ ꢙꢚ ꢛꢍꢐ ꢁ ꢖꢀꢒ ꢖꢛꢍꢐ ꢁ ꢐꢜ ꢘꢝꢀ ꢞ ꢒ ꢝꢀ ꢘꢝ ꢀ  
ꢒ ꢘꢙꢛ ꢍꢀ ꢐꢒ ꢜꢍꢁ ꢍꢏ ꢘꢁ ꢐꢎ ꢐꢙ ꢛꢗ ꢟ ꢐꢀ ꢔ ꢗꢔꢝ ꢀꢚ ꢒ ꢟꢜ  
SLOS245E − MARCH 2000 − REVISED JANUARY 2005  
electrical characteristics at specified free-air temperature, V  
noted)  
= 1.8 V, 2.7 V (unless otherwise  
DD  
dc performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
3000  
4500  
2000  
3000  
T
A
UNIT  
25°C  
Full range  
25°C  
250  
TLV278x  
V
IO  
Input offset voltage  
µV  
V
R
= V /2,  
DD  
O
L
250  
= 2 k,  
= 50 Ω  
TLV278xA  
Full range  
R
S
Temperature coefficient of input offset  
voltage  
α
VIO  
8
µV/°C  
25°C  
Full range  
25°C  
50  
50  
76  
V
V
V
= 1.8 V  
DD  
DD  
DD  
V
R
= 0 to V  
= 50 Ω  
,
IC  
S
DD  
55  
80  
100  
CMRR Common-mode rejection ratio  
= 2.7 V/ 3.6 V  
= 2.7 V/ 3.6 V  
dB  
Full range  
25°C  
50  
70  
V
R
= 1.2 V to V  
= 50 Ω  
,
IC  
DD  
Full range  
25°C  
70  
S
200  
50  
600  
V
V
= 1.8 V  
DD  
Full range  
25°C  
Large-signal differential voltage  
amplification  
R
V
= 2 k,  
L
A
VD  
V/mV  
= 1 V  
200  
70  
1000  
O(PP)  
= 2.7 V/ 3.6 V  
DD  
Full range  
Full range is 0°C to 70°C for the C-suffix and −40°C to 125°C for the I-suffix. If not specified, full range is 40°C to 125°C.  
input characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
15  
T
A
UNIT  
25°C  
Full range  
Full range  
25°C  
2.5  
TLV278xC  
100  
300  
15  
I
IO  
I
IB  
Input offset current  
pA  
V
R
= V /2,  
DD  
O
L
TLV278xI  
= 2 k,  
= 50 Ω  
2.5  
R
S
TLV278xC  
TLV278xI  
Full range  
Full range  
25°C  
100  
300  
Input bias current  
pA  
r
Differential input resistance  
1000  
19  
GΩ  
i(d)  
C
Common-mode input capacitance  
f = 1 kHz  
25°C  
pF  
i(c)  
Full range is 0°C to 70°C for the C-suffix and −40°C to 125°C for the I-suffix. If not specified, full range is 40°C to 125°C.  
5
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢍ  
ꢎꢍꢏ ꢐ ꢁꢑ ꢒꢎ ꢈ ꢓ ꢅ ꢂ ꢔꢐ ꢕ ꢔꢖꢗ ꢘꢙ ꢙ ꢚ ꢛꢍ ꢐ ꢁꢖꢀꢒ ꢖꢛꢍꢐ ꢁ ꢐꢜ ꢘꢝꢀ ꢞꢒ ꢝꢀ ꢘꢝ ꢀ  
ꢒꢘ ꢙ ꢛꢍꢀ ꢐ ꢒꢜ ꢍ ꢁ ꢍꢏ ꢘꢁ ꢐ ꢎꢐ ꢙ ꢛꢗ ꢟ ꢐ ꢀꢔ ꢗ ꢔꢝꢀ ꢚꢒ ꢟ ꢜ  
SLOS245E − MARCH 2000 − REVISED JANUARY 2005  
electrical characteristics at specified free-air temperature, V  
noted) (continued)  
= 1.8 V, 2.7 V (unless otherwise  
DD  
output characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
1.7  
TYP  
MAX  
T
A
UNIT  
25°C  
Full range  
25°C  
1.77  
V
DD  
= 1.8 V  
1.63  
2.6  
2.68  
I
= 1 mA  
OH  
OH  
V
V
= 2.7 V  
= 3.6 V  
DD  
Full range  
25°C  
2.6  
3.58  
1.55  
DD  
V
OH  
High-level output voltage  
V
25°C  
1.5  
1.46  
2.5  
V
DD  
= 1.8 V  
Full range  
25°C  
2.55  
3.55  
I
= 5 mA  
V
V
= 2.7 V  
= 3.6 V  
DD  
Full range  
25°C  
2.45  
DD  
25°C  
70  
80  
I
I
= 1 mA  
= 5 mA  
OL  
Full range  
25°C  
180  
120  
240  
290  
170  
200  
V
OL  
Low-level output voltage  
V
V
= 1.8 V  
= 2.7 V  
mV  
DD  
Full range  
25°C  
OL  
DD  
Full range  
Positive rail  
Negative rail  
Positive rail  
Negative rail  
10  
15  
17  
23  
13  
35  
21  
45  
V
= 1.8 V,  
DD  
VO = 0.5 V from  
I
I
Output current  
25°C  
mA  
mA  
O
V
DD  
= 2.7 V,  
VO = 0.5 V from  
V
DD  
V
DD  
V
DD  
V
DD  
= 1.8 V  
= 2.7 V  
= 1.8 V  
= 2.7 V  
Sourcing  
Short-circuit output current  
25°C  
OS  
Sinking  
Full range is 0°C to 70°C for the C-suffix and −40°C to 125°C for the I-suffix. If not specified, full range is 40°C to 125°C.  
power supply  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
770  
T
A
UNIT  
25°C  
Full range  
25°C  
650  
SHDN = V  
No load,  
I
Supply current (per channel)  
V
= V /2,  
µA  
DD  
DD  
O
DD  
820  
60  
58  
75  
70  
65  
60  
75  
90  
80  
V
DD  
V
IC  
= 1.8 V to 2.7 V,  
= V  
/2  
Full range  
25°C  
DD  
Supply voltage rejection ratio  
V
DD  
V
IC  
= 2.7 V to 3.6 V,  
No load,  
No load,  
k
dB  
SVR  
(V  
DD  
/V  
IO  
)
= V  
/2  
Full range  
25°C  
DD  
V
V
= 1.8 V to 3.6 V,  
DD  
IC  
= V  
/2  
Full range  
DD  
Full range is 0°C to 70°C for the C-suffix and −40°C to 125°C for the I-suffix. If not specified, full range is 40°C to 125°C.  
6
WWW.TI.COM  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢌ ꢍ  
ꢎꢍꢏꢐ ꢁꢑ ꢒ ꢎ ꢈ ꢓꢅ ꢂ ꢔꢐ ꢕꢔ ꢖꢗꢘꢙ ꢙꢚ ꢛꢍꢐ ꢁ ꢖꢀꢒ ꢖꢛꢍꢐ ꢁ ꢐꢜ ꢘꢝꢀ ꢞ ꢒ ꢝꢀ ꢘꢝ ꢀ  
ꢒ ꢘꢙꢛ ꢍꢀ ꢐꢒ ꢜꢍꢁ ꢍꢏ ꢘꢁ ꢐꢎ ꢐꢙ ꢛꢗ ꢟ ꢐꢀ ꢔ ꢗꢔꢝ ꢀꢚ ꢒ ꢟꢜ  
SLOS245E − MARCH 2000 − REVISED JANUARY 2005  
electrical characteristics at specified free-air temperature, V  
noted) (continued)  
= 1.8 V, 2.7 V (unless otherwise  
DD  
dynamic performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
8
MAX  
UNIT  
T
A
UGBW  
SR+  
Unity gain bandwidth  
25°C  
25°C  
MHz  
R
= 2 k,  
C
= 25 pF  
L
L
3.3  
3.1  
3.8  
3.5  
4
4.3  
V
V
V
V
V
V
= 1.8 V  
= 2.7 V  
= 3.6 V  
= 1.8 V  
= 2.7 V  
= 3.6 V  
= 25 pF  
DD  
Full range  
25°C  
V
R
C
= 1 V,  
= 2 kΩ,  
= 50 pF  
O(PP)  
4.8  
5
Positive slew rate at unity gain  
L
L
DD  
DD  
DD  
DD  
DD  
Full range  
25°C  
Full range  
25°C  
3.6  
2.1  
1.89  
2.2  
1.97  
3.5  
3.4  
V/µs  
2.8  
2.8  
4.2  
Full range  
25°C  
V
R
C
= 1 V,  
= 2 kΩ,  
= 50 pF  
O(PP)  
SR−  
Negative slew rate at unity gain  
L
L
Full range  
25°C  
Full range  
φ
m
Phase margin  
Gain margin  
58°  
25°C  
R
= 2 k,  
C
L
L
8
dB  
V
V
= 1.8 V,  
DD  
0.1%  
1.7  
2.8  
1.7  
2.4  
= 1 V,  
(STEP)PP  
= −1,  
A
V
0.01%  
0.1%  
C
= 10 pF, R = 2 kΩ  
L
L
t
s
Settling time  
25°C  
µs  
V
V
= 2.7 V,  
DD  
(STEP)PP  
= 1 V,  
= −1,  
= 10 pF, R = 2 kΩ  
L
A
V
0.01%  
C
L
Full range is 0°C to 70°C for the C-suffix and −40°C to 125°C for the I-suffix. If not specified, full range is 40°C to 125°C.  
noise/distortion performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.055%  
0.08%  
0.45%  
18  
MAX  
T
UNIT  
A
A
= 1  
V
V
R
= V /2,  
DD  
O(PP)  
A
V
= 10  
= 100  
= 2 k,  
THD + N  
Total harmonic distortion plus noise  
L
f = 10 kHz  
A
V
25°C  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
nV/Hz  
fA/Hz  
V
I
Equivalent input noise voltage  
Equivalent input noise current  
n
9
0.9  
n
shutdown characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1400  
1700  
T
UNIT  
A
25°C  
900  
Supply current, per channel in shutdown mode  
(TLV2780, TLV2783, TLV2785)  
SHDN = 0 V  
I
nA  
DD(SHDN)  
Full range  
t
t
Amplifier turnon time  
R
R
= 2 kΩ  
= 2 kΩ  
800  
200  
(on)  
L
L
25°C  
ns  
Amplifier turnoff time  
(off)  
Full range is 0°C to 70°C for the C-suffix and −40°C to 125°C for the I-suffix. If not specified, full range is 40°C to 125°C.  
Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply current  
has reached half its final value.  
7
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢍ  
ꢎꢍꢏ ꢐ ꢁꢑ ꢒꢎ ꢈ ꢓ ꢅ ꢂ ꢔꢐ ꢕ ꢔꢖꢗ ꢘꢙ ꢙ ꢚ ꢛꢍ ꢐ ꢁꢖꢀꢒ ꢖꢛꢍꢐ ꢁ ꢐꢜ ꢘꢝꢀ ꢞꢒ ꢝꢀ ꢘꢝ ꢀ  
ꢒꢘ ꢙ ꢛꢍꢀ ꢐ ꢒꢜ ꢍ ꢁ ꢍꢏ ꢘꢁ ꢐ ꢎꢐ ꢙ ꢛꢗ ꢟ ꢐ ꢀꢔ ꢗ ꢔꢝꢀ ꢚꢒ ꢟ ꢜ  
SLOS245E − MARCH 2000 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
1, 2  
3
V
Input offset voltage  
vs Common-mode input voltage  
vs Frequency  
IO  
CMRR  
Common-mode rejection ratio  
High-level output voltage  
Low-level output voltage  
Maximum peak-to-peak output voltage  
Output impedance  
V
V
V
vs High-level output current  
vs Low-level output current  
vs Frequency  
4, 6  
5, 7  
8
OH  
OL  
O(PP)  
o
Z
vs Frequency  
9
I
I
Supply current  
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
10  
DD  
Supply current  
11  
DD  
PSRR  
Power supply rejection ratio  
Differential voltage amplification & phase  
Gain-bandwidth product  
12  
A
vs Frequency  
13  
VD  
vs Free-air temperature  
vs Supply voltage  
vs Free-air temperature  
vs Load capacitance  
vs Frequency  
14  
15  
SR  
Slew rate  
16, 17  
18  
φ
Phase margin  
m
V
Equivalent input noise voltage  
Voltage-follower large-signal pulse response  
Voltage-follower small-signal pulse response  
Inverting large-signal pulse response  
Inverting small-signal pulse response  
Crosstalk  
19  
n
vs Time  
20  
vs Time  
21  
vs Time  
22  
vs Time  
23  
vs Frequency  
24  
Shutdown forward & reverse isolation  
Shutdown supply current  
vs Frequency  
25  
I
I
I
vs Free-air temperature  
vs Supply voltage  
vs Time  
26  
DD(SHDN)  
DD(SHDN)  
DD(SHDN)  
Shutdown supply current  
27  
Shutdown supply current/output voltage  
28  
8
WWW.TI.COM  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢌ ꢍ  
ꢎꢍꢏꢐ ꢁꢑ ꢒ ꢎ ꢈ ꢓꢅ ꢂ ꢔꢐ ꢕꢔ ꢖꢗꢘꢙ ꢙꢚ ꢛꢍꢐ ꢁ ꢖꢀꢒ ꢖꢛꢍꢐ ꢁ ꢐꢜ ꢘꢝꢀ ꢞ ꢒ ꢝꢀ ꢘꢝ ꢀ  
ꢒ ꢘꢙꢛ ꢍꢀ ꢐꢒ ꢜꢍꢁ ꢍꢏ ꢘꢁ ꢐꢎ ꢐꢙ ꢛꢗ ꢟ ꢐꢀ ꢔ ꢗꢔꢝ ꢀꢚ ꢒ ꢟꢜ  
SLOS245E − MARCH 2000 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE  
vs  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE REJECTION RATIO  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
FREQUENCY  
400  
140  
100  
V
=1.8 V  
V
=2.7 V  
DD  
=25° C  
DD  
130  
120  
110  
100  
90  
V
= 3.6 V  
DD  
50  
200  
T
T
A
=25 °C  
A
0
0
V
= 2.7 V  
= 1.8 V  
DD  
−50  
−100  
−150  
−200  
−250  
−300  
−350  
−400  
−200  
80  
70  
V
DD  
−400  
−600  
60  
50  
40  
30  
−800  
20  
10  
−1000  
0
−0.2  
0
0.2 0.4 0.6 0.8  
1 1.2 1.4 1.6 1.8 2  
−0.2 0.2 0.6  
1
1.4 1.8 2.2 2.6  
3
0
10  
100  
1k 10k 100k 1M 10M  
V
− Common-Mode Input Voltage − V  
V
− Common-Mode Input Voltage − V  
f − Frequency − Hz  
ICR  
ICR  
Figure 2  
Figure 1  
Figure 3  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.7  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
= 2.7 V  
V
=1.8 V  
DD  
DD  
V
=1.8 V  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
DD  
T
=125°C  
A
T
=70°C  
A
T
= 125°C  
= 70°C  
A
T
=125°C  
=70°C  
A
T
A
=25°C  
T
A
T
A
T
A
=0°C  
T
A
=−40°C  
T
T
= 25°C  
= 0°C  
A
A
T
T
=25°C  
=0°C  
A
A
T
= −40°C  
A
T
A
=−40°C  
0
5
10 15 20 25 30 35 40  
0
2
4 6 8 10 12 14 16 18 20 22 24 26 28  
0
2
4
6
8
10 12 14 16  
I
− Low-Level Output Current − mA  
I
− High-Level Output Current − mA  
I
− High-Level Output Current − mA  
OL  
OH  
OH  
Figure 5  
Figure 4  
Figure 6  
MAXIMUM PEAK-TO-PEAK  
OUTPUT VOLTAGE  
vs  
OUTPUT IMPEDANCE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREQUENCY  
LOW-LEVEL OUTPUT CURRENT  
FREQUENCY  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
100  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
V
T
A
= 2.7 V  
= 25° C  
V
= 2.7 V  
DD  
DD  
V
= 2.7 V  
O(PP)  
T
=125°C  
= 70°C  
A
T
T
10  
A
=25°C  
A
T
A
=0°C  
V
= 1.8 V  
O(PP)  
T
=−40°C  
A
A
V
= 10  
= 1  
1
A
= −10  
R =2 kΩ  
A
V
L
L
V
C
T
A
= 10 pF  
= 25° C  
0.1  
100  
0
5
10 15 20 25 30 35 40 45 50 55  
− Low-Level Output Current − mA  
Figure 7  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
1k  
10k  
100k  
1M  
10M  
I
f − Frequency − Hz  
OL  
f − Frequency − Hz  
Figure 8  
Figure 9  
9
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢍ  
ꢎꢍꢏ ꢐ ꢁꢑ ꢒꢎ ꢈ ꢓ ꢅ ꢂ ꢔꢐ ꢕ ꢔꢖꢗ ꢘꢙ ꢙ ꢚ ꢛꢍ ꢐ ꢁꢖꢀꢒ ꢖꢛꢍꢐ ꢁ ꢐꢜ ꢘꢝꢀ ꢞꢒ ꢝꢀ ꢘꢝ ꢀ  
ꢒꢘ ꢙ ꢛꢍꢀ ꢐ ꢒꢜ ꢍ ꢁ ꢍꢏ ꢘꢁ ꢐ ꢎꢐ ꢙ ꢛꢗ ꢟ ꢐ ꢀꢔ ꢗ ꢔꢝꢀ ꢚꢒ ꢟ ꢜ  
SLOS245E − MARCH 2000 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
POWER SUPPLY REJECTION RATIO  
SUPPLY CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
SUPPLY VOLTAGE  
700  
1.4  
120  
100  
80  
60  
40  
20  
0
V
T
=2.7 V  
DD  
=25°C  
V
= 3.6 V  
A
1.35  
1.3  
DD  
600  
T
= 125°C  
A
500  
400  
300  
200  
100  
0
T
= −40°C  
A
1.25  
1.2  
V
= 2.7 V  
DD  
T
= 25°C  
A
V
= 1.8 V  
DD  
1.15  
1.1  
A
V
= 1  
V
= V /2  
IC  
DD  
A
V
= 1  
V
1.05  
= V  
V
DD/2  
IC  
1
0
0.6  
1.2  
1.8  
2.4  
3
3.6  
10  
100  
1 k  
10 k 100 k 1 M  
10 M  
−40 −2510  
5 20 35 50 65 80 95 110 125  
T
− Free-Air Temperature − °C  
V
− Supply Voltage − V  
f − Frequency − Hz  
A
DD  
Figure 10  
Figure 11  
Figure 12  
GAIN-BANDWIDTH PRODUCT  
vs  
DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
9
8
7
6
5
4
3
2
1
0
80  
70  
240  
210  
180  
150  
120  
90  
V
= 1.8 V & 2.7 V  
DD  
R = 2 kΩ  
V
= 1.8 V  
DD  
L
60  
50  
40  
30  
20  
10  
C
= 10 pF  
L
T
A
= 25° C  
Phase  
60  
V
= 2.7 V  
DD  
30  
Gain  
1 M  
0
0
−10  
−20  
−30  
−30  
−60  
R
C
= 2 kΩ  
= 10 pF  
L
L
f = 10 kHz  
−90  
−120  
−40  
−40 −25 −10  
5 20 35 50 65 80 95 110 125  
1 k  
10 k  
100 k  
10 M  
T
− Free-Air Temperature − °C  
A
f − Frequency − Hz  
Figure 13  
Figure 14  
SLEW RATE  
vs  
SLEW RATE  
SLEW RATE  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
6
5
4
3
2
1
0
8
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SR+  
SR+  
SR−  
SR+  
SR−  
SR−  
A
V
= 1  
V
A
= 2.7 V  
= 1  
R
C
V
= 2 kΩ  
=10 pF  
= 1 V  
DD  
V
L
L
O
IC  
V
A
= 1.8 V  
L
L
O
DD  
= 1  
V
R = 2 kΩ  
C
V
R =2 kΩ  
PP  
DD  
L
= 10 pF  
= 1 V  
V
T
= V /2  
= 25° C  
C =10 pF  
IC  
A
L
IC  
PP  
V
= V /2  
V
= V /2  
DD  
DD  
−402510  
5 20 35 50 65 80 95 110 125  
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6  
−40 −25 −10  
5 20 35 50 65 80 95 110 125  
V
− Supply Voltage − V  
T
− Free-Air Temperature − °C  
A
DD  
T
− Free-Air Temperature − °C  
A
Figure 15  
Figure 16  
Figure 17  
10  
WWW.TI.COM  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢌ ꢍ  
ꢎꢍꢏꢐ ꢁꢑ ꢒ ꢎ ꢈ ꢓꢅ ꢂ ꢔꢐ ꢕꢔ ꢖꢗꢘꢙ ꢙꢚ ꢛꢍꢐ ꢁ ꢖꢀꢒ ꢖꢛꢍꢐ ꢁ ꢐꢜ ꢘꢝꢀ ꢞ ꢒ ꢝꢀ ꢘꢝ ꢀ  
ꢒ ꢘꢙꢛ ꢍꢀ ꢐꢒ ꢜꢍꢁ ꢍꢏ ꢘꢁ ꢐꢎ ꢐꢙ ꢛꢗ ꢟ ꢐꢀ ꢔ ꢗꢔꢝ ꢀꢚ ꢒ ꢟꢜ  
SLOS245E − MARCH 2000 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
PHASE MARGIN  
vs  
FREQUENCY  
LOAD CAPACITANCE  
140  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
A
120  
100  
80  
60  
40  
20  
0
V
= 2.7 V  
DD  
Rnull=50 Ω  
Rnull=20 Ω  
V
= 2.7 V  
= 2 kΩ  
DD  
R
L
V
A
A
T
= 1  
= 25°C  
V
= 1.8 V  
100  
DD  
Rnull=0 Ω  
10  
1 k  
10 k  
100 k  
10  
100  
1 k  
10 k  
f − Frequency − Hz  
C
− Load Capacitance − pF  
L
Figure 18  
Figure 19  
VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE  
vs  
VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE  
vs  
TIME  
TIME  
1.45  
2.5  
V
I
2
1.40  
1.35  
1.30  
1.25  
1.5  
1
V
I
0.5  
V
2.5  
2
O
1.40  
1.35  
1.30  
1.25  
V = 2.7 V  
DD  
R
C
A
V
R
C
= 2.7 V  
= 2 kΩ  
= 10 pF  
DD  
L
L
1.5  
V
O
= 2 kΩ  
= 10 pF  
= 1  
L
L
V
1
A
T
A
= 1  
= 25°C  
V
0.5  
T = 25°C  
A
0
0
0.2 0.4 0.6 0.8  
1
1.2 1.4  
0
0.2 0.4 0.6 0.8  
1 1.2 1.4 1.6 1.8  
t − Time − µs  
t − Time − µs  
Figure 20  
Figure 21  
INVERTING LARGE-SIGNAL PULSE RESPONSE  
vs  
INVERTING SMALL-SIGNAL PULSE RESPONSE  
vs  
TIME  
TIME  
0.10  
1
0.5  
0.05  
0
V
I
0
V
I
−0.5  
−1  
−0.05  
2.5  
V
= 2.7 V  
DD  
1.40  
1.35  
1.30  
1.25  
R
C
A
= 2 kΩ  
= 10 pF  
= −1  
= 25°C  
V
= 2.7 V  
= 2 kΩ  
= 10 pF  
= −1  
L
L
V
DD  
L
L
2
R
C
A
1.5  
T
A
V
T
A
1
0.5  
0
= 25°C  
V
O
V
O
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3  
t − Time − µs  
t − Time − µs  
Figure 22  
Figure 23  
11  
WWW.TI.COM  
ꢎꢍꢏ ꢐ ꢁꢑ ꢒꢎ ꢈ ꢓ ꢅ ꢂ ꢔꢐ ꢕ ꢔꢖꢗ ꢘꢙ ꢙ ꢚ ꢛꢍ ꢐ ꢁꢖꢀꢒ ꢖꢛꢍꢐ ꢁ ꢐꢜ ꢘꢝꢀ ꢞꢒ ꢝꢀ ꢘꢝ ꢀ  
ꢒꢘ ꢙ ꢛꢍꢀ ꢐ ꢒꢜ ꢍ ꢁ ꢍꢏ ꢘꢁ ꢐ ꢎꢐ ꢙ ꢛꢗ ꢟ ꢐ ꢀꢔ ꢗ ꢔꢝꢀ ꢚꢒ ꢟ ꢜ  
SLOS245E − MARCH 2000 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
SHUTDOWN FORWARD  
AND REVERSE ISOLATION  
vs  
SHUTDOWN SUPPLY CURRENT  
vs  
CROSSTALK  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
FREQUENCY  
3
140  
0
Shutdown = 0V  
V
A
V
= V /2  
= 1  
IC  
DD  
120  
100  
80  
60  
40  
20  
0
2.5  
−20  
Forward and Reverse Isolation  
Crosstalk in Shutdown  
−40  
2.0  
1.5  
1
−60  
−80  
V
V
A
= 1.8 V & 2.7 V  
DD  
IC  
V
V
= 3.6 V  
DD  
= 60% of V  
= 1  
DD  
R = 2 kΩ  
V
V
R
= 1.8 & 2.7 V  
L
DD  
= V  
T
= 25°C  
A
/2  
IC  
DD  
All Channels  
−100  
−120  
−140  
= 2 kΩ  
C = 10 pF  
V
= 2.7 V  
DD  
L
0.5  
0
L
A
= 1  
V
T
A
V
= 1.8 V  
= 25°C  
DD  
Crosstalk/No Shutdown  
−40 −25 −10  
5 20 35 50 65 80 95 110 125  
10  
100  
1 k  
10 k 100 k 1 M  
10 M  
10  
100  
1 k  
10 k  
100 k  
T
− Free-Air Temperature − °C  
A
f − Frequency − Hz  
f − Frequency − Hz  
Figure 24  
Figure 25  
Figure 26  
SHUTDOWN SUPPLY CURRENT / OUTPUT VOLTAGE  
vs  
TIME  
3.0  
2.5  
2.0  
1.5  
SHUTDOWN SUPPLY CURRENT  
vs  
1.0  
0.5  
0.0  
SUPPLY VOLTAGE  
SD  
2.6  
2.4  
2.2  
2
Shutdown = 0 V  
V
A
V
= V /2  
DD  
IC  
= 1  
1.5  
1.3  
1.0  
0.8  
0.5  
0.3  
0.0  
1.8  
1.6  
1.4  
1.2  
1
T
= 125°C  
A
T
A
= −40°C  
V
O
0.8  
0.6  
0.4  
0.2  
0
T
A
= 25°C  
V
= 2.7 V  
DD  
= 1  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
1.8  
1.5  
1.3  
1.0  
0.8  
0.5  
0.3  
0.0  
A
V
V
− Supply Voltage − V  
DD  
R
C
= 10 kΩ  
= 10 pF  
L
L
Figure 27  
V
T
A
= V /2  
IC  
DD  
= 25° C  
I
DD(SD)  
−1  
0
1
2
3
4
5
6
7
8
9
10  
t − Time − µsec  
Figure 28  
12  
WWW.TI.COM  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢌ ꢍ  
ꢎꢍꢏꢐ ꢁꢑ ꢒ ꢎ ꢈ ꢓꢅ ꢂ ꢔꢐ ꢕꢔ ꢖꢗꢘꢙ ꢙꢚ ꢛꢍꢐ ꢁ ꢖꢀꢒ ꢖꢛꢍꢐ ꢁ ꢐꢜ ꢘꢝꢀ ꢞ ꢒ ꢝꢀ ꢘꢝ ꢀ  
ꢒ ꢘꢙꢛ ꢍꢀ ꢐꢒ ꢜꢍꢁ ꢍꢏ ꢘꢁ ꢐꢎ ꢐꢙ ꢛꢗ ꢟ ꢐꢀ ꢔ ꢗꢔꢝ ꢀꢚ ꢒ ꢟꢜ  
SLOS245E − MARCH 2000 − REVISED JANUARY 2005  
PARAMETER MEASUREMENT INFORMATION  
R
_
+
NULL  
R
L
C
L
Figure 29  
APPLICATION INFORMATION  
driving a capacitive load  
When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the  
device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater  
than 10 pF, it is recommended that a resistor be placed in series (R  
shown in Figure 30.  
) with the output of the amplifier, as  
NULL  
R
R
F
F
R
R
G
G
R
R
NULL  
NULL  
+
+
Input  
Input  
Output  
Output  
Snubber  
C
R
C
R
C
L
L
L
L
(a)  
(b)  
Figure 30. Driving a Capacitive Load  
offset voltage  
The output offset voltage, (V ) is the sum of the input offset voltage (V ) and both input bias currents (I ) times  
OO  
IO  
IB  
the corresponding gains. The following schematic and formula can be used to calculate the output offset  
voltage:  
R
F
I
IB−  
R
G
+
+
V
I
V
O
R
S
I
IB+  
R
R
F
F
V
+ V  
1 ) ǒ Ǔ " I  
R
1 ) ǒ Ǔ " I  
R
ǒ Ǔ ǒ Ǔ  
OO  
IO  
IB)  
S
IB–  
F
R
R
G
G
Figure 31. Output Offset Voltage Model  
13  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢍ  
ꢎꢍꢏ ꢐ ꢁꢑ ꢒꢎ ꢈ ꢓ ꢅ ꢂ ꢔꢐ ꢕ ꢔꢖꢗ ꢘꢙ ꢙ ꢚ ꢛꢍ ꢐ ꢁꢖꢀꢒ ꢖꢛꢍꢐ ꢁ ꢐꢜ ꢘꢝꢀ ꢞꢒ ꢝꢀ ꢘꢝ ꢀ  
ꢒꢘ ꢙ ꢛꢍꢀ ꢐ ꢒꢜ ꢍ ꢁ ꢍꢏ ꢘꢁ ꢐ ꢎꢐ ꢙ ꢛꢗ ꢟ ꢐ ꢀꢔ ꢗ ꢔꢝꢀ ꢚꢒ ꢟ ꢜ  
SLOS245E − MARCH 2000 − REVISED JANUARY 2005  
APPLICATION INFORMATION  
general configurations  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often  
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier  
(see Figure 32).  
R
R
F
G
V
1
O
+
V
I
R1  
V
C1  
f
+
–3dB  
2pR1C1  
R
O
F
1
ǒ
Ǔ
+
ǒ
1 )  
Ǔ
V
R
1 ) 2pfR1C1  
I
G
Figure 32. Single-Pole Low-Pass Filter  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.  
Failure to do this can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
+
–3dB  
2pRC  
C2  
R
F
1
R
=
G
R
F
2 −  
)
R
(
Q
G
Figure 33. 2-Pole Low-Pass Sallen-Key Filter  
14  
WWW.TI.COM  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢌ ꢍ  
ꢎꢍꢏꢐ ꢁꢑ ꢒ ꢎ ꢈ ꢓꢅ ꢂ ꢔꢐ ꢕꢔ ꢖꢗꢘꢙ ꢙꢚ ꢛꢍꢐ ꢁ ꢖꢀꢒ ꢖꢛꢍꢐ ꢁ ꢐꢜ ꢘꢝꢀ ꢞ ꢒ ꢝꢀ ꢘꢝ ꢀ  
ꢒ ꢘꢙꢛ ꢍꢀ ꢐꢒ ꢜꢍꢁ ꢍꢏ ꢘꢁ ꢐꢎ ꢐꢙ ꢛꢗ ꢟ ꢐꢀ ꢔ ꢗꢔꢝ ꢀꢚ ꢒ ꢟꢜ  
SLOS245E − MARCH 2000 − REVISED JANUARY 2005  
APPLICATION INFORMATION  
circuit layout considerations  
To achieve the levels of high performance of the TLV278x, follow proper printed-circuit board design techniques.  
A general set of guidelines is given in the following.  
D
Ground planes − It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and  
output, the ground plane can be removed to minimize the stray capacitance.  
D
Proper power supply decoupling − Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic  
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers  
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal  
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply  
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less  
effective. The designer should strive for distances of less than 0.1 inches between the device power  
terminals and the ceramic capacitors.  
D
D
Sockets − Sockets can be used but are not recommended. The additional lead inductance in the socket pins  
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board  
is the best implementation.  
Short trace runs/compact part placements − Optimum high performance is achieved when stray series  
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,  
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of  
the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at  
the input of the amplifier.  
D
Surface-mount passive components − Using surface-mount passive components is recommended for high  
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small  
size of surface-mount components naturally leads to a more compact layout, thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be  
kept as short as possible.  
shutdown function  
Three members of the TLV278x family (TLV2780/3/5) have a shutdown terminal for conserving battery life in  
portable applications. When the shutdown terminal is tied low, the supply current is reduced to 900 nA/channel,  
the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the  
shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care  
should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place  
the operational amplifier into shutdown.  
15  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄꢅ ꢈ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢃ ꢇ ꢀꢁꢂ ꢃ ꢄꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢌ ꢍ  
ꢎꢍꢏ ꢐ ꢁꢑ ꢒꢎ ꢈ ꢓ ꢅ ꢂ ꢔꢐ ꢕ ꢔꢖꢗ ꢘꢙ ꢙ ꢚ ꢛꢍ ꢐ ꢁꢖꢀꢒ ꢖꢛꢍꢐ ꢁ ꢐꢜ ꢘꢝꢀ ꢞꢒ ꢝꢀ ꢘꢝ ꢀ  
ꢒꢘ ꢙ ꢛꢍꢀ ꢐ ꢒꢜ ꢍ ꢁ ꢍꢏ ꢘꢁ ꢐ ꢎꢐ ꢙ ꢛꢗ ꢟ ꢐ ꢀꢔ ꢗ ꢔꢝꢀ ꢚꢒ ꢟ ꢜ  
SLOS245E − MARCH 2000 − REVISED JANUARY 2005  
APPLICATION INFORMATION  
general power dissipation considerations  
For a given θ , the maximum power dissipation is shown in Figure 34 and is calculated by the following formula:  
JA  
T
–T  
MAX  
A
P
+
ǒ Ǔ  
D
q
JA  
Where:  
P
= Maximum power dissipation of TLV278x IC (watts)  
= Absolute maximum junction temperature (150°C)  
= Free-ambient air temperature (°C)  
D
T
MAX  
T
A
θ
= θ + θ  
JA  
JC CA  
θ
θ
= Thermal coefficient from junction to case  
JC  
= Thermal coefficient from case to ambient air (°C/W)  
CA  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
2
T
= 150°C  
PDIP Package  
J
Low-K Test PCB  
1.75  
θ
= 104°C/W  
JA  
1.5  
1.25  
1
MSOP Package  
Low-K Test PCB  
SOIC Package  
Low-K Test PCB  
θ
= 260°C/W  
JA  
θ
= 176°C/W  
JA  
0.75  
0.5  
SOT-23 Package  
Low-K Test PCB  
0.25  
0
θ
= 324°C/W  
JA  
−5540 −25 −10  
5
20 35 50 65 80 95 110 125  
T
A
− Free-Air Temperature − °C  
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.  
Figure 34. Maximum Power Dissipation vs Free-Air Temperature  
16  
WWW.TI.COM  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢀꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢋ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢌ ꢍ  
ꢎꢍꢏꢐ ꢁꢑ ꢒ ꢎ ꢈ ꢓꢅ ꢂ ꢔꢐ ꢕꢔ ꢖꢗꢘꢙ ꢙꢚ ꢛꢍꢐ ꢁ ꢖꢀꢒ ꢖꢛꢍꢐ ꢁ ꢐꢜ ꢘꢝꢀ ꢞ ꢒ ꢝꢀ ꢘꢝ ꢀ  
ꢒ ꢘꢙꢛ ꢍꢀ ꢐꢒ ꢜꢍꢁ ꢍꢏ ꢘꢁ ꢐꢎ ꢐꢙ ꢛꢗ ꢟ ꢐꢀ ꢔ ꢗꢔꢝ ꢀꢚ ꢒ ꢟꢜ  
SLOS245E − MARCH 2000 − REVISED JANUARY 2005  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim PartsRelease 9.1, the model generation  
software used with Microsim PSpice. The Boyle macromodel (see Note 2) and subcircuit in Figure 35 are  
generated using TLV278x typical electrical and operating characteristics at T = 25°C. Using this information,  
A
output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
3
99  
V
DD  
+
egnd  
rd1  
11  
rd2  
12  
rss  
ro2  
css  
fb  
rp  
c1  
7
+
c2  
vlim  
8
1
2
+
r2  
9
6
IN+  
IN−  
vc  
D
S
D
S
+
vb  
ga  
G
G
ro1  
gcm  
ioff  
53  
OUT  
dp  
5
dlp  
dln  
91  
90  
92  
10  
+
+
iss  
dc  
vlp  
hlim  
vln  
+
GND  
+ 54  
4
de  
ve  
* TLV2782_HVDD operational amplifier ”macromodel” subcircuit  
* created using Model Editor release 9.1 on 03/3/00 at 9:47  
* Model Editor is an OrCAD product.  
*
ga  
6
0
6
4
0
2
1
9
11 12 544.75E−6  
10 99 1.1538E−9  
dc 56.957E−6  
vlim 1K  
gcm  
iss  
0
10  
90  
11  
12  
6
hlim  
j1  
J2  
r2  
rd1  
rd2  
ro1  
ro2  
rp  
rss  
vb  
vc  
ve  
vlim  
vlp  
vln  
.model  
.model dy  
.model jx1  
.model jx2  
.ends  
* connections: non−inverting input  
10 jx1  
*
| inverting input  
| | positive power supply  
| | | negative power supply  
| | | | output  
10 jx2  
*
100.00E3  
1.8357E3  
1.8357E3  
10  
*
*
3
11  
12  
5
3
*
| | | | |  
8
.subckt TLV2782_HVDD  
*
1 2 3 4 5  
7
99  
4
10  
3
2.1845E3  
3.5114E6  
dc 0  
c1  
11  
6
12  
49.58E−15  
10  
9
99  
0
c2  
7
10.200E−12  
css  
dc  
de  
dlp  
dln  
dp  
egnd  
fb  
10  
5
99  
53  
5
1.0000E−30  
3
53  
4
dc .81911  
dc .81911  
dc 0  
dc 45.400  
dc 45.400  
dy  
54  
7
54  
90  
92  
4
99  
7
dy  
8
91  
90  
3
dx  
91  
0
0
dx  
92  
dx  
dx  
D(Is=800.00E−18)  
0
poly(2) (3,0) (4,0) 0 .5 .5  
poly(5) vb vc ve vlp vln 0  
41.096E6 −1E3 1E3 41E6  
−41E6  
D(Is=800.00E−18 Rs=1m Cjo=10p)  
99  
NJF(Is=500.00E−15 Beta=5.2102E−3 Vto=−1)  
NJF(Is=500.00E−15 Beta=5.2102E−3 Vto=−1)  
Figure 35. Boyle Macromodel and Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
17  
WWW.TI.COM  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Feb-2005  
PACKAGING INFORMATION  
Orderable Device  
TLV2780AID  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
6
6
6
8
8
6
6
6
8
8
8
8
8
5
5
5
8
8
5
5
5
8
75  
2500  
75  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2780AIDR  
TLV2780CD  
SOIC  
SOIC  
D
D
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2780CDBVR  
TLV2780CDBVT  
TLV2780CDBVTG4  
TLV2780CDR  
TLV2780ID  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
D
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
SOIC  
D
75  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2780IDBVR  
TLV2780IDBVRG4  
TLV2780IDBVT  
TLV2780IDR  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
D
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2780IP  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
TLV2781AID  
SOIC  
D
75  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2781AIDR  
TLV2781CD  
SOIC  
D
2500  
75  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
SOIC  
D
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2781CDBVR  
TLV2781CDBVRG4  
TLV2781CDBVT  
TLV2781CDR  
TLV2781ID  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
D
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
SOIC  
D
75  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2781IDBVR  
TLV2781IDBVRG4  
TLV2781IDBVT  
TLV2781IDR  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
D
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Feb-2005  
Orderable Device  
TLV2781IP  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
PDIP  
P
8
8
8
8
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
TLV2782AID  
TLV2782AIDR  
TLV2782CD  
SOIC  
SOIC  
SOIC  
D
D
D
75  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
2500  
75  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2782CDGK  
TLV2782CDGKR  
TLV2782CDR  
ACTIVE  
ACTIVE  
ACTIVE  
MSOP  
MSOP  
SOIC  
DGK  
DGK  
D
8
8
8
80  
None  
None  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
2500  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2782ID  
ACTIVE  
SOIC  
D
8
75  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2782IDGK  
TLV2782IDGKR  
TLV2782IDR  
ACTIVE  
ACTIVE  
ACTIVE  
MSOP  
MSOP  
SOIC  
DGK  
DGK  
D
8
8
8
80  
None  
None  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
2500  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2782IP  
TLV2783AID  
TLV2783AIDR  
TLV2783CD  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
SOIC  
SOIC  
SOIC  
P
D
D
D
8
50  
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
14  
14  
14  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
2500  
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2783CDGS  
TLV2783CDGSR  
TLV2783CDR  
ACTIVE  
ACTIVE  
ACTIVE  
MSOP  
MSOP  
SOIC  
DGS  
DGS  
D
10  
10  
14  
80  
None  
None  
CU SNPB  
CU SNPB  
Level-1-220C-UNLIM  
Level-1-220C-UNLIM  
2500  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2783ID  
ACTIVE  
SOIC  
D
14  
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2783IDGS  
TLV2783IDGSR  
TLV2783IDR  
ACTIVE  
ACTIVE  
ACTIVE  
MSOP  
MSOP  
SOIC  
DGS  
DGS  
D
10  
10  
14  
80  
None  
None  
CU SNPB  
CU SNPB  
Level-1-220C-UNLIM  
Level-1-220C-UNLIM  
2500  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2783IN  
TLV2784AID  
TLV2784AIDR  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
SOIC  
SOIC  
N
D
D
14  
14  
14  
25  
50  
Pb-Free  
(RoHS)  
CU NIPD  
Level-NC-NC-NC  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2784AIPW  
TLV2784AIPWR  
TLV2784CD  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
14  
14  
14  
90  
2000  
50  
None  
None  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2784CDR  
TLV2784CPW  
ACTIVE  
ACTIVE  
SOIC  
D
14  
14  
2500  
90  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TSSOP  
PW  
None  
CU NIPDAU Level-1-220C-UNLIM  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Feb-2005  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
TSSOP  
SOIC  
Drawing  
TLV2784CPWR  
TLV2784ID  
ACTIVE  
ACTIVE  
PW  
14  
14  
2000  
50  
None  
CU NIPDAU Level-1-220C-UNLIM  
D
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2784IDR  
TLV2784IN  
ACTIVE  
ACTIVE  
SOIC  
PDIP  
D
N
14  
14  
2500  
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
Pb-Free  
(RoHS)  
CU NIPD  
Level-NC-NC-NC  
TLV2784IPW  
TLV2784IPWR  
TLV2785AID  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
14  
14  
16  
90  
2000  
40  
None  
None  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2785AIDR  
ACTIVE  
SOIC  
D
16  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2785AIPW  
TLV2785AIPWR  
TLV2785CD  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
16  
16  
16  
90  
2000  
40  
None  
None  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2785CDR  
ACTIVE  
SOIC  
D
16  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2785CPW  
TLV2785CPWR  
TLV2785ID  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
16  
16  
16  
90  
2000  
40  
None  
None  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV2785IDR  
TLV2785IN  
ACTIVE  
ACTIVE  
SOIC  
PDIP  
D
N
16  
16  
2500  
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
TLV2785IPW  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
16  
16  
90  
None  
None  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
TLV2785IPWR  
2000  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Feb-2005  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 4  
MECHANICAL DATA  
MPDI001A – JANUARY 1995 – REVISED JUNE 1999  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.325 (8,26)  
0.300 (7,62)  
0.020 (0,51) MIN  
0.015 (0,38)  
Gage Plane  
0.200 (5,08) MAX  
Seating Plane  
0.010 (0,25) NOM  
0.125 (3,18) MIN  
0.100 (2,54)  
0.021 (0,53)  
0.430 (10,92)  
MAX  
0.010 (0,25)  
M
0.015 (0,38)  
4040082/D 05/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

TLV2782CDR

FAMILY OF 1.8V HIGH SPEED RAIL TO RAIL INPUT OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2782ID

FAMILY OF 1.8 V HIGH-SPEED RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2782IDGK

FAMILY OF 1.8V HIGH SPEED RAIL TO RAIL INPUT OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2782IDGKR

FAMILY OF 1.8V HIGH SPEED RAIL TO RAIL INPUT OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2782IDGKRG4

DUAL OP-AMP, 4500uV OFFSET-MAX, 8MHz BAND WIDTH, PDSO8, GREEN, PLASTIC, MSOP-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2782IDR

FAMILY OF 1.8V HIGH SPEED RAIL TO RAIL INPUT OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2782IP

FAMILY OF 1.8V HIGH SPEED RAIL TO RAIL INPUT OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2782IPE4

Dual 1.8V RRIO, 8MHz Amplifier 8-PDIP -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2783

FAMILY OF 1.8V HIGH SPEED RAIL TO RAIL INPUT OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2783A

FAMILY OF 1.8V HIGH SPEED RAIL TO RAIL INPUT OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2783AID

FAMILY OF 1.8V HIGH SPEED RAIL TO RAIL INPUT OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2783AIDG4

DUAL OP-AMP, 3000uV OFFSET-MAX, 8MHz BAND WIDTH, PDSO14, GREEN, PLASTIC, MS-012AB, SOIC-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI