TLV27L2-Q1 [TI]

汽车级、双路、16V、160kHz 运算放大器;
TLV27L2-Q1
型号: TLV27L2-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车级、双路、16V、160kHz 运算放大器

放大器 运算放大器
文件: 总25页 (文件大小:1535K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV27L2-Q1  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
TLV27L2-Q1 汽车类微功耗轨到轨输出  
运算放大器  
1 特性  
3 说明  
1
符合汽车应用 要求  
具有符合 AEC-Q100 标准的下列结果:  
TLV27L2-Q1 单电源运算放大器具有轨到轨输出能  
力。TLV27L2-Q1 器件在扩展级工业温度范围内的最  
小工作电源电压低至 2.7V,同时还增添了轨到轨输出  
摆幅特性。TLV27L2-Q1 器件仅使用 7µA 的超低电流  
即可提供 160kHz 带宽。建议的最大电源电压为  
16V,这使得器件可以由(±1.35V ±8V 电源)两个  
可充电电池供电。  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
器件人体放电模式 (HBM) 分类等级 2  
器件组件充电模式 (CDM) 分类等级 C6  
双极金属氧化物半导体 (BiMOS) 轨到轨输出  
输入偏置电流:1pA  
轨到轨输出使得 TLV27L2-Q1 器件成为 TLC27Lx 系列  
器件的良好升级版,能够以更低的静态电流提供更高的  
带宽。TLV27L2-Q1 的偏移电压与 TLC27LxA 型号相  
同。这些器件还具有经济高效的优点,在偏移和噪声问  
题不太重要的情况下,它们是 TLC225x TLV225x  
系列器件不错的替代产品。  
高带宽 160kHz  
高转换率:0.1V/µs  
电源电流:7µA(每通道)  
输入噪声电压:89nV/Hz  
电源电压范围:2.7V 16V  
2 应用  
TLV27L2-Q1 器件支持商业级温度范围,以便于实现  
从等效 TLC27Lx 的轻松迁移。  
便携式医疗设备  
功率监视  
TLV27L2-Q1 器件采用 8 引脚 SOIC (D) 封装。  
低功耗安全检测系统  
烟雾探测器  
器件信息(1)  
器件型号  
封装  
SOIC (8)  
封装尺寸(标称值)  
TLV27L2-Q1  
4.90mm x 3.91mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
稳定的低静态电流  
应用电路原理图  
8
V
CC  
V
7
6
CC  
R5  
R6  
œ
+
5
4
I
LOAD  
R2  
3
–40°C  
R1  
R3  
0°C  
+
2
+
V
R
OUT  
25°C  
SHUNT  
V
BUS  
œ
œ
1
0
70°C  
V
CC  
R
L
125°C  
14 16  
0
2
4
6
8
10 12  
Supply Voltage (V)  
R4  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLOS922  
 
 
 
 
TLV27L2-Q1  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
目录  
8.4 Device Functional Modes ....................................... 11  
Application and Implementation ........................ 12  
9.1 Application Information............................................ 12  
9.2 Typical Application ................................................. 12  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Selection Guide...................................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 11  
8.1 Overview ................................................................ 11  
8.2 Functional Block Diagram ....................................... 11  
8.3 Feature Description................................................. 11  
9
10 Power Supply Recommendations ..................... 15  
11 Layout................................................................... 15  
11.1 Layout Guidelines ................................................. 15  
11.2 Layout Example .................................................... 16  
11.3 General Power Dissipation Considerations .......... 16  
12 器件和文档支持 ..................................................... 17  
12.1 文档支持................................................................ 17  
12.2 社区资源................................................................ 17  
12.3 ....................................................................... 18  
12.4 静电放电警告......................................................... 18  
12.5 Glossary................................................................ 18  
13 机械、封装和可订购信息....................................... 18  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (September 2015) to Revision A  
Page  
本数据表的第一个公开发布版本.......................................................................................................................................... 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TLV27L2-Q1  
www.ti.com.cn  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
5 Selection Guide  
All DC specifications are maximum values while AC specifications are typical values.  
VS  
(V)  
IQ/ch  
(µA)  
VICR  
(V)  
VIO  
(mV)  
IIB  
(pA)  
GBW  
(MHz)  
SLEW RATE  
(V/µs)  
Vn, 1 kHz  
(nV/Hz)  
PART NUMBER  
TLV27L2-Q1  
OPAx348-Q1  
OPAx333-Q1  
OPA2314-Q1  
OPAx376-Q1  
TLV226x-Q1  
2.7 to 16  
2.1 to 5.5  
1.8 to 5.5  
1.8 to 5.5  
2.2 to 5.5  
2.7 to 8  
11  
65  
–0.2 to VS + 1.2  
–0.2 to VS + 0.2  
–0.1 to VS + 0.1  
–0.2 to VS + 0.2  
–0.1 to VS + 0.1  
–0.3 to VS – 0.8  
5
5
60  
10  
0.18  
1
0.06  
0.5  
89  
35  
55  
14  
7.5  
12  
25  
0.01  
2.5  
200  
10  
0.35  
2.7  
0.16  
1.5  
180  
950  
500  
0.025  
0.95  
10  
5.5  
2
60  
0.67  
0.55  
6 Pin Configuration and Functions  
D Package  
8-Pin SOIC  
Top View  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
OUT B  
–IN B  
+IN B  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
+IN A  
+IN B  
–IN A  
–IN B  
OUT A  
OUT B  
V+  
NO.  
3
I
I
Noninverting input, channel A  
Noninverting input, channel B  
Inverting input, channel A  
Inverting input, channel B  
Output, channel A  
5
2
I
6
I
1
O
O
7
Output, channel B  
8
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
4
(1) I = input, O = output  
Copyright © 2015, Texas Instruments Incorporated  
3
TLV27L2-Q1  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
16.5  
VS  
UNIT  
V
VS  
VI  
Supply voltage  
Input voltage(2)  
V
VID  
IO  
Differential input voltage  
Output current  
VS  
V
100  
mA  
See the Thermal  
Information Table  
Continuous total power dissipation  
TJ  
Maximum junction temperature  
150  
°C  
°C  
°C  
°C  
TA  
Operating free-air temperature  
–40  
125  
300  
125  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
Storage temperature  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Relative to the V–.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
MIN  
±1.35  
2.7  
MAX  
UNIT  
Dual supply  
±8  
16  
VS  
TA  
Supply voltage  
V
Single supply  
Input common-mode voltage  
Operating free-air temperature  
–0.2  
–40  
VS – 1.2  
125  
V
°C  
7.4 Thermal Information  
TLV27L2-Q1  
D (SOIC)  
8 PINS  
122.2  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
70.5  
62.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
22.3  
ψJB  
62.0  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
 
 
TLV27L2-Q1  
www.ti.com.cn  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
7.5 Electrical Characteristics  
at recommended operating conditions, VS = 2.7 V, 5 V, and 10 V (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX  
UNIT  
DC PERFORMANCE  
25°C  
0.5  
5
7
VIC = VS / 2, VO = VS / 2,  
RL = 100 kΩ, RS = 50 Ω  
VIO  
Input offset voltage  
mV  
µV/°C  
dB  
Full range  
VIC = VS / 2, VO = VS / 2,  
RL = 100 kΩ, RS = 50 Ω  
αVIO  
Offset voltage drift  
25°C  
1.1  
86  
25°C  
Full range  
25°C  
71  
70  
80  
77  
77  
74  
CMRR  
Common-mode rejection ratio  
VIC = 0 V to VS – 1.2 V, RS = 50 Ω  
100  
82  
VS = 2.7 V, 5 V  
Full range  
25°C  
Large-signal differential voltage  
amplification  
VO(PP) = VS / 2,  
RL = 100 kΩ,  
AVD  
dB  
VS = ±5 V  
Full range  
INPUT CHARACTERISTICS  
25°C  
70°C  
125°C  
25°C  
70°C  
125°C  
25°C  
25°C  
1
1
60  
100  
VIC = VS / 2, VO = VS / 2,  
RL = 100 kΩ, RS = 50 Ω  
IIO  
Input offset current  
pA  
pA  
1000  
60  
VIC = VS / 2, VO = VS / 2,  
RL = 100 kΩ, RS = 50 Ω  
IIB  
Input bias current  
200  
1000  
ri(d)  
CIC  
Differential input resistance  
1000  
8
GΩ  
Common-mode input capacitance f = 1 kHz  
pF  
POWER SUPPLY  
25°C  
Full range  
25°C  
7
11  
16  
IQ  
Quiescent current (per channel)  
VO = VS/2  
µA  
dB  
74  
70  
82  
Power supply rejection ratio  
(ΔVS/ΔVIO  
No load, VS = 2.7 V to 16 V,  
VIC = VS / 2 V  
PSRR  
)
Full range  
OUTPUT CHARACTERISTICS  
25°C  
Full range  
25°C  
160  
85  
200  
220  
120  
200  
120  
150  
800  
900  
400  
500  
VS = 2.7 V  
VIC = VS / 2,  
IOL = 100 µA  
VS = 5 V  
VS = ±5 V  
VS = 5 V  
VS = ±5 V  
Full range  
25°C  
50  
VO  
Output voltage swing from rail  
mV  
Full range  
25°C  
420  
200  
400  
Full range  
25°C  
VIC = VS / 2,  
IOL = 500 µA  
Full range  
25°C  
IO  
Output current  
VO = 0.5 V from rail, VS = 2.7 V  
µA  
kHz  
V/µs  
DYNAMIC PERFORMANCE  
GBP  
SR  
Gain bandwidth product  
RL = 100 kΩ, CL = 10 pF, f = 1 kHz  
25°C  
25°C  
160  
0.06  
0.05  
0.8  
62  
VO(pp) = 1 V, RL = 100 kΩ,  
CL = 50 pF  
Slew rate at unity gain  
–40°C  
125°C  
25°C  
φM  
Phase margin  
RL = 100 kΩ, CL = 50 pF  
°
V(STEP)pp = 1 V, AV = –1, rise  
CL = 50 pF, RL = 100 kΩ, fall  
62  
ts  
Settling time (0.1%)  
25°C  
µs  
44  
NOISE AND DISTORTION PERFORMANCE  
Vn  
In  
Equivalent input noise voltage  
Equivalent input noise current  
f = 1 kHz  
f = 1 kHz  
25°C  
25°C  
89  
nV/Hz  
nV/Hz  
0.6  
(1) Full range is –40°C to 125°C for I suffix.  
Copyright © 2015, Texas Instruments Incorporated  
5
TLV27L2-Q1  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
7.6 Typical Characteristics  
Table 1. Table of Graphs  
FIGURE  
Figure 1,  
Figure 2,  
Figure 3  
Input offset voltage (VIO  
Input bias and offset current (IIB and IIO  
High-level output voltage (VOH  
)
vs Common-mode input voltage (VIC  
)
)
vs Free-air temperature (TA)  
Figure 4  
Figure 5,  
Figure 7,  
Figure 9  
)
vs High-level output current (IOH)  
Figure 6,  
Figure 8,  
Figure 10  
Low-level output voltage (VOL  
Quiescent current (IQ)  
)
vs Low-level output current (IOL)  
vs Supply voltage (VS)  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
vs Free-air temperature (TA)  
Supply voltage and supply current ramp up  
Differential voltage gain and phase shift (AVD  
Gain-bandwidth product (GBP)  
Phase margin (φm)  
)
vs Frequency (f)  
vs Free-air temperature (TA)  
vs Load capacitance (CL)  
vs Frequency (f)  
Common-mode rejection ratio (CMRR)  
Power supply rejection ratio (PSRR)  
Input referred noise voltage  
vs Frequency (f)  
vs Frequency (f)  
Slew rate (SR)  
vs Free-air temperature (TA)  
vs Frequency (f)  
Peak-to-peak output voltage (VO(PP)  
Inverting small-signal response  
Inverting large-signal response  
Crosstalk  
)
vs Frequency (f)  
2000  
1500  
2000  
1500  
1000  
500  
1000  
500  
0
–500  
0
–500  
–1000  
–1000  
–1500  
–2000  
–1500  
–2000  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5 5  
Common-Mode Input Voltage (V)  
Common-Mode Input Voltage (V)  
VS = 2.7 V  
TA = 25°C  
VS = 5 V  
TA = 25°C  
Figure 1. Input Offset Voltage vs Common-Mode Input  
Voltage  
Figure 2. Input Offset Voltage vs Common-Mode Input  
Voltage  
6
Copyright © 2015, Texas Instruments Incorporated  
 
 
TLV27L2-Q1  
www.ti.com.cn  
2000  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
100  
I
I
IB  
90  
1500  
IO  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
500  
0
–500  
–1000  
–1500  
–2000  
25  
45  
65  
85  
105  
125  
–5.2 –3.6  
–2  
0.4  
1.2  
2.8  
4.4  
Free-Air Temperature (°C)  
Common-Mode Input Voltage (V)  
VS = 5 V  
VIC = 2.5 V  
VO = 2.5 V  
VS = ±5 VDC  
TA = 25°C  
Figure 4. Input Bias And Input Offset Current vs Free-Air  
Temperature  
Figure 3. Input Offset Voltage vs Common-Mode Input  
Voltage  
5
5
–40°C  
–40°C  
4
4
0°C  
0°C  
3
3
25°C  
70°C  
125°C  
25°C  
70°C  
125°C  
2
1
2
1
0
–1  
–2  
–3  
–4  
–5  
0
–1  
–2  
–3  
–4  
–5  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
Low-Level Output Current (mA)  
High-Level Output Current (mA)  
VS = ±5 V  
Figure 6. Low-Level Output Voltage vs Low-Level Output  
Current  
Figure 5. High-Level Output Voltage vs High-Level Output  
Current  
5
5
–40°C  
–40°C  
4.5  
4.5  
0°C  
0°C  
4
4
25°C  
25°C  
70°C  
3.5  
70°C  
3.5  
3
125°C  
125°C  
3
2.5  
2.5  
2
1.5  
1
2
1.5  
1
0.5  
0.5  
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0 5  
1
1 5  
2 2.5 3 3.5 4 4.5 5 5.5 6  
High-Level Output Current (mA)  
Low-Level Output Current (mA)  
VS = 5 V  
VS = 5 V  
Figure 7. High-Level Output Voltage vs High-Level Output  
Current  
Figure 8. Low-Level Output Voltage vs Low-Level Output  
Current  
Copyright © 2015, Texas Instruments Incorporated  
7
TLV27L2-Q1  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
2.7  
–40°C  
0°C  
–40°C  
2.4  
0°C  
25°C  
70°C  
125°C  
25°C  
2.1  
70°C  
1.8  
125°C  
1.5  
1.2  
0.9  
0.6  
0.9  
0.6  
0.3  
0
0.3  
0
0
0.2 0.4  
0.6  
0.8  
1
1.2 1.4  
0
0.2  
0.4  
0.6  
0.8  
1
1.2 1.4  
High-Level Output Current (mA)  
Low-Level Output Current (mA)  
VS = 2.7 V  
VS = 2.7 V  
Figure 9. High-Level Output Voltage vs High-Level Output  
Current  
Figure 10. Low-Level Output Voltage vs Low-Level Output  
Current  
8
7
6
8
7
6
5
4
3
5
4
3
–40°C  
0°C  
2.7 V  
2
2
25°C  
5 V  
1
0
70°C  
1
10 V  
16 V  
125°C  
14 16  
0
–40 –25 –10  
0
2
4
6
8
10 12  
5
20 35 50 65 80 95 110 125  
Supply Voltage (V)  
Free-Air Temperature (°C)  
Figure 11. Quiescent Current vs Supply Voltage  
Figure 12. Quiescent Current vs Free-Air Temperature  
40  
120  
15  
10  
5
100  
80  
0°  
30°  
0
V
V
I
S
60  
60°  
90°  
O
Q
40  
15  
10  
20  
0
120°  
150°  
180°  
5
0
–20  
0
5
10  
15  
20  
25  
30  
0.1  
1
10  
100 1 k 10 k 100 k 1M  
Time (ms)  
Frequency (Hz)  
VS = 0 to 15 V  
TA = 25°C  
RL = 100 Ω  
CL = 10 pF  
VS = 5 V  
RL = 100 Ω  
CL = 10 pF  
TA = 25°C  
Figure 13. Supply Voltage and Supply Current Ramp Up  
Figure 14. Differential Voltage Gain and Phase Shift vs  
Frequency  
8
Copyright © 2015, Texas Instruments Incorporated  
TLV27L2-Q1  
www.ti.com.cn  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
80  
70  
60  
50  
40  
30  
20  
10  
0
170  
160  
150  
140  
130  
120  
110  
100  
2.7 V  
5 V  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
10  
100  
1000  
Free-Air Temperature (°C)  
Load Capacitance (pF)  
RL = 100 kΩ  
VS = 5 V  
TA = 25°C  
Figure 15. Gain-Bandwidth Product vs Free-Air Temperature  
Figure 16. Phase Margin vs Load Capacitance  
100  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
100  
1 k  
10 k  
100 k  
1M  
10  
100  
1 k  
10 k  
100 k  
1M  
Frequency (Hz)  
Frequency (Hz)  
VS = ±2.5 V  
TA = 25°C  
VS = 5 V  
TA = 25°C  
Figure 18. Power Supply Rejection Ratio vs Frequency  
Figure 17. Common-Mode Rejection Ratio vs Frequency  
0.09  
250  
0.08  
0.07  
0.06  
0.05  
200  
150  
100  
0.04  
0.03  
0.02  
50  
0
SR+  
SR–  
0.01  
0
1
10  
100  
1 k  
10 k  
100 k  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
Frequency (Hz)  
Free-Air Temperature (°C)  
G = 1  
VS = 5 V  
G = 2  
RF = 100 kΩ  
VS = 5 V  
VO = 1 V  
RL = 100 kΩ  
CL = 50 pF  
Figure 19. Input Referred Noise Voltage vs Frequency  
Figure 20. Slew Rate vs Free-Air Temperature  
Copyright © 2015, Texas Instruments Incorporated  
9
TLV27L2-Q1  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
2
16  
V
V
V
= 2.7 V  
= 5 V  
S
S
S
1.5  
14  
12  
10  
= 15 V  
1
0.5  
V = 3 V  
I
PP  
0
–0.5  
–1  
8
6
4
V
= 3 V  
PP  
O
–1.5  
–2  
2
0
–100  
0
100 200 300 400 500 600 700  
Time (µs)  
10  
100  
1000  
1 k  
10 k  
Frequency (Hz)  
VS = 5 V  
G = –1  
VO = 3 VPP  
f = 1 kHz  
RL = 100 kΩ  
CL = 10 pF  
THD+N 5%  
RL = 100 kΩ  
CL = 10 pF  
Figure 22. Inverting Small-Signal Response  
Figure 21. Peak-to-Peak Output Voltage vs Frequency  
0.06  
0
–20  
0.04  
–40  
–60  
0.02  
V = 100 mV  
I
PP  
0
V
= 100 mV  
PP  
O
–80  
–0.02  
–0.04  
–0.06  
–100  
–120  
–140  
–100  
0
100 200 300 400 500 600 700  
Time (µs)  
10  
100  
1 k  
10 k  
100 k  
Frequency (Hz)  
G = –1  
VS = 5 V  
G = –1  
VO = 100 mVPP  
f = 1 kHz  
VS = 5 V  
TA = 25°C  
Channel 1 to 2  
RL = 100 kΩ  
CL = 10 pF  
RL = 2 kΩ  
CL = 10 pF  
Figure 23. Inverting Large-Signal Response  
Figure 24. Crosstalk vs Frequency  
10  
Copyright © 2015, Texas Instruments Incorporated  
TLV27L2-Q1  
www.ti.com.cn  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
8 Detailed Description  
8.1 Overview  
The TLV27L2-Q1 device is a micropower, rail-to-rail output, operational amplifier. This device operates from 2.7  
V to 16 V, is unity-gain stable, and is suitable for a wide range of general-purpose applications. The class AB  
output stage is capable of driving 10-kΩ loads connected to any point between V+ and ground. The input  
common-mode voltage range includes the negative rail and allows the TLV27L2-Q1 device to be used in virtually  
any single-supply application from 2.7 V to 16 V. The typical supply current of 7 µA makes the TLV27L2-Q1  
device an excellent choice for battery operated systems.  
8.2 Functional Block Diagram  
+IN  
PMOS  
Input  
Stage  
-IN  
Output  
Stage  
OUT  
NMOS  
Input  
Stage  
8.3 Feature Description  
8.3.1 Offset Voltage  
The output offset voltage (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times  
the corresponding gains. Use the schematic and formula in Figure 25 to calculate the output offset voltage.  
R
F
I
IB–  
R
G
+
æ
ç
R
R
ö
æ
ç
R
R
ö
æ
ç
è
F ö  
÷÷  
G ø  
æ
ç
è
F ö  
÷÷  
G ø  
V
I
VOO = VIO 1 +  
è
IIB + RS 1 +  
è
IIB RF  
-
+
ø
ø
R
S
I
IB+  
Figure 25. Output Offset Voltage Model  
8.4 Device Functional Modes  
The TLV27L2-Q1 device is powered on when the supply is connected. The device can be operated as a single-  
supply operational amplifier or a dual-supply amplifier, depending on the application. The TLV27L2-Q1 device  
operates from power supplies as low as 2.7 V or as high as 16 V.  
Copyright © 2015, Texas Instruments Incorporated  
11  
 
TLV27L2-Q1  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 General Configurations  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required.  
The simplest way limit the bandwidth is to place an RC filter at the noninverting terminal of the amplifier as  
shown in Figure 26.  
R
R
F
G
VO  
VI  
RF  
R
1
æ
öæ  
÷ç  
ö
÷
ø
= 1+  
è
ç
1+sR1C1  
G øè  
V
DD  
/2  
V
O
1
+
V
I
f-3dB  
=
R1  
2pR1C1  
C1  
Figure 26. Single-Pole Low-Pass Filter  
If even more attenuation is required, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.  
Failure to do select an amplifier with an appropriate bandwidth can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
=
3dB  
-
C2  
2pRC  
R
R
F
RF  
R
G
RG =  
1
æ
ö
2 -  
ç
÷
ø
Q
è
V
DD  
/2  
Figure 27. 2-Pole Low-Pass Sallen-Key Filter  
9.2 Typical Application  
This single-supply low-side, bi-directional current sensing solution can accurately detect load currents from –1 A  
to +1 A. The linear range of the output is from 110 mV to 3.19 V. The design uses the TLV27L2-Q1 device  
configured as a difference amplifier and reference voltage buffer.  
Low-side current sensing is desirable because the common-mode voltage is near ground. Therefore the current  
sensing solution is independent of the bus voltage, VBUS. When sensing bidirectional currents, a reference  
voltage must be added to differentiate between positive and negative currents. Figure 28 shows a general circuit  
topology for a low-side, bidirectional current-sensing solution. This topology is particularly useful when cost is a  
priority at the expense of accuracy and printed circuit board (PCB) space. The shunt voltage (VSHUNT) is created  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
TLV27L2-Q1  
www.ti.com.cn  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
Typical Application (continued)  
by the load current (ILOAD) flowing through the shunt resistor (RSHUNT). The VSHUNT voltage is amplified by an op  
amp (U1A) according to the gain set by the ratio of R4 to R3. To achieve the transfer function in Equation 1 and  
to minimize errors, set R4 equal to R2 and R3 equal to R1. To provide the reference voltage in this design, divide  
down the supply voltage (VCC) using R5 and R6. The reference voltage is then buffered using an additional op  
amp (U1B).  
VOUT = VSHUNT × GainDiff_Amp + Vref  
(1)  
V
CC  
V
CC  
V
ref  
R5  
R6  
œ
+
U1B  
I
LOAD  
R2  
R1  
R3  
+
+
+
V
V
R
SHUNT  
OUT  
SHUNT  
V
BUS  
œ
œ
U1A  
œ
V
CC  
R
L
R4  
Figure 28. Application Schematic ±1-A Single-Supply Low-Side Current Sensing Solution  
9.2.1 Design Requirements  
The design requirements are as follows:  
Supply voltage: 3.3 V  
Input: –1 A to +1 A  
Output: 110 mV to 3.19 V  
Maximum shunt voltage: ±100 mV  
9.2.2 Detailed Design Procedure  
9.2.2.1 Shunt Resistor (RSHUNT  
)
As shown in Figure 28, the value of VSHUNT is the ground potential for the system load. If the value of VSHUNT is  
too large, it can cause issues when interfacing with systems with a true ground potential of 0 V. If the value of  
VSHUNT is too negative, it can violate the input common-mode voltage of the differential amplifier in addition to  
potential interfacing issues. Therefore, limit the voltage across the shunt resistor. Use Equation 2 to calculate the  
maximum value of RSHUNT given a maximum shunt voltage of 100 mV.  
VSHUNT(MAX)  
100 mV  
RSHUNT(MAX)  
=
=
= 100 mW  
1 A  
ILOAD(MAX)  
(2)  
Because cost is a priority in this design, a shunt resistor with a 0.5% tolerance was selected.  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
 
 
TLV27L2-Q1  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
Typical Application (continued)  
9.2.2.2 Operational Amplifiers  
The shunt voltage in this design can range from –100 mV to +100 mV. The shut voltage is divided down by the  
resistors, R1 and R2. The op amp configured as a difference amplifier (U1A) must have an input common-mode  
that includes this voltage range. Therefore an op amp with rail-to-rail input (RRI) that extends below V– is  
recommended. The output swing of the amplifier should also be rail-to-rail output (RRO) to maximize the  
dynamic range of the system. Use of a CMOS op amp is recommended because the supply voltage is 3.3 V. The  
supply-splitter op amp (U1B) should have low offset voltage. Because this design includes two op amps, a dual  
package minimizes the required area. This design uses the TLV27L2-Q1 device because it is a RRO CMOS  
device. In addition, the cost versus performance of the device is excellent.  
9.2.2.3 Reference Voltage Resistors (R5-R6)  
Because the load current range is symmetric (–1 A to +1 A), the resistors that divide down the supply voltage  
should be equal so that the reference voltage is the mid supply ([(V+) – (V–)] / 2 or, for this example, (3.3 V – 0  
V) / 2 = 1.65 V). Because cost is a priority in this design, the tolerance should be consistent with the shunt  
resistor tolerance (0.5%). Finally, select resistors that are large enough to meet the power consumption  
requirement of the system. For this design, 10-kΩ resistors were selected.  
9.2.2.4 Difference Amplifier Gain Setting Resistors (R1-R4)  
Equation 3 and Equation 4 show the input common-mode (VCM) and output voltage range (VOUT) of the  
TLV27L2-Q1 device given a 3.3-V supply.  
–200 mV < VCM < 2.1 V  
100 mV < VOUT < 3.2 V  
(3)  
(4)  
Use Equation 5 to calculate the gain.  
VOUT _MAX - VOUT _MIN  
3.2 V -100 mV  
V
V
GainDiff _ Amp  
=
=
= 15.5  
RSHUNT ´ I  
(
-IMIN  
100 mW ´ 1 A - 1 A  
( )  
)
(
)
MAX  
(5)  
The selected value for the R1 and R3 resistors was 1 kΩ. The selected value for the R2 and R4 resistors was  
15.4 kΩ, which is the nearest 0.1% value to the ideal value of 15.5 kΩ. Therefore, the ideal gain of the difference  
amplifier is 15.4 V/V.  
9.2.3 Application Curve  
Figure 29 shows the measured transfer function of the design.  
3.3  
y = 1.4471x + 1.6177  
1.65  
0
-1  
-0.5  
0
0.5  
1
Load Current (A)  
D001  
Figure 29. Measured Output Voltage vs Load Current (Board 1)  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
 
TLV27L2-Q1  
www.ti.com.cn  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
10 Power Supply Recommendations  
The TLV27L2-Q1 device is specified for operation from 2.7 V to 16 V (±1.35 V to ±8 V); many specifications  
apply from –40°C to +125°C. The Typical Characteristics presents parameters that can exhibit significant  
variance with regard to operating voltage or temperature.  
CAUTION  
Supply voltages larger than 16.5 V can permanently damage the device (see the  
Absolute Maximum Ratings table).  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout  
Guidelines section.  
11 Layout  
11.1 Layout Guidelines  
To achieve the levels of high performance of the TLV27L2-Q1 device, follow proper printed-circuit board design  
techniques. The following list is a general set of guidelines:  
Ground planes—Using a ground plane on the board is highly recommended to provide all components with a  
low inductive-ground connection. However, in the areas of the amplifier inputs and output, the ground plane  
can be removed to minimize the stray capacitance.  
Proper power supply decoupling—Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic capacitor  
on each supply terminal. Sharing the tantalum capacitor among several amplifiers is possible depending on  
the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal of every  
amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply terminal. As  
this distance increases, the inductance in the connecting trace makes the capacitor less effective. The  
designer should strive for distances of less than 0.1 inches between the device power terminals and the  
ceramic capacitors.  
Sockets—Sockets can be used but are not recommended. The additional lead inductance in the socket pins  
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board are  
the best implementation.  
Short trace runs and compact part placements—Optimum high performance is achieved when stray series  
inductance has been minimized. To achieve this performance, the circuit layout should be as compact as  
possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting  
input of the amplifier. The length should be kept as short as possible which helps minimize stray capacitance  
at the input of the amplifier.  
Surface-mount passive components—Using surface-mount passive components is recommended for high  
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, keep the lead lengths as short as possible.  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
TLV27L2-Q1  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
11.2 Layout Example  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
VS+  
RF  
N/C  
N/C  
Use a low-ESR,  
ceramic bypass  
capacitor  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
N/C  
VIN  
GND  
GND  
VSœ  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitor  
Copyright © 2017, Texas Instruments Incorporated  
Figure 30. TLV27L2-Q1 Layout Example  
11.3 General Power Dissipation Considerations  
Use to calculate the maximum power dissipation for a given θJA.  
T
MAX -TA  
æ
ç
è
ö
÷
ø
PD =  
qJA  
where  
PD = Maximum power dissipation of TLV27L2-Q1 IC (watts)  
TMAX = Absolute maximum junction temperature (150°C)  
TA = Free-ambient air temperature (°C)  
θJA = θJC + θCA  
θJC = Thermal coefficient from junction to case  
θCA = Thermal coefficient from case to ambient air (°C/W)  
16  
版权 © 2015, Texas Instruments Incorporated  
TLV27L2-Q1  
www.ti.com.cn  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
General Power Dissipation Considerations (continued)  
2
1.75  
1.5  
Low-K Test PCB  
= 176°C/W  
1.25  
1
θ
JA  
0.75  
0.5  
0.25  
0
–55 –40 –25 –10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (°C)  
TJ = 150°C  
Results are with no air flow and using JEDEC Standard  
Low-K test PCB.  
Figure 31. Maximum Power Dissipation vs Free-Air Temperature  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
OPAx348-Q1 1MHz 45μA CMOS 轨到轨运算放大器》SBOS465  
OPAx333-Q1 1.8V 微功耗 CMOS 运算放大器零漂移系列》SBOS522  
OPA2314-Q1 3MHz、低功耗、低噪声、RRIO1.8V CMOS 运算放大器》SLOS896  
OPAx376-Q1 低噪声、低静态电流、高精度运算放大器 e-trim™ 系列》SBOS549  
TLV226x-Q1 高级 LinCMOS™ CMOS 运算放大器》SGLS193  
12.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
版权 © 2015, Texas Instruments Incorporated  
17  
TLV27L2-Q1  
ZHCSEH4A SEPTEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
18  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV27L2QDRQ1  
ACTIVE  
SOIC  
D
8
2500 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
27L2Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jul-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV27L2QDRQ1  
SOIC  
D
8
2500  
330.0  
12.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jul-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
340.5 336.1 25.0  
TLV27L2QDRQ1  
D
8
2500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TLV27L2CD

FAMILY OF MICROPOWER RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV27L2CDG4

IC,OP-AMP,DUAL,BICMOS,SOP,8PIN,PLASTIC
TI

TLV27L2CDGK

11-uA/Channel, 160kHz, RR-Out Dual Op Amp 8-VSSOP
TI

TLV27L2CDGKR

暂无描述
TI

TLV27L2CDGKRG4

DUAL OP-AMP, 7000uV OFFSET-MAX, 0.16MHz BAND WIDTH, PDSO8, 3 X 5 MM, GREEN, PLASTIC, MSOP-8
TI

TLV27L2CDR

FAMILY OF MICROPOWER RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV27L2ID

FAMILY OF MICROPOWER RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV27L2IDGK

11-uA/Channel, 160kHz, RR-Out Dual Op Amp 8-VSSOP
TI

TLV27L2IDGKG4

DUAL OP-AMP, 7000uV OFFSET-MAX, 0.16MHz BAND WIDTH, PDSO8, 3 X 5 MM, GREEN, PLASTIC, MSOP-8
TI

TLV27L2IDGKR

双路、16V、160kHz 运算放大器 | DGK | 8
TI

TLV27L2IDR

FAMILY OF MICROPOWER RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV27L2IDRG4

11-uA/Channel, 160kHz, RR-Out Dual Op Amp 8-SOIC -40 to 125
TI