TLV316IDBVR [TI]

Single, 5.5-V, 10-MHz, RRIO operational amplifier | DBV | 5 | -40 to 125;
TLV316IDBVR
型号: TLV316IDBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Single, 5.5-V, 10-MHz, RRIO operational amplifier | DBV | 5 | -40 to 125

文件: 总39页 (文件大小:1804K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TLV316, TLV2316, TLV4316  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
TLVx316  
10MHz、轨到轨输入/输出、低电压、1.8V CMOS 运算放大器  
1 特性  
3 说明  
1
单位增益带宽:10MHz  
IQ:每通道 400µA  
TLV316(单路)、TLV2316(双路)和 TLV4316(四  
路)器件构成了低功耗、通用运算放大器系列。该系列  
器件 特有轨到轨输入和输出摆幅,并且兼具低静态电  
流(每通道的典型值为 400μA)、10MHz 的较宽带宽  
和超低噪声(1kHz 时为 12 nV/Hz),因此对于要求  
在成本和性能间达到良好平衡的各类电池供电 应用 而  
言极具吸引力。低输入偏置电流支持在 源阻抗高达兆  
欧级的 应用中使用此类运算放大器。  
出色的功率带宽比  
在温度和电源电压范围内保持稳定的 IQ  
宽电源电压范围:1.8V 5.5V  
低噪声:1kHz 时为 12nV/Hz  
低输入偏置电流:±10pA  
偏移电压:±0.75mV  
单位增益稳定  
TLVx316 采用稳健耐用的设计,方便电路设计人员使  
用。该器件具有单位增益稳定的集成 RFI/EMI 抑制滤  
波器,在过驱条件下不会出现反相,并且具有高静电放  
(ESD) 保护 (4kV HBM)。  
内部射频干扰 (RFI)/电磁干扰 (EMI) 滤波器  
扩展温度范围:-40°C +125°C  
2 应用范围  
此类器件经过优化,适合在 1.8V (±0.9V) 5.5V  
(±2.75V) 的低电压状态下工作。这些最新补充的低电  
压互补金属氧化物半导体 (CMOS) 运算放大器与  
TLVx313 TLVx314 系列搭配,为用户提供了广泛的  
带宽、噪声和功率选择,可以满足各种 应用的需求。  
电池供电仪器:  
消费类应用、工业应用、医疗应用  
笔记本电脑、便携式媒体播放器  
传感器信号调节  
条形码扫描器  
有源滤波器  
音频  
器件信息(1)  
器件型号  
TLV316  
封装  
SC70 (5)  
封装尺寸(标称值)  
1.25mm × 2.00mm  
1.60mm x 2.90mm  
3.00mm × 3.00mm  
3.91mm x 4.90mm  
4.40mm × 5.00mm  
8.65mm x 3.91mm  
SOT-23 (5)  
VSSOP (8)  
SOIC (8)  
TLV2316  
TLV4316  
TSSOP (14)  
SOIC (14)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
RG  
RF  
120  
100  
80  
270  
225  
180  
135  
90  
R1  
VOUT  
60  
VIN  
Phase  
40  
C1  
1
2pR1C1  
20  
45  
f
=
-3 dB  
V
VS = ±2.75 V  
0
0
Gain  
VS =±0.9V
VOUT  
VIN  
RF  
œ20  
-45  
1
1 + sR1C1  
=
1 +  
(
(
(  
(
1
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
RG  
Frequency (Hz)  
C006  
单极低通滤波器  
10MHz 带宽下的低电源电流(400µA/通道)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS752  
 
 
 
 
TLV316, TLV2316, TLV4316  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 14  
8.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 System Examples ................................................... 16  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information: TLV316 ................................... 7  
7.5 Thermal Information: TLV2316 ................................. 7  
7.6 Thermal Information: TLV4316 ................................. 7  
7.7 Electrical Characteristics........................................... 8  
7.8 Typical Characteristics.............................................. 9  
7.9 Typical Characteristics............................................ 10  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 13  
9
10 Power Supply Recommendations ..................... 17  
10.1 Input and ESD Protection ..................................... 17  
11 Layout................................................................... 18  
11.1 Layout Guidelines ................................................. 18  
11.2 Layout Example .................................................... 18  
12 器件和文档支持 ..................................................... 19  
12.1 文档支持................................................................ 19  
12.2 相关链接................................................................ 19  
12.3 社区资源................................................................ 19  
12.4 ....................................................................... 19  
12.5 静电放电警告......................................................... 20  
12.6 Glossary................................................................ 20  
13 机械、封装和可订购信息....................................... 20  
8
4 修订历史记录  
Changes from Original (February 2016) to Revision A  
Page  
已添加 14 引脚 SOIC 封装信息至器件信息......................................................................................................................... 1  
Added D package to PW package pinout drawing ................................................................................................................ 5  
Added D (SOIC) thermal values to Thermal Information: TLV4316 table ............................................................................. 7  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TLV316, TLV2316, TLV4316  
www.ti.com.cn  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
5 Device Comparison Table  
PACKAGE-LEADS  
NO. OF  
DEVICE  
TLV316  
CHANNELS  
DBV  
5
DCK  
5
D
8
DGK  
PW  
1
2
4
TLV2316  
TLV4316  
8
14  
14  
6 Pin Configuration and Functions  
DBV Package  
5-Pin SOT-23  
Top View  
DCK Package  
5-Pin SC70  
Top View  
OUT  
V-  
1
2
3
5
4
V+  
+IN  
1
2
3
5
4
V+  
V-  
+IN  
-IN  
-IN  
OUT  
Pin Functions: TLV316  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN  
DBV (SOT-23) DCK (SC70)  
4
3
1
2
5
3
1
4
2
5
I
Inverting input  
Noninverting input  
Output  
+IN  
I
OUT  
V–  
O
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
V+  
Copyright © 2016, Texas Instruments Incorporated  
3
TLV316, TLV2316, TLV4316  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
D, DGK Packages  
8-Pin SOIC, VSSOP  
Top View  
OUT A  
-IN A  
+IN A  
V-  
1
2
3
4
8
7
6
5
V+  
OUT B  
-IN B  
+IN B  
Pin Functions: TLV2316  
PIN  
I/O  
DESCRIPTION  
NO.  
2
NAME  
–IN A  
+IN A  
–IN B  
+IN B  
OUT A  
OUT B  
V–  
I
I
Inverting input, channel A  
3
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Output, channel A  
6
I
5
I
1
O
O
7
Output, channel B  
4
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
8
V+  
4
Copyright © 2016, Texas Instruments Incorporated  
TLV316, TLV2316, TLV4316  
www.ti.com.cn  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
D, PW Packages  
14-Pin SOIC, TSSOP  
Top View  
OUT A  
-IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
A
D
13 -IN D  
12 +IN D  
11 V-  
+IN B  
-IN B  
OUT B  
10 +IN C  
9
8
-IN C  
B
C
OUT C  
Pin Functions: TLV4316  
PIN  
I/O  
DESCRIPTION  
NO.  
2
NAME  
–IN A  
+IN A  
–IN B  
+IN B  
–IN C  
+IN C  
–IN D  
+IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V–  
I
I
Inverting input, channel A  
3
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Inverting input, channel C  
Noninverting input, channel C  
Inverting input, channel D  
Noninverting input, channel D  
Output, channel A  
6
I
5
I
9
I
10  
13  
12  
1
I
I
I
O
O
O
O
7
Output, channel B  
8
Output, channel C  
14  
11  
4
Output, channel D  
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
V+  
Copyright © 2016, Texas Instruments Incorporated  
5
TLV316, TLV2316, TLV4316  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted)(1)  
MIN  
(V–) – 0.5  
–10  
MAX  
7
UNIT  
Supply voltage  
V
Common-mode  
Voltage(2)  
(V+) + 0.5  
V
Signal input pins  
Differential  
(V+) – (V–) + 0.2  
10  
Current(2)  
Output short-circuit(3)  
Specified, TA  
mA  
mA  
Continuous  
–40  
125  
150  
150  
Temperature  
Junction, TJ  
Storage, Tstg  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Current limit input signals that can swing more than 0.5 V beyond the supply  
rails to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
7.2 ESD Ratings  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
±4000  
±1500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
NOM  
MAX UNIT  
VS  
Supply voltage  
5.5  
V
Specified temperature range  
–40  
125  
°C  
6
Copyright © 2016, Texas Instruments Incorporated  
 
TLV316, TLV2316, TLV4316  
www.ti.com.cn  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
7.4 Thermal Information: TLV316  
TLV316  
THERMAL METRIC(1)  
DBV (SOT-23)  
5 PINS  
221.7  
DCK (SC70)  
5 PINS  
263.3  
75.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
144.7  
49.7  
51.0  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
26.1  
1.0  
ψJB  
49.0  
50.3  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics (SPRA953).  
7.5 Thermal Information: TLV2316  
TLV2316  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
127.2  
71.6  
DGK (VSSOP)  
8 PINS  
186.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
78.8  
68.2  
107.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
22.0  
15.5  
ψJB  
67.6  
106.3  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics (SPRA953).  
7.6 Thermal Information: TLV4316  
TLV4316  
THERMAL METRIC(1)  
PW (TSSOP)  
14 PINS  
117.2  
46.2  
D (SOIC)  
14 PINS  
87.0  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
44.4  
58.9  
41.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
4.9  
11.6  
ψJB  
58.3  
41.4  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics (SPRA953).  
Copyright © 2016, Texas Instruments Incorporated  
7
TLV316, TLV2316, TLV4316  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
7.7 Electrical Characteristics  
at TA = 25°C, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted); VS (total supply  
voltage) = (V+) – (V–) = 1.8 V to 5.5 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VS = 5 V  
±0.75  
±3  
VOS  
Input offset voltage  
mV  
VS = 5 V, TA = –40°C to +125°C  
VS = 5 V, TA = –40°C to +125°C  
VS = 1.8 V – 5.5 V, VCM = (V–)  
At dc  
±4.5  
dVOS/dT Drift  
PSRR Power-supply rejection ratio  
Channel separation, dc  
INPUT VOLTAGE RANGE  
±2  
±30  
100  
µV/°C  
µV/V  
dB  
±175  
VCM  
Common-mode voltage range  
VS = 5.5 V  
(V–) – 0.2  
72  
(V+) + 0.2  
V
VS = 5.5 V, (V–) – 0.2 V < VCM < (V+) – 1.4 V,  
TA = –40°C to +125°C  
90  
75  
CMRR  
Common-mode rejection ratio  
dB  
VS = 5.5 V, VCM = –0.2 V to 5.7 V,  
TA = –40°C to +125°C  
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
±10  
±10  
pA  
pA  
IOS  
NOISE  
En  
Input voltage noise (peak-to-peak)  
Input voltage noise density  
Input current noise density  
VS = 5 V, f = 0.1 Hz to 10 Hz  
VS = 5 V, f = 1 kHz  
f = 1 kHz  
5
12  
µVPP  
nV/Hz  
fA/Hz  
en  
in  
1.3  
INPUT IMPEDANCE  
1016Ω || pF  
1011Ω || pF  
ZID  
ZIC  
Differential  
2 || 2  
2 || 4  
Common-mode  
OPEN-LOOP GAIN  
VS = 5.5 V, (V–) + 0.05 V < VO < (V+) – 0.05 V,  
RL = 10 kΩ  
100  
104  
104  
AOL  
Open-loop voltage gain  
dB  
VS = 5.5 V, (V–) + 0.15 V < VO < (V+) – 0.15 V,  
RL = 2 kΩ  
FREQUENCY RESPONSE  
GBP  
φm  
Gain bandwidth product  
VS = 5 V, G = +1  
10  
MHz  
Degrees  
V/μs  
μs  
Phase margin  
Slew rate  
VS = 5 V, G = +1  
60  
SR  
tS  
VS = 5 V, G = +1  
6
1
Settling time  
To 0.1%, VS = 5 V, 2-V step , G = +1, CL = 100 pF  
VS = 5 V, VIN × gain = VS  
tOR  
Overload recovery time  
0.8  
μs  
THD + N Total harmonic distortion + noise(1)  
VS = 5 V, VO = 0.5 VRMS, G = +1, f = 1 kHz  
0.008%  
OUTPUT  
VS = 1.8 V to 5.5 V, RL = 10 kΩ,  
VS = 1.8 to 5.5 V, RL = 2 kΩ,  
VS = 5 V  
35  
Voltage output swing from supply  
rails  
VO  
mV  
125  
ISC  
ZO  
Short-circuit current  
±50  
250  
mA  
Open-loop output impedance  
VS = 5 V, f = 10 MHz  
Ω
POWER SUPPLY  
VS  
IQ  
Specified voltage range  
Quiescent current per amplifier  
1.8  
5.5  
V
VS = 5 V, IO = 0 mA, TA = –40°C to 125°C  
400  
575  
µA  
TEMPERATURE  
TA  
Specified  
Storage  
–40  
–65  
125  
150  
°C  
°C  
Tstg  
(1) Third-order filter; bandwidth = 80 kHz at –3 dB.  
8
Copyright © 2016, Texas Instruments Incorporated  
 
TLV316, TLV2316, TLV4316  
www.ti.com.cn  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
7.8 Typical Characteristics  
Table 1. Table of Graphs  
TITLE  
FIGURE  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Figure 10  
Figure 11  
Offset Voltage Production Distribution  
Offset Voltage vs Common-Mode Voltage  
Open- Loop Gain and Phase vs Frequency  
Input Bias and Offset Current vs Temperature  
Input Voltage Noise Spectral Density vs Frequency  
Quiescent Current vs Supply Voltage  
Small-Signal Overshoot vs Load Capacitance  
No Phase Reversal  
Small-Signal Step Response  
Large-Signal Step Response  
Short-Circuit Current vs Temperature  
Electromagnetic Interference Rejection Ratio Referred to Noninverting Input vs Frequency  
Channel Separation vs Frequency  
Figure 12  
Figure 13  
Copyright © 2016, Texas Instruments Incorporated  
9
TLV316, TLV2316, TLV4316  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
7.9 Typical Characteristics  
at TA = 25°C, VS = 5.5 V, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
25  
20  
15  
10  
5
2500  
2000  
1500  
1000  
500  
VCM = 2.95 V  
VCM = -2.95 V  
0
œ500  
œ1000  
œ1500  
œ2000  
œ2500  
N-  
Channel  
P-  
Channel  
Transition  
2
0
0
1
3
œ3  
œ2  
œ1  
VCM (V)  
C001  
Offset Voltage (mV)  
C013  
V+ = 2.75 V, V– = –2.75 V, 9 typical units shown  
Distribution taken from 12551 amplifiers  
Figure 1. Offset Voltage Production Distribution  
Figure 2. Offset Voltage vs Common-Mode Voltage  
120  
100  
80  
270  
100000  
IB+  
IB -  
Ios  
225  
180  
135  
90  
10000  
1000  
100  
10  
60  
Phase  
40  
20  
45  
VS = ±2.75 V  
0
0
Gain  
1
VS =±0.9V
œ20  
-45  
1
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
0
Frequency (Hz)  
C006  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
VCM < (V+) – 1.4 V  
Temperature (°C)  
C001  
Figure 3. Open-Loop Gain and Phase vs Frequency  
Figure 4. Input Bias and Offset Current vs Temperature  
1000  
100  
10  
450  
425  
400  
375  
350  
325  
300  
275  
250  
1
0.1  
1
10  
100  
1k  
10k  
100k  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
C015  
Supply Voltage (V)  
Frequency (Hz)  
C001  
Figure 5. Input Voltage Noise Spectral Density vs Frequency  
Figure 6. Quiescent Current vs Supply Voltage  
10  
Copyright © 2016, Texas Instruments Incorporated  
 
TLV316, TLV2316, TLV4316  
www.ti.com.cn  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
Typical Characteristics (continued)  
at TA = 25°C, VS = 5.5 V, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
50  
VIN  
40  
VOUT  
30  
+ 2.75 V  
RI = 1 kohm  
RF = 1 kohm  
+ 2.75 V  
œ
20  
10  
0
Device  
VOUT  
+
œ
+
+
Device  
œ 2.75 V  
VIN = 100 mVpp  
+
6.1 VPP  
Sine Wave  
œ
CL  
œ
œ 2.75 V  
Time (100 s/div)  
0p  
100p  
200p  
300p  
C027  
Capacitive Load (F)  
C025  
V+ = 2.75 V, V– = –2.75 V  
V+ = 2.75 V, V– = –2.75 V, G = –1 V/V  
Figure 8. No Phase Reversal  
Figure 7. Small-Signal Overshoot vs Load Capacitance  
+
2.75  
V
V
CL = 10 pF  
œ
Device  
CL = 100 pF  
+
+
VIN  
= 1 Vpp  
RL  
CL  
œ
2.75  
œ
VOUT  
+ 2.75 V  
œ
Device  
+
+
VIN = 100 mVpp  
RL  
CL  
œ 2.75 V  
œ
VIN  
Time (100 ns/div)  
Time (200 ns/div)  
C030  
C031  
V+ = 2.75 V, V– = –2.75 V, G = 1 V/V  
V+ = 2.75 V, V– = –2.75 V, CL = 100 pF, G = 1 V/V  
Figure 9. Small-Signal Step Response  
Figure 10. Large-Signal Step Response  
70  
60  
50  
40  
30  
100  
80  
60  
40  
20  
0
ISC, Source  
ISC, Sink  
10M  
100M  
Frequency (Hz)  
1G  
10G  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
C036  
Temperature (°C)  
C001  
PRF = –10 dBm  
Figure 12. Electromagnetic Interference Rejection Ratio  
Referred to Noninverting Input vs Frequency  
Figure 11. Short-Circuit Current vs Temperature  
Copyright © 2016, Texas Instruments Incorporated  
11  
 
 
TLV316, TLV2316, TLV4316  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VS = 5.5 V, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
0
œ20  
œ40  
œ60  
œ80  
œ100  
œ120  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
C001  
V+ = 2.75 V, V– = –2.75 V  
Figure 13. Channel Separation vs Frequency  
12  
Copyright © 2016, Texas Instruments Incorporated  
TLV316, TLV2316, TLV4316  
www.ti.com.cn  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
8 Detailed Description  
8.1 Overview  
The TLVx316 is a family of low-power, rail-to-rail input and output operational amplifiers. These devices operate  
from 1.8 V to 5.5 V, are unity-gain stable, and are suitable for a wide range of general-purpose applications. The  
class AB output stage is capable of driving 10-kΩ loads connected to any point between V+ and ground. The  
input common-mode voltage range includes both rails and allows the TLVx316 to be used in virtually any single-  
supply application. Rail-to-rail input and output swing significantly increases dynamic range, especially in low-  
supply applications, and makes them suitable for driving sampling analog-to-digital converters (ADCs).  
The TLVx316 features 10-MHz bandwidth and 6-V/μs slew rate with only 400-μA supply current per channel,  
providing good ac performance at very-low power consumption. DC applications are well served with a very-low  
input noise voltage of 12 nV/Hz at 1 kHz, low input bias current (5 pA), and an input offset voltage of 0.5 mV  
(typical).  
8.2 Functional Block Diagram  
V+  
Reference  
Current  
VIN+  
VIN-  
VBIAS1  
Class AB  
Control  
Circuitry  
VO  
VBIAS2  
V-  
(Ground)  
Copyright © 2016, Texas Instruments Incorporated  
13  
 
TLV316, TLV2316, TLV4316  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Operating Voltage  
The TLVx316 operational amplifiers are fully specified and ensured for operation from 1.8 V to 5.5 V. In addition,  
many specifications apply from –40°C to +125°C. Parameters that vary significantly with operating voltages or  
temperature are illustrated in the Typical Characteristics section.  
8.3.2 Rail-to-Rail Input  
The input common-mode voltage range of the TLVx316 extends 200 mV beyond the supply rails for supply  
voltages greater than 2.5 V. This performance is achieved with a complementary input stage: an N-channel input  
differential pair in parallel with a P-channel differential pair; see the Functional Block Diagram section. The N-  
channel pair is active for input voltages close to the positive rail, typically (V+) – 1.4 V to 200 mV above the  
positive supply, whereas the P-channel pair is active for inputs from 200 mV below the negative supply to  
approximately (V+) – 1.4 V. There is a small transition region, typically (V+) – 1.2 V to (V+) – 1 V, in which both  
pairs are on. This 200-mV transition region can vary up to 200 mV with process variation. Thus, the transition  
region (both stages on) can range from (V+) – 1.4 V to (V+) – 1.2 V on the low end, up to (V+) – 1 V to (V+) –  
0.8 V on the high end. Within this transition region, PSRR, CMRR, offset voltage, offset drift, and THD can be  
degraded compared to device operation outside this region.  
8.3.3 Rail-to-Rail Output  
Designed as a low-power, low-voltage operational amplifier, the TLVx316 delivers a robust output drive  
capability. A class AB output stage with common-source transistors is used to achieve full rail-to-rail output swing  
capability. For resistive loads of 10 kΩ, the output swings typically to within 30 mV of either supply rail regardless  
of the power-supply voltage applied. Different load conditions change the ability of the amplifier to swing close to  
the rails; see typical characteristic graph Output Voltage Swing vs Output Current ().  
8.3.4 Common-Mode Rejection Ratio (CMRR)  
CMRR for the TLVx316 is specified in two ways so the best match for a given application can be selected. First,  
the Electrical Characteristics table provides the CMRR of the device in the common-mode range below the  
transition region [VCM < (V+) – 1.4 V]. This specification is the best indicator of device capability when the  
application requires using one of the differential input pairs. Second, the CMRR over the entire common-mode  
range is specified at VCM = –0.2 V to 5.7 V for VS = 5.5 V. This last value includes the variations through the  
transition region.  
8.3.5 Capacitive Load and Stability  
The TLVx316 is designed to be used in applications where driving a capacitive load is required. As with all  
operational amplifiers, there may be specific instances where the TLVx316 can become unstable. The particular  
operational amplifier circuit configuration, layout, gain, and output loading are some of the factors to consider  
when establishing whether or not an amplifier is stable in operation. An operational amplifier in the unity-gain  
(1 V/V) buffer configuration that drives a capacitive load exhibits a greater tendency to be unstable than an  
amplifier operated at a higher noise gain. The capacitive load, in conjunction with the operational amplifier output  
resistance, creates a pole within the feedback loop that degrades the phase margin. The degradation of the  
phase margin increases when the capacitive loading increases. For a conservative best practice, designing for  
25% overshoot (40° phase margin) provides improved stability over process variations. The equivalent series  
resistance (ESR) of some very-large capacitors (CL greater than 1 μF) is sufficient to alter the phase  
characteristics in the feedback loop such that the amplifier remains stable. Increasing the amplifier closed-loop  
gain allows the amplifier to drive increasingly larger capacitance. This increased capability is evident when  
observing the overshoot response of the amplifier at higher voltage gains. See typical characteristic graph,  
Small-Signal Overshoot vs Capacitive Load (Figure 7, G = –1 V/V).  
14  
Copyright © 2016, Texas Instruments Incorporated  
TLV316, TLV2316, TLV4316  
www.ti.com.cn  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
Feature Description (continued)  
One technique for increasing the capacitive load drive capability of the amplifier operating in a unity-gain  
configuration is to insert a small resistor (typically 10 Ω to 20 Ω) in series with the output, as shown in Figure 14.  
This resistor significantly reduces the overshoot and ringing associated with large capacitive loads. One possible  
problem with this technique, however, is that a voltage divider is created with the added series resistor and any  
resistor connected in parallel with the capacitive load. The voltage divider introduces a gain error at the output  
that reduces the output swing.  
V+  
RS  
VOUT  
Device  
VIN  
10 W to  
20 W  
RL  
CL  
Figure 14. Improving Capacitive Load Drive  
8.3.6 EMI Susceptibility and Input Filtering  
Operational amplifiers vary with regard to the susceptibility of the device to electromagnetic interference (EMI). If  
conducted EMI enters the operational amplifier, the dc offset measured at the amplifier output can shift from its  
nominal value when EMI is present. This shift is a result of signal rectification associated with the internal  
semiconductor junctions. Although all operational amplifier pin functions can be affected by EMI, the signal input  
pins are likely to be the most susceptible. The TLVx316 operational amplifier family incorporates an internal input  
low-pass filter that reduces the amplifier response to EMI. This filter provides both common-mode and  
differential-mode filtering. The filter is designed for a cutoff frequency of approximately 80 MHz (–3 dB), with a  
roll-off of 20 dB per decade.  
The immunity of an operational amplifier can be accurately measured and quantified over a broad frequency  
spectrum extending from 10 MHz to 6 GHz. The EMI rejection ratio (EMIRR) metric allows operational amplifiers  
to be directly compared by the EMI immunity. Figure 12 illustrates the results of this testing on the TLVx316.  
Detailed information can be found in EMI Rejection Ratio of Operational Amplifiers (SBOA128), available for  
download from www.ti.com.  
8.3.7 Overload Recovery  
Overload recovery is defined as the time required for the operational amplifier output to recover from a saturated  
state to a linear state. The output devices of the operational amplifier enter a saturation region when the output  
voltage exceeds the rated operating voltage, either because of the high input voltage or the high gain. After the  
device enters the saturation region, the charge carriers in the output devices require time to return back to the  
linear state. After the charge carriers return back to the linear state, the device begins to slew at the specified  
slew rate. Thus, the propagation delay in case of an overload condition is the sum of the overload recovery time  
and the slew time. The overload recovery time for the TLVx316 is approximately 300 ns.  
8.4 Device Functional Modes  
The TLVx316 have a single functional mode. These devices are powered on as long as the power-supply voltage  
is between 1.8 V (±0.9 V) and 5.5 V (±2.75 V).  
Copyright © 2016, Texas Instruments Incorporated  
15  
 
TLV316, TLV2316, TLV4316  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TLV316, TLV2316, and TLV4316 are powered on when the supply is connected. The devices can be  
operated as a single-supply operational amplifier or a dual-supply amplifier, depending on the application.  
9.2 System Examples  
When receiving low-level signals, the device often requires limiting the bandwidth of the incoming signals into the  
system. The simplest way to establish this limited bandwidth is to place an RC filter at the noninverting pin of the  
amplifier, as shown in Figure 15.  
RG  
RF  
R1  
VOUT  
VIN  
C1  
1
2pR1C1  
f
=
-3 dB  
VOUT  
VIN  
RF  
1
1 + sR1C1  
=
1 +  
(
(
(  
(
RG  
Figure 15. Single-Pole, Low-Pass Filter  
If even more attenuation is needed, the device requires a multiple-pole filter. The Sallen-Key filter can be used  
for this task, as shown in Figure 16. For best results, the amplifier must have a bandwidth that is eight to ten  
times the filter frequency bandwidth. Failure to follow this guideline can result in a phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
R1  
R2  
Q = Peaking factor  
(Butterworth Q = 0.707)  
VIN  
VOUT  
C2  
1
2pRC  
f
=
-3 dB  
RF  
RF  
RG  
=
1
2 -  
RG  
(
(
Q
Figure 16. Two-Pole, Low-Pass, Sallen-Key Filter  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TLV316, TLV2316, TLV4316  
www.ti.com.cn  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
10 Power Supply Recommendations  
The TLVx316 is specified for operation from 1.8 V to 5.5 V (±0.9 V to ±2.75 V); many specifications apply from  
–40°C to +125°C. Typical Characteristics presents parameters that can exhibit significant variance with regard to  
operating voltage or temperature.  
CAUTION  
Supply voltages larger than 7 V can permanently damage the device (see the Absolute  
Maximum Ratings table).  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see Layout  
Guidelines.  
10.1 Input and ESD Protection  
The TLVx316 incorporates internal ESD protection circuits on all pins. For input and output pins, this protection  
primarily consists of current-steering diodes connected between the input and power-supply pins. These ESD  
protection diodes provide in-circuit, input overdrive protection, as long as the current is limited to 10 mA, as  
stated in the Absolute Maximum Ratings table. Figure 17 shows how a series input resistor can be added to the  
driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input and its  
value must be kept to a minimum in noise-sensitive applications.  
V+  
IOVERLOAD  
10-mA max  
VOUT  
Device  
VIN  
5 kW  
Figure 17. Input Current Protection  
Copyright © 2016, Texas Instruments Incorporated  
17  
 
TLV316, TLV2316, TLV4316  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the  
operational amplifier. Bypass capacitors reduce the coupled noise by providing low-impedance power  
sources local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of the circuitry is one of the simplest and most  
effective methods of noise suppression. One or more layers on multilayer PCBs are typically devoted to  
ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Take care to  
physically separate digital and analog grounds, paying attention to the flow of the ground current. For  
more detailed information, see , Circuit Board Layout Techniques (SLOA089).  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicularly is much  
better than crossing in parallel with the noisy trace.  
Place the external components as close to the device as possible. Keeping RF and RG close to the  
inverting input minimizes parasitic capacitance, as shown in Layout Example.  
Keep the length of input traces as short as possible. Remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
11.2 Layout Example  
Place components  
Run the input traces close to device and to  
as far away from  
the supply lines  
as possible  
each other to reduce  
parasitic errors  
VS+  
RF  
N/C  
N/C  
RG  
GND  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
N/C  
VIN  
Use low-ESR, ceramic  
bypass capacitor  
GND  
VSœ  
Use low-ESR,  
ceramic bypass  
capacitor  
VOUT  
Ground (GND) plane on another layer  
Figure 18. Operational Amplifier Board Layout for a Noninverting Configuration  
18  
版权 © 2016, Texas Instruments Incorporated  
 
TLV316, TLV2316, TLV4316  
www.ti.com.cn  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
TLVx313 面向成本敏感型系统的低功耗、轨到轨输入/输出、500μV 典型偏移值、1MHz 运算放大器》(文献编  
号:SBOS753)。  
TLVx314 3MHz、低功耗、内部 EMI 滤波器、RRIO、运算放大器》(文献编号:SBOS754)。  
《运算放大器的 EMI 抑制比》(文献编号:SBOA128)。  
QFN/SON PCB 连接》(文献编号:SLUA271)。  
《四方扁平无引线逻辑器件封装》(文献编号:SCBA017)。  
《电路板布局布线技巧》(文献编号:SLOA089)。  
《单端输入至差分输出转换电路参考设计》(文献编号:TIPD131)。  
12.2 相关链接  
2  
接。  
列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买链  
2. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
TLV316  
TLV2316  
TLV4316  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
版权 © 2016, Texas Instruments Incorporated  
19  
 
TLV316, TLV2316, TLV4316  
ZHCSEN0A FEBRUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV2316IDGKR  
TLV2316IDGKT  
TLV2316IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
12X6  
12X6  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAUAG  
NIPDAU  
8
2500 RoHS & Green  
3000 RoHS & Green  
V2316  
12C  
TLV316IDBVR  
TLV316IDBVT  
TLV316IDCKR  
TLV316IDCKT  
TLV4316IDR  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
D
5
NIPDAU | SN  
NIPDAU | SN  
NIPDAU  
5
250  
3000 RoHS & Green  
250 RoHS & Green  
RoHS & Green  
12C  
5
12D  
SC70  
5
NIPDAU  
12D  
SOIC  
14  
14  
2500 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
T4316D  
TLV4316  
TLV4316IPWR  
TSSOP  
PW  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Apr-2023  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV2316, TLV316, TLV4316 :  
Automotive : TLV2316-Q1, TLV316-Q1, TLV4316-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV2316IDGKR  
TLV2316IDGKT  
TLV2316IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
2500  
250  
330.0  
330.0  
330.0  
180.0  
180.0  
178.0  
178.0  
330.0  
330.0  
12.4  
12.4  
12.4  
8.4  
5.3  
5.3  
6.4  
3.2  
3.2  
2.4  
2.4  
6.5  
6.9  
3.4  
3.4  
5.2  
3.2  
3.2  
2.5  
2.5  
9.0  
5.6  
1.4  
1.4  
2.1  
1.4  
1.4  
1.2  
1.2  
2.1  
1.6  
8.0  
8.0  
8.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
12.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q1  
Q3  
Q3  
Q3  
Q3  
Q1  
Q1  
8
2500  
3000  
250  
TLV316IDBVR  
TLV316IDBVT  
TLV316IDCKR  
TLV316IDCKT  
TLV4316IDR  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
D
5
5
8.4  
8.0  
5
3000  
250  
9.0  
8.0  
SC70  
5
9.0  
8.0  
SOIC  
14  
14  
2500  
2000  
16.4  
12.4  
16.0  
12.0  
TLV4316IPWR  
TSSOP  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV2316IDGKR  
TLV2316IDGKT  
TLV2316IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
2500  
250  
366.0  
366.0  
356.0  
210.0  
210.0  
180.0  
180.0  
340.5  
356.0  
364.0  
364.0  
356.0  
185.0  
185.0  
180.0  
180.0  
336.1  
356.0  
50.0  
50.0  
35.0  
35.0  
35.0  
18.0  
18.0  
32.0  
35.0  
8
2500  
3000  
250  
TLV316IDBVR  
TLV316IDBVT  
TLV316IDCKR  
TLV316IDCKT  
TLV4316IDR  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
D
5
5
5
3000  
250  
SC70  
5
SOIC  
14  
14  
2500  
2000  
TLV4316IPWR  
TSSOP  
PW  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV316IDBVT

Single, 5.5-V, 10-MHz, RRIO operational amplifier | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV316IDCKR

Single, 5.5-V, 10-MHz, RRIO operational amplifier | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV316IDCKT

Single, 5.5-V, 10-MHz, RRIO operational amplifier | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV316QDBVRQ1

Automotive-grade, single, 5.5-V, 10-MHz, RRIO operational amplifier | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV316QDBVTQ1

Automotive-grade, single, 5.5-V, 10-MHz, RRIO operational amplifier | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV3201

40-ns, microPOWER, Push-Pull Output Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV3201-Q1

具有推挽输出的 40ns、微功耗、轨到轨输入、单通道比较器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV32012KIDBTRG4

LOW-POWER, HIGHLY-INTEGRATED, PROGRAMMABLE 16-Bit, 26-KSPS MONO CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV32014KIDBTRG4

LOW-POWER, HIGHLY-INTEGRATED, PROGRAMMABLE 16-Bit, 26-KSPS MONO CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV3201AIDBV

40-ns, microPOWER, Push-Pull Output Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV3201AIDBVR

40-ns, microPOWER, Push-Pull Output Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV3201AIDBVT

40-ns, microPOWER, Push-Pull Output Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI