TLV320ADC3100 [TI]

适用于声控系统和便携式音频系统的低功耗立体声模数转换器 (ADC);
TLV320ADC3100
型号: TLV320ADC3100
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于声控系统和便携式音频系统的低功耗立体声模数转换器 (ADC)

便携式 转换器 模数转换器
文件: 总101页 (文件大小:2656K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
适用于声控系统和便携式音频的 TLV320ADC3100 低功耗立体声 ADC  
1 特性  
2 应用  
1
立体声音频 ADC:  
声控系统  
智能扬声器、支持语音的助理  
便携式低功耗音频系统  
92dBA 信噪比  
支持从 8kHz 96kHz ADC 采样率  
噪声消除系统  
具有可编程系数和内置处理块的灵活数字滤波:  
适用于数字音频的前端语音或音频处理器  
针对语音的低延迟无限脉冲响应 (IIR) 滤波器  
针对音频的线性相位有限脉冲响应 (FIR) 滤波器  
多达 5 个附加的可编程双二阶滤波器  
可编程高通滤波器  
3 说明  
TLV320ADC3100 是一款低功耗、立体声音频模数转  
换器 (ADC),此器件支持 8kHz 96kHz 的采样率并  
具有一个可提供高达 40dB 模拟增益或自动增益控制  
(AGC) 的集成可编程增益放大器。还提供粗糙衰减为  
0dB-6dB,或者关闭的前端输入。此输入在一个单端  
组合或者完全差分配置中可编程。通过 I2C 接口可提供  
广泛的基于寄存器的功率控制,从而启用单声道或者立  
体声录音。TLV320ADC3100 集成了可编程通道增  
益、数字音量控制、锁相环 (PLL)、可编程双二阶滤波  
器和低延迟滤波模式。利用可以根据具体应用需求进行  
选择的预编程内置处理块 (PRB),可以优化性能和功  
耗。TLV320ADC3100 的低功耗和灵活性特性使其非  
常适合电池供电便携式设备。TLV320ADC3100 与  
TLV320ADC3101 在外形和软件上兼容。  
四个具有可配置自动增益控制 (AGC) 功能的音频输  
入:  
在单端或者全差分配置中可编程  
可选三态,用于轻松与其他音频器件进行互操作  
低功耗并具有广泛模块功率控制:  
6mW 单声道录制,8kHz  
11mW 立体声录制,8kHz  
10mW 单声道录制,48kHz  
17mW 立体声录制,48kHz  
可编程麦克风偏置  
用于时钟生成的可编程锁相环路 (PLL)  
I2C 控制总线  
音频串行数据总线支持 I2S、左平衡和右平衡、  
DSPPCM TDM 模式  
器件信息(1)  
电源:  
器件型号  
封装  
VQFN (24)  
封装尺寸(标称值)  
模拟:2.7V 3.6V  
TLV320ADC3100  
4.00mm x 4.00mm  
数字:内核:1.65V 1.95V,  
I/O1.1V–3.6V  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
封装:4mm × 4mm24 引脚 RGE (VQFN)  
功能方框图  
PLL  
MCLK  
TLV320ADC3100  
Mic Bias  
MICBIAS1  
û  
PGA  
AGC  
Modulator  
IN2L (P)  
IN2R (P)  
GPIO1  
I2S,  
TDM,  
Serial Bus  
Interface  
DOUT  
BCLK  
WCLK  
Analog  
Input  
Selects  
ADC Digital  
Filter Engine  
IN3L (M)  
IN3R (M)  
AGC  
PGA  
I2C_ADR0  
I2C_ADR1  
SCL  
ûꢀ  
Modulator  
I2C  
Control Bus  
RESET  
SDA  
Current Bias / Reference  
AVDD  
AVSS  
DVDD  
IOVDD  
DVSS  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS906  
 
 
 
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 12  
8.3 Feature Description................................................. 12  
8.4 Device Functional Modes........................................ 40  
8.5 Programming........................................................... 40  
8.6 Register Maps......................................................... 42  
Application and Implementation ........................ 87  
9.1 Application Information............................................ 87  
9.2 Typical Application ................................................. 88  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
9
10 Power Supply Recommendations ..................... 92  
11 Layout................................................................... 93  
11.1 Layout Guidelines ................................................. 93  
11.2 Layout Example .................................................... 93  
12 器件和文档支持 ..................................................... 94  
12.1 文档支持................................................................ 94  
12.2 接收文档更新通知 ................................................. 94  
12.3 社区资源................................................................ 94  
12.4 ....................................................................... 94  
12.5 静电放电警告......................................................... 94  
12.6 Glossary................................................................ 94  
13 机械、封装和可订购信息....................................... 94  
7.6 Timing Requirements: I2S, LJF, RJF Timing in Master  
Mode ......................................................................... 8  
7.7 Timing Requirements: DSP Timing in Master Mode. 8  
7.8 Timing Requirements: I2S, LJF, RJF Timing in Slave  
Mode .......................................................................... 8  
7.9 Timing Requirements: DSP Timing in Slave Mode... 8  
7.10 Typical Characteristics.......................................... 11  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2018 3 月  
*
最初发布版本。  
2
版权 © 2018, Texas Instruments Incorporated  
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
5 说明 (续)  
AGC 可在宽范围的启动(7ms 1.4s)和衰减(50ms 22.4s)时间内进行编程。包含一项用于避免噪声抽吸的  
可编程噪声门功能。提供了针对语音和电话进行优化的低延迟中断识别寄存器 (IIR) 滤波器,并且提供了针对音频  
进行优化的线性相位有限脉冲响应 (FIR) 滤波器。还提供了可编程 IIR 滤波器,这些滤波器可用于声音均衡或者消  
除噪声分量。可以对音频串行总线进行编程,以支持 I2S、左平衡、右平衡、数字信号处理器 (DSP)、脉冲编码调  
(PCM) 和时分多路复用 (TDM) 模式。音频总线可以在主/从模式下运行。  
包括一个用于灵活时钟生成的可编程集成 PLL,并且为来自各种可用 MCLK 的所有标准音频速率提供支持,这些  
MCLK 的工作频率从 512kHz 50MHz 不等,其中包括最常用的 12MHz13MHz16MHz19.2MHz 和  
19.68MHz 系统时钟频率。  
Copyright © 2018, Texas Instruments Incorporated  
3
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
6 Pin Configuration and Functions  
RGE Package  
24-Pin VQFN With Exposed Thermal Pad  
Top View  
BCLK  
WCLK  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
SDA  
SCL  
DOUT  
I2C_ADR1  
I2C_ADR0  
NC  
Thermal  
Pad  
RESET  
MICBIAS1  
IN3L(M)  
IN3R(M)  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
AVDD  
NO.  
10  
P
P
I/O  
O
P
P
I/O  
I
Analog voltage supply, 2.7 V–3.6 V  
Analog ground supply, 0 V  
AVSS  
9
BCLK  
1
Audio serial data bus bit clock  
Audio serial data bus data output  
DOUT  
3
DVDD  
22  
Digital core voltage supply, 1.65 V–1.95 V  
Digital ground supply, 0 V  
DVSS  
23  
GPIO1  
I2C_ADR0  
I2C_ADR1  
IN2L(P)  
IN2R(P)  
IN3L(M)  
IN3R(M)  
IOVDD  
MCLK  
19  
General-purpose input/output 1, multifunction pin based on register programming  
LSB of I2C bus address  
LSB + 1 of I2C bus address  
15  
16  
I
7
I
Microphone or line analog input (left-channel single-ended or differential plus)  
12  
I
Microphone or line analog input (right-channel single-ended or differential plus)  
6
I
Microphone or line analog input (left-channel single-ended or differential minus)  
13  
I
Microphone or line analog input (right-channel single-ended or differential minus)  
21  
P
I
I/O voltage supply, 1.1 V–3.6 V  
Master clock input  
24  
MICBIAS1  
NC  
5
O
I
MICBIAS1 bias voltage output  
No connection  
8, 11, 14, 20  
RESET  
SCL  
4
17  
18  
2
Reset  
I2C serial clock  
I2C serial data input/output  
Audio serial data bus word clock  
Connect the thermal pad to AVSS.  
I/O  
I/O  
I/O  
SDA  
WCLK  
Thermal pad  
Pad  
4
Copyright © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
UNIT  
V
AVDD to AVSS  
3.9  
3.9  
IOVDD to DVSS  
V
DVDD to DVSS  
2.5  
V
Digital input voltage to DVSS  
Analog input voltage to AVSS  
Operating temperature  
IOVDD + 0.3  
AVDD + 0.3  
85  
V
V
°C  
°C  
W
°C  
TJ Max  
Tstg  
Junction temperature  
Power dissipation  
105  
(TJ Max – TA) / θJA  
Storage temperature  
–65  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) ESD complacence tested to EIA/JESD22-A114-B and passed.  
7.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX  
3.6  
UNIT  
V
AVDD  
DVDD  
IOVDD  
VI  
Analog supply voltage(1)  
Digital core supply voltage(1)  
Digital I/O supply voltage(1)  
2.7  
1.65  
1.1  
3.3  
1.8  
1.95  
3.6  
V
1.8  
V
Analog full-scale, 0-dB input voltage (AVDD = 3.3 V)  
Digital output load capacitance  
Operating free-air temperature  
0.707  
10  
Vrms  
pF  
°C  
TA  
–40  
85  
(1) Analog voltage values are with respect to AVSS; digital voltage values are with respect to DVSS.  
7.4 Thermal Information  
TLV320ADC3100  
THERMAL METRIC(1)  
RGE (VQFN)  
24 PINS  
33.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
34.1  
11.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
11.5  
RθJC(bot)  
3.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2018, Texas Instruments Incorporated  
5
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
7.5 Electrical Characteristics  
at 25°C, AVDD = 3.3 V, IOVDD = 1.8 V, DVDD = 1.8 V, fS = 48-kHz, and 16-bit audio data (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
AUDIO ADC  
Input signal level (0-dB)  
Single-ended input  
0.707  
1.35  
Vrms  
Vrms  
Input common-mode voltage  
Single-ended input  
Signal-to-noise ratio,  
A-weighted(1)(2)  
fS = 48 kHz, 0-dB PGA gain, IN1 inputs selected  
and AC-shorted to ground  
SNR  
80  
92  
92  
dB  
Dynamic range,  
A-weighted(1)(2)  
fS = 48 kHz; 1-kHz, –60-dB, full-scale input  
applied at IN1 inputs; 0-dB PGA gain  
dB  
–90  
0.003%  
46  
–75 dB  
fS = 48 kHz; 1-kHz, –2-dB, full-scale input  
applied at IN1 inputs; 0-dB PGA gain  
THD  
Total harmonic distortion  
0.017%  
234 Hz, 100 mVPP on AVDD, single-ended input  
234 Hz, 100 mVPP on AVDD, differential input  
1 kHz, –2-dB IN2L to IN2R  
PSRR  
Power-supply rejection ratio  
dB  
68  
ADC channel separation  
ADC gain error  
–73  
dB  
dB  
1 kHz input, 0-dB PGA gain  
0.7  
ADC programmable-gain  
amplifier maximum gain  
1-kHz input tone, RSOURCE < 50  
40  
0.502  
35  
dB  
dB  
ADC programmable-gain  
amplifier step size  
IN1 inputs, routed to single ADC,  
input mix attenuation = 0 dB  
IN2 inputs, input mix attenuation = 0 dB  
IN1 inputs, input mix attenuation = –6 dB  
IN2 inputs, input mix attenuation = –6 dB  
35  
62.5  
62.5  
10  
Input resistance  
kΩ  
Input capacitance  
pF  
dB  
Input level control minimum  
attenuation setting  
0
6
6
Input level control maximum  
attenuation setting  
dB  
dB  
Input level control attenuation  
step size  
(1) Ratio of output level with 1-kHz, full-scale, sine-wave input, to the output level with the inputs short-circuited, measured A-weighted over  
a 20-Hz to 20-kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with 20-kHz, low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD and lower SNR and dynamic range readings than shown in the Electrical Characteristics table. The low-pass filter  
removes out-of-band noise that, although not audible, may affect dynamic specification values.  
6
Copyright © 2018, Texas Instruments Incorporated  
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
Electrical Characteristics (continued)  
at 25°C, AVDD = 3.3 V, IOVDD = 1.8 V, DVDD = 1.8 V, fS = 48-kHz, and 16-bit audio data (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ADC DIGITAL DECIMATION FILTER (fS = 48 kHz)  
Filter gain from 0 fS to 0.39 fS  
Filter A, AOSR = 128 or 64  
±0.1  
–73  
dB  
dB  
s
Filter gain from 0.55 fS to 64 fS Filter A, AOSR = 128 or 64  
Filter group delay  
Filter A, AOSR = 128 or 64  
Filter B, AOSR = 64  
17 / fS  
±0.1  
Filter gain from 0 fS to 0.39 fS  
dB  
dB  
s
Filter gain from 0.60 fS to 32 fS Filter B, AOSR = 64  
–46  
Filter group delay  
Filter B, AOSR = 64  
Filter C, AOSR = 32  
11 / fS  
±0.033  
–60  
Filter gain from 0 fS to 0.39 fS  
dB  
dB  
s
Filter gain from 0.28 fS to 16 fS Filter C, AOSR = 32  
Filter group delay  
MICROPHONE BIAS  
Filter C, AOSR = 32  
11 / fS  
2
2.5  
Bias voltage  
Programmable settings, load = 750 Ω  
2.25  
–0.3  
2.75  
4
V
AVDD – 0.2  
Current sourcing  
Integrated noise  
2.5-V setting  
mA  
BW = 20 Hz to 20 kHz, A-weighted, 1-µF  
capacitor between MICBIAS and AGND  
µV  
rms  
3.3  
DIGITAL I/O  
0.3 ×  
IOVDD  
VIL  
Input low level  
IIL = 5 µA  
V
V
V
V
0.7 ×  
IOVDD  
VIH  
VOL  
VOH  
Input high level(3)  
Output low level  
Output high level  
IIH = 5 µA  
0.1 ×  
IOVDD  
IIH = 2 TTL loads  
IOH = 2 TTL loads  
0.8 ×  
IOVDD  
SUPPLY CURRENT (fS = 48 kHz, AVDD = 3.3 V, DVDD = IOVDD = 1.8 V)  
AVDD  
2
1.9  
4
Mono record  
Stereo record  
PLL  
PLL and AGC off  
PLL and AGC off  
mA  
mA  
mA  
µA  
DVDD  
AVDD  
DVDD  
AVDD  
DVDD  
AVDD  
DVDD  
2.1  
1.1  
0.8  
0.04  
0.7  
Additional power consumed when  
PLL is powered  
All supply voltages applied, all blocks  
programmed in lowest power state  
Power down  
(3) When IOVDD < 1.6 V, the minimum VIH is 1.1 V.  
Copyright © 2018, Texas Instruments Incorporated  
7
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
7.6 Timing Requirements: I2S, LJF, RJF Timing in Master Mode  
specified at 25°C, DVDD = 1.8 V, all timing specifications are measured at characterization; see 1 for a timing diagram  
IOVDD = 1.8 V  
MIN MAX  
IOVDD = 3.3 V  
MIN MAX  
UNIT  
td(WS)  
BCLK, WCLK delay time  
BCLK, WCLK to DOUT delay time  
BCLK to DOUT delay time  
Rise time  
20  
25  
20  
20  
20  
15  
20  
15  
15  
15  
ns  
ns  
ns  
ns  
ns  
td(DO-WS)  
td(DO-BCLK)  
tr  
tf  
Fall time  
7.7 Timing Requirements: DSP Timing in Master Mode  
specified at 25°C, DVDD = 1.8 V, all timing specifications are measured at characterization; see 2 for a timing diagram  
IOVDD = 1.8 V  
MIN MAX  
IOVDD = 3.3 V  
MIN MAX  
UNIT  
td(WS)  
BCLK, WCLK delay time  
BCLK to DOUT delay time  
Rise time  
25  
25  
20  
20  
15  
15  
15  
15  
ns  
ns  
ns  
ns  
td(DO-BCLK)  
tr  
tf  
Fall time  
7.8 Timing Requirements: I2S, LJF, RJF Timing in Slave Mode  
specified at 25°C, DVDD = 1.8 V, all timing specifications are measured at characterization; see 3 for a timing diagram  
IOVDD = 1.8 V  
IOVDD = 3.3 V  
UNIT  
MIN  
35  
MAX  
MIN  
35  
35  
6
MAX  
tH(BCLK)  
tL(BCLK)  
ts(WS)  
BCLK high period  
ns  
ns  
ns  
ns  
BCLK low period  
35  
BCLK, WCLK setup time  
BCLK, WCLK hold time  
10  
th(WS)  
10  
6
BCLK, WCLK to DOUT delay time  
(for LJF mode only)  
td(DO-WS)  
30  
30  
ns  
td(DO-BCLK)  
BCLK to DOUT delay time  
Rise time  
25  
16  
16  
20  
8
ns  
ns  
ns  
tr  
tf  
Fall time  
8
7.9 Timing Requirements: DSP Timing in Slave Mode  
specified at 25°C, DVDD = 1.8 V, all timing specifications are measured at characterization; see 4 for a timing diagram  
IOVDD = 1.8 V  
IOVDD = 3.3 V  
UNIT  
MIN  
35  
MAX  
MIN  
35  
35  
8
MAX  
tH(BCLK)  
tL(BCLK)  
ts(WS)  
th(WS)  
td(DO-BCLK)  
tr  
BCLK high period  
BCLK low period  
BCLK, WCLK setup time  
BCLK, WCLK hold time  
BCLK to DOUT delay time  
Rise time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
35  
10  
10  
8
25  
15  
15  
20  
8
tf  
Fall time  
8
8
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
WCLK  
BCLK  
DOUT  
td(WS)  
tr  
tf  
td(DO-WS)  
td(DO-BCLK)  
1. I2S, LJF, RJF Timing in Master Mode  
WCLK  
BCLK  
DOUT  
td(WS)  
td(WS)  
tf  
tr  
td(DO-BCLK)  
2. DSP Timing in Master Mode  
WCLK  
tS(WS)  
th(WS)  
tH(BCLK)  
tr  
tf  
BCLK  
tL(BCLK)  
td(DO-WS)  
td(DO-BCLK)  
DOUT  
3. I2S, LJF, RJF Timing in Slave Mode  
版权 © 2018, Texas Instruments Incorporated  
9
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
(see NOTE)  
WCLK  
t (WS)  
h
t (WS)  
h
t (WS)  
s
t (WS)  
h
t (BCLK)  
L
BCLK  
DOUT  
t (BCLK)  
H
t
f
t
r
t (DO-BCLK)  
d
NOTE: The WCLK falling edge is arbitrary inside a frame.  
4. DSP Timing in Slave Mode  
10  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
7.10 Typical Characteristics  
at 25°C, AVDD = 3.3 V, IOVDD = 1.8 V, DVDD = 1.8 V, fS = 48-kHz, and 16-bit audio data (unless otherwise noted)  
0.45  
0.4  
3.5  
3.25  
3
MICBIAS = AVDD  
MICBIAS = 2.5 V  
MICBIAS = 2 V  
0.35  
0.3  
2.75  
2.5  
2.25  
2
0.25  
0.2  
0.15  
0.1  
Right Gain Error  
Left Gain Error  
0.05  
0
1.75  
0
10  
20  
30  
40  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
PGA Gain Setting (dB)  
AVDD (V)  
D001  
D002  
5. Single-Ended Gain Error  
6. MICBIAS Output Voltage vs AVDD  
3.2  
3
0
-20  
MICBIAS = AVDD  
2.8  
2.6  
2.4  
2.2  
2
MICBIAS = 2.5 V  
MICBIAS = 2 V  
-40  
-60  
-80  
-100  
-120  
-140  
1.8  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Temperature (èC)  
Frequency (kHz)  
D003  
D004  
7. MICBIAS Output Voltage vs Ambient Temperature  
8. Line Input to ADC FFT Plot  
17  
Left Channel  
Right Channel  
15  
13  
11  
9
7
5
0
5
10  
15  
20  
25  
30  
35  
40  
PGA Gain Setting (dB)  
D005  
9. Input-Referred Noise vs PGA Gain  
版权 © 2018, Texas Instruments Incorporated  
11  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TLV320ADC3100 is a flexible, low-power, stereo audio analog-to-digital converter (ADC) with extensive  
feature integration, intended for applications in voice-activated systems, portable computing, communication, and  
entertainment applications. The device integrates a host of features to reduce cost, board space, and power  
consumption in space-constrained, battery-powered, portable applications. The TLV320ADC3100 is form-factor  
and software compatible with the more feature-rich TLV320ADC3101, which has additional features such as a  
programmable miniDSP.  
The TLV320ADC3100 consists of the following blocks:  
Stereo audio multibit delta-sigma ADC (8 kHz–96 kHz)  
Programmable digital filter engines including biquads  
Register-configurable combinations of up to four single-ended or two differential audio inputs  
Fully programmable phase-locked loop (PLL) with extensive ADC clock-source and divider options for  
maximum end-system design flexibility  
Communication to the TLV320ADC3100 for control is via a two-wire I2C interface. The I2C interface supports  
both standard and fast communication modes.  
8.2 Functional Block Diagram  
IN2L(P)  
IN2L(P)  
0 to 40 dB  
0.5-dB Steps  
Audio Clock  
Generation  
PLL  
IN3L(M)  
MCLK  
IN3L(M)  
û  
Modulator  
IN2L(P)  
IN3L(M)  
IN2R(P)  
IN3R(M)  
PGA  
AGC  
+
GPIO1  
I2S,  
TDM,  
DOUT  
BCLK  
WCLK  
Serial Bus  
Interface  
ADC Digital  
Filter Engine  
IN2R(P)  
IN3R(M)  
IN2R(P)  
IN2R(P)  
IN3R(M)  
AGC  
PGA  
ûꢀ  
Modulator  
+
I2C_ADR0  
I2C_ADR1  
SCL  
IN3R(M)  
IN2L(P)  
0 to 40 dB  
I2C  
Control Bus  
0.5-dB Steps  
IN3L(M)  
RESET  
SDA  
Mic Bias  
Current Bias / Reference  
MICBIAS1  
IOVDD DVSS  
AVDD  
AVSS  
DVDD  
8.3 Feature Description  
8.3.1 Hardware Reset  
The TLV320ADC3100 requires a hardware reset after power up for proper operation. After all power supplies are  
at their specified values, the RESET pin must be driven low for at least 10 ns. If this reset sequence is not  
performed, the TLV320ADC3100 may not respond properly to register reads or writes.  
8.3.2 PLL Start-up  
When the PLL is powered on, a start-up delay of approximately 10 ms occurs after the power-up command of the  
PLL and before the clocks are available to the TLV320ADC3100. This delay is to ensure stable operation of the  
PLL and clock-divider logic.  
12  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
Feature Description (接下页)  
8.3.3 Software Power Down  
By default, all circuit blocks are powered down following a reset condition. Hardware power up of each circuit  
block can be controlled by writing to the appropriate control register. This approach allows the lowest power-  
supply current for the functionality required. However, when a block is powered down, all register settings are  
maintained as long as power is applied to the device.  
8.3.4 Audio Data Converters  
The TLV320ADC3100 supports the following standard audio sampling rates: 8 kHz, 11.025 kHz, 12 kHz, 16 kHz,  
22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, and 96 kHz. The converters can also operate at  
different sampling rates in various combinations, as described in this section.  
The TLV320ADC3100 supports a wide range of options for generating clocks for the ADC section as well as the  
digital interface section and the other control blocks; see 27. The ADC clocks require a source reference  
clock. The clock can be provided on the device pins MCLK and BCLK. The source reference clock for the ADC  
section can be chosen by programming the ADC_CLKIN value on page 0, register 4, bits 1:0. The ADC_CLKIN  
can then be routed through highly flexible clock dividers (see 27) to generate various clocks required for the  
ADC and programmable digital filter sections. In the event that the desired audio or programmable digital filter  
clocks cannot be generated from the external reference clocks on MCLK and BCLK, the TLV320ADC3100 also  
provides the option of using an on-chip PLL that supports a wide range of fractional multiplication values to  
generate the required system clocks. Starting from ADC_CLKIN, the TLV320ADC3100 provides several  
programmable clock dividers to support a variety of sampling rates for the ADC and the clocks for the  
programmable digital filter section.  
8.3.5 Digital Audio Data Serial Interface  
Audio data are transferred between the host processor and the TLV320ADC3100 via the digital-audio serial-data  
interface, or audio bus. The audio bus on this device is flexible, including left- or right-justified data options,  
support for I2S or pulse code modulation (PCM) protocols, programmable data-length options, a time-division  
multiplexing (TDM) mode for multichannel operation, flexible master and slave configurability for each bus clock  
line, and the ability to directly communicate with multiple devices within a system.  
The audio serial interface on the TLV320ADC3100 has an extensive I/O control for communication with two  
independent processors for audio data. The processors can communicate with the device one at a time. This  
feature is enabled by register programming of the various pin selections.  
The audio bus of the TLV320ADC3100 can be configured for left- or right-justified, I2S, DSP, or TDM modes of  
operation, where communication with standard telephony PCM interfaces is supported within the TDM mode.  
These modes are all MSB-first, with the data width programmable in 16, 20, 24, or 32 bits by configuring page 0,  
register 27, bits 5:4. In addition, the word clock and bit clock can be independently configured in either master or  
slave mode for flexible connectivity to a wide variety of processors. The word clock is used to define the  
beginning of a frame, and can be programmed as either a pulse or a square-wave signal. The frequency of this  
clock corresponds to the maximum-selected ADC sampling frequency.  
The bit clock is used to clock in and out the digital audio data across the serial bus. When in master mode, this  
signal can be programmed to generate variable clock pulses by controlling the bit-clock divider in page 0, register  
30; see 27. Accommodating various word lengths as well as supporting the case when multiple  
TLV320ADC3100s share the same audio bus may require that the number of bit-clock pulses in a frame be  
adjusted.  
The TLV320ADC3100 also includes a feature to offset the position of the start of a data transfer with respect to  
the word clock. There are two configurations that allow using either a single offset for both channels or to use  
separate offsets. The Ch_Offset_1 reference represents the value in page 0, register 28 and Ch_Offset_2  
represents the value in page 0, register 37. When page 0, register 38, bit 0 is set to zero (time-slot-based  
channel assignment is disabled), the offset of both channels is controlled, in terms of number of bit clocks, by the  
programming in page 0, register 28 (Ch_Offset_1). When page 0, register 38, bit 0 = 1 (time-slot-based channel  
assignment enabled), the first channel is controlled, in terms of number of bit clocks, by the programming in page  
0, register 28 (Ch_Offset_1), and the second channel is controlled, in terms of number of bit clocks, by the  
programming in page 0, register 37 (Ch_Offset_2), where register 37 programs the delay between the first word  
and the second word. Also, the relative order of the two channels can be swapped, depending on the  
programmable register bit (page 0, register 38, bit 4) that enables swapping of the channels.  
版权 © 2018, Texas Instruments Incorporated  
13  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
Feature Description (接下页)  
The TLV320ADC3100 also supports a feature for inverting the bit clock polarity used for transferring the audio  
data as compared to the default clock polarity used. This feature can be used independently of the audio  
interface mode chosen. The bit clock polarity can be configured by writing to page 0, register 29, bit 3.  
The TLV320ADC3100 further includes programmability (page 0, register 27, bit 0) to place DOUT in the high-  
impedance state at the end of data transfer (that is, at the end of the bit cycle corresponding to the LSB of a  
channel). By combining this capability with the ability to program at what bit clock in a frame the audio data  
begins, TDM can be accomplished, resulting in multiple ADCs able to use a single audio serial data bus. To  
further enhance the tri-state capability, the TLV320ADC3100 can be put in a high-impedance state a half bit  
cycle earlier by setting page 0, register 38, bit 1 to 1. When the audio serial data bus is powered down while  
configured in master mode, the pins associated with the interface are put into a high-impedance output state.  
Either or both of the two channels can be disabled in LJF, I2S, and DSP modes by using page 0, register 38, bits  
3:2. 10 shows the interface timing when both channels are enabled and early tri-stating is enabled. 11  
shows the effect of setting page 0, register 38, bit 2, first channel disabled, and setting page 0, register 27, bit 0  
to 1, which enables placing DOUT in the high-impedance state. If placing DOUT in the high-impedance state is  
disabled, then the DOUT signal is driven to logic level 0.  
1/fs  
WCLK  
BCLK  
N - 1  
N - 2  
X
N - 1  
N - 2  
X
N - 3  
N - 3  
1
0
2
1
0
DOUT  
DOUT_Tristate  
10. Both Channels Enabled, Early Tri-Stating Enabled  
1/fs  
WCLK  
BCLK  
Frame Time / 2  
0‘  
0‘  
X
R-1  
R-2  
X
0‘  
0‘  
2
1
0
DOUT  
DOUT_Tristate  
11. First Channel Disabled, Second Channel Enabled, Tri-Stating Enabled  
The sync signal for the ADC filter is not generated based on the disabled channel. The sync signal for the filter  
corresponds to the beginning of the earlier of the two channels. If the first channel is disabled, the filter sync is  
generated at the beginning of the second channel, if enabled. If both channels are disabled, there is no output to  
the serial bus, and the filter sync corresponds to the beginning of the frame.  
By default, when the word clocks and bit clocks are generated by the TLV320ADC3100, these clocks are active  
only when the ADC is powered up within the device. This internal clock gating is done to save power. However,  
the internal clock gating architecture also supports a feature wherein both the word clocks and bit clocks can be  
active even when the codec in the device is powered down. This feature is useful when using the TDM mode  
with multiple codecs on the same bus or when word clocks or bit clocks are used in the same system as general-  
purpose clocks.  
14  
版权 © 2018, Texas Instruments Incorporated  
 
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
Feature Description (接下页)  
8.3.5.1 Right-Justified Mode  
In right-justified mode, the LSB of the left channel is valid on the rising edge of the bit clock preceding the falling  
edge of word clock. Similarly, the LSB of the right channel is valid on the rising edge of the bit clock preceding  
the rising edge of the word clock. 12 shows the right-justified mode timing.  
1 / fs  
WCLK  
BCLK  
Left Channel  
n-2 n-3  
Right Channel  
DIN/  
DOUT  
n-2 n-3  
0
n-1  
2
1
0
n-1  
2
1
0
MSB  
LSB  
MSB  
LSB  
12. Right-Justified Mode Timing Diagram  
For right-justified mode, the number of bit clocks per frame must be greater than twice the programmed word-  
length of the data.  
The time-slot-based mode is not available in the right-justified mode.  
8.3.5.2 Left-Justified Mode  
In left-justified mode, the MSB of the right channel is valid on the rising edge of the bit clock following the falling  
edge of the word clock. Similarly, the MSB of the left channel is valid on the rising edge of the bit clock following  
the rising edge of the word clock. 13 shows the standard timing of the left-justified mode.  
Left Channel  
Right Channel  
WORD  
CLOCK  
BIT  
CLOCK  
n-1n-2 n-3  
n-1n-2n-3  
3
2
1
0
n-1n-2n-3  
3
2
1
0
DATA  
RD(n)  
LD(n)  
LD(n+1)  
LD(n) = nth Sample of Left-Channel Data  
RD(n) = nth Sample of Left-Channel Data  
13. Left-Justified Mode (Standard Timing)  
版权 © 2018, Texas Instruments Incorporated  
15  
 
 
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
Feature Description (接下页)  
14 shows the left-justified mode with Ch_Offset_1 = 1.  
Left Channel  
Right Channel  
WORD  
CLOCK  
BIT  
CLOCK  
n-1n-2 n-3  
1
n-1n-2n-3  
3
2
0
n-1n-2n-3  
3
2
1
0
DATA  
RD(n)  
LD(n)  
LD(n+1)  
Ch_Offset_1 = 1  
LD(n) = nth Sample of Left-Channel Data  
Ch_Offset_1 = 1  
RD(n) = nth Sample of Left-Channel Data  
14. Left-Justified Mode With Ch_Offset_1 = 1  
15 shows the left-justified mode with Ch_Offset_1 = 0 and bit clock inverted.  
Left Channel  
Right Channel  
WORD  
CLOCK  
BIT  
CLOCK  
n-1n-2 n-3  
n-1n-2n-3  
3
2
1
0
n-1n-2n-3  
3
2
1
DATA  
3
LD(n)  
RD(n)  
LD(n+1)  
Ch_Offset_1 = 0  
LD(n) = nth Sample of Left-Channel Data  
Ch_Offset_1 = 0  
RD(n) = nth Sample of Left-Channel Data  
15. Left-Justified Mode With Ch_Offset_1 = 0, Bit Clock Inverted  
For left-justified mode, the number of bit clocks per frame must be greater than twice the programmed word  
length of the data. Also, the programmed offset value must be less than the number of bit clocks per frame by at  
least the programmed word length of the data.  
When the time-slot-based channel assignment is disabled (page 0, register 38, bit 0 = 0), the left and right  
channels have the same offset Ch_Offset_1 (page 0, register 28), and each edge of the word clock starts data  
transfer for one of the two channels, depending on whether or not channel swapping is enabled. Data bits are  
valid on the rising edges of the bit clock. With the time-slot-based channel assignment enabled (page 0, register  
38, bit 0 = 1), the left and right channels have independent offsets (Ch_Offset_1 and Ch_Offset_2). The rising  
edge of the word clock starts data transfer for the first channel after a delay of its programmed offset  
(Ch_Offset_1) for this channel. Data transfer for the second channel starts after a delay of its programmed offset  
(Ch_Offset_2) from the LSB of the first-channel data. The falling edge of the word clock is not used.  
With no channel swapping, the MSB of the left channel is valid on the (Ch_Offset_1 + 1)th rising edge of the bit  
clock following the rising edge of the word clock. Consequently, the MSB of the right channel is valid on the  
(Ch_Offset_1 + 1)th rising edge of the bit clock following the falling edge of the word clock. The timing diagram of  
14 illustrates the operation in this case, with an offset of 1. Because channel swapping is not enabled, the left-  
channel data are before the right-channel data. With channel swapping enabled, the MSB of the right channel is  
valid on the (Ch_Offset_1 + 1)th rising edge of the bit clock following the rising edge of the word clock. Thus, the  
MSB of the left channel is valid on the (Ch_Offset_1 + 1)th rising edge of the bit clock following the falling edge  
of the word clock. The timing diagram of 16 depicts the operation in this case, with an offset of 1. As shown in  
the diagram, the right-channel data of a frame are before the left-channel data of that frame because of channel  
swapping. Otherwise, the behavior is similar to the case where channel swapping is disabled. The MSB of the  
right-channel data is valid on the second rising edge of the bit clock after the rising edge of the word clock, as a  
result of an offset of 1. Similarly, the MSB of the left-channel data is valid on the second rising edge of the bit  
clock after the falling edge of the word clock.  
16  
版权 © 2018, Texas Instruments Incorporated  
 
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
Feature Description (接下页)  
Right Channel  
Left Channel  
WORD  
CLOCK  
BIT  
CLOCK  
n-1n-2 n-3  
RD(n+1)  
n-1n-2n-3  
3
2
1
0
n-1n-2n-3  
3
2
1
0
DATA  
RD(n)  
LD(n)  
Ch_Offset_1 = 1  
Ch_Offset_1 = 1  
16. Left-Justified Mode With Ch_Offset_1 = 1, Channel Swapping Enabled  
When the time-based-slot mode is enabled with no channel swapping, the MSB of the left channel is valid on the  
(Offset1 + 1)th rising edge of the bit clock following the rising edge of the word clock. Thus, the MSB of the right  
channel is valid on the (Ch_Offset_2 + 1)th rising edge of the bit clock following the LSB of the left channel.  
17 shows the operation with time-based-slot mode enabled, Ch_Offset_1 = 0, and Ch_Offset_2 = 1. The MSB  
of the left channel is valid on the first rising edge of the bit clock after the rising edge of the word clock. Data  
transfer for the right channel does not wait for the falling edge of the word clock, and the MSB of the right  
channel is valid on the second rising edge of the bit clock after the LSB of the left channel.  
WORD  
CLOCK  
BIT  
CLOCK  
n-1n-2n-3  
n-1n-2n-3  
3
2
1
0
n-1n-2n-3  
3
2
1
0
DATA  
LD(n)  
Left Channel  
RD(n)  
Left Channel  
LD(n+1)  
Ch_Offset_1 = 0  
Ch_Offset_2 = 1  
17. Left-Justified Mode, Time-Based-Slot Mode Enabled, Ch_Offset_1 = 0, Ch_Offset_2 = 1  
When the time-based-slot mode is enabled and channel swapping is enabled, the MSB of the right channel is  
valid on the (Ch_Offset_1 + 1)th rising edge of the bit clock following the rising edge of the word clock. Thus, the  
MSB of the left channel is valid on the (Ch_Offset_2 + 1)th rising edge of the bit clock following the LSB of the  
right channel. 18 illustrates the operation in this mode with Ch_Offset_1 = 0 and Ch_Offset_2 = 1. The MSB  
of the right channel is valid on the first rising edge of the bit clock after the rising edge of the word clock. Data  
transfer for the left channel starts following the completion of data transfer for the right channel without waiting for  
the falling edge of the word clock. The MSB of the left channel is valid on the second rising edge of the bit clock  
after the LSB of the right channel.  
版权 © 2018, Texas Instruments Incorporated  
17  
 
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
Feature Description (接下页)  
WORD  
CLOCK  
BIT  
CLOCK  
n-1n-2n-3  
n-1n-2n-3  
3
2
1
0
n-1n-2n-3  
3
2
1
0
DATA  
RD(n)  
Left Channel  
LD(n)  
Left Channel  
RD(n+1)  
Ch_Offset_1 = 0  
Ch_Offset_2 = 1  
18. Left-Justified Mode, Time-Based-Slot Mode Enabled, Ch_Offset_1 = 0, Ch_Offset_2 = 1,  
Channel Swapping Enabled  
8.3.5.3 I2S Mode  
In I2S mode, the MSB of the left channel is valid on the second rising edge of the bit clock after the falling edge  
of the word clock. Similarly, the MSB of the right channel is valid on the second rising edge of the bit clock after  
the rising edge of the word clock. 19 shows the standard I2S timing.  
Left Channel  
Right Channel  
WORD  
CLOCK  
BIT  
CLOCK  
n-1n-2 n-3  
n-1n-2n-3  
3
2
1
0
n-1n-2n-3  
3
2
1
DATA  
3
LD(n)  
RD(n)  
LD(n+1)  
Ch_Offset_1 = 0  
LD(n) = nth Sample of Left-Channel Data  
Ch_Offset_1 = 0  
RD(n) = nth Sample of Left-Channel Data  
19. I2S Mode (Standard Timing)  
20 shows the I2S mode timing with Ch_Offset_1 = 2.  
Left Channel  
Right Channel  
WORD  
CLOCK  
BIT  
CLOCK  
n-1  
n-1n-2n-3  
3
2
1
0
n-1  
5
4
3
2
1
0
DATA  
5
LD(n)  
RD(n)  
Ch_Offset_1 = 2  
RD(n) = nth Sample of Left-Channel Data  
LD(n+1)  
Ch_Offset_1 = 0  
LD(n) = nth Sample of Left-Channel Data  
20. I2S Mode With Ch_Offset_1 = 2  
18  
版权 © 2018, Texas Instruments Incorporated  
 
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
Feature Description (接下页)  
21 shows the I2S mode timing with Ch_Offset_1 = 0 and the bit clock inverted.  
Left Channel  
Right Channel  
WORD  
CLOCK  
BIT  
CLOCK  
n-1n-2 n-3  
3
n-1n-2n-3  
3
2
1
0
n-1n-2n-3  
3
2
1
0
DATA  
RD(n)  
LD(n)  
LD(n+1)  
Ch_Offset_1 = 0  
LD(n) = nth Sample of Left-Channel Data  
Ch_Offset_1 = 0  
RD(n) = nth Sample of Right-Channel Data  
21. I2S Mode With Ch_Offset_1 = 0, Bit Clock Inverted  
For the I2S mode, the number of bit clocks per channel must be greater than or equal to the programmed word  
length of the data. Also, the programmed offset value must be less than the number of bit clocks per frame by at  
least the programmed word length of the data.  
8.3.5.4 DSP Mode  
In DSP mode, the rising edge of the word clock starts the data transfer with the left-channel data first and is  
immediately followed by the right-channel data. Each data bit is valid on the falling edge of the bit clock. 22  
shows the standard timing for the DSP mode.  
Left Channel  
Right Channel  
WORD  
CLOCK  
BIT  
CLOCK  
n-1n-2 n-3  
n-1n-2 n-3  
3
2
1
0
n-1n-2n-3  
2 1  
DATA  
3
0
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = nth Sample of Left-Channel Data RD(n) = nth Sample of Right-Channel Data  
22. DSP Mode (Standard Timing)  
23 shows the DSP mode timing with Ch_Offset_1 = 1.  
Left Channel  
Right Channel  
WORD  
CLOCK  
BIT  
CLOCK  
n-1n-2 n-3  
n-1n-2 n-3  
3
2
1
0 n-1n-2n-3  
2
1
DATA  
3
0
LD(n)  
RD(n)  
LD(n+1)  
Ch_Offset_1 = 1  
LD(n) = nth Sample of Left-Channel Data  
RD(n) = nth Sample of Left-Channel Data  
23. DSP Mode With Ch_Offset_1 = 1  
版权 © 2018, Texas Instruments Incorporated  
19  
 
 
 
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
Feature Description (接下页)  
24 shows the DSP mode timing with Ch_Offset_1 = 0 and the bit clock inverted.  
Left Channel  
Right Channel  
WORD  
CLOCK  
BIT  
CLOCK  
n-1n-2 n-3  
n-1n-2 n-3  
3
2
1
0
n-1n-2n-3  
2 1  
DATA  
3
0
3
LD(n)  
RD(n)  
LD(n+1)  
Ch_Offset_1 = 0  
24. DSP Mode With Ch_Offset_1 = 0, Bit Clock Inverted  
For DSP mode, the number of bit clocks per frame must be greater than twice the programmed word length of  
the data. Also, the programmed offset value must be less than the number of bit clocks per frame by at least the  
programmed word length of the data.  
25 shows the DSP time-slot-based mode without channel swapping, and with Ch_Offset_1 = 0 and  
Ch_Offset_2 = 3. The MSB of the left channel data is valid on the first falling edge of the bit clock after the rising  
edge of the word clock. Because the right channel has an offset of 3, the MSB of its data is valid on the third  
falling edge of the bit clock after the LSB of the left-channel data. As in the case of other modes, the serial output  
bus is put in the high-impedance state, if tri-stating of the output is enabled, during all extra bit-clock cycles in the  
frame.  
Right Channel  
Left Channel  
WORD  
CLOCK  
BIT  
CLOCK  
n-1n-2 n-3  
n-1 n-2 n-3  
3
2
1
0
n-1 n-2n-3  
2
1
DATA  
3
0
3
RD(n)  
LD(n)  
RD(n+1)  
Ch_Offset_1 = 0  
Ch_Offset_2 = 3  
25. DSP Mode, Time-Slot-Based Mode Enabled, Ch_Offset_1 = 0, Ch_Offset_2 = 3  
20  
版权 © 2018, Texas Instruments Incorporated  
 
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
Feature Description (接下页)  
26 shows the timing diagram for the DSP mode with left and right channels swapped, Ch_Offset_1 = 0, and  
Ch_Offset_2 = 3. The MSB of the right channel is valid on the first falling edge of the bit clock after the rising  
edge of the word clock. Similarly, the MSB of the left channel is valid three bit-clock cycles after the LSB of right  
channel because the offset for the left channel is 3.  
Right Channel  
Left Channel  
WORD  
CLOCK  
BIT  
CLOCK  
n-1n-2 n-3  
n-1 n-2 n-3  
3
2
1
0
n-1 n-2n-3  
2
1
DATA  
3
0
3
RD(n)  
LD(n)  
RD(n+1)  
Ch_Offset_1 = 0  
Ch_Offset_2 = 3  
26. DSP Mode, Time-Slot-Based Mode Enabled, Ch_Offset_1 = 0, Ch_Offset_2 = 3, Channel Swap  
Enabled  
8.3.6 Audio Clock Generation  
The audio converters in the fully programmable filter mode of the TLV320ADC3100 require an internal audio  
master clock at a frequency of N × fS, where N = IADC (page 0, register 21) when filter mode (page 0, register  
61) equals zero; otherwise, N equals the instruction count from the ADC processing blocks (see 6). The  
master clock is obtained from an external clock signal applied to the device.  
The device can accept an MCLK input from 512 kHz to 50 MHz, which can then be passed through either a  
programmable divider or a PLL to get the proper internal audio master clock required by the device. The BCLK  
input can also be used to generate the internal audio master clock.  
A primary concern is proper operation of the TLV320ADC3100 at various sample rates with the limited MCLK  
frequencies available in the system. This device includes a programmable PLL to accommodate such situations.  
The integrated PLL can generate audio clocks from a wide variety of possible MCLK inputs, with particular focus  
paid to the standard MCLK rates already widely used.  
When the PLL is enabled:  
fS = (PLLCLK_IN × K × R) / (NADC × MADC × AOSR × P)  
where  
P = 1, 2, 3,…, 8  
R = 1, 2, …, 16  
K = J.D  
J = 1, 2, 3, …, 63  
D = 0000, 0001, 0002, 0003, …, 9998, 9999  
PLLCLK_IN can be MCLK or BCLK, selected by page 0, register 4, bits 3:2  
(1)  
P, R, J, and D are register programmable. J is the integer portion of K (the numbers to the left of the decimal  
point), whereas D is the fractional portion of K (the numbers to the right of the decimal point, assuming four digits  
of precision).  
Examples:  
If K = 8.5, then J = 8, D = 5000  
If K = 7.12, then J = 7, D = 1200  
If K = 14.03, then J = 14, D = 0300  
If K = 6.0004, then J = 6, D = 0004  
版权 © 2018, Texas Instruments Incorporated  
21  
 
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
Feature Description (接下页)  
When the PLL is enabled and D = 0000, the following conditions must be satisfied to meet specified  
performance:  
512 kHz (PLLCLK_IN / P) 20 MHz  
80 MHz (PLLCLK _IN × K × R / P) 110 MHz  
4 J 55  
When the PLL is enabled and D 0000, the following conditions must be satisfied to meet specified  
performance:  
10 MHz PLLCLK _IN / P 20 MHz  
80 MHz PLLCLK _IN × K × R / P 110 MHz  
4 J 11  
R = 1  
Example:  
For MCLK = 12 MHz, fS = 44.1 kHz, NADC = 8, MADC = 2, and AOSR = 128:  
Select P = 1, R = 1, K = 7.5264, which results in J = 7, D = 5264  
Example:  
For MCLK = 12 MHz, fS = 48 kHz , NADC = 8, MADC = 2, and AOSR = 128:  
Select P = 1, R = 1, K = 8.192, which results in J = 8, D = 1920  
1 lists several example cases of typical MCLK rates and how to program the PLL to achieve sample rates of  
fS = 44.1 kHz or 48 kHz with NADC = 8, MADC = 2, and AOSR = 128.  
1. Typical MCLK Rates  
MCLK (MHz)  
fS = 44.1 kHz  
P
R
J
D
ACHIEVED fS  
% ERROR  
2.8224  
5.6448  
12.0  
1
1
1
1
1
1
1
4
1
1
1
1
1
1
1
1
32  
16  
7
0
44,100.00  
44,100.00  
44,100.00  
44,099.71  
44,100.00  
44,100.00  
44,100.30  
44,100.00  
0.0000  
0.0000  
0.0000  
–0.0007  
0.0000  
0.0000  
0.0007  
0.0000  
0
5264  
9474  
6448  
7040  
5893  
5264  
13.0  
6
16.0  
5
19.2  
4
19.68  
48.0  
4
7
fS = 48 kHz  
2.048  
3.072  
4.096  
6.144  
8.192  
12.0  
1
1
1
1
1
1
1
1
1
1
4
1
1
1
1
1
1
1
1
1
1
1
48  
32  
24  
16  
12  
8
0
48,000.00  
48,000.00  
48,000.00  
48,000.00  
48,000.00  
48,000.00  
47,999.71  
48,000.00  
48,000.00  
47,999.79  
48,000.00  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
–0.0006  
0.0000  
0.0000  
–0.0004  
0.0000  
0
0
0
0
1920  
5618  
1440  
1200  
9951  
1920  
13.0  
7
16.0  
6
19.2  
5
19.68  
48.0  
4
8
22  
版权 © 2018, Texas Instruments Incorporated  
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
27 shows a detailed diagram of the audio clock section of the TLV320ADC3100.  
MCLK  
50 MHzMAX  
BCLK  
13 MHzMAX  
P0:0x04(4) [Clock-Gen Muxing] (0h)  
PLL_CLK_IN REG  
ADC_CLK  
ADC_MOD_CLK  
PLL_CLKIN  
50 MHZMAX  
P0:0x1D(29)  
[ADC Interface Control 2]  
(2h)  
P0:0x05(5) [PLL P and R-VAL] (11h)  
P0:0x06(6) [PLL J-VAL] (4h)  
P0:0x07(7) [PLL D-VAL MSB] (0h)  
P0:0x08(8) [PLL D-VAL LSB] (0h)  
PLL  
BDIV_CLKIN  
26 MHZMAX  
X(RxJ.D)/P  
P0:0x1E(30)  
[BDIV N_VAL] (1h)  
PLL_CLKIN  
100 MHZMAX  
MCLK  
50 MHzMAX  
BCLK  
13 MHzMAX  
œ N  
N = 1, 2, , 127, 128  
P0:0x04(4) [Clock-Gen Muxing] (0h)  
CODEC_CLKIN REG  
ADC_CLKIN  
BCLK  
P0:0x12(18)  
BCLK is an output in master mode  
[ADC NADC_VAL] (1h)]  
P0:0x1B(27):[ADC Interface Control 1]  
œ NADC  
MCLK  
BCLK PLL_CLK ADC_CLK ADC_MOD_CLK  
NADC = 1, 2, , 127, 128  
50 MHZMAX 13 MHZMAX  
ADC_CLK  
33 MHZMAX  
P0:0x19(25) [CLKOUT MUX] (0h)  
P0:0x13(19)  
[ADC NADC_VAL] (1h)]  
œ MADC  
CDIV_CLKIN  
110 MHZMAX  
MADC = 1, 2, , 127, 128  
ADC_MOD_CLK  
6.5 MHZMAX  
P0:0x1E(26)  
[CLKOUT M_VAL] (1h)  
œ M  
P0:0x14(20)  
[ADC AOSR_VAL] (80h)]  
M = 1, 2, , 127, 128  
œ AOSR  
AOSR = 1, 2, , 255, 256  
CLKOUT (DOUT,GPIO1)  
P0:0x35(53)  
[DOUT Control] (1Eh)  
ADC_FS  
100 kHZMAX  
NOTE: MADC × AOSR IADC, where IADC is the number of instructions (instruction count) for the ADC MAC engine. IADC  
is programmable from 2, 4,…, 510. The convention used in this figure is page number: register number (reset value).  
27. Audio Clock Generation Processing  
版权 © 2018, Texas Instruments Incorporated  
23  
 
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.3.7 Stereo Audio ADC  
The TLV320ADC3100 includes a stereo audio ADC that uses a delta-sigma modulator with 128-times  
oversampling in single-rate mode, followed by a digital decimation filter. The ADC supports sampling rates from  
8 kHz to 48 kHz in single-rate mode, and up to 96 kHz in dual-rate mode. Whenever the ADC is in operation, the  
device requires that an audio master clock be provided and appropriate audio clock generation be set up within  
the device.  
In order to provide optimal system power dissipation, the stereo ADC can be powered one channel at a time, to  
support when only mono record capability is required. In addition, both channels can be fully or partially powered  
down.  
The integrated digital decimation filter removes high-frequency content and down-samples the audio data from  
an initial sampling rate of 128 fS to the final output sampling rate of fS. The decimation filter provides a linear  
phase output response with a group delay of 17 / fS. The –3-dB bandwidth of the decimation filter extends to  
0.45 fS and scales with the sample rate (fS). The filter has a minimum 73-dB attenuation over the stop band from  
0.55 fS to 64 fS. Independent digital high-pass filters are also included with each ADC channel, with a corner  
frequency that can be set independently by programmable coefficients or can be disabled entirely.  
Because of the oversampling nature of the audio ADC and the integrated digital decimation filtering,  
requirements for analog antialiasing filtering are relaxed. The TLV320ADC3100 integrates a second-order analog  
antialiasing filter with 20-dB attenuation at 1 MHz. This filter, combined with the digital decimation filter, provides  
sufficient antialiasing filtering without requiring additional external components.  
The ADC is preceded by a programmable gain amplifier (PGA) that allows analog gain control from 0 dB to  
40 dB in steps of 0.5 dB. The PGA gain changes are implemented with an internal soft-stepping algorithm that  
only changes the actual volume level by one 0.5-dB step every one or two ADC output samples, depending on  
the register programming (see register page 0, register 81). This soft-stepping specifies that volume control  
changes occur smoothly with no audible artifacts. On reset, the PGA gain defaults to a mute condition, and upon  
power down, the PGA soft-steps the volume to mute before shutting down. A read-only flag is set whenever the  
gain applied by the PGA equals the desired value set by the register. The soft-stepping control can also be  
disabled by programming a register bit.  
8.3.8 Audio Analog Inputs  
8.3.8.1 Digital Volume Control  
The TLV320ADC3100 also has a digital volume-control block with a range from –12 dB to 20 dB (as shown in 表  
2) in steps of 0.5 dB. This block is set by programming page 0, registers 83 and 84 for the left and right  
channels, respectively.  
2. Digital Volume Control for the ADC  
DESIRED GAIN  
(dB)  
LEFT, RIGHT CHANNEL  
PAGE 0, REGISTERS 83 AND 84, BITS 6:0  
–12  
–11.5  
–11  
...  
110 1000  
110 1001  
110 1010  
...  
–0.5  
0
111 1111  
000 0000 (default)  
000 0001  
...  
0.5  
...  
19.5  
20  
010 0111  
010 1000  
24  
版权 © 2018, Texas Instruments Incorporated  
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
During volume control changes, the soft-stepping feature is used to avoid audible artifacts. The soft-stepping rate  
can be set to either 1 or 2 gain steps per sample. Soft-stepping can also be entirely disabled. This soft-stepping  
is configured via page 0, register 81, bits 1:0, and is common to soft-stepping control for the analog PGA. During  
power-down of an ADC channel, this volume control soft-steps down to –12 dB before powering down. Resulting  
from the soft-stepping control, soon after changing the volume control setting or powering down the ADC  
channel, the actual applied gain may be different from the one programmed through the control register. The  
TLV320ADC3100 provides feedback through the read-only flags in page 0, register 36, bit 7 for the left channel  
and page 0, register 36, bit 3 for the right channel.  
8.3.8.2 Fine Digital Gain Adjustment  
Additionally, the gain in each channel is finely adjustable in steps of 0.1 dB. This feature is useful when trying to  
match the gain between channels. By programming page 0, register 82, the gain can be adjusted from 0 dB to  
–0.4 dB in steps of 0.1 dB. This feature, in combination with the regular digital volume control, allows the gains  
through the left and right channels be matched in the range of –0.5 dB to 0.5 dB with a resolution of 0.1 dB.  
8.3.8.3 AGC  
The TLV320ADC3100 includes automatic gain control (AGC) for ADC recording. AGC can be used to maintain a  
nominally constant output level when recording speech. As opposed to manually setting the PGA gain, in the  
AGC mode, the circuitry automatically adjusts the PGA gain as the input signal becomes overly loud or very  
weak, such as when a person speaking into a microphone moves closer to or farther from the microphone. The  
AGC algorithm has several programmable parameters (including target gain, attack and decay time constants,  
noise threshold, and maximum PGA applicable) that allow the algorithm to be fine-tuned for any particular  
application. The algorithm uses the absolute average of the signal (which is the average of the absolute value of  
the signal) as a measure of the nominal amplitude of the output signal. Because the gain can be changed at the  
sample interval time, the AGC algorithm operates at the ADC sample rate.  
Target level represents the nominal output level at which the AGC attempts to hold the ADC output signal  
level. The TLV320ADC3100 allows programming of eight different target levels that can be programmed from  
–5.5 dB to –24 dB relative to a full-scale signal. Because the TLV320ADC3100 reacts to the signal absolute  
average and not to peak levels, TI recommends that the target level be set with enough margin to avoid  
clipping at the occurrence of loud sounds.  
Attack time determines how quickly the AGC circuitry reduces the PGA gain when the output signal level  
exceeds the target level resulting from an increase in input signal level. A wide range of attack-time  
programmability is supported in terms of number of samples (that is, the number of ADC sample-frequency  
clock cycles).  
Decay time determines how quickly the PGA gain is increased when the output signal level falls below the  
target level resulting from a reduction in input signal level. A wide range of decay-time programmability is  
supported in terms of number of samples (that is, the number of ADC sample-frequency clock cycles).  
Noise threshold. If the input signal level falls below the noise threshold, the AGC considers the duration that  
the signal level remains below the threshold as silence, and thus brings down the gain to 0 dB in steps of  
0.5 dB every sample period and sets the noise-threshold flag. The gain stays at 0 dB unless the input signal  
average rises above the noise threshold setting, thus preventing noise from being amplified in the absence of  
a signal. The noise threshold level in the AGC algorithm is programmable from –30 dB to –90 dB of full-scale.  
When the AGC noise threshold is set to –70 dB, –80 db, or –90 dB, the maximum applicable microphone  
input PGA setting must be greater than or equal to 11.5 dB, 21.5 dB, or 31.5 dB, respectively. This operation  
includes hysteresis and debounce to prevent the AGC gain from cycling between high gain and 0 dB when  
signals are near the noise threshold level. The noise (or silence) detection feature can also be entirely  
disabled.  
Maximum applicable PGA allows the maximum gain applied by the AGC to be restricted. This restriction can  
be used for limiting PGA gain in situations where environmental noise is greater than the programmed noise  
threshold. Microphone input maximum PGA can be programmed from 0 dB to 40 dB in steps of 0.5 dB.  
Hysteresis, as the name suggests, determines a window around the noise threshold that must be exceeded  
to detect if the recorded signal is indeed either noise or signal. If the energy of the recorded signal is initially  
greater than the noise threshold, then the AGC recognizes the signal as noise only when the energy of the  
recorded signal falls below the noise threshold by a value given by hysteresis. Similarly, after the recorded  
signal is recognized as noise, for the AGC to recognize the sound as a signal, its energy must exceed the  
noise threshold by a value given by the hysteresis setting. In order to prevent the AGC from jumping between  
noise and signal states (which can happen when the energy of the recorded signal is very close to the noise  
版权 © 2018, Texas Instruments Incorporated  
25  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
threshold), a non-zero hysteresis value must be chosen. The hysteresis feature can also be disabled.  
Debounce time (noise and signal) determines the hysteresis in time domain for noise detection. The AGC  
continuously calculates the energy of the recorded signal. If the calculated energy is less than the set noise  
threshold, then the AGC does not increase the input gain to achieve the target level. However, to handle  
audible artifacts that can occur when the energy of the input signal is very close to the noise threshold, the  
AGC checks if the energy of the recorded signal is less than the noise threshold for a duration greater than  
the noise debounce time. Similarly, the AGC starts increasing the input-signal gain to reach the target level  
when the calculated energy of the input signal is greater than the noise threshold. Again, to avoid audible  
artifacts when the input-signal energy is very close to noise threshold, the energy of the input signal must  
continuously exceed the noise threshold value for the signal debounce time. If the debounce times are kept  
very small, then audible artifacts can result by rapidly enabling and disabling the AGC function. At the same  
time, if the debounce time is kept too large, then the AGC can take more time to respond to changes in input  
signal levels with respect to the noise threshold. Both noise and signal debounce time can be disabled.  
The AGC noise threshold flag is a read-only flag indicating that the input signal has levels lower than the  
noise threshold, and thus is detected as noise (or silence). In such a condition, the AGC applies a gain of  
0 dB.  
Gain applied by the AGC is a read-only register setting that gives a real-time feedback to the system on the  
gain applied by the AGC to the recorded signal. This setting, along with the target setting, can be used to  
determine the input signal level. In a steady state situation:  
Target level (dB ) = gain applied by AGC (dB) + input signal level (dB)  
When the AGC noise threshold flag is set, then the status of the gain applied by the AGC is not valid.  
The AGC saturation flag is a read-only flag indicating that the ADC output signal has not reached its target  
level. However, the AGC is unable to increase the gain further because the required gain is higher than the  
maximum allowed PGA gain. Such a situation can happen when the input signal has very low energy and the  
noise threshold is also set very low. When the AGC noise threshold flag is set, the status of the AGC  
saturation flag must be ignored.  
The ADC saturation flag is a read-only flag indicating an overflow condition in the ADC channel. On  
overflow, the signal is clipped and distortion results. This distortion typically happens when the AGC target  
level is kept very high and the energy in the input signal increases faster than the attack time.  
An AGC low-pass filter is used to help determine the average level of the input signal. This average level is  
compared to the programmed detection levels in the AGC to provide the correct functionality. This low-pass  
filter is in the form of a first-order IIR filter. Two 8-bit registers are used to form the 16-bit digital coefficient, as  
shown in the Register Maps section. In this way, a total of six registers are programmed to form the three IIR  
coefficients. 公式 2 shows how the transfer function of the filter is implemented for signal-level detection:  
-1  
N0 + N1z  
215 - D1z  
H(z) =  
-1  
where  
Coefficient N0 can be programmed by writing into page 4, registers 2 and 3  
Coefficient N1 can be programmed by writing into page 4, registers 4 and 5  
Coefficient D1 can be programmed by writing into page 4, registers 6 and 7  
N0, N1, and D1 are 16-bit, 2s-complement numbers, and their default values implement a low-pass filter with  
cutoff at 0.002735 × ADC_fS  
(2)  
3 lists various AGC programming options. The AGC can be used only if the analog microphone input is  
routed to the ADC channel.  
28 illustrates the input and output signals along with the decay and attack times of the AGC.  
26  
版权 © 2018, Texas Instruments Incorporated  
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
3. AGC Parameter Settings  
CONTROL REGISTER  
LEFT ADC  
Page 0, register 86  
CONTROL REGISTER  
RIGHT ADC  
Page 0, register 94  
FUNCTION  
BIT  
AGC enable  
7
Target level  
Page 0, register 86  
Page 0, register 87  
Page 0, register 87  
Page 0, register 88  
Page 0, register 89  
Page 0, register 90  
Page 0, register 91  
Page 0, register 92  
Page 0, register 93  
Page 0, register 94  
Page 0, register 95  
Page 0, register 95  
Page 0, register 96  
Page 0, register 97  
Page 0, register 98  
Page 0, register 99  
Page 0, register 100  
Page 0, register 101  
6:4  
Hysteresis  
7:6  
Noise threshold  
5:1  
Maximum applicable PGA  
Time constants (attack time)  
Time constants (decay time)  
Debounce time (noise)  
Debounce time (signal)  
Gain applied by the AGC  
6:0  
7:0  
7:0  
4:0  
3:0  
7:0 (read-only)  
Page 0, register 45 (sticky flag),  
Page 0, register 47 (non-sticky  
flag)  
Page 0, register 45 (sticky flag),  
Page 0, register 47 (non-sticky flag)  
AGC noise-threshold flag  
AGC saturation flag  
ADC saturation flag  
6:5 (read-only)  
5, 1 (read-only)  
3:2 (read-only)  
Page 0, register 36 (sticky flag)  
Page 0, register 36 (sticky flag)  
Page 0, register 42 (sticky flag),  
Page 0, register 43 (non-sticky  
flag)  
Page 0, register 42 (sticky flag),  
Page 0, register 43 (non-sticky flag)  
Input  
Signal  
Output  
Signal  
Target  
Level  
AGC  
Gain  
Decay Time  
Attack  
Time  
28. AGC Characteristics  
版权 © 2018, Texas Instruments Incorporated  
27  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
The TLV320ADC3100 includes two analog audio input pins, which can be configured as one fully-differential pair  
and one single-ended input, or as three single-ended audio inputs. These pins connect through series resistors  
and switches to the virtual ground terminals of two fully differential operational amplifiers (one per ADC and PGA  
channel). By selecting to turn on only one set of switches per operational amplifier at a time, the inputs can be  
effectively multiplexed to each ADC PGA channel.  
By selecting to turn on multiple sets of switches per operational amplifier at a time, mixing can also be achieved.  
Mixing of multiple inputs can easily lead to PGA outputs that exceed the range of the internal operational  
amplifiers, resulting in saturation and clipping of the mixed output signal. Whenever mixing is being implemented,  
take adequate precautions to avoid such a saturation case from occurring. In general, the mixed signal must not  
exceed 2 VPP (single-ended) or 4 VPP (differential).  
In most mixing applications, there is also a general requirement to adjust the levels of the individual signals being  
mixed. For example, if a soft signal and a large signal are to be mixed and played together, the soft signal  
generally must be amplified to a level comparable to the large signal before mixing. In order to accommodate this  
requirement, the TLV320ADC3100 includes an input level control on each of the individual inputs before they are  
mixed or multiplexed into the ADC PGAs, with programmable attenuation at 0 dB, –6 dB, or off.  
This input-level control is not intended to be a volume control, but instead used for coarse  
level setting. Finer soft-stepping of the input level is implemented in this device by the  
ADC PGA.  
29 shows various available configurations for the audio input.  
AGC  
IN2L(P)  
IN3L(M)  
IN2L(P)  
IN3L(M)  
PGA  
0/+40 dB  
0.5 dB Steps  
+
IN2L(P)  
IN3L(M)  
IN2R(P)  
IN3R(M)  
ADC  
+
œ
All coarse stage attenuations are set to 0 dB, œ6  
dB, or Off by register setting.  
The default is all the switches are off at startup.  
AGC  
IN2R(P)  
IN3R(M)  
IN2R(P)  
IN2R(P)  
IN3R(M)  
PGA  
0/+40 dB  
0.5 dB Steps  
+
ADC  
+
œ
IN3R(M)  
IN2L(P)  
IN3L(M)  
29. TLV320ADC3100 Available Audio Input Path Configurations  
4 lists the available routing configurations for the audio signals on the TLV320ADC3100.  
4. TLV320ADC3100 Audio Signals  
AUDIO SIGNALS AVAILABLE TO THE LEFT ADC  
AUDIO SIGNALS AVAILABLE TO THE RIGHT ADC  
SINGLE-ENDED INPUTS  
IN2L(P)  
DIFFERENTIAL INPUTS  
IN2L(P), IN3L(M)  
SINGLE-ENDED INPUTS  
IN2R(P)  
DIFFERENTIAL INPUTS  
IN2R(P), IN3R(M)  
IN3L(M)  
IN2R(P), IN3R(M)  
IN3R(M)  
IN2L(P), IN3L(M)  
28  
版权 © 2018, Texas Instruments Incorporated  
 
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
Inputs can be selected as single-ended instead of fully differential, and mixing or multiplexing into the ADC PGAs  
is also possible in this mode. However, an input pair cannot be selected as fully differential for connection to one  
ADC PGA and simultaneously selected as single-ended for connection to the other ADC PGA channel. However,  
an input can be selected or mixed into both the left and right channel PGAs, as long as the PGA has the same  
configuration for both channels (either both single-ended or both fully differential).  
8.3.9 Input Impedance and VCM Control  
The TLV320ADC3100 includes several programmable settings to control the analog input pins, particularly when  
the pins are not selected for connection to an ADC PGA. The default option allows unselected inputs to be put  
into a high-impedance state. However, the pins on the device do include protection diode circuits connected to  
AVDD and AVSS. Thus, if any voltage is driven onto a pin approximately one diode drop (~0.6 V) above AVDD  
or one diode drop below AVSS, these protection diodes begin conducting current, resulting in an effective  
impedance that no longer appears as a high-impedance state.  
Another programmable option for unselected analog inputs is to weakly hold those inputs at the common-mode  
input voltage of the ADC PGA (determined by an internal band-gap voltage reference). This feature is useful to  
keep the AC-coupling capacitors connected to the analog inputs biased up at a normal DC level, thus avoiding  
the need for them to charge up suddenly when the input is changed from being unselected to selected for  
connection to an ADC PGA. This option is controlled in page 1, register 52 through page 1, register 57. This  
option must be disabled when an input is selected for connection to an ADC PGA or selected for the analog input  
bypass path, because the input can corrupt the recorded input signal if left operational when an input is selected.  
In most cases, the analog input pins on the TLV320ADC3100 must be AC-coupled to analog input sources, the  
only exception generally being if an ADC is used for DC voltage measurement. The AC-coupling capacitor  
causes a high-pass filter pole to be inserted into the analog signal path, so the size of the capacitor must be  
chosen to move that filter pole sufficiently low in frequency to cause minimal effect on the processed analog  
signal. The input impedance of the analog inputs, when selected for connection to an ADC PGA, varies with the  
setting of the input-level control, starting at approximately 35 kwith an input-level control setting of 0 dB, and  
62.5-kwhen the input-level control is set at –6 dB. For example, using a 0.1-µF, AC-coupling capacitor at an  
analog input results in a high-pass filter pole of 45.5 Hz when the 0-dB, input-level control setting is selected. 表  
5 lists various mixer gains and microphone PGA ranges to set a high-pass corner for the application.  
5. Single-Ended Input Impedance vs PGA Ranges(1)  
MIXER GAIN (dB)  
MICROPHONE PGA RANGE (dB)  
INPUT IMPEDANCE (Ω)  
35,000  
0
0
0–5.5  
6–11.5  
12–17.5  
18–23.5  
24–29.5  
30–35.5  
36–40  
38,889  
0
42,000  
0
44,074  
0
45,294  
0
45,960  
0
46,308  
–6  
–6  
–6  
–6  
–6  
–6  
–6  
0–5.5  
62,222  
6–11.5  
12–17.5  
18–23.5  
24–29.5  
30–35.5  
36–40  
70,000  
77,778  
84,000  
88,148  
90,588  
91,919  
(1) Valid when only one input is enabled.  
8.3.10 MICBIAS Generation  
The TLV320ADC3100 includes a programmable microphone bias output (MICBIAS1) capable of providing output  
voltages of 2 V or 2.5 V (both derived from the on-chip, band-gap voltage) with 4-mA, output-current drive  
capability. In addition, the MICBIAS output can be programmed to switch to AVDD directly through an on-chip  
switch, or powered down completely when not needed, for power savings. This function is controlled by register  
programming in page 1, register 51.  
版权 © 2018, Texas Instruments Incorporated  
29  
 
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.3.11 ADC Decimation Filtering and Signal Processing  
The TLV320ADC3100 ADC channel includes a built-in digital decimation filter to process the oversampled data  
from the delta-sigma modulator to generate digital data at the Nyquist sampling rate with high dynamic range.  
The decimation filter can be chosen from three different types, depending on the required frequency response,  
group delay, and sampling rate.  
8.3.11.1 Processing Blocks  
The TLV320ADC3100 offers a range of processing blocks that implement various signal processing capabilities  
along with decimation filtering. These processing blocks provide a choice of how much and what type of signal  
processing is used and which decimation filter is applied.  
The signal processing blocks available are:  
First-order IIR  
Scalable number of biquad filters  
Variable-tap FIR filter  
AGC  
The processing blocks are tuned for common cases and can achieve high antialias filtering or low group delay in  
combination with various signal processing effects such as audio effects and frequency shaping. The available  
first-order IIR, biquad, and FIR filters have fully user-programmable coefficients. The ADC processing blocks can  
be selected by writing to page 0, register 61. The default (reset) processing block is PRB_R1. 6 lists the  
available processing blocks for the ADC.  
6. ADC Processing Blocks  
FIRST-ORDER  
DECIMATION  
FILTER  
NUMBER OF  
BIQUADS  
PROCESSING  
BLOCKS  
REQUIRED  
AOSR VALUE  
CHANNEL  
FIR  
INSTR CTR  
IIR  
AVAILABLE  
PRB_R1  
PRB_R2  
PRB_R3  
PRB_R4  
PRB_R5  
PRB_R6  
PRB_R7  
PRB_R8  
PRB_R9  
PRB_R10  
PRB_R11  
PRB_R12  
PRB_R13  
PRB_R14  
PRB_R15  
PRB_R16  
PRB_R17  
PRB_R18  
Stereo  
Stereo  
Stereo  
Right  
A
A
A
A
A
A
B
B
B
B
B
B
C
C
C
C
C
C
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
0
5
0
0
5
0
0
3
0
0
3
0
0
5
0
0
5
0
No  
No  
128, 64  
128, 64  
128, 64  
128, 64  
128, 64  
128, 64  
64  
188  
240  
236  
96  
25-tap  
No  
Right  
No  
120  
120  
88  
Right  
25-tap  
No  
Stereo  
Stereo  
Stereo  
Right  
No  
64  
120  
128  
46  
20-tap  
No  
64  
64  
Right  
No  
64  
60  
Right  
20-tap  
No  
64  
64  
Right  
32  
70  
Stereo  
Stereo  
Right  
No  
32  
124  
120  
36  
25-tap  
No  
32  
32  
Right  
No  
32  
64  
Right  
25-tap  
32  
62  
30  
版权 © 2018, Texas Instruments Incorporated  
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.3.11.2 Processing Blocks: Details  
30 shows the signal chain for a first-order IIR with AGC gain compensation, using filter A.  
1st Order  
AGC  
To Audio  
Interface  
From Delta-Sigma  
Modulator  
Gain  
Filter A  
IIR  
*
Compensation  
AGC  
From Digital Vol. Ctrl  
To Analog PGA  
30. Signal Chain for PRB_R1 and PRB_R4  
31 shows the signal chain for a five-biquad, first-order IIR with AGC gain compensation, using filter A.  
1st Order  
AGC  
To Audio  
Interface  
From Delta-Sigma  
Modulator  
Gain  
Filter A  
HA  
HB  
HC  
HD  
HE  
IIR  
*
Compensation  
AGC  
From Digital Vol. Ctrl  
To Analog PGA  
31. Signal Chain for PRB_R2 and PRB_R5  
32 shows the signal chain for a 25-tap FIR, first-order IIR with AGC gain compensation, using filter A.  
1st Order  
AGC  
To Audio  
Interface  
From Delta-Sigma  
Modulator  
Gain  
Filter A  
25-Tap FIR  
IIR  
*
Compensation  
AGC  
From Digital Vol. Ctrl  
To Analog PGA  
32. Signal Chain for PRB_R3 and PRB_R6  
版权 © 2018, Texas Instruments Incorporated  
31  
 
 
 
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
33 shows the signal chain for a first-order IIR with AGC gain compensation, using filter B.  
1st Order  
AGC  
To Audio  
Interface  
From Delta-Sigma  
Modulator  
Gain  
Filter B  
IIR  
*
Compensation  
AGC  
From Digital Vol. Ctrl  
To Analog PGA  
33. Signal Chain for PRB_R7 and PRB_R10  
34 shows the signal chain for a three-biquad, first-order IIR with AGC gain compensation, using filter B.  
1st Order  
AGC  
To Audio  
Interface  
From Delta-Sigma  
Modulator  
Gain  
Filter B  
HA  
HB  
HC  
IIR  
*
Compensation  
AGC  
From Digital Vol. Ctrl  
To Analog PGA  
34. Signal Chain for PRB_R8 and PRB_R11  
35 shows the signal chain for a 20-tap FIR, first-order IIR with AGC gain compensation, using filter B.  
1st Order  
AGC  
To Audio  
Interface  
From Delta-Sigma  
Modulator  
Gain  
Filter B  
20-Tap FIR  
IIR  
*
Compensation  
AGC  
From Digital Vol. Ctrl  
To Analog PGA  
35. Signal Chain for PRB_R9 and PRB_R12  
32  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
36 shows the signal chain for a first-order IIR with AGC gain compensation, using filter C.  
1st Order  
AGC  
To Audio  
Interface  
From Delta-Sigma  
Modulator  
Gain  
Filter C  
IIR  
*
Compensation  
AGC  
From Digital Vol. Ctrl  
To Analog PGA  
36. Signal Chain for PRB_R13 and PRB_R16  
37 shows the signal chain for a five-biquad, first-order IIR with AGC gain compensation, using filter C.  
1st Order  
AGC  
To Audio  
Interface  
From Delta-Sigma  
Modulator  
Gain  
Filter C  
HA  
HB  
HC  
HD  
HE  
IIR  
*
Compensation  
AGC  
From Digital Vol. Ctrl  
To Analog PGA  
37. Signal Chain for PRB_R14 and PRB_R17  
38 shows the signal chain for a 25-tap FIR, first-order IIR with AGC gain compensation, using filter C.  
1st Order  
AGC  
To Audio  
Interface  
From Delta-Sigma  
Modulator  
Gain  
Filter C  
25-Tap FIR  
IIR  
*
Compensation  
AGC  
From Digital Vol. Ctrl  
To Analog PGA  
38. Signal for PRB_R15 and PRB_R18  
版权 © 2018, Texas Instruments Incorporated  
33  
 
 
 
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.3.11.3 User-Programmable Filters  
Depending on the selected processing block, different types and orders of digital filtering are available. A first-  
order IIR filter is always available, and is useful to filter out possible DC components of the signal efficiently. Up  
to five biquad sections, or alternatively up to 25-tap FIR filters, are available for specific processing blocks. The  
coefficients of the available filters are arranged as sequentially indexed coefficients in two banks. If adaptive  
filtering is chosen, the coefficient banks can be switched while the processor is running.  
The coefficients of these filters, as shown in 7, are each 16 bits wide, in 2s-complement format, and occupy  
two consecutive 8-bit registers in the register space. Specifically, the filter coefficients, shown in 39, are in  
1.15 (one dot 15) format with a range from –1.0 (0x8000) to 0.999969482421875 (0x7FFF).  
7. ADC First-Order IIR Filter Coefficients  
FILTER  
FILTER COEFFICIENT  
ADC COEFFICIENT, LEFT CHANNEL  
C4 (page 4, registers 8, 9)  
ADC COEFFICIENT, RIGHT CHANNEL  
C36 (page 4, registers 72, 73)  
C37 (page 4, registers 74, 75)  
C38 (page 4, registers 76, 77)  
N0  
N1  
D1  
First-order IIR  
C5 (page 4, registers 10, 11)  
C6 (page 4, registers 12, 13)  
Largest Positive Number  
= 0.1111 1111 1111 111  
= 0.999969482421875 = 1.0 œ 1 LSB  
2œ15 Bit  
2œ4 Bit  
Largest Negative Number  
= 1.0000 0000 0000 000  
= 0 x 8000 = œ1.0 (by definition)  
2œ1 Bit  
Fraction Point  
Sign Bit  
S . xxxx xxxx xxxx xxx  
39. 2s-Complement Coefficient Format  
8.3.11.3.1 First-Order IIR Section  
公式 3 gives the transfer function for the first-order IIR filter.  
-1  
N0 + N1z  
215 - D1z  
H(z) =  
-1  
(3)  
The frequency response for the first-order IIR section with default coefficients is flat at a gain of 0 dB.  
34  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.3.11.3.2 Biquad Section  
公式 4 gives the transfer function of each biquad filter.  
N0 + 2 × N1z-1 + N2z-2  
215 - 2 ´ D1z-1 - D2z-2  
H(z) =  
(4)  
The frequency response for each of the biquad sections with default coefficients is flat at a gain of 0 dB. 8 lists  
the available coefficients for the five biquad filters.  
8. ADC Biquad Filter Coefficients  
FILTER  
FILTER COEFFICIENT  
ADC COEFFICIENT, LEFT CHANNEL  
C7 (page 4, registers 14, 15)  
C8 (page 4, registers 16, 17)  
C9 (page 4, registers 18, 19)  
C10 (page 4, registers 20, 21)  
C11 (page 4, registers 22, 23)  
C12 (page 4, registers 24, 25)  
C13 (page 4, registers 26, 27)  
C14 (page 4, registers 28, 29)  
C15 (page 4, registers 30, 31)  
C16 (page 4, registers 32, 33)  
C17 (page 4, registers 34, 35)  
C18 (page 4, registers 36, 37)  
C19 (page 4, registers 38, 39)  
C20 (page 4, registers 40, 41)  
C21 (page 4, registers 42, 43)  
C22 (page 4, registers 44, 45)  
C23 (page 4, registers 46, 47)  
C24 (page 4, registers 48, 49)  
C25 (page 4, registers 50, 51)  
C26 (page 4, registers 52, 53)  
C27 (page 4, registers 54, 55)  
C28 (page 4, registers 56, 57)  
C29 (page 4, registers 58, 59)  
C30 (page 4, registers 60, 61)  
C31 (page 4, registers 62, 63)  
ADC COEFFICIENT, RIGHT CHANNEL  
C39 (page 4, registers 78, 79)  
C40 (page 4, registers 80, 81)  
C41 (page 4, registers 82, 83)  
C42 (page 4, registers 84, 85)  
C43 (page 4, registers 86, 87)  
C44 (page 4, registers 88, 89)  
C45 (page 4, registers 90, 91)  
C46 (page 4, registers 92, 93)  
C47 (page 4, registers 94, 95)  
C48 (page 4, registers 96, 97)  
C49 (page 4, registers 98, 99)  
C50 (page 4, registers 100, 101)  
C51 (page 4, registers 102, 103)  
C52 (page 4, registers 104, 105)  
C53 (page 4, registers 106, 107)  
C54 (page 4, registers 108, 109)  
C55 (page 4, registers 110, 111)  
C56 (page 4, registers 112,113)  
C57 (page 4, registers 114, 115)  
C58 (page 4, registers 116, 117)  
C59 (page 4, registers 118, 119)  
C60 (page 4, registers 120, 121)  
C61 (page 4, registers 122,123)  
C62 (page 4, registers 124, 125)  
C63 (page 4, registers 126, 127)  
N0  
N1  
N2  
D1  
D2  
N0  
N1  
N2  
D1  
D2  
N0  
N1  
N2  
D1  
D2  
N0  
N1  
N2  
D1  
D2  
N0  
N1  
N2  
D1  
D2  
BIQUAD A  
BIQUAD B  
BIQUAD C  
BIQUAD D  
BIQUAD E  
版权 © 2018, Texas Instruments Incorporated  
35  
 
 
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.3.11.3.3 FIR Section  
Six of the available ADC processing blocks offer FIR filters for signal processing. PRB_R9 and PRB_R12 feature  
a 20-tap FIR filter, whereas the processing blocks PRB_R3, PRB_R6, PRB_R15, and PRB_R18 feature a 25-tap  
FIR filter. 公式 5 gives the transfer function of the Mth order FIR filter that is reconfigurable based on the  
processing block chosen.  
M
H(z) =  
FIRnz-n  
å
n=0  
M = 24 for PRB _R3, PRB _R6, PRB _R15, and PRB _R18  
M = 19 for PRB _R9 and PRB _R12  
(5)  
The coefficients of the FIR filters correspond to the ADC coefficient space as listed in 9 and are 16-bit, 2s-  
complement format. There is no default transfer function for the FIR filter. When the FIR filter is used, all  
applicable coefficients must be programmed.  
9. ADC FIR Filter Coefficients  
FILTER COEFFICIENT  
FIR0  
ADC COEFFICIENT, LEFT CHANNEL  
C7 (page 4, registers 14, 15)  
C8 (page 4, registers 16, 17)  
C9 (page 4, registers 18, 19)  
C10 (page 4, registers 20, 21)  
C11 (page 4, registers 22, 23)  
C12 (page 4, registers 24, 25)  
C13 (page 4, registers 26, 27)  
C14 (page 4, registers 28, 29)  
C15 (page 4, registers 30, 31)  
C16 (page 4, registers 32, 33)  
C17 (page 4, registers 34, 35)  
C18 (page 4, registers 36, 37)  
C19 (page 4, registers 38, 39)  
C20 (page 4, registers 40, 41)  
C21 (page 4, registers 42, 43)  
C22 (page 4, registers 44, 45)  
C23 (page 4, registers 46, 47)  
C24 (page 4, registers 48, 49)  
C25 (page 4, registers 50, 51)  
C26 (page 4, registers 52, 53)  
C27 (page 4, registers 54, 55)  
C28 (page 4, registers 56, 57)  
C29 (page 4, registers 58, 59)  
C30 (page 4, registers 60, 61)  
C31 (page 4, registers 62, 63)  
ADC COEFFICIENT, RIGHT CHANNEL  
C39 (page 4, registers 78, 79)  
C40 (page 4, registers 80, 81)  
C41 (page 4, registers 82, 83)  
C42 (page 4, registers 84, 85)  
C43 (page 4, registers 86, 87)  
C44 (page 4, registers 88, 89)  
C45 (page 4, registers 90, 91)  
C46 (page 4, registers 92, 93)  
C47 (page 4, registers 94, 95)  
C48 (page 4, registers 96, 97)  
C49 (page 4, registers 98, 99)  
C50 (page 4, registers 100, 101)  
C51 (page 4, registers 102, 103)  
C52 (page 4, registers 104, 105)  
C53 (page 4, registers 106, 107)  
C54 (page 4, registers 108, 109)  
C55 (page 4, registers 110, 111)  
C56 (page 4, registers 112, 113)  
C57 (page 4, registers 114, 115)  
C58 (page 4, registers 116, 117)  
C59 (page 4, registers 118, 119)  
C60 (page 4, registers 120, 121)  
C61 (page 4, registers 122, 123)  
C62 (page 4, registers 124, 125)  
C63 (page 4, registers 126, 127)  
FIR1  
FIR2  
FIR3  
FIR4  
FIR5  
FIR6  
FIR7  
FIR8  
FIR9  
FIR10  
FIR11  
FIR12  
FIR13  
FIR14  
FIR15  
FIR16  
FIR17  
FIR18  
FIR19  
FIR20  
FIR21  
FIR22  
FIR23  
FIR24  
8.3.11.4 Decimation Filter  
The TLV320ADC3100 offers three different types of decimation filters. The integrated digital decimation filter  
removes high-frequency content and downsamples the audio data from an initial sampling rate of AOSR × fS to  
the final output sampling rate of fS. Decimation filtering is achieved using a higher-order cascaded integrator-  
comb (CIC) filter followed by linear-phase FIR filters. The decimation filter cannot be chosen by itself; this filter is  
implicitly set through the chosen processing block.  
This section describes the properties of the available filters A, B, and C.  
36  
版权 © 2018, Texas Instruments Incorporated  
 
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.3.11.4.1 Decimation Filter A  
This filter is intended for use at sampling rates up to 48 kHz. When configuring this filter, the oversampling ratio  
of the ADC can either be 128 or 64. For highest performance, the oversampling ratio must be set to 128. Filter A  
can also be used for 96 kHz at an AOSR of 64. 10 specifies the performance of filter A. 40 shows the  
frequency response for filter A.  
10. Specification for ADC Decimation Filter A  
PARAMETER  
CONDITION  
VALUE (Typical)  
UNIT  
AOSR = 128  
Filter gain pass band  
Filter gain stop band  
Filter group delay  
0 fS–0.39 fS  
0.062  
–73  
dB  
dB  
s
0.55 fS–64 fS  
17 / fS  
0.062  
0.05  
Pass-band ripple, 8 kSPS  
Pass-band ripple, 44.18 kSPS  
Pass-band ripple, 48 kSPS  
AOSR = 64  
0 fS–0.39 fS  
0 fS–0.39 fS  
0 fS–0.39 fS  
dB  
dB  
dB  
0.05  
Filter gain pass band  
0 fS–0.39 fS  
0.062  
–73  
dB  
dB  
s
Filter gain stop band  
0.55 fS–32 fS  
Filter group delay  
17 / fS  
0.062  
0.05  
Pass-band ripple, 8 kSPS  
Pass-band ripple, 44.18 kSPS  
Pass-band ripple, 48 kSPS  
Pass-band ripple, 96 kSPS  
0 fS–0.39 fS  
0 fS–0.39 fS  
0 fS–0.39 fS  
0 kHz–20 kHz  
dB  
dB  
dB  
dB  
0.05  
0.1  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Frequency Normalized With Respect to fS  
ADC channel response for decimation filter A  
(red line corresponds to –73 dB)  
40. ADC Decimation Filter A, Frequency Response  
版权 © 2018, Texas Instruments Incorporated  
37  
 
 
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.3.11.4.2 Decimation Filter B  
Filter B is intended to support sampling rates up to 96 kHz at an oversampling ratio of 64. 11 specifies the  
performance of filter B. 41 shows the frequency response for filter B.  
11. Specification for ADC Decimation Filter B  
PARAMETER  
CONDITION  
VALUE (Typical)  
UNIT  
AOSR = 64  
Filter gain pass band  
Filter gain stop band  
Filter group delay  
0 fS–0.39 fS  
±0.077  
–46  
dB  
dB  
s
0.6 fS–32 fS  
11 / fS  
0.076  
0.06  
Pass-band ripple, 8 kSPS  
Pass-band ripple, 44.18 kSPS  
Pass-band ripple, 48 kSPS  
Pass-band ripple, 96 kSPS  
0 fS–0.39 fS  
0 fS–0.39 fS  
0 fS–0.39 fS  
0 kHz–20 kHz  
dB  
dB  
dB  
dB  
0.06  
0.11  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Frequency Normalized With Respect to fS  
ADC channel response for decimation filter B  
(red line corresponds to –44 dB)  
41. ADC Decimation Filter B, Frequency Response  
38  
版权 © 2018, Texas Instruments Incorporated  
 
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.3.11.4.3 Decimation Filter C  
Filter type C, along with an AOSR of 32, is specially designed for 192-kSPS operation of the ADC. The pass  
band, which extends up to 0.11 × fS (corresponds to 21 kHz), is suited for audio applications. 12 specifies the  
performance of filter C. 42 shows the frequency response for filter C.  
12. Specifications for ADC Decimation Filter C  
PARAMETER  
Filter gain from 0 fS to 0.11 fS  
CONDITION  
0 fS–0.11 fS  
VALUE (Typical)  
±0.033  
–60  
UNIT  
dB  
dB  
s
Filter gain from 0.28 fS to 16 fS  
Filter group delay  
0.28 fS–16 fS  
11 / fS  
Pass-band ripple, 8 kSPS  
Pass-band ripple, 44.18 kSPS  
Pass-band ripple, 48 kSPS  
Pass-band ripple, 96 kSPS  
Pass-band ripple, 192 kSPS  
0 fS–0.11 fS  
0 fS–0.11 fS  
0 fS–0.11 fS  
0 fS–0.11 fS  
0 kHz–20 kHz  
0.033  
dB  
dB  
dB  
dB  
dB  
0.033  
0.032  
0.032  
0.086  
0
–20  
–40  
–60  
–80  
–100  
–120  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Frequency Normalized With Respect to fS  
ADC channel response for decimation filter C  
(red line corresponds to –60 dB)  
42. ADC Decimation Filter C, Frequency Response  
8.3.11.5 ADC Data Interface  
The decimation filter and signal processing block in the ADC channel passes 32-bit data words to the audio  
serial interface one time every frame (WCLK). During each frame (WCLK), a pair of data words (for the left and  
right channels) is passed. The audio serial interface rounds the data to the required word length of the interface  
before converting to serial data per the different modes for audio serial interface.  
版权 © 2018, Texas Instruments Incorporated  
39  
 
 
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.3.12 TLV320ADC3100 Comparison  
13 lists a comparison between the TLV320ADC3100, TLV320ADC3101, and TLV320ADC3001. The  
TLV320ADC3100 is form-factor and software compatible with the TLV320ADC3101.  
13. Device Comparison Table  
FEATURES  
Number of ADCs  
TLV320ADC3101  
TLV320ADC3001  
TLV320ADC3100  
2
2
2
Number of inputs/outputs  
Resolution (bits)  
6, digital I / f  
3, digital I / f  
4, digital I / f  
24  
24  
24  
Control interface  
I2C  
I2C  
I2C  
Digital audio interface  
Digital microphone support  
Number of GPIOs  
LJ, RJ, I2S, DSP, TDM  
LJ, RJ, I2S, DSP, TDM  
LJ, RJ, I2S, DSP, TDM  
Yes  
No  
0
No  
2
1
Number of Microphone bias  
Package  
2
1
1
4-mm × 4-mm, 24-pin QFN  
2.24-mm × 2.16-mm, 16-pin  
DSBGA (WCSP)  
4-mm × 4-mm, 24-pin QFN  
8.4 Device Functional Modes  
8.4.1 Recording Mode  
The recording mode is activated when the ADC blocks are enabled. The record path operates from 8 kHz to  
48 kHz in single-rate mode and up to 96 kHz in dual-rate mode. This mode contains programmable input channel  
configurations supporting single-ended and differential setups. In order to provide optimal system power  
management, the stereo recording path can be powered up one channel at time, to support when only mono  
record capability is required. Digital signal processing blocks can remove audible noise that may be introduced  
by mechanical coupling. The TLV320ADC3100 includes automatic gain control (AGC).  
8.5 Programming  
8.5.1 Digital Control Serial Interface  
8.5.1.1 I2C Control Mode  
The TLV320ADC3100 supports the I2C control protocol and is capable of both standard and fast modes.  
Standard mode is up to 100 kHz and fast mode is up to 400 kHz. When in I2C control mode, the  
TLV320ADC3100 can be configured for one of four different addresses, using the I2C_ADR1 and I2C_ADR0  
pins, which control the two LSBs of the device address. The five MSBs of the device address are fixed as 0011 0  
and cannot be changed, whereas the two LSBs are given by I2C_ADR1:I2C_ADR0. 14 lists the four possible  
device addresses resulting from this configuration.  
14. I2C Slave Device Addresses for I2C_ADR1, I2C_ADR0 Settings  
I2C_ADR1  
I2C_ADR0  
DEVICE ADDRESS  
0011 000  
0
0
1
1
0
1
0
1
0011 001  
0011 010  
0011 011  
I2C is a two-wire, open-drain interface supporting multiple devices and masters on a single bus. Devices on the  
I2C bus only drive the bus lines low by connecting them to ground; they never drive the bus lines high. Instead,  
the bus wires are pulled high by pullup resistors, so the bus wires are high when no device is driving them low.  
This way, two devices cannot conflict; if two devices drive the bus simultaneously, there is no driver contention.  
Communication on the I2C bus always takes place between two devices, one acting as the master and the other  
acting as the slave. Both masters and slaves can read and write, but slaves can only do so under the direction of  
the master. Some I2C devices can act as masters or slaves, but the TLV320ADC3100 can only act as a slave  
device.  
40  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
An I2C bus consists of two lines, SDA and SCL. SDA carries data; SCL provides the clock. All data are  
transmitted across the I2C bus in groups of eight bits. To send a bit on the I2C bus, the SDA line is driven to the  
appropriate level when SCL is low (a low on SDA indicates the bit is 0; a high indicates the bit is 1). When the  
SDA line has settled, the SCL line is brought high, then low. This pulse on SCL clocks the SDA bit into the  
receiver shift register.  
The I2C bus is bidirectional: the SDA line is used both for transmitting and receiving data. When a master reads  
from a slave, the slave drives the data line; when a master sends to a slave, the master drives the data line.  
Under normal circumstances, the master drives the clock line.  
Most of the time the bus is idle, no communication is taking place, and both lines are high. When communication  
is taking place, the bus is active. Only master devices can start a communication by causing a START condition  
on the bus. Normally, the data line is only allowed to change state when the clock line is low. If the data line  
changes state when the clock line is high, the state is either a START condition or its counterpart, a STOP  
condition. A START condition is when the clock line is high and the data line goes from high to low. A STOP  
condition is when the clock line is high and the data line goes from low to high.  
After the master issues a START condition, the master sends a byte indicating the slave device to communicate  
with. This byte is called the address byte. Each device on an I2C bus has a unique 7-bit address that is used to  
respond with. (Slaves can also have 10-bit addresses; see the I2C specification for details.) The master sends an  
address in the address byte, together with a bit that indicates whether the slave device is to be read from or  
written to.  
Every byte transmitted on the I2C bus, whether address or data, is acknowledged with an acknowledge bit. When  
a master has finished sending a byte (eight data bits) to a slave, the master stops driving SDA and waits for the  
slave to acknowledge the byte. The slave acknowledges the byte by pulling SDA low. The master then sends a  
clock pulse to clock the acknowledge bit. Similarly, when a master has finished reading a byte, the master pulls  
SDA low to acknowledge this read to the slave. The master then sends a clock pulse to clock the bit.  
A not-acknowledge is performed by leaving SDA high during an acknowledge cycle. If the master attempts to  
address a device not present on the bus, then the master receives a not-acknowledge because no device is  
present at that address to pull the line low.  
When a master has finished communicating with a slave, the master may issue a STOP condition. When a  
STOP condition is issued, the bus becomes idle again. A master may also issue another START condition. If a  
START condition is issued when the bus is active, this condition is called a repeated START condition.  
The TLV320ADC3100 also responds to and acknowledges a general call, which consists of the master issuing a  
command with a slave address byte of 00h. 43 and 44 show timing diagrams for I2C write and read  
operations, respectively.  
SCL  
D(0)  
DA(0)  
RA(7)  
RA(0)  
D(7)  
DA(6)  
SDA  
8-bit Device Address  
(M)  
Start  
(M)  
7-bit Device Address  
(M)  
Write Slave  
8-bit Register Address  
(M)  
Slave  
Ack  
(S)  
Slave Stop  
Ack (M)  
(S)  
(M)  
Ack  
(S)  
(M) => SDA Controlled by Master  
(S) => SDA Controlled by Slave  
43. I2C Write  
SCL  
SDA  
DA(0)  
D(7)  
D(0)  
DA(0)  
RA(7)  
RA(0)  
DA(6)  
DA(6)  
Start  
(M)  
7-bit Device Address Write  
(M) (M)  
Slave 8-bit Register Address  
Slave  
Ack  
(S)  
Repeat  
Start  
(M)  
7-bit Device Address Read  
(M) (M)  
Slave 8-bit Register Data  
Master  
No Ack  
(M)  
Stop  
(M)  
Ack  
(S)  
(M)  
Ack  
(S)  
(M)  
(M) => SDA Controlled by Master  
(S) => SDA Controlled by Slave  
44. I2C Read  
版权 © 2018, Texas Instruments Incorporated  
41  
 
 
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
In the case of an I2C register write, if the master does not issue a STOP condition, then the device enters auto-  
increment mode. So in the next eight clocks, the data on SDA are treated as the data for the next incremental  
register.  
Similarly, after the device has transmitted the 8-bit data from the addressed register for an I2C register read, and  
if the master issues an acknowledge, the slave then takes control of the SDA bus and transmits the next eight  
clocks of data for the next incremental register.  
8.6 Register Maps  
8.6.1 Control Registers  
This section describes the control registers for the TLV320ADC3100 in detail. All registers are eight bits in width,  
with bit 7 referring to the most-significant bit of each register and bit 0 referring to the least-significant bit.  
Pages 0, 1, 4, 5, and 32–47 are available. All other pages are reserved. Do not read from or write to reserved  
pages.  
The procedure for register access is:  
Select page N (write data N to register 0 regardless of the current page number)  
Read or write data from or to valid registers in page N  
Select new page M (write data M to register 0 regardless of the current page number)  
Read or write data from or to valid registers in page M  
Repeat as needed  
15. Page, Register Map  
REGISTER NO.  
REGISTER NAME  
PAGE 0: (Clock Multipliers and Dividers, Serial Interfaces, Flags, GPIO Interrupts and Programming)  
0
1
Page Control Register  
S/W RESET  
2
Reserved  
3
Reserved  
4
Clock-Gen Multiplexing  
PLL P and R-VAL  
PLL J-VAL  
5
6
7
PLL D-VAL MSB  
8
PLL D-VAL LSB  
9–17  
18  
19  
20  
21  
22  
23–24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
Reserved  
ADC NADC  
ADC MADC  
ADC AOSR  
ADC IADC  
ADC Digital Engine Decimation  
Reserved  
CLKOUT MUX  
CLKOUT M Divider  
ADC Audio Interface Control 1  
Data Slot Offset Programmability 1 (Ch_Offset_1)  
ADC Interface Control 2  
BCLK N Divider  
Secondary Audio Interface Control 1  
Secondary Audio Interface Control 2  
Secondary Audio Interface Control 3  
I2S Sync  
42  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
Register Maps (接下页)  
15. Page, Register Map (接下页)  
REGISTER NO.  
REGISTER NAME  
35  
36  
Reserved  
ADC Flag Register  
37  
Data Slot Offset Programmability 2 (Ch_Offset_2)  
I2S TDM Control Register  
Reserved  
38  
39–41  
42  
Interrupt Flags (Overflow)  
Interrupt Flags (Overflow)  
Reserved  
43  
44  
45  
Interrupt Flags–ADC  
Reserved  
46  
47  
Interrupt Flags–ADC  
INT1 Interrupt Control  
INT2 Interrupt Control  
Reserved  
48  
49  
50  
51  
Reserved  
52  
GPIO1 Control  
53  
DOUT (Out Pin) Control  
Reserved  
54–56  
57  
ADC Sync Control 1  
ADC Sync Control 2  
ADC CIC Filter Gain Control  
Reserved  
58  
59  
60  
61  
ADC Processing Block Selection  
Programmable Instruction Mode Control Bits  
Reserved  
62  
63–79  
80  
Reserved  
81  
ADC Digital  
82  
ADC Fine Volume Control  
Left ADC Volume Control  
Right ADC Volume Control  
ADC Phase Compensation  
Left AGC Control 1  
83  
84  
85  
86  
87  
Left AGC Control 2  
88  
Left AGC Maximum Gain  
Left AGC Attack Time  
Left AGC Decay Time  
Left AGC Noise Debounce  
Left AGC Signal Debounce  
Left AGC Gain  
89  
90  
91  
92  
93  
94  
Right AGC Control 1  
Right AGC Control 2  
Right AGC Maximum Gain  
Right AGC Attack Time  
Right AGC Decay Time  
Right AGC Noise Debounce  
Right AGC Signal Debounce  
95  
96  
97  
98  
99  
100  
版权 © 2018, Texas Instruments Incorporated  
43  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
Register Maps (接下页)  
15. Page, Register Map (接下页)  
REGISTER NO.  
101  
REGISTER NAME  
Right AGC Gain  
Reserved  
102–127  
PAGE1: (ADC Routing, PGA, Power-Controls, and so forth)  
0
1–25  
26  
Page Control Register  
Reserved  
Dither Control  
27–50  
51  
Reserved  
MICBIAS Control  
52  
Left ADC Input Selection for Left PGA  
Reserved  
53  
54  
Left ADC Input Selection for Left PGA  
Right ADC Input Selection for Right PGA  
Reserved  
55  
56  
57  
Right ADC Input Selection for Right PGA  
Reserved  
58  
59  
Left Analog PGA Setting  
Right Analog PGA Setting  
ADC Low-Current Modes  
ADC Analog PGA Flags  
Reserved  
60  
61  
62  
63–127  
PAGE 2: Reserved. Do not read or write to this page.  
PAGE 3: Reserved. Do not read or write to this page.  
PAGE 4: ADC Programmable Coefficients RAM (1:63)  
PAGE 5: ADC Programmable Coefficients RAM (65:127)  
PAGES 6–31: Reserved. Do not read from or write to these pages.  
PAGES 32-47: ADC DSP Instruction RAM (Inst_0–Inst_511)  
Page 32 Instructions Inst_0–Inst_31  
Page 33 Instructions Inst_32–Inst_63  
Page 34 Instruction Inst_64–Inst_95 through Page 47 Instruction Inst_480–Inst_511  
PAGES 48–255: Reserved. Do not read from or write to these pages.  
16 lists the access codes for the TLV320ADC3100 registers.  
16. TLV320ADC3100 Access Type Codes  
Access Type  
Code  
R
Description  
Read  
R
R-W  
W
R/W  
W
Read or write  
Write  
-n  
Value after reset or the default  
value  
44  
版权 © 2018, Texas Instruments Incorporated  
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.2 Control Registers, Page 0: Clock Multipliers and Dividers, Serial Interfaces, Flags, Interrupts and  
Programming of GPIOs  
Valid pages are 0, 1, 4, 5, 32-47. All other pages are reserved (do not access).  
8.6.2.1 Register 0: Page Control Register (address = 0d) [reset = 0000 0000b], Page 0  
45. Register 0: Page Control  
7
6
5
4
3
2
1
0
PAGE SEL  
R/W-0000 0000h  
17. Register 0: Page Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
PAGE SEL  
R/W  
0h  
0000 0000: Page 0 selected  
0000 0001: Page 1 selected  
...  
1111 1110: Page 254 selected (reserved)  
1111 1111: Page 255 selected (reserved)  
8.6.2.2 Register 1: Software Reset (address = 01d) [reset = 00h], Page 0  
46. Register 1: Software Reset  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
SW_RST  
W-0h  
18. Register 1: Software Reset Field Descriptions  
Bit  
7:1  
0
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
SW_RST  
Reserved. Write only zeros to these bits.  
W
0h  
0: Don't care  
1: Self-clearing software reset for control register  
8.6.2.3 Register 2: Reserved (address = 02d) [reset = 00h], Page 0  
47. Register 2: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
19. Register 2: Reserved Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write any value other than reset value.  
7:0  
R
0h  
版权 © 2018, Texas Instruments Incorporated  
45  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.2.4 Register 3: Reserved (address = 03d) [reset = XXh], Page 0  
48. Register 3: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
20. Register 3: Reserved Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to this register.  
7:0  
R
Xh  
8.6.2.5 Register 4: Clock-Gen Multiplexing (address = 04d) [reset = 00h], Page 0  
49. Register 4: Clock-Gen Multiplexing(1)  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
PLL_CLKIN  
R/W-00h  
CODEC_CLKIN  
R/W-00h  
(1) See 27 for more details on clock generation multiplexing and dividers.  
21. Register 4: Clock-Gen Multiplexing Field Descriptions  
Bit  
7:4  
3:2  
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
PLL_CLKIN  
Reserved. Do not write any value other than reset value.  
R/W  
00h  
00: PLL_CLKIN = MCLK (device pin)  
01: PLL_CLKIN = BCLK (device pin)  
10: Reserved. Do not use.  
11: PLL_CLKIN = logic level 0  
1:0  
CODEC_CLKIN  
R/W  
00h  
00: CODEC_CLKIN = MCLK (device pin)  
01: CODEC_CLKIN = BCLK (device pin)  
10: Reserved. Do not use.  
11: CODEC_CLKIN = PLL_CLK (generated on-chip)  
8.6.2.6 Register 5: PLL P and R-VAL (address = 05d) [reset = 11h], Page 0  
50. Register 5: PLL P and R-VAL  
7
6
5
4
3
2
1
0
PLL ON  
R/W-0h  
PLL DIV  
R/W-001h  
PLL MULT R  
R/W-0001h  
22. Register 5: PLL P and R-VAL Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PLL ON  
R/W  
0h  
0: PLL is powered down  
1: PLL is powered up  
6:4  
PLL DIV  
R/W  
R/W  
001h  
000: PLL divider P = 8  
001: PLL divider P = 1  
010: PLL divider P = 2  
...  
110: PLL divider P = 6  
111: PLL divider P = 7  
3:0  
PLL MULT R  
0001h  
0000: PLL multiplier R = 16  
0001: PLL multiplier R = 1  
0010: PLL multiplier R = 2  
...  
1110: PLL multiplier R = 14  
1111: PLL multiplier R = 15  
46  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.2.7 Register 6: PLL J-VAL (address = 06d) [reset = 0000 0100b], Page 0  
51. Register 6: PLL J-VAL  
7
6
5
4
3
2
1
0
Reserved  
R/W-0h  
Reserved  
R/W-0h  
PLL J-VAL  
R/W-00 0100h  
23. Register 6: PLL J-VAL Field Descriptions  
Bit  
7:6  
5:0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved. Write only zeros to these bits.  
Reserved  
0h  
PLL J-VAL  
00 0100h 00 0000: Do not use (reserved)  
00 0001: PLL multiplier J = 1  
00 0010: PLL multiplier J = 2  
00 0011: PLL multiplier J = 3  
00 0100: PLL multiplier J = 4 (default)  
...  
11 1110: PLL multiplier J = 62  
11 1111: PLL multiplier J = 63  
8.6.2.8 Register 7: PLL D-VAL MSB (address = 07d) [reset = 00h], Page 0  
This register is updated when page 0, register 8 is written immediately after page 0, register 7 is written.  
52. Register 7: PLL D-VAL MSB  
7
6
5
4
3
2
1
0
Reserved  
R/W-0h  
Reserved  
R/W-0h  
PLL D-VAL MSB  
R/W-00 0000h  
24. Register 7: PLL D-VAL MSB Field Descriptions  
Bit  
7:6  
5:0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved. Write only zeros to these bits.  
Reserved  
0h  
PLL D-VAL MSB  
00 0000h PLL fractional multiplier bits 13:8.  
8.6.2.9 Register 8: PLL D-VAL LSB (address = 08d) [reset = 00h], Page 0  
This register must be written immediately after writing to page 0, register 7.  
53. Register 8: PLL D-VAL LSB  
7
6
5
4
3
2
1
0
PLL D-VAL LSB  
R/W-0000 0000h  
25. Register 8: PLL D-VAL LSB Field Descriptions  
Bit  
Field  
PLL D-VAL LSB  
Type  
Reset  
Description  
7:0  
R/W  
0h  
PLL fractional multiplier bits 7:0.  
版权 © 2018, Texas Instruments Incorporated  
47  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.2.10 Registers 9–17: Reserved (addresses = 09d, 10d, 11d, 12d, 13d, 14d, 15d, 16d, 17d) [reset =  
XXh], Page 0  
54. Registers 9–17: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
26. Registers 9–17: Reserved Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to these registers.  
7:0  
R
Xh  
8.6.2.11 Register 18: ADC NADC Clock Divider (address = 18d) [reset = 0000 0001b], Page 0  
55. Register 18: ADC NADC Clock Divider  
7
6
5
4
3
2
1
0
NADC CLK PWR  
R/W-0h  
NADC CLK DIV  
R/W-000 0001h  
27. Register 18: ADC NADC Clock Divider Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
NADC CLK PWR  
R/W  
0h  
NADC clock divider power control:  
0: NADC clock divider is powered down  
1: NADC clock divider is powered up  
6:0  
NADC CLK DIV  
R/W  
000  
NADC value:  
0001h  
000 0000: NADC clock divider = 128  
000 0001: NADC clock divider = 1  
000 0010: NADC clock divider = 2  
...  
111 1110: NADC clock divider = 126  
111 1111: NADC clock divider = 127  
8.6.2.12 Register 19: ADC MADC Clock Divider (address = 19d) [reset = 0000 0001b], Page 0  
56. Register 19: ADC MADC Clock Divider  
7
6
5
4
3
2
1
0
MADC CLK PWR  
R/W-0h  
MADC CLK DIV  
R/W-000 0001h  
28. Register 19: ADC MADC Clock Divider Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MADC CLK PWR  
R/W  
0h  
0: ADC MADC clock divider is powered down  
1: ADC MADC clock divider is powered up  
6:0  
MADC CLK DIV  
R/W  
000  
0001h  
000 0000: MADC clock divider = 128  
000 0001: MADC clock divider = 1  
000 0010: MADC clock divider = 2  
...  
111 1110: MADC clock divider = 126  
111 1111: MADC clock divider = 127  
48  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.2.13 Register 20: ADC AOSR (address = 20d) [reset = 1000 0000b], Page 0  
57. Register 20: ADC AOSR(1)  
7
6
5
4
3
2
1
0
ADC AOSR  
R/W-1000 0000h  
(1) The AOSR must be an integral multiple of the ADC decimation factor.  
29. Register 20: ADC AOSR Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
ADC AOSR  
R/W  
1000  
0000h  
ADC oversampling value (AOSR):  
0000 0000: AOSR = 256  
0000 0001: AOSR = 1  
0000 0010: AOSR = 2  
...  
1111 1110: AOSR = 254  
1111 1111: AOSR = 255  
8.6.2.14 Register 21: ADC IADC (address = 21d) [reset = 1000 0000b], Page 0  
58. Register 21: ADC IADC(1)  
7
6
5
4
3
2
1
0
ADC IADC  
R/W-1000 0000h  
(1) The IADC must be an integral multiple of the ADC decimation factor.  
30. Register 21: ADC IADC Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
ADC IADC  
R/W  
1000  
0000 0000: Reserved. Do not use.  
0000h  
Number of instructions for the ADC digital filter engine (IADC):  
0000 0001: IADC = 2  
0000 0010: IADC = 4  
...  
1011 1111: IADC = 382  
1100 0000: IADC = 384  
1100 0001–1111 1111: IADC = Up to 510  
8.6.2.15 Register 22: ADC Digital Filter Engine Decimation (address = 22d) [reset = 0000 0100b], Page 0  
59. Register 22: ADC Digital Filter Engine Decimation  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
DEC RATIO  
R/W- 01000h  
31. Register 22: ADC Digital Filter Engine Decimation Field Descriptions  
Bit  
7:4  
3:0  
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
DEC RATIO  
Reserved. Do not write any value other than reset value.  
R/W  
0100h  
0000: Decimation ratio in the ADC digital filter engine = 16  
0001: Decimation ratio in the ADC digital filter engine = 1  
0010: Decimation ratio in the ADC digital filter engine = 2  
...  
1101: Decimation ratio in the ADC digital filter engine = 13  
1110: Decimation ratio in the ADC digital filter engine = 14  
1111: Decimation ratio in the ADC digital filter engine = 15  
版权 © 2018, Texas Instruments Incorporated  
49  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.2.16 Registers 23–24 (addresses) = 23d, 24d) [reset = XXh], Page 0  
60. Registers 23–24  
7
6
5
4
3
2
1
0
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
32. Registers 23–24 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to these registers.  
7:0  
R
Xh  
8.6.2.17 Register 25: CLKOUT MUX (address = 25d) [reset = 00h], Page 0  
61. Register 25: CLKOUT MUX  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
CDIV_CLKIN  
R/W-000h  
33. Register 25: CLKOUT MUX Field Descriptions  
Bit  
7:3  
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Do not write any value other than reset value.  
2: 0  
CDIV_CLKIN  
R/W  
000h  
000: CDIV_CLKIN = MCLK (device pin)  
001: CDIV_CLKIN = BCLK (device pin)  
010: Reserved. Do not use.  
011: CDIV_CLKIN = PLL_CLK (generated on-chip)  
100: Reserved. Do not use.  
101: Reserved. Do not use.  
110: CDIV_CLKIN = ADC_CLK (generated on-chip)  
111: CDIV_CLKIN = ADC_MOD_CLK (generated on-chip)  
8.6.2.18 Register 26: CLKOUT M Divider (address = 26d) [reset = 0000 0001b], Page 0  
62. Register 26: CLKOUT M Divider  
7
6
5
4
3
2
1
0
CLKOUT M DIV PWR  
R/W-0h  
CLKOUT M DIV  
R/W-000 0001h  
34. Register 26: CLKOUT M Divider Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CLKOUT M DIV PWR  
R/W  
0h  
0: CLKOUT M divider is powered down  
1: CLKOUT M divider is powered up  
6:0  
CLKOUT M DIV  
R/W  
000  
0001h  
000 0000: CLKOUT divider M = 128  
000 0001: CLKOUT divider M = 1  
000 0010: CLKOUT divider M = 2  
...  
111 1110: CLKOUT divider M = 126  
111 1111: CLKOUT divider M = 127  
50  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.2.19 Register 27: ADC Audio Interface Control 1 (address = 27d) [reset = 00h], Page 0  
63. Register 27: ADC Audio Interface Control 1  
7
6
5
4
3
2
1
0
ADC interface  
R/W-00h  
ADC interface word length  
R/W-00h  
BCLK  
R/W-0h  
WCLK  
R/W-0h  
Reserved  
R-0h  
Tri-State DOUT  
R/W-0h  
35. Register 27: ADC Audio Interface Control 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
ADC interface  
R/W  
00h  
00: ADC interface = I2S  
01: ADC interface = DSP  
10: ADC interface = RJF  
11: ADC interface = LJF  
5:4  
ADC interface word length  
R/W  
00h  
00: ADC interface word length = 16 bits  
01: ADC interface word length = 20 bits  
10: ADC interface word length = 24 bits  
11: ADC interface word length = 32 bits  
3
2
BCLK  
R/W  
R/W  
0h  
0h  
0: BCLK is input  
1: BCLK is output  
WCLK  
0: WCLK is input  
1: WCLK is output  
1
0
Reserved  
R
0h  
0h  
Reserved. Do not write any value other than reset value.  
Tri-State DOUT  
R/W  
0: Tri-stating of DOUT: disabled  
1: Tri-stating of DOUT: enabled  
8.6.2.20 Register 28: Data Slot Offset Programmability 1 (Ch_Offset_1) (address = 28d) [reset = 00h],  
Page 0  
64. Register 28: Data Slot Offset Programmability 1 (Ch_Offset_1)  
7
6
5
4
3
2
1
0
CH_OFFSET_1  
R/W-0000 0000h  
36. Register 28: Data Slot Offset Programmability 1 (Ch_Offset_1) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
CH_OFFSET_1  
R/W  
0h  
0000 0000: Offset = 0 BCLKs. Offset is measured with respect  
to WCLK rising edge in DSP mode.(1)  
0000 0001: Offset = 1 BCLKs  
0000 0010: Offset = 2 BCLKs  
...  
1111 1110: Offset = 254 BCLKs  
1111 1111: Offset = 255 BCLKs  
(1) Usage controlled by page 0, register 38, bit 0.  
版权 © 2018, Texas Instruments Incorporated  
51  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.2.21 Register 29: ADC Interface Control 2 (address = 29d) [reset = 0000 0010b], Page 0  
65. Register 29: ADC Interface Control 2  
7
6
5
4
3
2
1
0
BWCLK_PWR codec  
inactive  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
BCLK_INVERT  
R/W-0h  
BDIV_CLKIN  
R/W-10h  
R/W-0h  
37. Register 29: ADC Interface Control 2 Field Descriptions  
Bit  
7:4  
3
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
Reserved  
Reserved. Do not write any value other than reset value.  
BCLK_INVERT  
0h  
0: BCLK is not inverted (valid for both primary and secondary  
BCLK)  
1: BCLK is inverted (valid for both primary and secondary BCLK)  
2
BWCLK_PWR codec inactive  
BDIV_CLKIN  
R/W  
R/W  
0h  
0: BCLK and WCLK are active even with the codec powered  
down: disabled (valid for both primary and secondary BCLK)  
1: BCLK and WCLK are active even with the codec powered  
down: enabled (valid for both primary and secondary BCLK)  
1:0  
10h  
00: Reserved. Do not use.  
01: Reserved. Do not use.  
10: BDIV_CLKIN = ADC_CLK (generated on-chip)  
11: BDIV_CLKIN = ADC_MOD_CLK (generated on-chip)  
8.6.2.22 Register 30: BCLK N Divider (address = 30d) [reset = 0000 0001b], Page 0  
66. Register 30: BCLK N Divider  
7
6
5
4
3
2
1
0
BCLK N PWR  
R/W-0h  
BCLK N DIV  
R/W-000 0001h  
38. Register 30: BCLK N Divider Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BCLK N PWR  
R/W  
0h  
0: BCLK N divider is powered down  
1: BCLK N divider is powered up  
6:0  
BCLK N DIV  
R/W  
000  
0001h  
000 0000: CLKOUT divider N = 128  
000 0001: CLKOUT divider N = 1  
000 0010: CLKOUT divider N = 2  
...  
111 1110: CLKOUT divider N = 126  
111 1111: CLKOUT divider N = 127  
52  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.2.23 Register 31: Secondary Audio Interface Control 1 (address = 31d) [reset = 00h], Page 0  
67. Register 31: Secondary Audio Interface Control 1  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Sec BCLK from GPIO1  
R/W-00h  
Sec BCLK from GPIO1  
R/W-00h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R-0h  
39. Register 31: Secondary Audio Interface Control 1 Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Do not write any value other than reset value.  
6:5  
Sec BCLK from GPIO1  
R/W  
00h  
00: Secondary BCLK is obtained from the GPIO1 pin  
01, 10, 11: Reserved. Do not use.  
4:3  
Sec WCLK from GPIO1  
R/W  
00h  
00: Secondary WCLK is obtained from the GPIO1 pin  
01, 10, 11: Reserved. Do not use.  
2:1  
0
Reserved  
Reserved  
R/W  
R
0h  
0h  
Reserved. Do not use.  
Reserved. Do not write any value other than reset value.  
8.6.2.24 Register 32: Secondary Audio Interface Control 2 (address = 32d) [reset = 00h], Page 0  
68. Register 32: Secondary Audio Interface Control 2  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Choice of BCLK  
R/W-0h  
Choice of WCLK  
R/W-0h  
Reserved  
R-0h  
Reserved  
R-0h  
40. Register 32: Secondary Audio Interface Control 2 Field Descriptions  
Bit  
7:4  
3
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Choice of BCLK  
Reserved. Do not write any value other than reset value.  
R/W  
0h  
0: Primary BCLK is used for audio interface and clocking  
1: Secondary BCLK is used for audio interface and clocking  
2
Choice of WCLK  
Reserved  
R/W  
R
0h  
0h  
0: Primary WCLK is used for audio interface and clocking  
1: Secondary WCLK is used for audio interface and clocking  
1:0  
Reserved. Do not write any value other than reset value.  
版权 © 2018, Texas Instruments Incorporated  
53  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.2.25 Register 33: Secondary Audio Interface Control 3 (address = 33d) [reset = 0001 0000b], Page 0  
69. Register 33: Secondary Audio Interface Control 3  
7
6
5
4
3
2
1
0
Source of Secondary  
BCLK  
Source of Secondary  
WCLK  
Source of Primary BCLK  
R/W-0h  
Source of Primary WCLK  
R/W-01h  
Reserved  
R-0h  
Reserved  
R-0h  
R/W-0h  
R/W-00h  
41. Register 33: Secondary Audio Interface Control 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Source of Primary BCLK  
R/W  
0h  
0: Primary BCLK output = internally generated BCLK clock  
1: Primary BCLK output = secondary BCLK  
6
Source of Secondary BCLK  
Source of Primary WCLK  
R/W  
R/W  
0h  
0: Secondary BCLK output = primary BCLK  
1: Secondary BCLK output = internally generated BCLK clock  
5:4  
01h  
00: Reserved. Do not use.  
01: Primary WCLK output = internally generated ADC_fS clock  
(default)  
10: Primary WCLK output = secondary WCLK  
11: Reserved. Do not use.  
3:2  
1:0  
Source of Secondary WCLK  
R/W  
R
00h  
0h  
00: Secondary WCLK output = primary WCLK  
01: Reserved. Do not use.  
10: Secondary WCLK output = internally generated ADC_fS  
clock  
11: Reserved. Do not use.  
Reserved  
Reserved. Do not write any value other than reset value.  
8.6.2.26 Register 34: I2S Sync (address = 34d) [reset = 00h], Page 0  
70. Register 34: I2S Sync  
7
6
5
4
3
2
1
0
I2C hang detect  
flag  
I2C general-call  
accept  
Re-sync logic  
disabled  
Re-sync without soft-  
muting  
I2C hang detect  
R/W-0h  
Reserved Reserved Reserved  
R-0h R-0h R-0h  
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
42. Register 34: I2S Sync Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
I2C hang detect  
R/W  
0h  
0: Internal logic is enabled to detect the I2C hang and react  
accordingly  
1: Internal logic is disabled to detect the I2C hang  
6(1)  
I2C hang detect flag  
I2C general-call accept  
R
0h  
0h  
0: I2C hang is not detected  
1: I2C hang detected flag; when set, this bit is cleared only after  
reading this register  
5
R/W  
0: I2C general-call address is ignored  
1: Device accepts I2C general-call address  
4:2  
1
Reserved  
R
0h  
0h  
Reserved. Do not write any value other than reset value.  
Re-sync logic disabled  
R/W  
0: Re-sync logic is disabled for the ADC  
1: Re-sync stereo ADC with codec interface if the group delay  
changed by more than ±ADC_fS / 4  
0
Re-sync without soft-muting  
R/W  
0h  
0: Re-sync is done without soft-muting the channel for the ADC  
1: Re-sync is done by internally soft-muting the channel for the  
ADC  
(1) Read-only bit. Writes to this bit are not used anywhere.  
54  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.2.27 Register 35: Reserved (address = 35d) [reset = XXh], Page 0  
71. Register 35: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
43. Register 35: Reserved Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to this register.  
7:0  
R
Xh  
8.6.2.28 Register 36: ADC Flag Register (address = 36d) [reset = 00h], Page 0  
72. Register 36: ADC Flag Register  
7
6
5
4
3
2
1
0
L-ADC PGA  
gain  
L-ADC  
powered up  
L-AGC not  
saturated  
R-ADC PGA  
gain  
R-ADC  
powered up  
R-AGC not  
saturated  
Reserved  
R-0h  
Reserved  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
44. Register 36: ADC Flag Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7(1)  
L-ADC PGA gain  
R
0h  
0: Left ADC PGA, applied gain programmed gain  
1: Left ADC PGA, applied gain = programmed gain  
6(1)  
5(1)  
L-ADC powered up  
L-AGC not saturated  
R
R
0h  
0h  
0: Left ADC powered down  
1: Left ADC powered up  
0: Left AGC not saturated  
1: Left AGC applied gain = maximum applicable gain by the left AGC  
4
3(1)  
Reserved  
R
R
0h  
0h  
Reserved. Do not write any value other than reset value.  
R-ADC PGA gain  
0: Right ADC PGA, applied gain programmed gain  
1: Right ADC PGA, applied gain = programmed gain  
2(1)  
1(1)  
0
R-ADC powered up  
R-AGC not saturated  
Reserved  
R
R
R
0h  
0h  
0h  
0: Right ADC powered down  
1: Right ADC powered up  
0: Right AGC not saturated  
1: Right AGC applied gain = maximum applicable gain by the right AGC  
Reserved. Do not write any value other than reset value.  
(1) Read-only bits. Writes to this bit are not used anywhere.  
版权 © 2018, Texas Instruments Incorporated  
55  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.2.29 Register 37: Data Slot Offset Programmability 2 (Ch_Offset_2) (address = 37d) [reset = 00h],  
Page 0  
73. Register 37: Data Slot Offset Programmability 2 (Ch_Offset_2)  
7
6
5
4
3
2
1
0
CH OFFSET 2  
R/W-0000 0000h  
45. Register 37: Data Slot Offset Programmability 2 (Ch_Offset_2) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
CH OFFSET 2  
R/W  
0h  
0000 0000: Offset = 0 BCLKs. Offset is measured with respect  
to the end of the first channel(1)  
0000 0001: Offset = 1 BCLKs  
0000 0010: Offset = 2 BCLKs  
...  
1111 1110: Offset = 254 BCLKs  
1111 1111: Offset = 255 BCLKs  
(1) Usage is controlled by page 0, register 38, bit 0, TIME_SLOT_MODE_ENABLE.  
8.6.2.30 Register 38: I2S TDM Control Register (address = 38d) [reset = 0000 0010b], Page 0  
74. Register 38: I2S TDM Control Register  
7
6
5
4
3
2
1
0
Reserved Reserved Reserved  
Channel swap disable  
R/W-0h  
Channel disable  
R/W-00h  
EARLY_3-STATE  
R/W-1h  
TIME_SLOT_MODE  
R/W-0h  
R-0h  
R-0h  
R-0h  
46. Register 38: I2S TDM Control Register Field Descriptions  
Bit  
7:5  
4
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Do not write any value other than reset value.  
Channel swap disable  
R/W  
0h  
0: Channel swap disabled  
1: Channel swap enabled  
3:2  
Channel disable  
R/W  
00h  
00: Both left and right channels enabled  
01: Left channel enabled  
10: Right channel enabled  
11: Both left and right channels disabled  
1
0
EARLY_3-STATE  
R/W  
R/W  
1h  
0h  
0: EARLY_3-STATE disabled  
1: EARLY_3-STATE enabled  
TIME_SLOT_MODE  
0: TIME_SLOT_MODE disabled – both channel offsets  
controlled by Ch_Offset_1 (page 0, register 28)  
1: TIME_SLOT_MODE enabled – channel-1 offset controlled by  
Ch_Offset_1 (page 0, register 28) and channel-2 offset  
controlled by Ch_Offset_2 (page 0, register 37)  
8.6.2.31 Registers 39–41 (addresses) = 39d, 40d, 41d) [reset = XXh], Page 0  
75. Registers 39–41  
7
6
5
4
3
2
1
0
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
47. Registers 39–41 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to these registers.  
7:0  
R
Xh  
56  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.2.32 Register 42: Interrupt Flags (Overflow) (address = 42d) [reset = 00h], Page 0  
76. Register 42: Interrupt Flags (Overflow)  
7
6
5
4
3
2
1
0
ADC barrel-shifter  
overflow flag  
Reserved Reserved Reserved Reserved Left ADC overflow flag Right ADC overflow flag  
Reserved  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
48. Register 42: Interrupt Flags (Overflow) Field Descriptions  
Bit  
7:4  
3(1)  
2(1)  
1(1)  
0
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
Left ADC overflow flag  
Right ADC overflow flag  
ADC barrel-shifter overflow flag  
Reserved  
R
0h  
Left ADC overflow flag  
Right ADC overflow flag  
ADC barrel-shifter output-overflow flag  
Reserved  
R
0h  
R
0h  
R
0h  
(1) Sticky flag bits. These are read-only bits. These bits are automatically cleared when read and are set only if a new source trigger  
occurs.  
8.6.2.33 Register 43: Interrupt Flags (Overflow) (address = 43d) [reset = 00h], Page 0  
77. Register 43: Interrupt Flags (Overflow)  
7
6
5
4
3
2
1
0
ADC barrel-shifter  
overflow flag  
Reserved Reserved Reserved Reserved  
L-ADC Overflow  
R-0h  
R-ADC Overflow  
R-0h  
Reserved  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
49. Register 43: Interrupt Flags (Overflow) Field Descriptions  
Bit  
7:4  
3
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
L-ADC Overflow  
R-ADC Overflow  
ADC barrel-shifter overflow flag  
Reserved  
R
0h  
Left ADC overflow flag  
Right ADC overflow flag  
ADC barrel-shifter output-overflow flag  
Reserved  
2
R
0h  
1
R
0h  
0
R
0h  
8.6.2.34 Register 44: Reserved (address = 44d) [reset = XXh], Page 0  
78. Register 44: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
50. Register 44: Reserved Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to this register.  
7:0  
R
Xh  
版权 © 2018, Texas Instruments Incorporated  
57  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.2.35 Register 45: Interrupt Flags—ADC (address = 45d) [reset = 00h], Page 0  
79. Register 45: Interrupt Flags—ADC  
7
6
5
4
3
2
1
0
Left AGC  
Noise  
Right AGC  
Noise  
ADC digital filter  
engine standard  
ADC digital filter  
engine auxiliary  
interrupt-port output  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Threshold Flag Threshold Flag interrupt-port output  
R-0h R-0h R-0h  
R-0h  
51. Register 45: Interrupt Flags—ADC Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description(1)  
Reserved  
Reserved  
6
Left AGC Noise Threshold Flag  
R
0h  
0: Left ADC signal power is greater than the noise threshold for  
the left AGC  
1: Left ADC signal power is less than the noise threshold for the  
left AGC  
5
Right AGC Noise Threshold Flag  
R
0h  
0: Right ADC signal power is greater than the noise threshold for  
the right AGC  
1: Right ADC signal power is less than the noise threshold for  
the right AGC  
4
3
ADC digital filter engine standard  
interrupt-port output  
R
R
R
0h  
0h  
0h  
ADC digital filter engine standard interrupt-port output  
ADC digital filter engine auxiliary interrupt-port output  
Reserved  
ADC digital filter engine auxiliary  
interrupt-port output  
2:0  
Reserved  
(1) Sticky flag bits. These are read-only bits. These bits are automatically cleared when read and are set only if a new source trigger  
occurs.  
8.6.2.36 Register 46: Reserved (address = 46d) [reset = XXh], Page 0  
80. Register 46: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
52. Register 46: Reserved Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to this register.  
7:0  
R
Xh  
58  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.2.37 Register 47: Interrupt Flags—ADC (address = 47d) [reset = 00h], Page 0  
81. Register 47: Interrupt Flags—ADC  
7
6
5
4
3
2
1
0
L-ADC power  
status  
R-ADC power  
status  
ADC Filt Std-Out  
Instantaneous Value  
ADC Filt Aux-Out  
Instantaneous Value  
Reserved  
R-0h  
Reserved Reserved Reserved  
R-0h R-0h R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
53. Register 47: Interrupt Flags—ADC Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
6
L-ADC power status  
R
0h  
0: Left ADC signal power is greater than the noise threshold for  
the left AGC  
1: Left ADC signal power is less than the noise threshold for the  
left AGC  
5
R-ADC power status  
R
0h  
0: Right ADC signal power is greater than the noise threshold for  
the right AGC  
1: Right ADC signal power is less than the noise threshold for  
the right AGC  
4
3
ADC Filt Std-Out Instantaneous  
Value  
R
R
R
0h  
0h  
0h  
ADC digital filter engine standard interrupt-port output. This bit  
indicates the instantaneous value of the interrupt port at the time  
of reading the register.  
ADC Filt Aux-Out Instantaneous  
Value  
ADC digital filter engine auxiliary interrupt-port output. This bit  
indicates the instantaneous value of the interrupt port at the time  
of reading the register.  
2:0  
Reserved  
Reserved  
8.6.2.38 Register 48: INT1 Interrupt Control (address = 48d) [reset = 00h], Page 0  
82. Register 48: INT1 Interrupt Control  
7
6
5
4
3
2
1
0
INT1 uses ADC  
AGC noise  
INT1 uses  
Engine interrupts  
INT1 uses ADC data-  
ready interrupts  
No. of INT1  
Pulses  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
54. Register 48: INT1 Interrupt Control Field Descriptions  
Bit  
7:5  
4
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Do not write any value other than reset value.  
INT1 uses ADC AGC noise  
R/W  
0h  
0: ADC AGC noise interrupt is not used in the generation of  
INT1 interrupt  
1: ADC AGC noise interrupt is used in the generation of INT1  
interrupt  
3
2
Reserved  
R
0h  
0h  
Reserved. Do not write any value other than reset value.  
INT1 uses Engine interrupts  
R/W  
0: Engine-generated interrupts and overflow flags are not used  
in the generation of INT1 interrupt  
1: Engine-generated interrupts and overflow flags are used in  
the generation of INT1 interrupt  
1
0
INT1 uses ADC data-ready  
interrupts  
R/W  
R/W  
0h  
0h  
0: ADC data-available interrupt is not used in the generation of  
INT1 interrupt  
1: ADC data-available interrupt is used in the generation of INT1  
interrupt  
No. of INT1 Pulses  
0: INT1 is only one pulse (active high) of duration typical 2 ms  
1: INT1 is multiple pulses (active high) of duration typical 2 ms  
and period 4 ms, until flag register 42 or 45 is read  
版权 © 2018, Texas Instruments Incorporated  
59  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.2.39 Register 49: INT2 Interrupt Control (address = 49d) [reset = 00h], Page 0  
83. Register 49: INT2 Interrupt Control  
7
6
5
4
3
2
1
0
INT2 Uses ADC  
AGC Noise  
INT2 Uses  
Engine Interrupts  
INT2 Uses ADC Data-  
Ready Interrupts  
No. of INT2  
Pulses  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
55. Register 49: INT2 Interrupt Control Field Descriptions  
Bit  
7:5  
4
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Do not write any value other than reset value.  
INT2 Uses ADC AGC Noise  
R/W  
0h  
0: ADC AGC noise interrupt is not used in the generation of  
INT2 interrupt  
1: ADC AGC noise interrupt is used in the generation of INT2  
interrupt  
3
2
Reserved  
R
0h  
0h  
Reserved. Do not write any value other than reset value.  
INT2 Uses Engine Interrupts  
R/W  
0: Engine-generated interrupts and overflow flags are not used  
in the generation of INT2 interrupt  
1: Engine-generated interrupts and overflow flags are used in  
the generation of INT2 interrupt  
1
0
INT2 Uses ADC Data-Ready  
Interrupts  
R/W  
R/W  
0h  
0h  
0: ADC data-available interrupt is not used in the generation of  
INT2 interrupt  
1: ADC data-available interrupt is used in the generation of INT2  
interrupt  
No. of INT2 Pulses  
0: INT2 is only one pulse (active high) of duration typical 2 ms  
1: INT2 is multiple pulses (active high) of duration typical 2 ms  
and period 4 ms, until flag register 42 or 45 is read  
8.6.2.40 Register 50: Reserved (address = 50d) [reset = XXh], Page 0  
84. Register 50: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
56. Register 50: Reserved Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to this register.  
7:0  
R
Xh  
8.6.2.41 Register 51: Reserved (address = 51d) [reset = 00h], Page 0  
85. Register 51: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
57. Register 51: Reserved  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
7:0  
R/W  
0h  
Reserved. Do not write any value other than reset value.  
60  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.2.42 Register 52: GPIO1 Control (address = 52d) [reset = 00h], Page 0  
86. Register 52: GPIO1 Control  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
GPIO1 SEL  
R/W-0000h  
GPIO1 IN BUF VAL  
R-0h  
GPIO1 VAL  
R/W-0h  
58. Register 52: GPIO1 Control Field Descriptions  
Bit  
7:6  
5:2  
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Do not write any value other than reset value.  
GPIO1 SEL  
R/W  
0000h  
0000: GPIO1 disabled (input and output buffers powered down)  
0001: GPIO1 is in input mode (can be used as secondary BCLK  
input, secondary WCLK input, or in ClockGen block)  
0010: GPIO1 is used as general-purpose input (GPI)  
0011: GPIO1 output = general-purpose output  
0100: GPIO1 output = CLKOUT output (source determined by  
CDIV_CLKIN_REG; page 0, register 25)  
0101: GPIO1 output = INT1 output  
0110: GPIO1 output = INT2 output  
0111: Reserved. Do not use.  
1000: GPIO1 output = secondary BCLK output for codec  
interface  
1001: GPIO1 output = secondary WCLK output for codec  
interface  
1010: DMDIN output = ADC_MOD_CLK output for the digital  
microphone  
1011–1111: Reserved. Do not use.  
1
0
GPIO1 IN BUF VAL  
GPIO1 VAL  
R
0h  
0h  
GPIO1 input buffer value  
R/W  
0: GPIO1 value = 0 when bits 5:2 are programmed to 0011  
(general-purpose output)  
1: GPIO1 value = 1 when bits 5:2 are programmed to 0011  
(general-purpose output)  
8.6.2.43 Register 53: DOUT (OUT Pin) Control (address = 53d) [reset = 0001 0010b], Page 0  
87. Register 53: DOUT (OUT Pin) Control  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
DOUT bus-keeper EN  
R/W-1h  
DOUT FUNC SEL  
R/W-001h  
DOUT VAL  
R/W-0h  
59. Register 53: DOUT (OUT Pin) Control Field Descriptions  
Bit  
7:5  
4
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Do not write any value other than reset value.  
DOUT bus-keeper EN  
R/W  
1h  
0: DOUT bus keeper enabled  
1: DOUT bus keeper disabled  
3:1  
DOUT FUNC SEL  
R/W  
001h  
000: DOUT disabled (output buffer powered down)  
001 DOUT = primary DOUT output for codec interface  
010: DOUT = general-purpose output  
011: DOUT = CLKOUT output  
100: DOUT = INT1 output  
101: DOUT = INT2 output  
110: DOUT = secondary BCLK output for codec interface  
111: DOUT = secondary WCLK output for codec interface  
0
DOUT VAL  
R/W  
0h  
DOUT value = 0 when bits 3:1 are programmed to 010 (general-  
purpose output)  
DOUT value = 1 when bits 3:1 are programmed to 010 (general-  
purpose output)  
版权 © 2018, Texas Instruments Incorporated  
61  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.2.44 Registers 54–56 (addresses) = 54d, 55d, 56d) [reset = XXh], Page 0  
88. Registers 54–56  
7
6
5
4
3
2
1
0
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
60. Registers 54–56 Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to this register.  
7:0  
R
Xh  
8.6.2.45 Register 57: ADC Sync Control 1 (address = 57d) [reset = 00h], Page 0  
89. Register 57: ADC Sync Control 1  
7
6
5
4
3
2
1
0
SYNC SEL  
R/W-0h  
CUSTOM SYNC SETTING  
R/W-000 0000h  
61. Register 57: ADC Sync Control 1 Field Descriptions  
Bit  
Field  
SYNC1 SEL  
Type  
Reset  
Description  
7
R/W  
0h  
0: Default synchronization  
1: Custom synchronization  
6:0  
CUSTOM SYNC1 SETTING  
R/W  
000 0000h 000 0000: Custom synchronization window size = 0 instructions  
000 0001: Custom synchronization window size = 2 instructions  
(±1 instruction)  
000 0010: Custom synchronization window size = 4 instructions  
(±2 instructions)  
...  
111 1111: Custom synchronization window size = 254  
instructions (±127 instructions)  
8.6.2.46 Register 58: ADC Sync Control 2 (address = 58d) [reset = 00h], Page 0  
90. Register 58: ADC Sync Control 2  
7
6
5
4
3
2
1
0
CUSTOM SYNC2 TARGET  
R/W-0000 0000h  
62. Register 58: ADC Sync Control 2 Field Descriptions  
Bit  
Field  
CUSTOM SYNC2 TARGET  
Type  
Reset  
Description  
7:0  
R/W  
0h  
0000 0000: Custom synchronization target = instruction 0  
0000 0001: Custom synchronization target = instruction 2  
0000 0010: Custom synchronization target = instruction 4  
...  
1111 1111: Custom synchronization target = instruction 510  
62  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.2.47 Register 59: ADC CIC Filter Gain Control (address = 59d) [reset = 0100 0100h], Page 0  
91. Register 59: ADC CIC Filter Gain Control  
7
6
5
4
3
2
1
0
L-CIC FILT GAIN  
R/W-0100h  
R-CIC FILT GAIN  
R/W-0100h  
63. Register 59: ADC CIC Filter Gain Control Field Descriptions  
Bit  
7:4  
3:0  
Field  
Type  
R/W  
R/W  
Reset  
0100h  
0100h  
Description  
L-CIC FILT GAIN  
R-CIC FILT GAIN  
Left CIC filter gain(1)  
Right CIC filter gain(1)  
(1) For proper operation, the CIC gain must be 1.  
If AOSR (page 0, register 20) = 64 and [1 Filter Mode (page 0, register 61) 6], then the reset value of 4 results in CIC gain = 1.  
Otherwise, the CIC gain = [AOSR / (64 × Digital Filter Engine Decimation)]4 × 2 (CIC Filter Gain Control) for 0 CIC Filter Gain Control 12,  
and if CIC Filter Gain Control = 15, CIC gain is automatically set such that for 7 (AOSR / Digital Filter Engine Decimation) 64,  
0.5 < CIC gain 1.  
8.6.2.48 Register 60: Reserved (address = 60d) [reset = 00h], Page 0  
92. Register 60: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
64. Register 60: Reserved Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to this register.  
7:0  
R/W  
0h  
版权 © 2018, Texas Instruments Incorporated  
63  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.2.49 Register 61: ADC Processing Block Selection (address = 61d) [reset = 0000 0001h], Page 0  
93. Register 61: ADC Processing Block Selection  
7
6
5
4
3
2
1
0
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
PRB SEL  
R/W-0 0001h  
65. Register 61: ADC Processing Block Selection Field Descriptions  
Bit  
7:5  
4:0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
Reserved  
PRB SEL  
Reserved. Do not write any value other than reset value.  
0 0001h  
0 0000: Reserved. Do not use.  
0 0001: Select ADC signal processing block PRB_R1  
0 0010: Select ADC signal processing block PRB_R2  
0 0011: Select ADC signal processing block PRB_R3  
0 0100: Select ADC signal processing block PRB_R4  
0 0101: Select ADC signal processing block PRB_R5  
0 0110: Select ADC signal processing block PRB_R6  
0 0111: Select ADC signal processing block PRB_R7  
0 1000: Select ADC signal processing block PRB_R8  
0 1001: Select ADC signal processing block PRB_R9  
0 1010: Select ADC signal processing block PRB_R10  
0 1011: Select ADC signal processing block PRB_R11  
0 1100: Select ADC signal processing block PRB_R12  
0 1101: Select ADC signal processing block PRB_R13  
0 1110: Select ADC signal processing block PRB_R14  
0 1111: Select ADC signal processing block PRB_R15  
1 0000: Select ADC signal processing block PRB_R16  
1 0001: Select ADC signal processing block PRB_R17  
1 0010: Select ADC signal processing block PRB_R18  
1 0011–1 1111: Reserved. Do not use.  
8.6.2.50 Register 62: Programmable Instruction-Mode Control Bits (address = 62d) [reset = 00h], Page 0  
94. Register 62: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
66. Register 62: Reserved  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write any value other than reset value.  
7:0  
R/W  
0h  
8.6.2.51 Registers 63–79: Reserved (address = 63d - 79d) [reset = XXh], Page 0  
95. Registers 63–79: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
67. Registers 63–79: Reserved Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to these registers.  
7:0  
R
Xh  
64  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.2.52 Register 80: Reserved (address = 80d) [reset = 00h], Page 0  
96. Register 80: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
68. Register 80: Reserved  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write any value other than reset value.  
7:0  
R/W  
0h  
8.6.2.53 Register 81: ADC Digital (address = 81d) [reset = 00h], Page 0  
97. Register 81: ADC Digital  
7
6
5
4
3
2
1
0
L-ADC PWR EN  
R/W-0h  
R-ADC PWR EN  
R/W-0h  
Reserved  
ADC SOFT-STEP  
R/W-00h  
R/W-0000h  
69. Register 81: ADC Digital Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
L-ADC PWR EN  
R/W  
0h  
0: Left-channel ADC is powered down  
1: Left-channel ADC is powered up  
6
R-ADC PWR EN  
R/W  
0h  
0: Right-channel ADC is powered down  
1: Right-channel ADC is powered up  
5:2  
1:0  
Reserved  
R/W  
R/W  
0000h  
00h  
Reserved. Do not write any value other than reset value.  
ADC SOFT-STEP  
00: ADC channel volume control soft-stepping is enabled for one  
step / fS  
01: ADC channel volume control soft-stepping is enabled for one  
step / 2 fS  
10: ADC channel volume control soft-stepping is disabled  
11: Reserved. Do not use.  
8.6.2.54 Register 82: ADC Fine Volume Control (address = 82d) [reset = 1000 1000h], Page 0  
98. Register 82: ADC Fine Volume Control  
7
6
5
4
3
2
1
0
L-ADC MUTE  
R/W-1h  
L-ADC FINE GAIN  
R/W-000h  
R-ADC MUTE  
R/W-1h  
R-ADC FINE GAIN  
R/W-000h  
70. Register 82: ADC Fine Volume Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
L-ADC MUTE  
R/W  
1h  
0: Left ADC channel not muted  
1: Left ADC channel muted  
6:4  
L-ADC FINE GAIN  
R/W  
000h  
000: Left ADC channel fine gain = 0 dB  
001: Left ADC channel fine gain = –0.1 dB  
010: Left ADC channel fine gain = –0.2 dB  
011: Left ADC channel fine gain = –0.3 dB  
100: Left ADC channel fine gain = –0.4 dB  
101–111: Reserved. Do not use.  
3
R-ADC MUTE  
R/W  
R/W  
1h  
0: Right ADC channel not muted  
1: Right ADC channel muted  
2:0  
R-ADC FINE GAIN  
000h  
000: Right ADC channel fine gain = 0 dB  
001: Right ADC channel fine gain = –0.1 dB  
010: Right ADC channel fine gain = –0.2 dB  
011: Right ADC channel fine gain = –0.3 dB  
100: Right ADC channel fine gain = –0.4 dB  
101–111: Reserved. Do not use.  
版权 © 2018, Texas Instruments Incorporated  
65  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.2.55 Register 83: Left ADC Volume Control (address = 83d) [reset = 00h], Page 0  
99. Register 83: Left ADC Volume Control  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
L-ADC CH VOL  
R/W-000 0000h  
71. Register 83: Left ADC Volume Control Field Descriptions  
Bit  
7
Field  
Type  
R
Reset(1)  
Description  
Reserved. Do not write any value other than reset value.  
Reserved  
0h  
6:0  
L-ADC CH VOL  
R/W  
000 0000h 100 0000 – 110 1000: Left ADC channel volume = 0 dB  
110 1000: Left ADC channel volume = –12 dB  
110 1001: Left ADC channel volume = –11.5 dB  
110 1010: Left ADC channel volume = –11.0 dB  
...  
111 1111: Left ADC channel volume = –0.5 dB  
000 0000: Left ADC channel volume = –0.0 dB  
000 0001: Left ADC channel volume = 0.5 dB  
...  
010 0110: Left ADC channel volume = 19.0 dB  
010 0111: Left ADC channel volume = 19.5 dB  
010 1000: Left ADC channel volume = 20 dB  
010 1001– 011 1111 : Reserved. Do not use.  
(1) Values in 2s-complement decimal format.  
8.6.2.56 Register 84: Right ADC Volume Control (address = 84d) [reset = 00h], Page 0  
100. Register 84: Right ADC Volume Control  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
R-ADC CH VOL  
R/W-000 0000h  
72. Register 84: Right ADC Volume Control Field Descriptions  
Bit  
7
Field  
Type  
R
Reset(1)  
Description  
Reserved. Do not write any value other than reset value.  
Reserved  
0h  
6:0  
R-ADC CH VOL  
R/W  
000 0000h 100 0000 – 110 1000: Right ADC channel volume = 0 dB  
110 1000: Right ADC channel volume = –12 dB  
110 1001: Right ADC channel volume = –11.5 dB  
110 1010: Right ADC channel volume = –11.0 dB  
...  
111 1111: Right ADC channel volume = –0.5 dB  
000 0000: Right ADC channel volume = –0.0 dB  
000 0001: Right ADC channel volume = 0.5 dB  
...  
010 0110: Right ADC channel volume = 19.0 dB  
010 0111: Right ADC channel volume = 19.5 dB  
010 1000: Right ADC channel volume = 20 dB  
010 1001– 011 1111 : Reserved. Do not use.  
(1) Values in 2s-complement decimal format.  
66  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.2.57 Register 85: Left ADC Phase Compensation (address = 85d) [reset = 00h], Page 0  
101. Register 85: Left ADC Phase Compensation  
7
6
5
4
3
2
1
0
L-ADC PHASE COMP  
R/W-0000 0000h  
73. Register 85: Left ADC Phase Compensation Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
L-ADC PHASE COMP  
R/W  
0h  
1000 0000: Left ADC has a phase shift of –128 ADC_MOD_CLK  
cycles with respect to right ADC  
1000 0001: Left ADC has a phase shift of –127 ADC_MOD_CLK  
cycles with respect to right ADC  
...  
1111 1110: Left ADC has a phase shift of –2 ADC_MOD_CLK  
cycles with respect to right ADC  
1111 1111: Left ADC has a phase shift of –1 ADC_MOD_CLK  
cycles with respect to right ADC  
0000 0000: No phase shift between stereo ADC channels  
0000 0001: Left ADC has a phase shift of 1 ADC_MOD_CLK  
cycles with respect to right ADC  
0000 0010: Left ADC has a phase shift of 2 ADC_MOD_CLK  
cycles with respect to right ADC  
...  
0111 1110: Left ADC has a phase shift of 126 ADC_MOD_CLK  
cycles with respect to right ADC  
0111 1111: Left ADC has a phase shift of 127 ADC_MOD_CLK  
cycles with respect to right ADC  
8.6.2.58 Register 86: Left AGC Control 1 (address = 86d) [reset = 00h], Page 0  
102. Register 86: Left AGC Control 1  
7
6
5
4
3
2
1
0
L-AGC EN  
R/W-0h  
L-AGC TARGET  
R/W-000h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R-0h  
74. Register 86: Left AGC Control 1 Field Descriptions  
Bit  
Field  
L-AGC EN  
Type  
Reset  
Description  
7
R/W  
0h  
0: Left AGC disabled  
1: Left AGC enabled  
6:4  
3:0  
L-AGC TARGET  
R/W  
000h  
000: Left AGC target level = –5.5 dB  
001: Left AGC target level = –8 dB  
010: Left AGC target level = –10 dB  
011: Left AGC target level = –12 dB  
100: Left AGC target level = –14 dB  
101: Left AGC target level = –17 dB  
110: Left AGC target level = –20 dB  
111: Left AGC target level = –24 dB  
Reserved  
R
0h  
Reserved. Do not write any value other than reset value.  
版权 © 2018, Texas Instruments Incorporated  
67  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.2.59 Register 87: Left AGC Control 2 (address = 87d) [reset = 00h], Page 0  
103. Register 87: Left AGC Control 2  
7
6
5
4
3
2
1
0
L-AGC HYST  
R/W-00h  
L-AGC NOISE THRESHOLD  
R/W- 0 0000h  
AGC CLIP STEPPING EN  
R/W-0h  
75. Register 87: Left AGC Control 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
L-AGC HYST  
R/W  
0h  
00: Left AGC hysteresis setting of 1 dB  
01: Left AGC hysteresis setting of 2 dB  
10: Left AGC hysteresis setting of 4 dB  
11: Left AGC hysteresis disabled  
5:1  
L-AGC NOISE THRESHOLD  
R/W  
R/W  
0 0000h  
00 000: Left AGC noise or silence detection is disabled  
00 001: Left AGC noise threshold = –30 dB  
00 010: Left AGC noise threshold = –32 dB  
00 011: Left AGC noise threshold = –34 dB  
...  
11 101: Left AGC noise threshold = –86 dB  
11 110: Left AGC noise threshold = –88 dB  
11 111: Left AGC noise threshold = –90 dB  
0
L-AGC CLIP STEPPING EN  
0h  
0: Disable clip stepping for AGC  
1: Enable clip stepping for AGC  
8.6.2.60 Register 88: Left AGC Maximum Gain (address = 88d) [reset = 0111 1111b], Page 0  
104. Register 88: Left AGC Maximum Gain  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
L-AGC MAX GAIN  
R/W-111 1111h  
76. Register 88: Left AGC Maximum Gain Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
Description  
Reserved  
0h  
Reserved. Do not write any value other than reset value.  
6:0  
L-AGC MAX GAIN  
R/W  
111  
1111h  
000 0000: Left AGC maximum gain = 0 dB  
000 0001: Left AGC maximum gain = 0.5 dB  
000 0010: Left AGC maximum gain = 1 dB  
...  
101 0000: Left AGC maximum gain = 40 dB  
101 0001 – 111 1111: Reserved. Do not use.  
68  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.2.61 Register 89: Left AGC Attack Time (address = 89d) [reset = 00h], Page 0  
105. Register 89: Left AGC Attack Time  
7
6
5
4
3
2
1
0
L-AGC ATTACK TIME  
R/W-0000 0h  
L-AGC ATTACK TIME MULT  
R/W-000h  
77. Register 89: Left AGC Attack Time Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:3  
L-AGC ATTACK TIME  
R/W  
0000 0h  
0000 0: Left AGC attack time = 1 × (32 / fS)  
0000 1: Left AGC attack time = 3 × (32 / fS)  
0001 0: Left AGC attack time = 5 × (32 / fS)  
0001 1: Left AGC attack time = 7 × (32 / fS)  
0010 0: Left AGC attack time = 9 × (32 / fS)  
...  
1111 0: Left AGC attack time = 61 × (32 / fS)  
1111 1: Left AGC attack time = 63 × (32 / fS)  
2:0  
L-AGC ATTACK TIME MULT  
R/W  
000h  
000: Multiply factor for the programmed left AGC attack time = 1  
001: Multiply factor for the programmed left AGC attack time = 2  
010: Multiply factor for the programmed left AGC attack time = 4  
...  
111: Multiply factor for the programmed left AGC attack time =  
128  
8.6.2.62 Register 90: Left AGC Decay Time (address = 90d) [reset = 00h], Page 0  
106. Register 90: Left AGC Decay Time  
7
6
5
4
3
2
1
0
L-AGC DECAY TIME  
R/W-0000 0h  
L-AGC DECAY TIME MULT  
R/W-000h  
78. Register 90: Left AGC Decay Time Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:3  
L-AGC DECAY TIME  
R/W  
0000 0h  
0000 0: Left AGC decay time = 1 × (512 / fS)  
0000 1: Left AGC decay time = 3 × (512 / fS)  
0001 0: Left AGC decay time = 5 × (512 / fS)  
0001 1: Left AGC decay time = 7 × (512 / fS)  
0010 0: Left AGC decay time = 9 × (512 / fS)  
...  
1111 0: Left AGC decay time = 61 × (512 / fS)  
1111 1: Left AGC decay time = 63 × (512 / fS)  
2:0  
L-AGC DECAY TIME MULT  
R/W  
000h  
000: Multiply factor for the programmed left AGC decay time = 1  
001: Multiply factor for the programmed left AGC decay time = 2  
010: Multiply factor for the programmed left AGC decay time = 4  
...  
111: Multiply factor for the programmed left AGC decay time =  
128  
版权 © 2018, Texas Instruments Incorporated  
69  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.2.63 Register 91: Left AGC Noise Debounce (address = 91d) [reset = 00h], Page 0  
107. Register 91: Left AGC Noise Debounce  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
L-AGC NOISE DEBOUNCE  
R/W-0 0000h  
79. Register 91: Left AGC Noise Debounce Field Descriptions  
Bit  
7:5  
4:0  
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Do not write any value other than reset value.  
L-AGC NOISE DEBOUNCE  
R/W  
0 0000h  
0 0000: Left AGC noise debounce = 0 / fS  
0 0001: Left AGC noise debounce = 4 / fS  
0 0010: Left AGC noise debounce = 8 / fS  
0 0011: Left AGC noise debounce = 16 / fS  
0 0100: Left AGC noise debounce = 32 / fS  
0 0101: Left AGC noise debounce = 64 / fS  
0 0110: Left AGC noise debounce = 128 / fS  
0 0111: Left AGC noise debounce = 256 / fS  
0 1000: Left AGC noise debounce = 512 / fS  
0 1001: Left AGC noise debounce = 1024 / fS  
0 1010: Left AGC noise debounce = 2048 / fS  
0 1011: Left AGC noise debounce = 4096 / fS  
0 1100: Left AGC noise debounce = 2 × 4096 / fS  
0 1101: Left AGC noise debounce = 3 × 4096 / fS  
0 1110: Left AGC noise debounce = 4 × 4096 / fS  
...  
1 1110: Left AGC noise debounce = 20 × 4096 / fS  
1 1111: Left AGC noise debounce = 21 × 4096 / fS  
8.6.2.64 Register 92: Left AGC Signal Debounce (address = 92d) [reset = 00h], Page 0  
108. Register 92: Left AGC Signal Debounce  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
L-AGC SIGNAL DEBOUNCE  
R/W-0000h  
80. Register 92: Left AGC Signal Debounce Field Descriptions  
Bit  
7:4  
3:0  
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Do not write any value other than reset value.  
L-AGC SIGNAL DEBOUNCE  
R/W  
0000h  
0000: Left AGC signal debounce = 0 / fS  
0001: Left AGC signal debounce = 4 / fS  
0010: Left AGC signal debounce = 8 / fS  
0011: Left AGC signal debounce = 16 / fS  
0100: Left AGC signal debounce = 32 / fS  
0101: Left AGC signal debounce = 64 / fS  
0110: Left AGC signal debounce = 128 / fS  
0111: Left AGC signal debounce = 256 / fS  
1000: Left AGC signal debounce = 512 / fS  
1001: Left AGC signal debounce = 1024 / fS  
1010: Left AGC signal debounce = 2048 / fS  
1011: Left AGC signal debounce = 2 × 2048 / fS  
1100: Left AGC signal debounce = 3 × 2048 / fS  
1101: Left AGC signal debounce = 4 × 2048 / fS  
1110: Left AGC signal debounce = 5 × 2048 / fS  
1111: Left AGC signal debounce = 6 × 2048 / fS  
70  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.2.65 Register 93: Left AGC Gain Applied (address = 93d) [reset = 00h], Page 0  
109. Register 93: Left AGC Gain Applied  
7
6
5
4
3
2
1
0
L-AGC GAIN APPL  
R-0000 0000h  
81. Register 93: Left AGC Gain Applied Field Descriptions  
Bit  
7:0(1)  
Field  
L-AGC GAIN APPL  
Type  
Reset  
Description  
R
0h  
Left AGC Gain Value Status:  
1110 1000: Gain applied by left AGC = –12 dB  
1110 1001: Gain applied by left AGC = –11.5 dB  
...  
1111 1111: Gain applied by left AGC = –0.5 dB  
0000 0000: Gain applied by left AGC = 0 dB  
0000 0001: Gain applied by left AGC = 0.5 dB  
...  
0100 1111: Gain applied by left AGC = 39.5 dB  
0101 0000: Gain applied by left AGC = 40 dB  
0101 0001 – 1111 1111: Reserved. Do not use.  
(1) These bits are read-only.  
8.6.2.66 Register 94: Right AGC Control 1 (address = 94d) [reset = 00h], Page 0  
110. Register 94: Right AGC Control 1  
7
6
5
4
3
2
1
0
R-AGC EN  
R/W-0h  
R-AGC TARGET  
R/W-000h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
82. Register 94: Right AGC Control 1 Field Descriptions  
Bit  
Field  
R-AGC EN  
Type  
Reset  
Description  
7
R/W  
0h  
0: Right AGC disabled  
1: Right AGC enabled  
6:4  
3:0  
R-AGC TARGET  
R/W  
000h  
000: Right AGC target level = –5.5 dB  
000: Right AGC target level = –8 dB  
001: Right AGC target level = –10 dB  
010: Right AGC target level = –12 dB  
011: Right AGC target level = –14 dB  
100: Right AGC target level = –17 dB  
101: Right AGC target level = –20 dB  
111: Right AGC target level = –24 dB  
Reserved  
R
0h  
Reserved. Do not write any value other than reset value.  
版权 © 2018, Texas Instruments Incorporated  
71  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.2.67 Register 95: Right AGC Control 2 (address = 95d) [reset = 00h], Page 0  
111. Register 95: Right AGC Control 2  
7
6
5
4
3
2
1
0
R-AGC HYST  
R/W-00h  
R-AGC NOISE THRESHOLD  
R/W-00 000h  
R-AGC CLIP STEPPING  
R/W-0h  
83. Register 95: Right AGC Control 2 Field Descriptions  
Bit  
Field  
Type  
Reset(1)  
Description  
7:6  
R-AGC HYST  
R/W  
00h  
00: Right AGC hysteresis setting of 1 dB  
01: Right AGC hysteresis setting of 2 dB  
10: Right AGC hysteresis setting of 4 dB  
11: Right AGC hysteresis disabled.  
5:1  
R-AGC NOISE THRESHOLD  
R/W  
R/W  
00 000h  
00 000: Right AGC noise or silence detection is disabled  
00 001: Right AGC noise threshold = –30 dB  
00 010: Right AGC noise threshold = –32 dB  
00 011: Right AGC noise threshold = –34 dB  
...  
11 101: Right AGC noise threshold = –86 dB  
11 110: Right AGC noise threshold = –88 dB  
11 111: Right AGC noise threshold = –90 dB  
0
R-AGC CLIP STEPPING  
0h  
0: Disable clip stepping for right AGC  
1: Enable clip stepping for right AGC  
(1) Values in 2s-complement decimal format.  
8.6.2.68 Register 96: Right AGC Maximum Gain (address = 96d) [reset = 0111 1111b], Page 0  
112. Register 96: Right AGC Maximum Gain  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
R-AGC MAX GAIN  
R/W-111 1111h  
84. Register 96: Right AGC Maximum Gain Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
Description  
Reserved. Do not write any value other than reset value.  
Reserved  
0h  
6:0  
R-AGC MAX GAIN  
R/W  
111 1111h 000 0000: Right AGC maximum gain = 0 dB  
000 0001: Right AGC maximum gain = 0.5 dB  
000 0010: Right AGC maximum gain = 1 dB  
...  
101 0000: Right AGC maximum gain = 40 dB  
101 0001–111 1111: Not used.  
72  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.2.69 Register 97: Right AGC Attack Time (address = 97d) [reset = 00h], Page 0  
113. Register 97: Right AGC Attack Time  
7
6
5
4
3
2
1
0
R-AGC ATTACK TIME  
R/W-0000 0h  
R-AGC ATTACK TIME MULT  
R/W-000h  
85. Register 97: Right AGC Attack Time Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:3  
R-AGC ATTACK TIME  
R/W  
0000 0h  
0000 0: Right AGC attack time = 1 × (32 / fS)  
0000 1: Right AGC attack time = 3 × (32 / fS)  
0001 0: Right AGC attack time = 5 × (32 / fS)  
0001 1: Right AGC attack time = 7 × (32 / fS)  
0010 0: Right AGC attack time = 9 × (32 / fS)  
...  
1111 0: Right AGC attack time = 61 × (32 / fS)  
1111 1: Right AGC attack time = 63 × (32 / fS)  
2:0  
R-AGC ATTACK TIME MULT  
R/W  
000h  
000: Multiply factor for the programmed right AGC attack time =  
1
001: Multiply factor for the programmed right AGC attack time =  
2
010: Multiply factor for the programmed right AGC attack time =  
4
...  
111: Multiply factor for the programmed right AGC attack time =  
128  
8.6.2.70 Register 98: Right AGC Decay Time (address = 98d) [reset = 00h], Page 0  
114. Register 98: Right AGC Decay Time  
7
6
5
4
3
2
1
0
R-AGC DECAY TIME  
R/W-0000 0h  
R-AGC DECAY TIME MULT  
R/W-000h  
86. Register 98: Right AGC Decay Time Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:3  
R-AGC DECAY TIME  
R/W  
0000 0h  
0000 0: Right AGC decay time = 1 × (512 / fS)  
0000 1: Right AGC decay time = 3 × (512 / fS)  
0001 0: Right AGC decay time = 5 × (512 / fS)  
0001 1: Right AGC decay time = 7 × (512 / fS)  
0010 0: Right AGC decay time = 9 × (512 / fS)  
...  
1111 0: Right AGC decay time = 61 × (512 / fS)  
1111 1: Right AGC decay time = 63 × (512 / fS)  
2:0  
R-AGC DECAY TIME MULT  
R/W  
000h  
000: Multiply factor for the programmed right AGC decay time =  
1
001: Multiply factor for the programmed right AGC decay time =  
2
010: Multiply factor for the programmed right AGC decay time =  
4
111: Multiply factor for the programmed right AGC decay time =  
128  
版权 © 2018, Texas Instruments Incorporated  
73  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.2.71 Register 99: Right AGC Noise Debounce (address = 99d) [reset = 00h], Page 0  
115. Register 99: Right AGC Noise Debounce  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
R-AGC NOISE DEBOUNCE  
R/W-0 0000h  
87. Register 99: Right AGC Noise Debounce Field Descriptions  
Bit  
7:5  
4:0  
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Do not write any value other than reset value.  
R-AGC NOISE DEBOUNCE  
R/W  
0 0000h  
0 0000: Right AGC noise debounce = 0 / fS  
0 0001: Right AGC noise debounce = 4 / fS  
0 0010: Right AGC noise debounce = 8 / fS  
0 0011: Right AGC noise debounce = 16 / fS  
0 0100: Right AGC noise debounce = 32 / fS  
0 0101: Right AGC noise debounce = 64 / fS  
0 0110: Right AGC noise debounce = 128 / fS  
0 0111: Right AGC noise debounce = 256 / fS  
0 1000: Right AGC noise debounce = 512 / fS  
0 1001: Right AGC noise debounce = 1024 / fS  
0 1010: Right AGC noise debounce = 2048 / fS  
0 1011: Right AGC noise debounce = 4096 / fS  
0 1100: Right AGC noise debounce = 2 × 4096 / fS  
0 1101: Right AGC noise debounce = 3 × 4096 / fS  
0 1110: Right AGC noise debounce = 4 × 4096 / fS  
...  
1 1110: Right AGC noise debounce = 20 × 4096 / fS  
1 1111: Right AGC noise debounce = 21 × 4096 / fS, right AGC  
noise debounce = 0 / fS  
8.6.2.72 Register 100: Right AGC Signal Debounce (address = 100d) [reset = 00h], Page 0  
116. Register 100: Right AGC Signal Debounce  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
R-AGC SIGNAL DEBOUNCE  
R/W-0000h  
88. Register 100: Right AGC Signal Debounce Field Descriptions  
Bit  
7:4  
3:0  
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Do not write any value other than reset value.  
R-AGC SIGNAL DEBOUNCE  
R/W  
0000h  
0000: Right AGC signal debounce = 0 / fS  
0001: Right AGC signal debounce = 4 / fS  
0010: Right AGC signal debounce = 8 / fS  
0011: Right AGC signal debounce = 16 / fS  
0100: Right AGC signal debounce = 32 / fS  
0101: Right AGC signal debounce = 64 / fS  
0110: Right AGC signal debounce = 128 / fS  
0111: Right AGC signal debounce = 256 / fS  
1000: Right AGC signal debounce = 512 / fS  
1001: Right AGC signal debounce = 1024 / fS  
1010: Right AGC signal debounce = 2048 / fS  
1011: Right AGC signal debounce = 2 × 2048 / fS  
1100: Right AGC signal debounce = 3 × 2048 / fS  
1101: Right AGC signal debounce = 4 × 2048 / fS  
1110: Right AGC signal debounce = 5 × 2048 / fS  
1111: Right AGC signal debounce = 6 × 2048 / fS, right AGC  
signal debounce = 0 / fS  
74  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.2.73 Register 101: Right AGC Gain Applied (address = 101d) [reset = 00h], Page 0  
117. Register 101: Right AGC Gain Applied  
7
6
5
4
3
2
1
0
R-AGC GAIN APPL  
R-0000 0000h  
89. Register 101: Right AGC Gain Applied Field Descriptions  
Bit  
Field  
R-AGC GAIN APPL  
Type(1)  
Reset  
Description  
7:0  
R
0h  
Right AGC gain value status:  
1110 1000: Gain applied by right AGC = –12 dB  
1110 1001: Gain applied by right AGC = –11.5 dB  
...  
1111 1111: Gain applied by right AGC = –0.5 dB  
0000 0000: Gain applied by right AGC = 0 dB  
0000 0001: Gain applied by right AGC = 0.5 dB  
...  
0100 1111: Gain applied by right AGC = 39.5 dB  
0101 0000: Gain applied by right AGC = 40 dB  
0101 0001 – 1111 1111: Reserved. Do not use.  
(1) These bits are read-only.  
8.6.2.74 Register 102–127: Reserved (addresses) = 102d–127d) [reset = XXh], Page 0  
118. Register 102–127: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
90. Register 102–127: Reserved Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to these registers.  
7:0  
R
Xh  
版权 © 2018, Texas Instruments Incorporated  
75  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.3 Control Registers, Page 1: ADC Routing, PGA, Power Controls, and So Forth  
Valid pages are 0, 1, 4, 5, 32-47. All other pages are reserved (do not access).  
8.6.3.1 Register 0: Page Control Register (address = 0d) [reset = 00h], Page 1  
119. Register 0: Page Control Register  
7
6
5
4
3
2
1
0
PAGE 0 CTRL  
R/W-0000 0000h  
91. Register 0: Page Control Register Field Descriptions  
Bit  
Field  
PAGE 0 CTRL  
Type  
Reset  
Description  
7:0  
R/W  
0h  
0000 0000: Page 0 selected  
0000 0001: Page 1 selected  
...  
1111 1110: Page 254 selected (reserved)  
1111 1111: Page 255 selected (reserved)  
8.6.3.2 Register 1–25: Reserved (addresses) = 01d–25d) [reset = XXh], Page 1  
120. Register 1–25: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
92. Register 1–25: Reserved Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to these registers.  
7:0  
R
Xh  
76  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.3.3 Register 26: Dither Control (address = 26d) [reset = 00h], Page 1  
121. Register 26: Dither Control  
7
6
5
4
3
2
1
0
L-ADC DITHER OFFSET  
R/W-0000h  
R-ADC DITHER OFFSET  
R/W-0000h  
93. Register 26: Dither Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
L-ADC DITHER OFFSET  
R/W  
0000h  
DC offset into input of left ADC; signed magnitude number in  
±15-mV steps.  
1111: –105 mV  
...  
1011: –45 mV  
1010: –30 mV  
1001: –15 mV  
0000: 0 mV  
0001: 15 mV  
0010: 30 mV  
0011: 45 mV  
...  
0111: 105 mV  
3:0  
R-ADC DITHER OFFSET  
R/W  
0000h  
DC offset into input of right ADC; signed magnitude number in  
±15-mV steps.  
1111: –105 mV  
...  
1011: –45 mV  
1010: –30 mV  
1001: –15 mV  
0000: 0 mV  
0001: 15 mV  
0010: 30 mV  
0011: 45 mV  
...  
0111: 105 mV  
8.6.3.4 Register 27–50: Reserved (addresses) = 27d–50d) [reset = XXh], Page 1  
122. Register 27–50: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
94. Register 27–50: Reserved Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to these registers.  
7:0  
R
Xh  
版权 © 2018, Texas Instruments Incorporated  
77  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.3.5 Register 51: MICBIAS Control (address = 51d) [reset = 00h], Page 1  
123. Register 51: MICBIAS Control  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
MICBIAS VALUE  
R/W-00h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
95. Register 51: MICBIAS Control Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Do not write any value other than reset value.  
6:5  
MICBIAS VALUE  
R/W  
00h  
00: MICBIAS1 is powered down  
01: MICBIAS1 is powered to 2 V  
10: MICBIAS1 is powered to 2.5 V  
11: MICBIAS1 is connected to AVDD  
4:3  
2:0  
Reserved  
Reserved  
R/W  
R
0h  
0h  
Reserved. Do not write any value other than reset value.  
Reserved. Do not write any value other than reset value.  
8.6.3.6 Register 52: Left ADC Input Selection for Left PGA (address = 52d) [reset = 0101 0111b], Page 1  
124. Register 52: Left ADC Input Selection for Left PGA  
7
6
5
4
3
2
1
0
LCH_SEL4  
R/W-01h  
LCH_SEL3  
R/W-01h  
LCH_SEL2  
R/W-01h  
Reserved  
R/W-1h  
Reserved  
R/W-1h  
96. Register 52: Left ADC Input Selection for Left PGA Field Descriptions  
Bit  
Field  
Type  
Reset  
Description(1)  
7:6  
LCH_SEL4  
R/W  
01h  
Differential pair using the IN2L(P) as plus and IN3L(M) as minus  
inputs.  
00: 0-dB setting is chosen  
01: –6-dB setting is chosen  
10: Is not connected to the left ADC PGA  
11: Is not connected to the left ADC PGA  
5:4  
3:2  
1:0  
LCH_SEL3  
LCH_SEL2  
Reserved  
R/W  
R/W  
R/W  
01h  
01h  
1h  
Used for the IN3L(M) pin, which is single-ended.  
00: 0-dB setting is chosen  
01: –6-dB setting is chosen  
10: Is not connected to the left ADC PGA  
11: Is not connected to the left ADC PGA  
Used for the IN2L(P) pin, which is single-ended.  
00: 0-dB setting is chosen  
01: –6-dB setting is chosen  
10: Is not connected to the left ADC PGA  
11: Is not connected to the left ADC PGA  
Reserved. Do not write any value other than reset value.  
(1) To maintain the same PGA output level for both single-ended and differential pairs, the single-ended inputs have a 2× gain applied.  
8.6.3.7 Register 53: Reserved (address = 53d) [reset = XXh], Page 1  
125. Register 53: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
97. Register 53: Reserved Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to this register.  
7:0  
R
Xh  
78  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.3.8 Register 54: Left ADC Input Selection for Left PGA (address = 54d) [reset = 0011 1111h], Page 1  
126. Register 54: Left ADC Input Selection for Left PGA  
7
6
5
4
3
2
1
0
L PGA BYPASS  
R/W-0h  
LCH_SELCM  
R/W-0h  
LCH_SEL3X  
R/W-01h  
LCH_SEL2X  
R/W-01h  
Reserved  
R/W-1h  
Reserved  
R/W-1h  
98. Register 54: Left ADC Input Selection for Left PGA Field Descriptions  
Bit  
Field  
Type  
Reset  
Description(1)  
7
L PGA BYPASS  
R/W  
0h  
0: Do not bypass left PGA  
1: Bypass left PGA, unbuffered differential pair using the IN2L(P)  
as plus and IN3L(M) as minus inputs  
6
LCH_SELCM  
LCH_SEL3X  
R/W  
R/W  
0h  
0: Left ADC channel unselected inputs are not biased weakly to  
the ADC common-mode voltage  
1: Left ADC channel unselected inputs are biased weakly to the  
ADC common-mode voltage  
5:4  
01h  
Differential pair using the IN2L(P) as plus and IN2R(M) as minus  
inputs.  
00: 0-dB setting is chosen  
01: –6-dB setting is chosen  
10–11: Not connected to the left ADC PGA  
3:2  
1:0  
LCH_SEL2X  
Reserved  
R/W  
R/W  
01h  
1h  
Differential pair using the IN2R(P) as plus and IN3R(M) as  
minus inputs.  
00: 0-dB setting is chosen  
01: –6-dB setting is chosen  
10–11: Is not connected to the left ADC PGA  
Reserved. Do not write any value other than reset value.  
(1) To maintain the same PGA output level for both single-ended and differential pairs, the single-ended inputs have a 2× gain applied.  
8.6.3.9 Register 55: Right ADC Input Selection for Right PGA (address = 55d) [reset = 0101 0111b],  
Page 1  
127. Register 55: Right ADC Input Selection for Right PGA  
7
6
5
4
3
2
1
0
RCH_SEL4  
R/W-01h  
RCH_SEL3  
R/W-01h  
RCH_SEL2  
R/W-01h  
Reserved  
R/W-1h  
Reserved  
R/W-1h  
99. Register 55: Right ADC Input Selection for Right PGA Field Descriptions  
Bit  
Field  
Type  
Reset  
Description(1)  
7:6  
RCH_SEL4  
R/W  
01h  
Differential pair using the IN2R(P) as plus and IN3R(M) as  
minus inputs.  
00: 0-dB setting is chosen  
01: –6-dB setting is chosen  
10–11: Not connected to the right ADC PGA  
5:4  
3:2  
1:0  
RCH_SEL3  
RCH_SEL2  
Reserved  
R/W  
R/W  
R/W  
01h  
01h  
1h  
Used for the IN3R(M) pin, which is single-ended.  
00: 0-dB setting is chosen  
01: –6-dB setting is chosen  
10–11: Not connected to the right ADC PGA  
Used for the IN2R(P) pin, which is single-ended.  
00: 0-dB setting is chosen  
01: –6-dB setting is chosen  
10–11: Not connected to the right ADC PGA  
Reserved. Do not write any value other than reset value.  
(1) To maintain the same PGA output level for both single-ended and differential pairs, the single-ended inputs have a 2× gain applied.  
版权 © 2018, Texas Instruments Incorporated  
79  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.3.10 Register 56: Reserved (address = 56d) [reset = XXh], Page 1  
128. Register 56: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
100. Register 56: Reserved Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to this register.  
7:0  
R
Xh  
8.6.3.11 Register 57: Right ADC Input Selection for Right PGA (address = 57d) [reset = 0001 0111b],  
Page 1  
129. Register 57: Right ADC Input Selection for Right PGA  
7
6
5
4
3
2
1
0
R PGA BYPASS  
R/W-0h  
RCH_SELCM  
R/W-0h  
RCH_SEL3X  
R/W-01h  
RCH_SEL2X  
R/W-01h  
Reserved  
R/W-1h  
Reserved  
R/W-1h  
101. Register 57: Right ADC Input Selection for Right PGA Field Descriptions  
Bit  
Field  
Type  
Reset  
Description(1)  
7
R PGA BYPASS  
R/W  
0h  
0: Do not bypass right PGA  
1: Bypass right PGA, unbuffered differential pair using the  
IN2R(P) as plus and IN3R(M) as minus inputs  
6
RCH_SELCM  
RCH_SEL3X  
R/W  
R/W  
0h  
0: Right ADC channel unselected inputs are not biased weakly  
to the ADC common-mode voltage  
1: Right ADC channel unselected inputs are biased weakly to  
the ADC common-mode voltage  
5:4  
01h  
Differential pair using the IN2L(P) as plus and IN2R(M) as minus  
inputs.  
00: 0-dB setting is chosen  
01: –6 dB setting is chosen  
10–11: Not connected to the right ADC PGA  
3:2  
1:0  
RCH_SEL2X  
Reserved  
R/W  
R/W  
01h  
1h  
Differential pair using the IN2L(P) as plus and IN3L(M) as minus  
inputs.  
00: 0-dB setting is chosen  
01: –6-dB setting is chosen  
10, 11: Not connected to the right ADC PGA  
Reserved. Do not write any value other than reset value.  
(1) To maintain the same PGA output level for both single-ended and differential pairs, the single-ended inputs have a 2× gain applied.  
8.6.3.12 Register 58: Reserved (address = 58d) [reset = XXh], Page 1  
130. Register 58: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
102. Register 58: Reserved Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to this register.  
7:0  
R
Xh  
80  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.3.13 Register 59: Left Analog PGA Settings (address = 59d) [reset = 1000 0000h], Page 1  
131. Register 59: Left Analog PGA Settings  
7
6
5
4
3
2
1
0
L PGA MUTE  
R/W-1h  
L-PGA GAIN  
R/W-000 0000h  
103. Register 59: Left Analog PGA Settings Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
L PGA MUTE  
R/W  
1h  
0: Left PGA is not muted  
1: Left PGA is muted  
6:0  
L-PGA GAIN  
R/W  
000 0000h 000 0000: Left PGA gain = 0 dB  
000 0001: Left PGA gain = 0.5 dB  
000 0010: Left PGA gain = 1 dB  
...  
101 0000: Left PGA gain = 40 dB  
101 0001–111 1111: Reserved. Do not use.  
8.6.3.14 Register 60: Right Analog PGA Settings (address = 60d) [reset = 1000 0000h], Page 1  
132. Register 60: Right Analog PGA Settings  
7
6
5
4
3
2
1
0
R-PGA MUTE  
R/W-1h  
R-PGA GAIN  
R/W-000 0000h  
104. Register 60: Right Analog PGA Settings Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
R PGA MUTE  
R/W  
1h  
0: Right PGA is not muted  
1: Right PGA is muted  
6:0  
R-PGA GAIN  
R/W  
000 0000h 000 0000: Right PGA gain = 0 dB  
000 0001: Right PGA gain = 0.5 dB  
000 010: Right PGA gain = 1 dB  
...  
101 0000: Right PGA gain = 40 dB  
101 0001–111 1111: Reserved. Do not use.  
8.6.3.15 Register 61: ADC Low Current Modes (address = 61d) [reset = 00h], Page 1  
133. Register 61: ADC Low Current Modes  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
MODULATOR CURRENT  
R/W-0h  
105. Register 61: ADC Low Current Modes Field Descriptions  
Bit  
7:1  
0
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Write only zeros to these bits.  
MODULATOR CURRENT  
R/W  
0h  
0: 1× ADC modulator current used  
1: 0.5× ADC modulator current used  
版权 © 2018, Texas Instruments Incorporated  
81  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
8.6.3.16 Register 62: ADC Analog PGA Flags (address = 62d) [reset = 00h], Page 1  
134. Register 62: ADC Analog PGA Flags  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
L ADC PGA FLAG  
R-0h  
R ADC PGA FLAG  
R-0h  
106. Register 62: ADC Analog PGA Flags Field Descriptions  
Bit  
7:2  
1
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved. Do not write any value other than reset value  
L ADC PGA FLAG  
R
0h  
0: Left ADC PGA , applied gain programmed gain  
1: Left ADC PGA , applied gain = programmed gain  
0
R ADC PGA FLAG  
R
0h  
0: Right ADC PGA , applied gain programmed gain  
1: Right ADC PGA , applied gain = programmed gain  
8.6.3.17 Register 63–127: Reserved (addresses) = 63d–127d) [reset = XXh], Page 1  
135. Register 63–127: Reserved  
7
6
5
4
3
2
1
0
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
Reserved  
R-Xh  
107. Register 63–127: Reserved Field Descriptions  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
Reserved. Do not write to these registers.  
7:0  
R
Xh  
82  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
8.6.4 Control Registers, Page 4: ADC Digital Filter Coefficients  
Default values shown for this page only become valid 100 µs following a hardware or software reset.  
Valid pages are 0, 1, 4, 5, 32-47. All other pages are reserved (do not access).  
8.6.4.1 Register 0: Page Control (address = 00d) [reset = 00h], Page 4  
136. Register 0: Page Control  
7
6
5
4
3
2
1
0
PAGE SELECT  
R/W-0000 0000h  
108. Register 0: Page Control Field Descriptions  
Bit  
Field  
PAGE SELECT  
Type  
Reset  
Description  
7:0  
R/W  
0h  
0000 0000: Page 0 selected  
0000 0001: Page 1 selected  
...  
1111 1110: Page 254 selected (reserved)  
1111 1111: Page 255 selected (reserved)  
The remaining page 4 registers are either reserved registers or are used for setting coefficients for the various  
filters in the processing blocks. Reserved registers must not be written to.  
The filter coefficient registers are arranged in pairs, with two adjacent 8-bit registers containing the 16-bit  
coefficient for a single filter. The 16-bit integer contained in the MSB and LSB registers for a coefficient are  
interpreted as a 2s-complement integer, with possible values ranging from –32,768 to 32,767. When  
programming any coefficient value for a filter, the MSB register must always be written first, immediately followed  
by the LSB register. Even if only the MSB or LSB portion of the coefficient changes, both registers must be  
written in this sequence. 109 is a list of the page 4 registers, excluding the previously described register 0.  
109. Page 4 Registers  
REGISTER  
NUMBER  
RESET VALUE  
REGISTER NAME  
1
2
XXXX XXXX  
0000 0001  
0001 0111  
0000 0001  
0001 0111  
0111 1101  
1101 0011  
0111 1111  
1111 1111  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0111 1111  
1111 1111  
0000 0000  
0000 0000  
0000 0000  
Reserved. Do not write to this register.  
Coefficient N0(15:8) for AGC LPF (first-order IIR) used as averager to detect level(1)  
Coefficient N0(7:0) for AGC LPF (first-order IIR) used as averager to detect level  
Coefficient N1(15:8) for AGC LPF (first-order IIR) used as averager to detect level  
Coefficient N1(7:0) for AGC LPF (first-order IIR) used as averager to detect level  
Coefficient D1(15:8) for AGC LPF (first-order IIR) used as averager to detect level  
Coefficient D1(7:0) for AGC LPF (first-order IIR) used as averager to detect level  
Coefficient N0(15:8) for Left ADC programmable first-order IIR  
3
4
5
6
7
8
9
Coefficient N0(7:0) for Left ADC programmable first-order IIR  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Coefficient N1(15:8) for Left ADC programmable first-order IIR  
Coefficient N1(7:0) for Left ADC programmable first-order IIR  
Coefficient D1(15:8) for Left ADC programmable first-order IIR  
Coefficient D1(7:0) for Left ADC programmable first-order IIR  
Coefficient N0(15:8) for Left ADC Biquad A or Coefficient FIR0(15:8) for ADC FIR Filter  
Coefficient N0(7:0) for Left ADC Biquad A or Coefficient FIR0(7:0) for ADC FIR Filter  
Coefficient N1(15:8) for Left ADC Biquad A or Coefficient FIR1(15:8) for ADC FIR Filter  
Coefficient N1(7:0) for Left ADC Biquad A or Coefficient FIR1(7:0) for ADC FIR Filter  
Coefficient N2(15:8) for Left ADC Biquad A or Coefficient FIR2(15:8) for ADC FIR Filter  
(1) Rows belonging to the same coefficient are shaded in this table for easier readability.  
版权 © 2018, Texas Instruments Incorporated  
83  
 
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
109. Page 4 Registers (接下页)  
REGISTER  
RESET VALUE  
REGISTER NAME  
NUMBER  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0111 1111  
1111 1111  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0111 1111  
1111 1111  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0111 1111  
1111 1111  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0111 1111  
1111 1111  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
Coefficient N2(7:0) for Left ADC Biquad A or Coefficient FIR2(7:0) for ADC FIR Filter  
Coefficient D1(15:8) for Left ADC Biquad A or Coefficient FIR3(15:8) for ADC FIR Filter  
Coefficient D1(7:0) for Left ADC Biquad A or Coefficient FIR3(7:0) for ADC FIR Filter  
Coefficient D2(15:8) for Left ADC Biquad A or Coefficient FIR4(15:8) for ADC FIR Filter  
Coefficient D2(7:0) for Left ADC Biquad A or Coefficient FIR4(7:0) for ADC FIR Filter  
Coefficient N0(15:8) for Left ADC Biquad B or Coefficient FIR5(15:8) for ADC FIR Filter  
Coefficient N0(7:0) for Left ADC Biquad B or Coefficient FIR5(7:0) for ADC FIR Filter  
Coefficient N1(15:8) for Left ADC Biquad B or Coefficient FIR6(15:8) for ADC FIR Filter  
Coefficient N1(7:0) for Left ADC Biquad B or Coefficient FIR6(7:0) for ADC FIR Filter  
Coefficient N2(15:8) for Left ADC Biquad B or Coefficient FIR7(15:8) for ADC FIR Filter  
Coefficient N2(7:0) for Left ADC Biquad B or Coefficient FIR7(7:0) for ADC FIR Filter  
Coefficient D1(15:8) for Left ADC Biquad B or Coefficient FIR8(15:8) for ADC FIR Filter  
Coefficient D1(7:0) for Left ADC Biquad B or Coefficient FIR8(7:0) for ADC FIR Filter  
Coefficient D2(15:8) for Left ADC Biquad B or Coefficient FIR9(15:8) for ADC FIR Filter  
Coefficient D2(7:0) for Left ADC Biquad B or Coefficient FIR9(7:0) for ADC FIR Filter  
Coefficient N0(15:8) for Left ADC Biquad C or Coefficient FIR10(15:8) for ADC FIR Filter  
Coefficient N0(7:0) for Left ADC Biquad C or Coefficient FIR10(7:0) for ADC FIR Filter  
Coefficient N1(15:8) for Left ADC Biquad C or Coefficient FIR11(15:8) for ADC FIR Filter  
Coefficient N1(7:0) for Left ADC Biquad C or Coefficient FIR11(7:0) for ADC FIR Filter  
Coefficient N2(15:8) for Left ADC Biquad C or Coefficient FIR12(15:8) for ADC FIR Filter  
Coefficient N2(7:0) for Left ADC Biquad C or Coefficient FIR12(7:0) for ADC FIR Filter  
Coefficient D1(15:8) for Left ADC Biquad C or Coefficient FIR13(15:8) for ADC FIR Filter  
Coefficient D1(7:0) for Left ADC Biquad C or Coefficient FIR13(7:0) for ADC FIR Filter  
Coefficient D2(15:8) for Left ADC Biquad C or Coefficient FIR14(15:8) for ADC FIR Filter  
Coefficient D2(7:0) for Left ADC Biquad C or Coefficient FIR14(7:0) for ADC FIR Filter  
Coefficient N0(15:8) for Left ADC Biquad D or Coefficient FIR15(15:8) for ADC FIR Filter  
Coefficient N0(7:0) for Left ADC Biquad D or Coefficient FIR15(7:0) for ADC FIR Filter  
Coefficient N1(15:8) for Left ADC Biquad D or Coefficient FIR16(15:8) for ADC FIR Filter  
Coefficient N1(7:0) for Left ADC Biquad D or Coefficient FIR16(7:0) for ADC FIR Filter  
Coefficient N2(15:8) for Left ADC Biquad D or Coefficient FIR17(15:8) for ADC FIR Filter  
Coefficient N2(7:0) for Left ADC Biquad D or Coefficient FIR17(7:0) for ADC FIR Filter  
Coefficient D1(15:8) for Left ADC Biquad D or Coefficient FIR18(15:8) for ADC FIR Filter  
Coefficient D1(7:0) for Left ADC Biquad D or Coefficient FIR18(7:0) for ADC FIR Filter  
Coefficient D2(15:8) for Left ADC Biquad D or Coefficient FIR19(15:8) for ADC FIR Filter  
Coefficient D2(7:0) for Left ADC Biquad D or Coefficient FIR19(7:0) for ADC FIR Filter  
Coefficient N0(15:8) for Left ADC Biquad E or Coefficient FIR20(15:8) for ADC FIR Filter  
Coefficient N0(7:0) for Left ADC Biquad E or Coefficient FIR20(7:0) for ADC FIR Filter  
Coefficient N1(15:8) for Left ADC Biquad E or Coefficient FIR21(15:8) for ADC FIR Filter  
Coefficient N1(7:0) for Left ADC Biquad E or Coefficient FIR21(7:0) for ADC FIR Filter  
Coefficient N2(15:8) for Left ADC Biquad E or Coefficient FIR22(15:8) for ADC FIR Filter  
Coefficient N2(7:0) for Left ADC Biquad E or Coefficient FIR22(7:0) for ADC FIR Filter  
Coefficient D1(15:8) for Left ADC Biquad E or Coefficient FIR23(15:8) for ADC FIR Filter  
Coefficient D1(7:0) for Left ADC Biquad E or Coefficient FIR23(7:0) for ADC FIR Filter  
Coefficient D2(15:8) for Left ADC Biquad E or Coefficient FIR24(15:8) for ADC FIR Filter  
Coefficient D2(7:0) for Left ADC Biquad E or Coefficient FIR24(7:0) for ADC FIR Filter  
Reserved  
Reserved  
84  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
109. Page 4 Registers (接下页)  
REGISTER  
NUMBER  
RESET VALUE  
REGISTER NAME  
66  
67  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
68  
69  
70  
71  
72  
Coefficient N0(15:8) for Right ADC programmable first-order IIR  
Coefficient N0(7:0) for Right ADC programmable first-order IIR  
Coefficient N1(15:8) for Right ADC programmable first-order IIR  
Coefficient N1(7:0) for Right ADC programmable first-order IIR  
Coefficient D1(15:8) for Right ADC programmable first-order IIR  
Coefficient D1(7:0) for Right ADC programmable first-order IIR  
73  
74  
75  
76  
77  
78  
Coefficient N0(15:8) for Right ADC Biquad A or Coefficient FIR0(15:8) for ADC FIR Filter  
Coefficient N0(7:0) for Right ADC Biquad A or Coefficient FIR0(7:0) for ADC FIR Filter  
Coefficient N1(15:8) for Right ADC Biquad A or Coefficient FIR1(15:8) for ADC FIR Filter  
Coefficient N1(7:0) for Right ADC Biquad A or Coefficient FIR1(7:0) for ADC FIR Filter  
Coefficient N2(15:8) for Right ADC Biquad A or Coefficient FIR2(15:8) for ADC FIR Filter  
Coefficient N2(7:0) for Right ADC Biquad A or Coefficient FIR2(7:0) for ADC FIR Filter  
Coefficient D1(15:8) for Right ADC Biquad A or Coefficient FIR3(15:8) for ADC FIR Filter  
Coefficient D1(7:0) for Right ADC Biquad A or Coefficient FIR3(7:0) for ADC FIR Filter  
Coefficient D2(15:8) for Right ADC Biquad A or Coefficient FIR4(15:8) for ADC FIR Filter  
Coefficient D2(7:0) for Right ADC Biquad A or Coefficient FIR4(7:0) for ADC FIR Filter  
Coefficient N0(15:8) for Right ADC Biquad B or Coefficient FIR5(15:8) for ADC FIR Filter  
Coefficient N0(7:0) for Right ADC Biquad B or Coefficient FIR5(7:0) for ADC FIR Filter  
Coefficient N1(15:8) for Right ADC Biquad B or Coefficient FIR6(15:8) for ADC FIR Filter  
Coefficient N1(7:0) for Right ADC Biquad B or Coefficient FIR6(7:0) for ADC FIR Filter  
Coefficient N2(15:8) for Right ADC Biquad B or Coefficient FIR7(15:8) for ADC FIR Filter  
Coefficient N2(7:0) for Right ADC Biquad B or Coefficient FIR7(7:0) for ADC FIR Filter  
Coefficient D1(15:8) for Right ADC Biquad B or Coefficient FIR8(15:8) for ADC FIR Filter  
Coefficient D1(7:0) for Right ADC Biquad B or Coefficient FIR8(7:0) for ADC FIR Filter  
Coefficient D2(15:8) for Right ADC Biquad B or Coefficient FIR9(15:8) for ADC FIR Filter  
Coefficient D2(7:0) for Right ADC Biquad B or Coefficient FIR9(7:0) for ADC FIR Filter  
Coefficient N0(15:8) for Right ADC Biquad C or Coefficient FIR10(15:8) for ADC FIR Filter  
Coefficient N0(7:0) for Right ADC Biquad C or Coefficient FIR10(7:0) for ADC FIR Filter  
Coefficient N1(15:8) for Right ADC Biquad C or Coefficient FIR11(15:8) for ADC FIR Filter  
Coefficient N1(7:0) for Right ADC Biquad C or Coefficient FIR11(7:0) for ADC FIR Filter  
Coefficient N2(15:8) for Right ADC Biquad C or Coefficient FIR12(15:8) for ADC FIR Filter  
Coefficient N2(7:0) for Right ADC Biquad C or Coefficient FIR12(7:0) for ADC FIR Filter  
Coefficient D1(15:8) for Right ADC Biquad C or Coefficient FIR13(15:8) for ADC FIR Filter  
Coefficient D1(7:0) for Right ADC Biquad C or Coefficient FIR13(7:0) for ADC FIR Filter  
Coefficient D2(15:8) for Right ADC Biquad C or Coefficient FIR14(15:8) for ADC FIR Filter  
Coefficient D2(7:0) for Right ADC Biquad C or Coefficient FIR14(7:0) for ADC FIR Filter  
Coefficient N0(15:8) for Right ADC Biquad D or Coefficient FIR15(15:8) for ADC FIR Filter  
Coefficient N0(7:0) for Right ADC Biquad D or Coefficient FIR15(7:0) for ADC FIR Filter  
Coefficient N1(15:8) for Right ADC Biquad D or Coefficient FIR16(15:8) for ADC FIR Filter  
Coefficient N1(7:0) for Right ADC Biquad D or Coefficient FIR16(7:0) for ADC FIR Filter  
Coefficient N2(15:8) for Right ADC Biquad D or Coefficient FIR17(15:8) for ADC FIR Filter  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
版权 © 2018, Texas Instruments Incorporated  
85  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
109. Page 4 Registers (接下页)  
REGISTER  
NUMBER  
RESET VALUE  
REGISTER NAME  
113  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
Coefficient N2(7:0) for Right ADC Biquad D or Coefficient FIR17(7:0) for ADC FIR Filter  
Coefficient D1(15:8) for Right ADC Biquad D or Coefficient FIR18(15:8) for ADC FIR Filter  
Coefficient D1(7:0) for Right ADC Biquad D or Coefficient FIR18(7:0) for ADC FIR Filter  
Coefficient D2(15:8) for Right ADC Biquad D or Coefficient FIR19(15:8) for ADC FIR Filter  
Coefficient D2(7:0) for Right ADC Biquad D or Coefficient FIR19(7:0) for ADC FIR Filter  
Coefficient N0(15:8) for Right ADC Biquad E or Coefficient FIR20(15:8) for ADC FIR Filter  
Coefficient N0(7:0) for Right ADC Biquad E or Coefficient FIR20(7:0) for ADC FIR Filter  
Coefficient N1(15:8) for Right ADC Biquad E or Coefficient FIR21(15:8) for ADC FIR Filter  
Coefficient N1(7:0) for Right ADC Biquad E or Coefficient FIR21(7:0) for ADC FIR Filter  
Coefficient N2(15:8) for Right ADC Biquad E or Coefficient FIR22(15:8) for ADC FIR Filter  
Coefficient N2(7:0) for Right ADC Biquad E or Coefficient FIR22(7:0) for ADC FIR Filter  
Coefficient D1(15:8) for Right ADC Biquad E or Coefficient FIR23(15:8) for ADC FIR Filter  
Coefficient D1(7:0) for Right ADC Biquad E or Coefficient FIR23(7:0) for ADC FIR Filter  
Coefficient D2(15:8) for Right ADC Biquad E or Coefficient FIR24(15:8) for ADC FIR Filter  
Coefficient D2(7:0) for Right ADC Biquad E or Coefficient FIR24(7:0) for ADC FIR Filter  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
86  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
137 shows the required external components and system level connections for proper operation of the device  
in several popular use cases.  
IOVDD  
DBB  
RP  
RP  
AVDD  
(2.7 V œ 3.6 V)  
AVDD  
1 µF  
0.1 µF  
A
1 µF  
1 µF  
AVSS  
IN2R(P)  
IN3R(M)  
Mic 1  
1 µF  
A
IOVDD  
(1.1 V œ 3.3 V)  
2 kΩ  
IOVDD  
DVDD  
TLV320ADC3100  
1.65 Vœ1.95 V  
MICBIAS1  
0.1 µF  
1 µF  
1 µF  
0.1 µF  
2 kΩ  
1 µF  
A
1 µF  
1 µF  
DVSS  
IN2L(P)  
IN3L(M)  
Mic 2  
I2C  
ADDRESS  
D
I2C_ADR0  
I2C_ADR1  
137. Typical Connections  
Each of these configurations can be realized using the evaluation modules (EVMs) for the device. As previously  
discussed in the Recording Mode section, the TLV320ADC3100 is form-factor and software compatible with the  
TLV320ADC3101. Therefore, both the TLV320ADC3101 and the TLV320ADC3100 use the same EVM, the  
TLV320ADC3101-K. These flexible modules allow full evaluation of the device in the most common modes of  
operation. Any design variation can be supported by TI through schematic and layout reviews. Visit  
http://e2e.ti.com for design assistance and join the audio amplifier discussion forum for additional information.  
版权 © 2018, Texas Instruments Incorporated  
87  
 
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
9.2 Typical Application  
A
1 µF  
1 µF  
IN2R(P)  
IN3R(M)  
Mic 1  
1 µF  
TLV320ADC3100  
2 kΩ  
MICBIAS1  
2 kΩ  
1 µF  
A
1 µF  
1 µF  
IN2L(P)  
IN3L(M)  
Mic 2  
138. Application With Two Analog Microphones Using a Shared MICBIAS  
9.2.1 Design Requirements  
110 lists the design parameters for this application.  
110. Design Parameters  
KEY PARAMETER  
SPECIFICATION  
AVDD  
3.3 V  
> 6 mA (PLL on, AGC off, digital filter engine off,  
stereo record, fS = 48 kHz)  
AVDD supply current  
DVDD  
1.8 V  
> 4 mA (PLL on, AGC off, digital filter engine off,  
stereo record, fS = 48 kHz)  
DVDD supply current  
IOVDD  
1.8 V  
Maximum MICBIAS current  
4 mA (MICBIAS voltage 2.5 V)  
9.2.2 Detailed Design Procedure  
This section describes the necessary steps to configure the TLV320ADC3100.  
9.2.2.1 Step 1  
The system clock source (master clock) and the targeted ADC sampling frequency must be identified.  
Depending on the targeted performance, the decimation filter type (A, B, or C) and AOSR value can be  
determined:  
Filter A must be used for 48-kHz high-performance operation; AOSR must be a multiple of 8  
Filter B must be used for up to 96-kHz operations; AOSR must be a multiple of 4  
Filter C must be used for up to 192-kHz operations; AOSR must be a multiple of 2  
In all cases, 公式 6 limits the AOSR range:  
2.8 MHz < AOSR × ADC_fs < 6.2 MHz  
(6)  
Based on the identified filter type and the required signal-processing capabilities, the appropriate processing  
block can be determined from the list of available processing blocks (PRB_R1 to PRB_R18).  
Based on the available master clock, the chosen AOSR and the targeted sampling rate, the clock divider values  
NADC and MADC can be determined. If necessary, the internal PLL can add a large degree of flexibility.  
88  
版权 © 2018, Texas Instruments Incorporated  
 
 
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
公式 7 describes that, in summary, ADC_CLKIN (derived directly from the system clock source or from the  
internal PLL) divided by MADC, NADC, and AOSR must be equal to the ADC sampling rate ADC_fs. The  
ADC_CLKIN clock signal is shared with the DAC clock-generation block.  
ADC_CLKIN = NADC × MADC × AOSR x ADC_fs  
(7)  
To a large degree, NADC and MADC can be chosen independently in the range of 1 to 128. In general, as long  
as 公式 8 is met, NADC must be as large as possible:  
MADC × AOSR INSTR_CTR  
(8)  
RC is a function of the chosen processing block and is listed in 6.  
The common-mode voltage setting of the device is determined by the available analog power supply.  
At this point, the PRB_Rx, AOSR, NADC, MADC, and input and output common-mode values device-specific  
parameters are known. If the PLL is used, the PLL parameters P, J, D, and R are determined as well.  
9.2.2.2 Step 2  
Setting up the device via register programming:  
The following list gives a sequence of items that must be executed in the time between powering the device up  
and reading data from the device:  
1. Define starting point:  
a. Power up applicable external hardware power supplies  
b. Set register page to 0  
c. Initiate SW reset  
2. Program clock settings:  
a. Program PLL clock dividers P, J, D, and R (if PLL is used)  
b. Power up PLL (if PLL is used)  
c. Program and power up NADC  
d. Program and power up MADC  
e. Program OSR value  
f. Program I2S word length if required (for example, 20 bits)  
g. Program the processing block to be used  
3. Program analog blocks:  
a. Set register page to 1  
b. Program MICBIAS, if applicable  
c. Program MICPGA  
d. Program routing of inputs and common mode to ADC input  
e. Unmute analog PGAs and set analog gain  
4. Program ADC:  
a. Set register page to 0  
b. Power up ADC channel  
c. Unmute digital volume control and set gain  
版权 © 2018, Texas Instruments Incorporated  
89  
 
 
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
9.2.2.3 Example Register Setup to Record Analog Data Through ADC to Digital Out  
A typical EVM I2C register control script follows to show how to set up the TLV320ADC3100 in record mode with  
fS = 44.1 kHz and MCLK = 11.2896 MHz.  
# Key: w 30 XX YY ==> write to I2C address 0x30, to register 0xXX, data 0xYY  
#
#
# ==> comment delimiter  
# The following list gives an example sequence of items that must be executed in the time  
# between powering the device up and reading data from the device. Note that there are  
# other valid sequences depending on which features are used.  
#
# ADC3101EVM Key Jumper Settings and Audio Connections:  
# 1. Remove Jumpers W12 and W13  
# 2. Insert Jumpers W4 and W5  
# 3. Insert a 3.5mm stereo audio plug into J9 for  
#
#
single-ended input IN1L(P) - left channel and  
single-ended input IN1R(M) - right channel  
################################################################  
# 1. Define starting point:  
#
#
#
(a) Power up appicable external hardware power supplies  
(b) Set register page to 0  
w 30 00 00  
#
(c) Initiate SW Reset  
#
w 30 01 01  
#
# 2. Program Clock Settings  
#
#
(a) Program PLL clock dividers P,J,D,R (if PLL is necessary)  
# In EVM, the ADC3001 receives: MCLK = 11.2896 MHz,  
# BCLK = 2.8224 MHz, WCLK = 44.1 kHz  
#
# Sinve the sample rate is a multiple of the input MCLK then  
# no PLL is needed thereby saving power. Use Default (Reset) Settings:  
# ADC_CLKIN = MCLK, P=1, R=1, J=4, D=0000  
w 30 04 00  
w 30 05 11  
w 30 06 04  
w 30 07 00  
w 30 08 00  
#
#
(b) Power up PLL (if PLL is necessary) - Not Used in this Example  
w 30 05 11  
#
(c) Program and power up NADC  
#
# NADC = 1, divider powered on  
w 30 12 81  
#
#
#
(d) Program and power up MADC  
# MADC = 2, divider powered on  
w 30 13 82  
#
#
#
(e) Program OSR value  
# AOSR = 128 (default)  
w 30 14 80  
#
#
#
(f) Program I2S word length as required (16, 20, 24, 32 bits)  
# mode is i2s, wordlength is 16, slave mode (default)  
w 30 1B 00  
#
#
#
(g) Program the processing block to be used  
# PRB_P1  
w 30 3d 01  
#
# 3. Program Analog Blocks  
#
#
(a) Set register Page to 1  
90  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
w 30 00 01  
#
#
(b) Program MICBIAS if applicable  
#
# Not used (default)  
w 30 33 00  
#
#
#
(c) Program MICPGA  
# Left Analog PGA Seeting = 0dB  
w 30 3b 00  
#
# Right Analog PGA Seeting = 0dB  
w 30 3c 00  
#
#
#
#
(d) Routing of inputs/common mode to ADC input  
(e) Unmute analog PGAs and set analog gain  
# Left ADC Input selection for Left PGA = IN1L(P) as Single-Ended  
w 30 34 fc  
#
# Right ADC Input selection for Right PGA = IN1R(M) as Single-Ended  
w 30 37 fc  
#
# 4. Program ADC  
#
#
#
(a) Set register Page to 0  
w 30 00 00  
#
#
(b) Power up ADC channel  
#
# Power-up Left ADC and Right ADC  
w 30 51 c2  
#
#
#
(c) Unmute digital volume control and set gain = 0 dB  
# UNMUTE  
w 30 52 00  
#
9.2.2.4 MICBIAS  
The TLV320ADC3100 has a built-in bias voltage output for the biasing of microphones. No intentional capacitors  
must be connected directly to the MICBIAS output for filtering.  
9.2.2.5 Decoupling Capacitors  
The TLV320ADC3100 requires adequate power-supply decoupling to ensure that the noise and total harmonic  
distortion (THD) are low. A good ceramic capacitor, typically 0.1 µF, placed as close as possible to the device  
AVDD, IOVDD, and DVDD lead works best. Placing this decoupling capacitor close to the TLV320ADC3100 is  
important for the performance of the converter. For filtering lower-frequency noise signals, a 1-µF or greater  
capacitor placed near the device also helps.  
版权 © 2018, Texas Instruments Incorporated  
91  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
9.2.3 Application Curves  
17  
15  
13  
11  
9
0
-20  
Left Channel  
Right Channel  
-40  
-60  
-80  
-100  
-120  
-140  
7
5
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
5
10  
15  
20  
25  
30  
35  
40  
Frequency (kHz)  
D004  
PGA Gain Setting (dB)  
D005  
139. Line Input to ADC FFT Plot  
140. Input-Referred Noise vs PGA Gain  
10 Power Supply Recommendations  
The power supplies are designed to operate from 2.7 V to 3.6 V for AVDD, from 1.65 V to 1.95 V for DVDD and  
from 1.1 V to 3.6 V for IOVDD. Any value out of these ranges must be avoided to ensure the correct behavior of  
the device. The power supplies must be well regulated. Placing a decoupling capacitor close to the  
TLV320ADC3100 improves the performance of the device. A low equivalent-series-resistance (ESR) ceramic  
capacitor with a value of 0.1 µF is a typical choice. If the TLV320ADC3100 is used in highly noise-sensitive  
circuits, TI recommends adding a small LC filter on the VDD connections.  
92  
版权 © 2018, Texas Instruments Incorporated  
TLV320ADC3100  
www.ti.com.cn  
ZHCSHY2 MARCH 2018  
11 Layout  
11.1 Layout Guidelines  
Each system design and PCB layout is unique. The layout must be carefully reviewed in the context of a specific  
PCB design. However, the following guidelines can optimize the TLV320ADC3100 performance:  
The decoupling capacitors for the power supplies must be placed close to the device terminals. 137 shows the  
recommended decoupling capacitors for the TLV320ADC3100.  
Route analog differential audio signals differentially on the PCB for better noise immunity. Avoid crossing digital  
and analog signals to avoid undesirable crosstalk.  
Analog and digital grounds must be separated to prevent possible digital noise from affecting the analog  
performance of the board.  
11.2 Layout Example  
141. Layout Recommendation  
版权 © 2018, Texas Instruments Incorporated  
93  
TLV320ADC3100  
ZHCSHY2 MARCH 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
如需相关文档,请参阅:  
《用于无线电话和便携式音频并具有嵌入式 miniDSP TLV320ADC3101 低功耗立体声 ADC》  
《用于无线电话和便携式音频并具有嵌入式 miniDSP TLV320ADC3001 低功耗立体声 ADC》  
TLV320ADC3101EVM-K 用户指南》  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可每周  
接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
94  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV320ADC3100IRGER  
TLV320ADC3100IRGET  
ACTIVE  
VQFN  
VQFN  
RGE  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
ADC  
3100  
ACTIVE  
RGE  
NIPDAU  
ADC  
3100  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
RGE0024B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
0.5  
0.3  
PIN 1 INDEX AREA  
4.1  
3.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.5  
(0.2) TYP  
2.45 0.1  
7
12  
EXPOSED  
SEE TERMINAL  
DETAIL  
THERMAL PAD  
13  
6
2X  
SYMM  
25  
2.5  
18  
1
0.3  
24X  
20X 0.5  
0.2  
19  
24  
0.1  
C A B  
SYMM  
24X  
PIN 1 ID  
(OPTIONAL)  
0.05  
0.5  
0.3  
4219013/A 05/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGE0024B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.45)  
SYMM  
24  
19  
24X (0.6)  
1
18  
24X (0.25)  
(R0.05)  
TYP  
25  
SYMM  
(3.8)  
20X (0.5)  
13  
6
(
0.2) TYP  
VIA  
7
12  
(0.975) TYP  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219013/A 05/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGE0024B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.08)  
(0.64) TYP  
19  
24  
24X (0.6)  
1
25  
18  
24X (0.25)  
(R0.05) TYP  
SYMM  
(0.64)  
TYP  
(3.8)  
20X (0.5)  
13  
6
METAL  
TYP  
7
12  
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219013/A 05/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TLV320ADC3100IRGER

适用于声控系统和便携式音频系统的低功耗立体声模数转换器 (ADC) | RGE | 24 | -40 to 85
TI

TLV320ADC3100IRGET

适用于声控系统和便携式音频系统的低功耗立体声模数转换器 (ADC) | RGE | 24 | -40 to 85
TI

TLV320ADC3101

Low Power Stereo ADC for Wireless Handsets and Portable Audio
TI

TLV320ADC3101-Q1

Low-Power Stereo ADC With Embedded miniDSPnull for Wireless Handsets and Portable Audio
TI

TLV320ADC3101-Q1_15

Low-Power Stereo ADC With Embedded miniDSPnull for Wireless Handsets and Portable Audio
TI

TLV320ADC3101IRGER

Low Power Stereo ADC for Wireless Handsets and Portable Audio
TI

TLV320ADC3101IRGER320

SPECIALTY CONSUMER CIRCUIT, PQCC24, 4 X 4 MM, GREEN, PLASTIC, VQFN-24
TI

TLV320ADC3101IRGET

Low Power Stereo ADC for Wireless Handsets and Portable Audio
TI

TLV320ADC3101IRGET320

SPECIALTY CONSUMER CIRCUIT, PQCC24, 4 X 4 MM, GREEN, PLASTIC, VQFN-24
TI

TLV320ADC3120

TLV320ADC3120 2-Channel, 768-kHz, Burr-BrownTM Audio ADC
TI

TLV320ADC3120IRTER

TLV320ADC3120 2-Channel, 768-kHz, Burr-BrownTM Audio ADC
TI

TLV320ADC3120_V01

TLV320ADC3120 2-Channel, 768-kHz, Burr-BrownTM Audio ADC
TI