TLV320ADC6140IRTWR [TI]

具有 122dB SNR 的四通道、768kHz Burr-Brown™ 音频模数转换器 (ADC) | RTW | 24 | -40 to 125;
TLV320ADC6140IRTWR
型号: TLV320ADC6140IRTWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 122dB SNR 的四通道、768kHz Burr-Brown™ 音频模数转换器 (ADC) | RTW | 24 | -40 to 125

转换器 模数转换器
文件: 总122页 (文件大小:3953K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
TLV320ADC6140四通道、768kHzBurr-BrownTM 音频 ADC  
1 特性  
2 应用  
1
多通道高性能 ADC:  
麦克风阵列系统  
声控数字助理  
电话会议系统  
安防和监控系统  
4 通道模拟麦克风输入或线路输入,  
8 通道数字 PDM 麦克风,或  
模拟和数字麦克风组合  
ADC 线路和麦克风差分输入性能:  
3 说明  
动态范围 (DR):  
TLV320ADC6140 是一款 Burr-Brown™高性能音频模  
数转换器 (ADC),最多可支持对脉冲密度调制 (PDM)  
麦克风输入的四个模拟通道或八个数字通道进行同步采  
样。该器件支持线路和麦克风输入,并允许单端和差分  
输入配置。该器件集成了可编程通道增益、数字音量控  
制、可编程麦克风偏置电压、锁相环 (PLL)、可编程高  
通滤波器 (HPF)、双二阶滤波器、低延迟滤波器模式,  
并可实现高达 768kHz 的采样率。该器件支持时分多路  
复用 (TDM)I2S 或左平衡 (LJ) 音频格式,并可通过  
I2C SPI 接口进行控制。这些集成的高性能 特性以  
及采用 3.3V 1.8V 单电源供电的能力,使该器件成  
为远场麦克风录音 应用中空间受限音频系统的绝佳选  
择。  
123dB,动态范围增强器 (DRE) 启用  
113dBDRE 禁用  
THD+N–98dB  
ADC 通道相加模式,DR 性能:  
116dBDRE 禁用,2 通道相加  
119dBDRE 禁用,4 通道相加  
ADC 输入电压:  
差分 2VRMS 满量程输入  
单端 1VRMS 满量程输入  
ADC 采样率 (fS) = 8kHz 768kHz  
可编程通道设置:  
通道增益:0dB 42dB,步长 1dB  
数字音量控制:–100dB 27dB  
增益校准分辨率为 0.1dB  
TLV320ADC6140 的额定工作温度范围为 –40°C 至  
+125°C,并且采用 24 引脚 WQFN 封装。  
相位校准分辨率为 163ns  
可编程麦克风偏置或电源电压生成  
低延迟信号处理滤波器选择  
可编程 HPF 和双二阶数字滤波器  
自动增益控制器 (AGC)  
I2C SPI 控制  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
4.00mm × 4.00mm,间距  
0.5mm  
TLV320ADC6140  
WQFN (24)  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
集成高性能音频 PLL  
简化方框图  
自动时钟分频器设置配置  
IN1P_GPI1  
SHDNZ  
GPIO1  
音频串行数据接口:  
Digital PDM Microphones  
Interface  
PLL and Clock  
Generation  
IN1M_GPO1  
格式:TDMI2S 或左平衡 (LJ)  
字长:16 位、20 位、24 位或 32 位  
/从接口  
IN2P_GPI2  
FSYNC  
BCLK  
IN2M_GPO2  
Programmable  
Quad Channel  
ADC with  
Front-End PGA  
Audio Serial  
Interface  
IN3P_GPI3  
Digital Filters,  
Biquads, AGC  
and DRE  
SDOUT  
(TDM, I2S, LJ)  
IN3M_GPO3  
单电源运行:3.3V 1.8V  
I/O 电源运行:3.3V 1.8V  
1.8V AVDD 电源电压下的功耗:  
IN4P_GPI4  
SDA_SSZ  
IN4M_GPO4  
SCL_MOSI  
MICBIAS, Regulators and  
Voltage Reference  
I2C or SPI Control  
Interface  
ADDR0_SCLK  
MICBIAS  
VREF  
8.5mW/通道(16kHz 采样率)  
9.2mW/通道(48kHz 采样率)  
ADDR1_MISO  
Thermal Pad  
DREG  
(VSS)  
AVDD  
AVSS  
IOVDD  
AREG  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS992  
 
 
 
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
器件比较............................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics........................................... 7  
7.6 Timing Requirements: I2C Interface........................ 11  
7.7 Switching Characteristics: I2C Interface.................. 11  
7.8 Timing Requirements: SPI Interface....................... 12  
7.9 Switching Characteristics: SPI Interface................. 12  
7.10 Timing Requirements: TDM, I2S or LJ Interface... 12  
8
9
Detailed Description ............................................ 18  
8.1 Overview ................................................................. 18  
8.2 Functional Block Diagram ....................................... 19  
8.3 Feature Description................................................. 19  
8.4 Device Functional Modes........................................ 56  
8.5 Programming........................................................... 57  
8.6 Register Maps......................................................... 61  
Application and Implementation ...................... 108  
9.1 Application Information.......................................... 108  
9.2 Typical Applications .............................................. 108  
9.3 What to Do and What Not to Do ........................... 115  
10 Power Supply Recommendations ................... 115  
11 Layout................................................................. 116  
11.1 Layout Guidelines ............................................... 116  
11.2 Layout Example .................................................. 116  
12 器件和文档支持 ................................................... 117  
12.1 文档支持.............................................................. 117  
12.2 接收文档更新通知 ............................................... 117  
12.3 社区资源.............................................................. 117  
12.4 ..................................................................... 117  
12.5 静电放电警告....................................................... 117  
12.6 Glossary.............................................................. 117  
13 机械、封装和可订购信息..................................... 117  
7.11 Switching Characteristics: TDM, I2S or LJ  
Interface ................................................................... 12  
7.12 Timing Requirements: PDM Digital Microphone  
Interface ................................................................... 13  
7.13 Switching Characteristics: PDM Digial Microphone  
Interface ................................................................... 13  
7.14 Typical Characteristics.......................................... 15  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (July 2019) to Revision A  
Page  
已更改 将文档状态从预告信息更改成了生产数据 ................................................................................................................... 1  
2
版权 © 2019, Texas Instruments Incorporated  
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
5 器件比较表  
特性  
控制接口  
TLV320ADC3140  
TLV320ADC5140  
TLV320ADC6140  
I2C SPI  
TDMI2S 或左平衡 (LJ)  
数字音频串行接口  
模拟音频通道  
4
4
4
数字 PDM 通道  
动态范围增强器 (DRE)  
动态范围(DRE 禁用)  
动态范围(DRE 启用)  
兼容性  
8
8
8
不可用  
106dB  
不可用  
可供货  
可供货  
113dB  
123dB  
108dB  
120dB  
引脚对引脚、封装和控制寄存器兼容;彼此之间可直接替代  
WQFN (RTW)24 引脚,4.00mm × 4.00mm(间距为 0.5mm)  
封装  
Copyright © 2019, Texas Instruments Incorporated  
3
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
RTW Package  
24-Pin WQFN With Exposed Thermal Pad  
Top View  
AVDD  
AREG  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
SDA_SSZ  
SCL_MOSI  
ADDR0_SCLK  
ADDR1_MISO  
SHDNZ  
VREF  
Thermal Pad (VSS)  
AVSS  
MICBIAS  
IN1P_GPI1  
IN4M_GPO4  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
1
AVDD  
Analog supply  
Analog supply  
Analog power (1.8 V or 3.3 V, nominal)  
Analog on-chip regulator output voltage for analog supply (1.8 V, nominal) or  
external analog power (1.8 V, nominal)  
2
AREG  
3
4
5
VREF  
AVSS  
Analog  
Analog supply  
Analog  
Analog reference voltage filter output  
Analog ground. Short this pin directly to the board ground plane.  
MICBIAS output  
MICBIAS  
Analog input 1P pin or general-purpose digital input 1 (multipurpose functions  
such as digital microphone data, PLL input clock source, and so forth)  
6
IN1P_GPI1  
Analog input/digital input  
Analog input 1M pin or general-purpose digital output 1 (multipurpose functions  
such as digital microphone clock, interrupt, and so forth)  
7
IN1M_GPO1 Analog input/digital output  
Analog input 2P pin or general-purpose digital input 2 (multipurpose functions  
such as digital microphones data, PLL input clock source, and so forth)  
8
IN2P_GPI2  
Analog input/digital input  
Analog input 2M pin or general-purpose digital output 2 (multipurpose functions  
such as digital microphone clock, interrupt, and so forth)  
9
IN2M_GPO2 Analog input/digital output  
Analog input 3P pin or general-purpose digital input 3 (multipurpose functions  
such as digital microphones data, PLL input clock source, and so forth)  
10  
11  
12  
IN3P_GPI3  
Analog input/digital input  
Analog input 3M pin or general-purpose digital output 3 (multipurpose functions  
such as digital microphone clock, interrupt, and so forth)  
IN3M_GPO3 Analog input/digital output  
Analog input 4P pin or general-purpose digital input 4 (multipurpose functions  
such as digital microphones data, PLL input clock source, and so forth)  
IN4P_GPI4  
Analog input/digital input  
Analog input 4M pin or general-purpose digital output 4 (multipurpose functions  
such as digital microphone clock, interrupt, and so forth)  
13  
14  
15  
IN4M_GPO4 Analog input/digital output  
SHDNZ  
Digital input  
Digital I/O  
Device hardware shutdown and reset (active low)  
For I2C operation: I2C slave address A1 pin  
For SPI operation: SPI slave output pin  
ADDR1_MISO  
4
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
For I2C operation: I2C slave address A0 pin  
For SPI operation : SPI serial bit clock  
For I2C operation: clock pin for I2C control bus  
For SPI operation: SPI slave input pin  
16  
ADDR0_SCLK  
Digital input  
Digital input  
17  
SCL_MOSI  
For I2C operation: data pin for I2C control bus  
For SPI operation: SPI slave-select pin  
18  
19  
20  
SDA_SSZ  
IOVDD  
Digital I/O  
Digital supply  
Digital I/O  
Digital I/O power supply (1.8 V or 3.3 V, nominal)  
General-purpose digital input/output 1 (multipurpose functions such as digital  
microphones clock or data, PLL input clock source, interrupt, and so forth)  
GPIO1  
21  
22  
23  
24  
SDOUT  
BCLK  
Digital output  
Digital I/O  
Audio serial data interface bus output  
Audio serial data interface bus bit clock  
FSYNC  
DREG  
Digital I/O  
Audio serial data interface bus frame synchronization signal  
Digital regulator output voltage for digital core supply (1.5 V, nominal)  
Digital supply  
Thermal  
Pad  
Thermal Pad  
(VSS)  
Thermal pad shorted to internal device ground. Short the thermal pad directly to  
the board ground plane.  
Ground supply  
Copyright © 2019, Texas Instruments Incorporated  
5
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over the operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
AVDD to AVSS  
3.9  
Supply voltage  
AREG to AVSS  
2.0  
3.9  
V
IOVDD to VSS (thermal pad)  
AVSS to VSS (thermal pad)  
Analog input pins voltage to AVSS  
Ground voltage differences  
Analog input voltage  
0.3  
V
V
AVDD + 0.3  
Digital input except INxP_GPIx pins voltage to VSS  
(thermal pad)  
–0.3  
–0.3  
IOVDD + 0.3  
AVDD + 0.3  
Digital input voltage  
Temperature  
V
Digital input INxP_GPIx pins voltage to VSS (thermal  
pad)  
Operating ambient, TA  
Junction, TJ  
–40  
–40  
–65  
125  
150  
150  
°C  
Storage, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
POWER  
Analog supply voltage AVDD to AVSS (AREG is generated using onchip regulator) -  
AVDD 3.3-V operation  
3.0  
1.7  
3.3  
1.8  
3.6  
1.9  
AVDD,  
V
V
AREG(1)  
Analog supply voltage AVDD and AREG to AVSS (AREG internal regulator is  
shutdown) - AVDD 1.8-V operation  
IO supply voltage to VSS (thermal pad) - IOVDD 3.3-V operation  
IO supply voltage to VSS (thermal pad) - IOVDD 1.8-V operation  
3.0  
3.3  
1.8  
3.6  
IOVDD  
1.65  
1.95  
INPUTS  
Analog input pins voltage to AVSS  
0
0
0
AVDD  
IOVDD  
AVDD  
V
V
V
Digital input except INxP_GPIx pins voltage to VSS (thermal pad)  
Digital input INxP_GPIx pins voltage to VSS (thermal pad)  
TEMPERATURE  
TA  
Operating ambient temperature  
–40  
125  
°C  
OTHERS  
GPIOx or GPIx (used as MCLK input) clock frequency  
36.864  
400  
MHz  
pF  
SCL and SDA bus capacitance for I2C interface supports standard-mode and fast-  
mode  
Cb  
CL  
SCL and SDA bus capacitance for I2C interface supports fast-mode plus  
Digital output load capacitance  
550  
50  
20  
pF  
(1) AVSS and VSS (thermal pad): all ground pins must be tied together and must not differ in voltage by more than 0.2 V.  
6
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
7.4 Thermal Information  
TLV320ADCx140  
THERMAL METRIC(1)  
RTW (WQFN)  
24 PINS  
32.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
25.0  
11.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
11.9  
RθJC(bot)  
2.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, PLL on (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ADC CONFIGURATION  
Input pins INxP or INxM, 2.5-kinput impedance  
selection  
2.5  
10  
20  
Input pins INxP or INxM, 10-kinput impedance  
selection  
AC input impedance  
Channel gain range  
kΩ  
Input pins INxP or INxM, 20-kinput impednace  
selection  
Programmable range with 1-dB steps  
0
42  
dB  
ADC PERFORMANCE FOR LINE/MICROPHONE INPUT RECORDING : AVDD 3.3-V OPERATION  
Differential input full-scale  
AC-coupled input  
2
1
VRMS  
VRMS  
AC signal voltage  
Single-ended input full-  
AC-coupled input  
scale AC signal voltage  
IN1 differential input selected and AC signal shorted to  
ground, DRE enabled (DRE_LVL = –36 dB,  
DRE_MAXGAIN = 24 dB), 2.5-kinput impedance  
selection  
115  
106  
122  
117  
IN1 differential input selected and AC signal shorted to  
ground, DRE enabled (DRE_LVL = –36 dB,  
DRE_MAXGAIN = 24 dB), 10-kinput impedance  
Signal-to-noise ratio, A-  
SNR  
dB  
weighted(1)(2)  
selection  
IN1 differential input selected and AC signal shorted to  
ground, DRE disabled, 2.5-kinput impedance  
selection, 0-dB channel gain  
112  
108  
IN1 differential input selected and AC signal shorted to  
ground, DRE disabled, 2.5-kinput impedance  
selection, 12-dB channel gain  
IN1 differential input selected and –60-dB full-scale AC  
signal input, DRE enabled (DRE_LVL = –36 dB,  
DRE_MAXGAIN = 24 dB), 2.5-kinput impedance  
selection  
123  
118  
IN1 differential input selected and –60-dB full-scale AC  
signal input, DRE enabled (DRE_LVL = –36 dB,  
DRE_MAXGAIN = 24 dB), 10-kinput impedance  
selection  
Dynamic range, A-  
weighted(2)  
DR  
dB  
IN1 differential input selected and –60-dB full-scale AC  
signal input, DRE disabled, 2.5-kinput impedance  
selection, 0-dB channel gain  
113  
108  
IN1 differential input selected and –72-dB full-scale AC  
signal input, DRE disabled, 2.5-kinput impedance  
selection, 12-dB channel gain  
(1) Ratio of output level with 1-kHz full-scale sine-wave input, to the output level with the AC signal input shorted to ground, measured A-  
weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
Copyright © 2019, Texas Instruments Incorporated  
7
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, PLL on (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IN1 differential input selected and –1-dB full-scale AC  
signal input, DRE enabled (DRE_LVL = –36 dB,  
DRE_MAXGAIN = 24 dB), 2.5-kinput impedance  
selection  
–98  
–80  
IN1 differential input selected and –1-dB full-scale AC  
signal input, DRE enabled (DRE_LVL = –36 dB,  
DRE_MAXGAIN = 24 dB), 10-kinput impedance  
selection  
–98  
Total harmonic  
distortion(2)(3)  
THD+N  
dB  
IN1 differential input selected and –1-dB full-scale AC  
signal input, DRE disabled, 2.5-kinput impedance  
selection, 0-dB channel gain  
–98  
–98  
IN1 differential input selected and –13-dB full-scale AC  
signal input, DRE disabled, 2.5-kinput impedance  
selection, 12-dB channel gain  
ADC PERFORMANCE FOR LINE/MICROPHONE INPUT RECORDING : AVDD 1.8-V OPERATION  
Differential input full-scale  
AC-coupled Input  
1
VRMS  
VRMS  
AC signal voltage  
Single-ended input full-  
AC-coupled Input  
0.5  
scale AC signal voltage  
IN1 differential input selected and AC signal shorted to  
ground, DRE enabled (DRE_LVL = –36 dB,  
DRE_MAXGAIN = 24 dB), 2.5-kinput impedance  
selection  
116  
IN1 differential input selected and AC signal shorted to  
Signal-to-noise ratio, A-  
SNR  
ground, DRE enabled (DRE_LVL = –36 dB,  
DRE_MAXGAIN = 24 dB), 10-kinput impedance  
selection  
dB  
dB  
dB  
weighted(1)(2)  
111  
105  
117  
IN1 differential input selected and AC signal shorted to  
ground, DRE disabled, 2.5-kinput impedance  
selection, 0-dB channel gain  
IN1 differential input selected and –60-dB full-scale AC  
signal input, DRE enabled (DRE_LVL = –36 dB,  
DRE_MAXGAIN = 24 dB), 2.5-kinput impedance  
selection  
IN1 differential input selected and –60-dB full-scale AC  
signal input, DRE enabled (DRE_LVL = –36 dB,  
DRE_MAXGAIN = 24 dB), 10-kinput impedance  
selection  
Dynamic range, A-  
weighted(2)  
DR  
112  
106  
–90  
IN1 differential input selected and –60-dB full-scale AC  
signal input, DRE disabled, 2.5-kinput impedance  
selection, 0-dB channel gain  
IN1 differential input selected and –2-dB full-scale AC  
signal input, DRE enabled (DRE_LVL = –36 dB,  
DRE_MAXGAIN = 24 dB), 2.5-kinput impedance  
selection  
IN1 differential input selected and –2-dB full-scale AC  
signal input, DRE enabled (DRE_LVL = –36 dB,  
DRE_MAXGAIN = 24 dB), 10-kinput impedance  
selection  
Total harmonic  
distortion(2)(3)  
THD+N  
–90  
–90  
IN1 differential input selected and –2-dB full-scale AC  
signal Input, DRE disabled, 2.5-kinput impedance  
selection, 0 dB channel gain  
ADC OTHER PARAMETERS  
Digital volume control  
Programmable 0.5-dB steps  
Programmable  
–100  
7.35  
16  
27  
768  
32  
dB  
kHz  
Bits  
range  
Output data sample rate  
Output data sample word  
length  
Programmable  
Digital high-pass filter  
cutoff frequency  
First-order IIR filter with programmable coefficients, –3-  
dB point (default setting)  
12  
Hz  
dB  
–1-dB full-scale AC-signal input to non measurement  
channel  
Interchannel isolation  
–124  
(3) For best distortion performance, use input AC-coupling capacitors with low-voltage-coefficient.  
8
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Electrical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, PLL on (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Interchannel gain  
mismatch  
–6-dB full-scale AC-signal input and 0-dB channel gain  
0.1  
dB  
0-dB channel gain, across temperature range 15°C to  
35°C  
Gain drift  
–4.4  
0.02  
ppm/°C  
Degrees  
Degrees/°C  
dB  
Interchannel phase  
mismatch  
1-kHz sinusoidal signal  
1-kHz sinusoidal signal, across temperature range 15°C  
to 35°C  
Phase drift  
0.0005  
102  
Power-supply rejection  
ratio  
100-mVPP, 1-kHz sinusoidal signal on AVDD, differential  
input selected, 0-dB channel gain  
PSRR  
CMRR  
Differential microphone input selected, 0-dB channel  
gain, 100-mVPP, 1-kHz signal on both pins and measure  
level at output  
Common-mode rejection  
ratio  
60  
dB  
µVRMS  
V
MICROPHONE BIAS  
MICBIAS noise  
BW = 20 Hz to 20 kHz, A-weighted, 1-μF capacitor  
between MICBIAS and AVSS  
1.6  
MICBIAS programmed to VREF and VREF programmed  
to either 2.75 V, 2.5 V, or 1.375 V  
VREF  
MICBIAS voltage  
MICBIAS programmed to VREF × 1.096 and VREF  
programmed to either 2.75 V, 2.5 V, or 1.375 V  
VREF ×  
1.096  
Bypass to AVDD with 20-mA load  
MICBIAS voltage 2.5 V  
AVDD – 0.2  
20  
10  
MICBIAS current drive  
mA  
MICBIAS voltage < 2.5 V  
MICBIAS programmed to either VREF or VREF ×  
1.096, measured up to max load  
MICBIAS load regulation  
0.1  
30  
0.6  
1.8  
%
MICBIAS over current  
protection threshold  
mA  
DIGITAL I/O  
All digital pins except INxP_GPIx, SDA and SCL, IOVDD  
1.8-V operation  
0.35 ×  
IOVDD  
–0.3  
–0.3  
Low-level digital input logic  
voltage threshold  
VIL  
V
V
V
V
All digital pins except INxP_GPIx, SDA and SCL, IOVDD  
3.3-V operation  
0.8  
All digital pins except INxP_GPIx, SDA and SCL, IOVDD  
1.8-V operation  
0.65 ×  
IOVDD  
IOVDD +  
0.3  
High-level digital input logic  
voltage threshold  
VIH  
All digital pins except INxP_GPIx, SDA and SCL, IOVDD  
3.3-V operation  
IOVDD +  
0.3  
2
All digital pins except INxM_GPOx, SDA and SCL, IOL  
–2 mA, IOVDD 1.8-V operation  
=
=
=
=
0.45  
0.4  
Low-level digital output  
voltage  
VOL  
All digital pins except INxM_GPOx, SDA and SCL, IOL  
–2 mA, IOVDD 3.3-V operation  
All digital pins except INxM_GPOx, SDA and SCL, IOH  
2 mA, IOVDD 1.8-V operation  
IOVDD –  
0.45  
High-level digital output  
voltage  
VOH  
All digital pins except INxM_GPOx, SDA and SCL, IOH  
2 mA, IOVDD 3.3-V operation  
2.4  
–0.5  
Low-level digital input logic  
voltage threshold  
VIL(I2C)  
SDA and SCL  
0.3 x IOVDD  
V
V
V
V
High-level digital input logic  
voltage threshold  
IOVDD +  
0.5  
VIH(I2C)  
VOL1(I2C)  
VOL2(I2C)  
SDA and SCL  
0.7 x IOVDD  
Low-level digital output  
voltage  
SDA, IOL(I2C) = –3 mA, IOVDD > 2 V  
SDA, IOL(I2C) = –2 mA, IOVDD 2 V  
0.4  
Low-level digital output  
voltage  
0.2 x IOVDD  
SDA, VOL(I2C) = 0.4 V, standard-mode or fast-mode  
SDA, VOL(I2C) = 0.4 V, fast-mode plus  
3
Low-level digital output  
current  
IOL(I2C)  
mA  
20  
Input logic-high leakage for  
digital inputs  
IIH  
IIL  
All digital pins except INxP_GPIx pins, input = IOVDD  
All digital pins except INxP_GPIx pins, input = 0 V  
–5  
–5  
0.1  
0.1  
5
5
µA  
µA  
Input logic-low leakage for  
digital inputs  
Copyright © 2019, Texas Instruments Incorporated  
9
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, PLL on (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
–0.3  
–0.3  
TYP  
MAX  
UNIT  
0.35 ×  
AVDD  
All INxP_GPIx digital pins, AVDD 1.8-V operation  
All INxP_GPIx digital pins, AVDD 3.3-V operation  
All INxP_GPIx digital pins, AVDD 1.8-V operation  
All INxP_GPIx digital pins, AVDD 3.3-V operation  
Low-level digital input logic  
voltage threshold  
VIL(GPIx)  
V
0.8  
AVDD + 0.3  
AVDD + 0.3  
0.45  
0.65 ×  
AVDD  
High-level digital input logic  
voltage threshold  
VIH(GPIx)  
V
V
2
All INxM_GPOx digital pins, IOL = –2 mA, AVDD 1.8-V  
operation  
Low-level digital output  
voltage  
VOL(GPOx)  
All INxM_GPOx digital pins, IOL = –2 mA, AVDD 3.3-V  
operation  
0.4  
All INxM_GPOx digital pins, IOH = 2 mA, AVDD 1.8-V  
operation  
AVDD –  
0.45  
High-level digital output  
voltage  
VOH(GPOx)  
V
All INxM_GPOx digital pins, IOH = 2 mA, AVDD 3.3-V  
operation  
2.4  
–5  
–5  
Input logic-high leakage for  
digital inputs  
IIH(GPIx)  
IIL(GPIx)  
CIN  
All INxP_GPIx digital pins, input = AVDD  
All INxP_GPIx digital pins, input = 0 V  
All digital pins  
0.1  
0.1  
5
5
5
µA  
µA  
pF  
Input logic-high leakage for  
digital inputs  
Input capacitance for  
digital inputs  
Pulldown resistance for  
digital I/O pins when  
asserted on  
RPD  
20  
kΩ  
TYPICAL SUPPLY CURRENT CONSUMPTION  
IAVDD SHDNZ = 0, AVDD = 3.3 V, internal AREG  
0.5  
0.5  
SHDNZ = 0, AVDD = 1.8 V, external AREG supply  
(AREG shorted to AVDD)  
IAVDD  
Current consumption in  
hardware shutdown mode  
µA  
IIOVDD  
IIOVDD  
SHDNZ = 0, all external clocks stopped, IOVDD = 3.3 V  
SHDNZ = 0, all external clocks stopped, IOVDD = 1.8 V  
0.1  
0.1  
All external clocks stopped, AVDD = 3.3 V, internal  
AREG  
IAVDD  
IAVDD  
5
5
Current consumption in  
sleep mode (software  
shutdown mode)  
All external clocks stopped, AVDD = 1.8 V, external  
AREG supply (AREG shorted to AVDD)  
µA  
IIOVDD  
IIOVDD  
IAVDD  
All external clocks stopped, IOVDD = 3.3 V  
All external clocks stopped, IOVDD = 1.8 V  
AVDD = 3.3 V, internal AREG  
0.1  
0.1  
11.3  
Current consumption with  
ADC 2-channel operating  
at fS 48-kHz, PLL  
AVDD = 1.8 V, external AREG supply (AREG shorted to  
AVDD)  
IAVDD  
10.7  
mA  
mA  
mA  
mA  
off, BCLK = 512 × fS and  
DRE disable  
IIOVDD  
IIOVDD  
IAVDD  
IOVDD = 3.3 V  
0.1  
0.05  
19.7  
IOVDD = 1.8 V  
AVDD = 3.3 V, internal AREG  
Current consumption with  
ADC 4-channel operating  
at fS 16-kHz, PLL  
on, BCLK = 256 × fS and  
DRE disable  
AVDD = 1.8 V, external AREG supply (AREG shorted to  
AVDD)  
IAVDD  
18.6  
IIOVDD  
IIOVDD  
IAVDD  
IOVDD = 3.3 V  
0.05  
0.02  
21.3  
IOVDD = 1.8 V  
AVDD = 3.3 V, internal AREG  
Current consumption with  
ADC 4-channel operating  
at fS 48-kHz, PLL  
on, BCLK = 256 × fS and  
DRE disable  
AVDD = 1.8 V, external AREG supply (AREG shorted to  
AVDD)  
IAVDD  
20.2  
IIOVDD  
IIOVDD  
IAVDD  
IOVDD = 3.3 V  
0.1  
0.05  
23.6  
IOVDD = 1.8 V  
AVDD = 3.3 V, internal AREG  
Current consumption with  
ADC 4-channel operating  
at fS 48-kHz, PLL  
AVDD = 1.8 V, external AREG supply (AREG shorted to  
AVDD)  
IAVDD  
22.3  
on, BCLK = 256 × fS and  
DRE enable  
IIOVDD  
IIOVDD  
IOVDD = 3.3 V  
IOVDD = 1.8 V  
0.1  
0.05  
10  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
7.6 Timing Requirements: I2C Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V (unless otherwise noted); see Figure 1 for timing diagram  
MIN  
NOM  
MAX  
UNIT  
STANDARD-MODE  
fSCL  
SCL clock frequency  
0
4
100  
kHz  
Hold time (repeated) START condition. After this period, the first clock pulse is  
generated.  
tHD;STA  
μs  
tLOW  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START condition  
Data hold time  
4.7  
4
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
4.7  
0
3.45  
Data setup time  
250  
SDA and SCL rise time  
1000  
300  
tf  
SDA and SCL fall time  
tSU;STO  
tBUF  
Setup time for STOP condition  
Bus free time between a STOP and START condition  
4
4.7  
FAST-MODE  
fSCL  
SCL clock frequency  
0
400  
kHz  
Hold time (repeated) START condition. After this period, the first clock pulse is  
generated.  
tHD;STA  
0.6  
μs  
tLOW  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START condition  
Data hold time  
1.3  
0.6  
0.6  
0
μs  
μs  
μs  
μs  
ns  
ns  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
0.9  
Data setup time  
100  
20  
SDA and SCL rise time  
300  
300  
20 ×  
(IOVDD /  
5.5 V)  
tf  
SDA and SCL fall time  
ns  
tSU;STO  
Setup time for STOP condition  
0.6  
1.3  
μs  
μs  
tBUF  
Bus free time between a STOP and START condition  
FAST-MODE PLUS  
fSCL  
SCL clock frequency  
0
1000  
kHz  
Hold time (repeated) START condition. After this period, the first clock pulse is  
generated.  
tHD;STA  
0.26  
μs  
tLOW  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START condition  
Data hold time  
0.5  
0.26  
0.26  
0
μs  
μs  
μs  
μs  
ns  
ns  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
Data setup time  
50  
SDA and SCL rise time  
120  
120  
20 ×  
(IOVDD /  
5.5 V)  
tf  
SDA and SCL fall time  
ns  
tSU;STO  
tBUF  
Setup time for STOP condition  
0.26  
0.5  
μs  
μs  
Bus free time between a STOP and START condition  
7.7 Switching Characteristics: I2C Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V (unless otherwise noted); see Figure 1 for timing diagram  
PARAMETER  
TEST CONDITIONS  
Standard-mode  
MIN  
250  
250  
TYP  
MAX  
1250  
850  
UNIT  
td(SDA)  
SCL to SDA delay  
Fast-mode  
ns  
Fast-mode plus  
400  
Copyright © 2019, Texas Instruments Incorporated  
11  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
7.8 Timing Requirements: SPI Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 2 for timing diagram  
MIN  
40  
18  
18  
16  
16  
20  
8
NOM  
MAX  
UNIT  
t(SCLK)  
tH(SCLK)  
tL(SCLK)  
tLEAD  
SCLK period  
ns  
SCLK high pulse duration  
SCLK low pulse duration  
Enable lead time  
ns  
ns  
ns  
tTRAIL  
Enable trail time  
ns  
tDSEQ  
Sequential transfer delay  
MOSI data setup time  
MOSI data hold time  
SCLK rise time  
ns  
tSU(MOSI)  
tHLD(MOSI)  
tr(SCLK)  
tf(SCLK)  
ns  
8
ns  
10% - 90% rise time  
90% - 10% fall time  
6
6
ns  
SCLK fall time  
ns  
7.9 Switching Characteristics: SPI Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 2 for timing diagram  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
16  
UNIT  
ns  
ta(MISO)  
td(MISO)  
tdis(MISO)  
MISO access time  
SCLK to MISO delay  
MISO disable time  
50% of SCLK to 50% of MISO  
16  
ns  
20  
ns  
7.10 Timing Requirements: TDM, I2S or LJ Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 3 for timing diagram  
MIN  
40  
18  
18  
8
NOM  
MAX  
UNIT  
t(BCLK)  
BCLK period  
ns  
(1)  
tH(BCLK)  
tL(BCLK)  
tSU(FSYNC)  
tHLD(FSYNC)  
tr(BCLK)  
BCLK high pulse duration  
BCLK low pulse duration  
FSYNC setup time  
FSYNC hold time  
BCLK rise time  
ns  
(1)  
ns  
ns  
8
ns  
10% - 90% rise time  
90% - 10% fall time  
10  
10  
ns  
tf(BCLK)  
BCLK fall time  
ns  
(1) The BCLK minimum high or low pulse duration must be higher than 25 ns (to meet the timing specifications), if the SDOUT data line is  
latched on the opposite BCLK edge polarity than the edge used by the device to transmit SDOUT data.  
7.11 Switching Characteristics: TDM, I2S or LJ Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 3 for timing diagram  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
td(SDOUT-BCLK)  
td(SDOUT-FSYNC)  
BCLK to SDOUT delay  
50% of BCLK to 50% of SDOUT  
18  
ns  
FSYNC to SDOUT delay in TDM  
or LJ mode (for MSB data with  
TX_OFFSET = 0)  
50% of FSYNC to 50% of  
SDOUT  
18  
ns  
BCLK output clock frequency:  
master mode  
f(BCLK)  
24.576  
MHz  
ns  
(1)  
BCLK high pulse duration:  
master mode  
tH(BCLK)  
tL(BCLK)  
td(FSYNC)  
14  
14  
BCLK low pulse duration: master  
mode  
ns  
BCLK to FSYNC delay: master  
mode  
50% of BCLK to 50% of FSYNC  
18  
ns  
tr(BCLK)  
tf(BCLK)  
BCLK rise time: master mode  
BCLK fall time: master mode  
10% - 90% rise time  
90% - 10% fall time  
8
8
ns  
ns  
(1) The BCLK output clock frequency must be lower than 18.5 MHz (to meet the timing specifications), if the SDOUT data line is latched on  
the opposite BCLK edge polarity than the edge used by the device to transmit SDOUT data.  
12  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
7.12 Timing Requirements: PDM Digital Microphone Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 4 for timing diagram  
MIN  
30  
0
NOM  
MAX  
UNIT  
tSU(PDMDINx)  
tHLD(PDMDINx)  
PDMDINx setup time  
PDMDINx hold time  
ns  
ns  
7.13 Switching Characteristics: PDM Digial Microphone Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 4 for timing diagram  
PARAMETER  
TEST CONDITIONS  
MIN  
0.768  
72  
TYP  
MAX  
UNIT  
MHz  
ns  
f(PDMCLK)  
tH(PDMCLK)  
tL(PDMCLK)  
tr(PDMCLK)  
tf(PDMCLK)  
PDMCLK clock frequency  
PDMCLK high pulse duration  
PDMCLK low pulse duration  
PDMCLK rise time  
6.144  
72  
ns  
10% - 90% rise time  
18  
18  
ns  
PDMCLK fall time  
90% - 10% fall time  
ns  
SDA  
tBUF  
tHD;STA  
tLOW  
tr  
td(SDA)  
SCL  
tHD;STA  
tHD;DAT  
tHIGH  
tSU;DAT  
tSU;STA  
tSU;STO  
STO  
STA  
tf  
STA  
STO  
1. I2C Interface Timing Diagram  
SSZ  
tDSEQ  
tLAG  
t(SCLK)  
tf(SCLK)  
tLEAD  
tr(SCLK)  
SCLK  
tL(SCLK)  
tH(SCLK)  
td(MISO)  
tdis(MISO)  
MISO  
MOSI  
MSB OUT  
LSB OUT  
BIT6...1  
BIT6...1  
ta(MISO)  
tSU(MOSI) tHLD(MOSI)  
MSB IN  
LSB IN  
2. SPI Interface Timing Diagram  
版权 © 2019, Texas Instruments Incorporated  
13  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
FSYNC  
tSU(FSYNC)  
tHLD(FSYNC)  
t(BCLK)  
tL(BCLK)  
BCLK  
tH(BCLK)  
tr(BCLK)  
tf(BCLK)  
td(FSYNC)  
td(SDOUT-BCLK)  
td(SDOUT-FSYNC)  
SDOUT  
3. TDM (With BCLK_POL = 1), I2S, and LJ Interface Timing Diagram  
tSU(PDMDINx)  
tHLD(PDMDINx) tSU(PDMDINx)  
tHLD(PDMDINx)  
tH(PDMCLK)  
tL(PDMCLK)  
PDMCLK  
PDMDINx  
t(PDMCLK)  
tf(PDMCLK)  
tr(PDMCLK)  
Falling Edge Captured  
Rising Edge Captured  
4. PDM Digital Microphone Interface Timing Diagram  
14  
版权 © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
7.14 Typical Characteristics  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, PLL on, DRE_LVL = –36 dB, channel gain = 0 dB, and linear phase decimation filter (unless otherwise  
noted); all performance measurements are done with a 20-kHz, low-pass filter, and an A-weighted filter  
-60  
-70  
-60  
-70  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-3 : DRE enabled  
Channel-4 : DRE enabled  
Channel-1 : DRE disabled  
Channel-2 : DRE disabled  
Channel-3 : DRE disabled  
Channel-4 : DRE disabled  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
Input Amplitude (dB)  
Input Amplitude (dB)  
TDH1D0+1  
TDH1D0+1  
Differential input  
Differential input  
5. THD+N vs Input Amplitude With DRE Enabled  
6. THD+N vs Input Amplitude With DRE Disabled  
-60  
-60  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-3 : DRE enabled  
Channel-4 : DRE enabled  
Channel-1 : DRE disabled  
Channel-2 : DRE disabled  
Channel-3 : DRE disabled  
Channel-4 : DRE disabled  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
Input Amplitude (dB)  
Input Amplitude (dB)  
TDH1D0+1  
TDH1D0+1  
Single-ended input  
Single-ended input  
7. THD+N vs Input Amplitude With DRE Enabled  
8. THD+N vs Input Amplitude With DRE Disabled  
-60  
-70  
-60  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-3 : DRE enabled  
Channel-4 : DRE enabled  
Channel-1 : DRE disabled  
Channel-2 : DRE disabled  
Channel-3 : DRE disabled  
Channel-4 : DRE disabled  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
Input Amplitude (dB)  
Input Amplitude (dB)  
TDH1D0+1  
TDH1D0+1  
Differential input with AVDD = 1.8 V and VREF = 1.375 V  
Differential input with AVDD = 1.8 V and VREF = 1.375 V  
9. THD+N vs Input Amplitude With DRE Enabled  
10. THD+N vs Input Amplitude With DRE Disabled  
版权 © 2019, Texas Instruments Incorporated  
15  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, PLL on, DRE_LVL = –36 dB, channel gain = 0 dB, and linear phase decimation filter (unless otherwise  
noted); all performance measurements are done with a 20-kHz, low-pass filter, and an A-weighted filter  
-60  
-60  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-3 : DRE enabled  
Channel-4 : DRE enabled  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20  
50  
100  
500  
1000  
5000 10000 20000  
D103  
20  
50  
100  
500  
1000  
5000 10000 20000  
D410  
Frequency (Hz)  
Frequency (Hz)  
11. THD+N vs Input Frequency With a –60-dBr Input  
12. THD+N vs Input Frequency With a –1-dBr Input  
8
8
Channel-1  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
7.5  
7.5  
7
Channel-2  
Channel-3  
Channel-4  
7
6.5  
6
6.5  
6
5.5  
5
5.5  
5
4.5  
4
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
44  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
44  
Channel Gain (dB)  
Channel Gain (dB)  
TDH1D0+5  
TDH1D0+5  
Differential input  
Single-ended input  
13. Input-Referred Noise vs Channel Gain  
14. Input-Referred Noise vs Channel Gain  
20  
10  
0
-60  
-70  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-80  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
20 30 50 70100 200300 500 1000 2000  
5000 1000020000  
100000  
20  
50  
100  
500  
1000  
5000 10000 20000  
Frequency (Hz)  
AFDrCeq6  
Frequency (Hz)  
D106  
15. Frequency Response With a –12-dBr Input  
16. Power-Supply Rejection Ratio vs Ripple Frequency  
With 100-mVPP Amplitude  
16  
版权 © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, PLL on, DRE_LVL = –36 dB, channel gain = 0 dB, and linear phase decimation filter (unless otherwise  
noted); all performance measurements are done with a 20-kHz, low-pass filter, and an A-weighted filter  
0
0
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-3 : DRE enabled  
Channel-4 : DRE enabled  
Channel-1 : DRE disabled  
Channel-2 : DRE disabled  
Channel-3 : DRE disabled  
Channel-4 : DRE disabled  
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20  
50  
100  
500  
1000  
5000 10000 20000  
ADC6  
20  
50  
100  
500  
1000  
5000 10000 20000  
ADC6  
Frequency (Hz)  
Frequency (Hz)  
17. FFT With Idle Input With DRE Enabled  
18. FFT With Idle Input With DRE Disabled  
0
-20  
0
-20  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-3 : DRE enabled  
Channel-4 : DRE enabled  
Channel-1 : DRE disabled  
Channel-2 : DRE disabled  
Channel-3 : DRE disabled  
Channel-4 : DRE disabled  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20  
50  
100  
500  
1000  
5000 10000 20000  
ADC6  
20  
50  
100  
500  
1000  
5000 10000 20000  
ADC6  
Frequency (Hz)  
Frequency (Hz)  
19. FFT With a –60-dBr Input With DRE Enabled  
20. FFT With a –60-dBr Input With DRE Disabled  
0
0
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-1 : DRE disabled  
Channel-2 : DRE disabled  
-20  
Channel-3 : DRE disabled  
-20  
Channel-3 : DRE enabled  
Channel-4 : DRE enabled  
Channel-4 : DRE disabled  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20  
50  
100  
500  
1000  
5000 10000 20000  
ADC6  
20  
50  
100  
500  
1000  
5000 10000 20000  
ADC6  
Frequency (Hz)  
Frequency (Hz)  
21. FFT With a –1-dBr Input With DRE Enabled  
22. FFT With a –1-dBr Input With DRE Disabled  
版权 © 2019, Texas Instruments Incorporated  
17  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TLV320ADC6140 is a high-performance, low-power, flexible, quad-channel, audio analog-to-digital converter  
(ADC) with extensive feature integration. This device is intended for applications in voice-activated systems,  
professional microphones, audio conferencing, portable computing, communication, and entertainment  
applications. The high dynamic range of the device enables far-field audio recording with high fidelity. This device  
integrates a host of features that reduces cost, board space, and power consumption in space-constrained,  
battery-powered, consumer, home, and industrial applications.  
The TLV320ADC6140 consists of the following blocks:  
Quad-channel, multibit, high-performance delta-sigma (ΔΣ) ADC  
Configurable single-ended or differential audio inputs  
Low-noise, programmable microphone bias output  
Dynamic range enhancer (DRE) to support 120-dB dynamic range  
Automatic gain controller (AGC)  
Programmable decimation filters with linear-phase or low-latency filter  
Programmable channel gain, volume control, biquad filters for each channel  
Programmable phase and gain calibration with fine resolution for each channel  
Programmable high-pass filter (HPF), and digital channel mixer  
Pulse density modulation (PDM) digital microphone interface with high-performance decimation filter  
Integrated low-jitter phase-locked loop (PLL) supporting a wide range of system clocks  
Integrated digital and analog voltage regulators to support single-supply operation  
Communication to the TLV320ADC6140 to configure the control registers is supported using an I2C or SPI  
interface. The device supports a highly flexible audio serial interface [time-division multiplexing (TDM), I2S, or  
left-justified (LJ)] to transmit audio data seamlessly in the system across devices.  
The device can support multiple devices by sharing the common I2C and TDM buses across devices. Moreover,  
the device includes a daisy-chain feature and a secondary audio serial output data pin. These features relax the  
shared TDM bus timing requirements and board design complexities when operating multiple devices for  
applications requiring high audio data bandwidth.  
1 lists the reference abbreviations used throughout this document to registers that control the device.  
1. Abbreviations for Register References  
REFERENCE  
ABBREVIATION  
DESCRIPTION  
EXAMPLE  
Single data bit. The value of a  
single bit in a register.  
Page y, register z, bit k  
Py_Rz_Dk  
Page 4, register 36, bit 0 = P4_R36_D0  
Range of data bits. A range of  
data bits (inclusive).  
Page y, register z, bits k-m  
Page y, register z  
Py_Rz_D[k:m]  
Py_Rz  
Page 4, register 36, bits 3-0 = P4_R36_D[3:0]  
Page 4, register 36 = P4_R36  
One entire register. All eight  
bits in the register as a unit.  
Range of registers. A range of  
registers in the same page.  
Page y, registers z-n  
Py_Rz-Rn  
Page 4, registers 36, 37, 38 = P4_R36-R38  
18  
版权 © 2019, Texas Instruments Incorporated  
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.2 Functional Block Diagram  
Audio Clock Generation  
PLL  
(Input Clock Source -  
BCLK, GPIOx, GPIx)  
Multifunction Pins  
(Digital Microphones  
Interface, Interrupt, PLL  
Input Clock)  
8-Channel Digital Microphone Filters  
GPIO1  
IN1P_GPI1  
ADC  
Channel-1  
PGA  
PGA  
PGA  
PGA  
SDOUT  
IN1M_GPO1  
Digital Filters  
(Low Latency LPF,  
Programmable  
Biquads, AGC)  
IN2P_GPI2  
ADC  
Channel-2  
Audio Serial  
Interface (TDM,  
I2S, LJ)  
IN2M_GPO2  
BCLK  
and  
ADC  
Channel-3  
IN3P_GPI3  
IN3M_GPO3  
Dynamic Range  
Enhancer (DRE)  
ADC  
Channel-4  
IN4P_GPI4  
FSYNC  
IN4M_GPO4  
Programmable  
MICBIAS  
I2C or SPI Control  
Interface  
Regulators, Current Bias  
and Voltage Reference  
SHDNZ  
Microphone Bias  
8.3 Feature Description  
8.3.1 Serial Interfaces  
This device has two serial interfaces: control and audio data. The control serial interface is used for device  
configuration. The audio data serial interface is used for transmitting audio data to the host device.  
8.3.1.1 Control Serial Interfaces  
The device contains configuration registers and programmable coefficients that can be set to the desired values  
for a specific system and application use. All these registers can be accessed using either I2C or SPI  
communication to the device. For more information, see the Programming section.  
8.3.1.2 Audio Serial Interfaces  
Digital audio data flows between the host processor and the TLV320ADC6140 on the digital audio serial interface  
(ASI), or audio bus. This highly flexible ASI bus includes a TDM mode for multichannel operation, support for I2S  
or left-justified protocols format, programmable data length options, very flexible master-slave configurability for  
bus clock lines and the ability to communicate with multiple devices within a system directly.  
版权 © 2019, Texas Instruments Incorporated  
19  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
The bus protocol TDM, I2S, or left-justified (LJ) format can be selected by using the ASI_FORMAT[1:0],  
P0_R7_D[7:6] register bits. As shown in 2 and 3, these modes are all most significant byte (MSB)-first,  
pulse code modulation (PCM) data format, with the output channel data word-length programmable as 16, 20,  
24, or 32 bits by configuring the ASI_WLEN[1:0], P0_R7_D[5:4] register bits.  
2. Audio Serial Interface Format  
P0_R7_D[7:6] : ASI_FORMAT[1:0]  
AUDIO SERIAL INTERFACE FORMAT  
00 (default)  
Time division multiplexing (TDM) mode  
01  
10  
11  
Inter IC sound (I2S) mode  
Left-justified (LJ) mode  
Reserved (do not use this setting)  
3. Audio Output Channel Data Word-Length  
P0_R7_D[5:4] : ASI_WLEN[1:0]  
AUDIO OUTPUT CHANNEL DATA WORD-LENGTH  
00  
01  
Output channel data word-length set to 16 bits  
Output channel data word-length set to 20 bits  
Output channel data word-length set to 24 bits  
Output channel data word-length set to 32 bits  
10  
11 (default)  
The frame sync pin, FSYNC, is used in this audio bus protocol to define the beginning of a frame and has the  
same frequency as the output data sample rates. The bit clock pin, BCLK, is used to clock out the digital audio  
data across the serial bus. The number of bit-clock cycles in a frame must accommodate multiple device active  
output channels with the programmed data word length.  
A frame consists of multiple time-division channel slots (up to 64) to allow all output channel audio data  
transmissions to complete on the audio bus by a device or multiple TLV320ADC6140 devices sharing the same  
audio bus. The device supports up to eight output channels that can be configured to place their audio data on  
bus slot 0 to slot 63. 4 lists the output channel slot configuration settings. In I2S and LJ mode, the slots are  
divided into two sets, left-channel slots and right-channel slots, as described in the Inter IC Sound (I2S) Interface  
and Left-Justified (LJ) Interface sections.  
4. Output Channel Slot Assignment Settings  
P0_R11_D[5:0] : CH1_SLOT[5:0]  
00 0000 = 0d (default)  
00 0001 = 1d  
OUTPUT CHANNEL 1 SLOT ASSIGNMENT  
Slot 0 for TDM or left slot 0 for I2S, LJ.  
Slot 1 for TDM or left slot 1 for I2S, LJ.  
01 1111 = 31d  
10 0000 = 32d  
Slot 31 for TDM or left slot 31 for I2S, LJ.  
Slot 32 for TDM or right slot 0 for I2S, LJ.  
11 1110 = 62d  
11 1111 = 63d  
Slot 62 for TDM or right slot 30 for I2S, LJ.  
Slot 63 for TDM or right slot 31 for I2S, LJ.  
Similarly, the slot assignment setting for output channel 2 to channel 8 can be done using the CH2_SLOT  
(P0_R12) to CH8_SLOT (P0_R18) registers, respectively.  
The slot word length is the same as the output channel data word length set for the device. The output channel  
data word length must be set to the same value for all TLV320ADC6140 devices if all devices share the same  
ASI bus in a system. The maximum number of slots possible for the ASI bus in a system is limited by the  
available bus bandwidth, which depends upon the BCLK frequency, output data sample rate used, and the  
channel data word length configured.  
20  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
The device also includes a feature that offsets the start of the slot data transfer with respect to the frame sync by  
up to 31 cycles of the bit clock. 5 lists the programmable offset configuration settings.  
5. Programmable Offset Settings for the ASI Slot Start  
P0_R8_D[4:0] : TX_OFFSET[4:0]  
PROGRAMMABLE OFFSET SETTING FOR SLOT DATA TRANSMISSION START  
0 0000 = 0d (default)  
The device follows the standard protocol timing without any offset.  
Slot start is offset by one BCLK cycle, as compared to standard protocol timing.  
For I2S or LJ, the left and right slot start is offset by one BCLK cycle, as compared to  
standard protocol timing.  
0 0001 = 1d  
......  
......  
Slot start is offset by 30 BCLK cycles, as compared to standard protocol timing.  
For I2S or LJ, the left and right slot start is offset by 30 BCLK cycles, as compared to  
standard protocol timing.  
1 1110 = 30d  
Slot start is offset by 31 BCLK cycles, as compared to standard protocol timing.  
For I2S or LJ, the left and right slot start is offset by 31 BCLK cycles, as compared to  
standard protocol timing.  
1 1111 = 31d  
The device also features the ability to invert the polarity of the frame sync pin, FSYNC, used to transfer the audio  
data as compared to the default FSYNC polarity used in standard protocol timing. This feature can be set using  
the FSYNC_POL, P0_R7_D3 register bit. Similarly, the device can invert the polarity of the bit clock pin, BCLK,  
which can be set using the BCLK_POL, P0_R7_D2 register bit.  
8.3.1.2.1 Time Division Multiplexed Audio (TDM) Interface  
In TDM mode, also known as DSP mode, the rising edge of FSYNC starts the data transfer with the slot 0 data  
first. Immediately after the slot 0 data transmission, the remaining slot data are transmitted in order. FSYNC and  
each data bit (except the MSB of slot 0 when TX_OFFSET equals 0) is transmitted on the rising edge of BCLK.  
23 to 26 illustrate the protocol timing for TDM operation with various configurations.  
FSYNC  
BCLK  
SDOUT  
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
Slot-2 to Slot-7  
(Word Length : N)  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
23. TDM Mode Standard Protocol Timing (TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1  
2
1
0
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
nth Sample  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Slot-2 to Slot-7  
(Word Length : N)  
TX_OFFSET = 2  
TX_OFFSET = 2  
24. TDM Mode Protocol Timing (TX_OFFSET = 2)  
版权 © 2019, Texas Instruments Incorporated  
21  
 
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
FSYNC  
BCLK  
1
0
N-1  
2
1
0
N-1 N-2 N-3  
2
1
0
2
1
0
N-1 N-2 N-3  
0
N-1 N-2  
3
2
1
0
N-1  
SDOUT  
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Slot-2 to Slot-7  
(Word Length : N)  
TX_OFFSET = 2  
nth Sample  
25. TDM Mode Protocol Timing (No Idle BCLK Cycles, TX_OFFSET = 2)  
FSYNC  
BCLK  
SDOUT  
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
Slot-2 to Slot-7  
(Word Length : N)  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
26. TDM Mode Protocol Timing (TX_OFFSET = 0 and BCLK_POL = 1)  
For proper operation of the audio bus in TDM mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels times the programmed word length of the output channel data.  
The device supports FSYNC as a pulse with a 1-cycle-wide bit clock, but also supports multiples as well. For a  
higher BCLK frequency operation, using TDM mode with a TX_OFFSET value higher than 0 is recommended.  
8.3.1.2.2 Inter IC Sound (I2S) Interface  
The standard I2S protocol is defined for only two channels: left and right. The device extends the same protocol  
timing for multichannel operation. In I2S mode, the MSB of the left slot 0 is transmitted on the falling edge of  
BCLK in the second cycle after the falling edge of FSYNC. Immediately after the left slot 0 data transmission, the  
remaining left slot data are transmitted in order. The MSB of the right slot 0 is transmitted on the falling edge of  
BCLK in the second cycle after the rising edge of FSYNC. Immediately after the right slot 0 data transmission,  
the remaining right slot data are transmitted in order. FSYNC and each data bit is transmitted on the falling edge  
of BCLK. 27 to 30 illustrate the protocol timing for I2S operation with various configurations.  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
27. I2S Mode Standard Protocol Timing (TX_OFFSET = 0)  
22  
版权 © 2019, Texas Instruments Incorporated  
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
FSYNC  
BCLK  
SDOUT  
N-1  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1  
N-1  
1
0
1
0
Left  
Slot-0  
(Word Length : N) (Word Length : N)  
Left  
Slot-2 to Slot-3  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
TX_OFFSET = 1  
TX_OFFSET = 1  
TX_OFFSET = 1  
nth Sample  
28. I2S Protocol Timing (TX_OFFSET = 1)  
FSYNC  
BCLK  
N-1 N-2  
1
0
N-1 N-2  
0
0
N-1  
1
0
N-1  
1
0
N-1 N-2  
0
N-1  
1
0
N-1 N-2  
1
0
SDOUT  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Left  
Slot-1 to Slot-3  
(Word Length : N)  
Right  
Slot-1 to Slot-3  
(Word Length : N)  
nth Sample  
29. I2S Protocol Timing (No Idle BCLK Cycles, TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
30. I2S Protocol Timing (TX_OFFSET = 0 and BCLK_POL = 1)  
For proper operation of the audio bus in I2S mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels (including left and right slots) times the programmed word length  
of the output channel data. The device FSYNC low pulse must be a number of BCLK cycles wide that is greater  
than or equal to the number of active left slots times the data word length configured. Similarly, the FSYNC high  
pulse must be a number of BCLK cycles wide that is greater than or equal to the number of active right slots  
times the data word length configured.  
8.3.1.2.3 Left-Justified (LJ) Interface  
The standard LJ protocol is defined for only two channels: left and right. The device extends the same protocol  
timing for multichannel operation. In LJ mode, the MSB of the left slot 0 is transmitted in the same BCLK cycle  
after the rising edge of FSYNC. Each subsequent data bit is transmitted on the falling edge of BCLK.  
Immediately after the left slot 0 data transmission, the remaining left slot data are transmitted in order. The MSB  
of the right slot 0 is transmitted in the same BCLK cycle after the falling edge of FSYNC. Each subsequent data  
bit is transmitted on the falling edge of BCLK. Immediately after the right slot 0 data transmission, the remaining  
right slot data are transmitted in order. FSYNC is transmitted on the falling edge of BCLK. 31 to 34  
illustrate the protocol timing for LJ operation with various configurations.  
版权 © 2019, Texas Instruments Incorporated  
23  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
31. LJ Mode Standard Protocol Timing (TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1  
N-1  
1
0
1
0
Left  
Slot-0  
(Word Length : N) (Word Length : N)  
Left  
Slot-2 to Slot-3  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
TX_OFFSET = 2  
TX_OFFSET = 2  
TX_OFFSET = 2  
nth Sample  
32. LJ Protocol Timing (TX_OFFSET = 2)  
FSYNC  
BCLK  
N-1 N-2  
1
0
N-1 N-2  
0
0
N-1  
1
0
N-1  
1
0
N-1 N-2  
0
N-1  
1
0
N-1 N-2  
1
0
SDOUT  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Left  
Slot-1 to Slot-3  
(Word Length : N)  
Right  
Slot-1 to Slot-3  
(Word Length : N)  
nth Sample  
33. LJ Protocol Timing (No Idle BCLK Cycles, TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
TX_OFFSET = 1  
TX_OFFSET = 1  
TX_OFFSET = 1  
nth Sample  
34. LJ Protocol Timing (TX_OFFSET = 1 and BCLK_POL = 1)  
For proper operation of the audio bus in LJ mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels (including left and right slots) times the programmed word length  
of the output channel data. The device FSYNC high pulse must be a number of BCLK cycles wide that is greater  
than or equal to the number of active left slots times the data word length configured. Similarly, the FSYNC low  
pulse must be number of BCLK cycles wide that is greater than or equal to the number of active right slots times  
the data word length configured. For a higher BCLK frequency operation, using LJ mode with a TX_OFFSET  
value higher than 0 is recommended.  
24  
版权 © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.3.1.3 Using Multiple Devices With Shared Buses  
The device has many supported features and flexible options that can be used in the system to seamlessly  
connect multiple TLV320ADC6140 devices by sharing a single common I2C control bus and an audio serial  
interface bus. This architecture enables multiple applications to be applied to a system that require a microphone  
array for beam-forming operation, audio conferencing, noise cancellation, and so forth. 35 shows a diagram of  
multiple TLV320ADC6140 devices in a configuration where the control and audio data buses are shared.  
Control Bus œ I2C Interface  
TLV320ADCx140  
U1  
TLV320ADCx140  
U2  
TLV320ADCx140  
U3  
TLV320ADCx140  
U4  
Host Processor  
Audio Data Bus œ TDM, I2S, LJ Interface  
35. Multiple TLV320ADC6140 Devices With Shared Control and Audio Data Buses  
The TLV320ADC6140 consists of the following features to enable seamless connection and interaction of  
multiple devices using a shared bus:  
Supports up to four pin-programmable I2C slave addresses  
I2C broadcast simultaneously writes to (or triggers) all TLV320ADC6140 devices  
Supports up to 64 configuration output channel slots for the audio serial interface  
Tri-state feature (with enable and disable) for the unused audio data slots of the device  
Supports a bus-holder feature (with enable and disable) to keep the last driven value on the audio bus  
The GPIO1 or GPOx pin can be configured as a secondary output data lane for the audio serial interface  
The GPIO1 or GPIx pin can be used in a daisy-chain configuration of multiple TLV320ADC6140 devices  
Supports one BCLK cycle data latching timing to relax the timing requirement for the high-speed interface  
Programmable master and slave options for the audio serial interface  
Ability to synchronize the multiple devices for the simultaneous sampling requirement across devices  
See the Multiple TLV320ADCx140 Devices With a Shared TDM and I2C Bus application report for further details.  
版权 © 2019, Texas Instruments Incorporated  
25  
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.2 Phase-Locked Loop (PLL) and Clock Generation  
The device has a smart auto-configuration block to generate all necessary internal clocks required for the ADC  
modulator and the digital filter engine used for signal processing. This configuration is done by monitoring the  
frequency of the FSYNC and BCLK signal on the audio bus.  
The device supports the various output data sample rates (of the FSYNC signal frequency) and the BCLK to  
FSYNC ratio to configure all clock dividers, including the PLL configuration, internally without host programming.  
6 and 7 list the supported FSYNC and BCLK frequencies.  
6. Supported FSYNC (Multiples or Submultiples of 48 kHz) and BCLK Frequencies  
BCLK (MHz)  
BCLK TO  
FSYNC  
RATIO  
FSYNC  
(8 kHz)  
FSYNC  
(16 kHz)  
FSYNC  
(24 kHz)  
FSYNC  
(32 kHz)  
FSYNC  
(48 kHz)  
FSYNC  
(96 kHz)  
FSYNC  
(192 kHz)  
FSYNC  
(384 kHz)  
FSYNC  
(768 kHz)  
16  
24  
Reserved  
Reserved  
0.256  
0.256  
0.384  
0.512  
0.768  
1.024  
1.536  
2.048  
3.072  
4.096  
6.144  
8.192  
16.384  
Reserved  
0.384  
0.576  
0.512  
0.768  
0.768  
1.152  
1.536  
2.304  
3.072  
4.608  
6.144  
12.288  
9.216  
18.432  
32  
0.768  
1.024  
1.536  
3.072  
6.144  
12.288  
24.576  
48  
0.384  
1.152  
1.536  
2.304  
4.608  
9.216  
18.432  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
64  
0.512  
1.536  
2.048  
3.072  
6.144  
12.288  
24.576  
96  
0.768  
2.304  
3.072  
4.608  
9.216  
18.432  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
128  
192  
256  
384  
512  
1024  
2048  
1.024  
3.072  
4.096  
6.144  
12.288  
18.432  
24.576  
Reserved  
Reserved  
Reserved  
Reserved  
24.576  
1.536  
4.608  
6.144  
9.216  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2.048  
6.144  
8.192  
12.288  
18.432  
24.576  
Reserved  
Reserved  
3.072  
9.216  
12.288  
16.384  
Reserved  
Reserved  
4.096  
12.288  
24.576  
Reserved  
8.192  
16.384  
7. Supported FSYNC (Multiples or Submultiples of 44.1 kHz) and BCLK Frequencies  
BCLK (MHz)  
BCLK TO  
FSYNC  
RATIO  
FSYNC  
(7.35 kHz)  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
(44.1 kHz)  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
(14.7 kHz) (22.05 kHz) (29.4 kHz)  
(88.2 kHz) (176.4 kHz) (352.8 kHz) (705.6 kHz)  
16  
24  
Reserved  
Reserved  
Reserved  
0.3528  
Reserved  
0.3528  
0.4704  
0.7056  
0.9408  
1.4112  
1.8816  
2.8224  
3.7632  
5.6448  
7.5264  
15.0528  
Reserved  
0.3528  
0.5292  
0.7056  
1.0584  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
22.5792  
Reserved  
0.4704  
0.7056  
0.7056  
1.0584  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
16.9344  
32  
0.9408  
1.4112  
2.8224  
5.6448  
11.2896  
22.5792  
48  
1.4112  
2.1168  
4.2336  
8.4672  
16.9344  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
64  
0.4704  
1.8816  
2.8224  
5.6448  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
22.5792  
96  
0.7056  
2.8224  
4.2336  
8.4672  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
128  
192  
256  
384  
512  
1024  
2048  
0.9408  
3.7632  
5.6448  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
Reserved  
Reserved  
1.4112  
5.6448  
8.4672  
1.8816  
7.5264  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
2.8224  
11.2896  
15.0528  
Reserved  
Reserved  
3.7632  
7.5264  
15.0528  
26  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
The status register ASI_STS, P0_R21, captures the device auto detect result for the FSYNC frequency and the  
BCLK to FSYNC ratio. If the device finds any unsupported combinations of FSYNC frequency and BCLK to  
FSYNC ratios, the device generates an ASI clock-error interrupt and mutes the record channels accordingly.  
The device uses an integrated, low-jitter, phase-locked loop (PLL) to generate internal clocks required for the  
ADC modulator and digital filter engine, as well as other control blocks. The device also supports an option to  
use BCLK, GPIO1, or the GPIx pin (as MCLK) as the audio clock source without using the PLL to reduce power  
consumption. However, the ADC performance may degrade based on jitter from the external clock source, and  
some processing features may not be supported if the external audio clock source frequency is not high enough.  
Therefore, TI recommends using the PLL for high-performance applications. More details and information on how  
to configure and use the device in low-power mode without using the PLL are discussed in the TLV320ADCx140  
Operation for Low-Power Critical Applications application report.  
The device also supports an audio bus master mode operation using the GPIO1 or GPIx pin (as MCLK) as the  
reference input clock source and supports various flexible options and a wide variety of system clocks. More  
details and information on master mode configuration and operation are discussed in the Configuring and  
Operating the TLV320ADCx140 as an Audio Bus Master application report.  
The audio bus clock error detection and auto-detect feature automatically generates all internal clocks, but can  
be disabled using the ASI_ERR, P0_R9_D5 and AUTO_CLK_CFG, P0_R19_D6, register bits, respectively. In  
the system, this disable feature can be used to support custom clock frequencies that are not covered by the  
auto detect scheme. For such application use cases, care must be taken to ensure that the multiple clock  
dividers are all configured appropriately. Therefore, TI recommends using the PPC3 GUI for device configuration  
settings; for more details see the TLV320ADCx140 Evaluation module user's guide and the PurePath™ console  
graphical development suite.  
8.3.3 Input Channel Configurations  
The device consists of four pairs of analog input pins (INxP and INxM) that can be configured as differential  
inputs or single-ended inputs for the recording channel. The device supports simultaneous recording of up to four  
channels using the high-performance multichannel ADC. The input source for the analog pins can be from  
electret condenser analog microphones, microelectrical-mechanical system (MEMS) analog microphones, or line-  
in (auxiliary) inputs from the system board. Additionally, if the application uses digital PDM microphones for the  
recording, then the INxP and INxM pins can be reconfigured in the device to support up to eight channels for the  
digital microphone recording. 8 shows the input source selection for the record channel.  
8. Input Source Selection for the Record Channel  
P0_R60_D[6:5] : CH1_INSRC[1:0]  
INPUT CHANNEL 1 RECORD SOURCE SELECTION  
Analog differential input for channel 1 (this setting is valid only when the GPI1 and GPO1 pin  
functions are disabled)  
00 (default)  
Analog single-ended Input for channel 1 (this setting is valid only when the GPI1 and GPO1  
pin functions are disabled)  
01  
Digital PDM input for channel 1 (configure the GPIx and GPOx pin accordingly for PDMDIN1  
and PDMCLK)  
10  
11  
Reserved (do not use this setting)  
Similarly, the input source selection setting for input channel 2, channel 3, and channel 4 can be configured  
using the CH2_INSRC[1:0] (P0_R65_D[6:5]), CH3_INSRC[1:0] (P0_R70_D[6:5]), and CH4_INSRC[1:0]  
(P0_R75_D[6:5]) register bits, respectively.  
Typically, voice or audio signal inputs are capacitively coupled (AC-coupled) to the device; however, the device  
also supports an option for DC-coupled inputs to save board space. This configuration can be done  
independently for each channel by setting the CH1_DC (P0_R60_D4), CH2_DC (P0_R65_D4), CH3_DC  
(P0_R70_D4), and CH4_DC (P0_R75_D4) register bits. The INM pin can be directly grounded in DC-coupled  
mode (see 36), but the INM pin must be grounded after the AC-coupling capacitor in AC-coupled mode (see  
37) for the single-ended input configuration. For the best dynamic range performance, the differential AC-  
coupled input must be used with the DRE enabled.  
版权 © 2019, Texas Instruments Incorporated  
27  
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Line or  
Microphone  
INxP  
Line or  
Microphone  
Single-ended  
Input  
INxP  
INxM  
Single-ended  
Input  
INxM  
GND  
37. Single-Ended AC-Coupled Input Connection  
TLV320ADCx140  
TLV320ADCx140  
GND  
36. Single-Ended DC-Coupled Input Connection  
The device allows for flexibility in choosing the typical input impedance on INxP or INxM from 2.5 k(default),  
10 k, and 20 kbased on the input source impedance. The higher input impedance results in slightly higher  
noise or lower dynamic range. 9 lists the configuration register settings for the input impedance for the record  
channel.  
9. Input Impedance Selection for the Record Channel  
P0_R60_D[3:2] : CH1_IMP[1:0]  
CHANNEL 1 INPUT IMPEDANCE SELECTION  
Channel 1 input impedance typical value is 2.5 kon INxP or INxM  
Channel 1 input impedance typical value is 10 kon INxP or INxM  
Channel 1 input impedance typical value is 20 kon INxP or INxM  
Reserved (do not use this setting)  
00 (default)  
01  
10  
11  
Similarly, the input impedance selection setting for input channel 2, channel 3, and channel 4 can be configured  
using the CH2_IMP[1:0] (P0_R65_D[3:2]), CH3_IMP[1:0] (P0_R70_D[3:2]), and CH4_IMP[1:0] (P0_R75_D[3:2])  
register bits, respectively.  
The value of the coupling capacitor in AC-coupled mode must be chosen so that the high-pass filter formed by  
the coupling capacitor and the input impedance do not affect the signal content. Before proper recording can  
begin, this coupling capacitor must be charged up to the common-mode voltage at power-up. To enable quick  
charging, the device has modes to speed up the charging of the coupling capacitor. The default value of the  
quick-charge timing is set for a coupling capacitor up to 1 µF. However, if a higher-value capacitor is used in the  
system, then the quick-charging timing can be increased by using the INCAP_QCHG (P0_R5_D[5:4]) register  
bits. For best distortion performance, use the low-voltage coefficient capacitors for AC coupling. The input  
impedance value of 2.5 kis not supported for the DC-coupled input.  
8.3.4 Reference Voltage  
All audio data converters require a DC reference voltage. The TLV320ADC6140 achieves low-noise performance  
by internally generating a low-noise reference voltage. This reference voltage is generated using a band-gap  
circuit with high PSRR performance. This audio converter reference voltage must be filtered externally using a  
minimum 1-µF capacitor connected from the VREF pin to analog ground (AVSS).  
The value of this reference voltage can be configured using the P0_R59_D[1:0] register bits and must be set to  
an appropriate value based on the desired full-scale input for the device and the AVDD supply voltage available  
in the system. The default VREF value is set to 2.75 V, which in turn supports a 2-VRMS differential full-scale  
input to the device. The required minimum AVDD voltage for this mode is 3 V. 10 lists the various VREF  
settings supported along with required AVDD range and the supported full-scale input signal for that  
configuration.  
10. VREF Programmable Settings  
VREF OUTPUT  
VOLTAGE (Same as  
Internal ADC VREF)  
DIFFERENTIAL FULL-  
SCALE INPUT  
SINGLE-ENDED FULL-  
SCALE INPUT  
P0_R59_D[1:0] :  
ADC_FSCALE[1:0]  
AVDD RANGE  
REQUIREMENT  
SUPPORTED  
SUPPORTED  
00 (default)  
2.75 V  
2.5 V  
2 VRMS  
1.818 VRMS  
1 VRMS  
1 VRMS  
0.909 VRMS  
0.5 VRMS  
Reserved  
3 V to 3.6 V  
2.8 V to 3.6 V  
1.7 V to 1.9 V  
Reserved  
01  
10  
11  
1.375 V  
Reserved  
Reserved  
28  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
To achieve low-power consumption, this audio reference block is powered down as described in the Sleep Mode  
or Software Shutdown section. When exiting sleep mode, the audio reference block is powered up using the  
internal fast-charge scheme and the VREF pin settles to its steady-state voltage after the settling time (a function  
of the decoupling capacitor on the VREF pin). This time is approximately equal to 3.5 ms when using a 1-μF  
decoupling capacitor. If a higher-value decoupling capacitor is used on the VREF pin, the fast-charge setting  
must be reconfigured using the VREF_QCHG, P0_R2_D[4:3] register bits, which support options of 3.5 ms  
(default), 10 ms, 50 ms, or 100 ms.  
8.3.5 Programmable Microphone Bias  
The device integrates a built-in, low-noise microphone bias pin that can be used in the system for biasing  
electret-condenser microphones or providing the supply to the MEMS analog or digital microphone. The  
integrated bias amplifier supports up to 20 mA of load current that can be used for multiple microphones and is  
designed to provide a combination of high PSRR, low noise, and programmable bias voltages to allow the  
biasing to be fine tuned for specific microphone combinations.  
When using this MICBIAS pin for biasing or supplying to multiple microphones, avoid any common impedance on  
the board layout for the MICBIAS connection to minimize coupling across microphones. 11 shows the  
available microphone bias programmable options.  
11. MICBIAS Programmable Settings  
P0_R59_D[6:4] : MBIAS_VAL[2:0]  
P0_R59_D[1:0] : ADC_FSCALE[1:0]  
MICBIAS OUTPUT VOLTAGE  
2.75 V (same as the VREF output)  
2.5 V (same as the VREF output)  
1.375 V (same as the VREF output)  
3.014 V (1.096 times the VREF output)  
2.740 V (1.096 times the VREF output)  
1.507 V (1.096 times the VREF output)  
Reserved (do not use these settings)  
Same as AVDD  
00 (default)  
000 (default)  
01  
10  
00 (default)  
001  
01  
10  
010 to 101  
110  
XX  
XX  
XX  
111  
Reserved (do not use this setting)  
The microphone bias output can be powered on or powered off (default) by configuring the MICBIAS_PDZ,  
P0_R117_D7 register bit. Additionally, the device provides an option to configure the GPIO1 or GPIx pin to  
directly control the microphone bias output powering on or off. This feature is useful to control the microphone  
directly without engaging the host for I2C or SPI communication. The MICBIAS_PDZ, P0_R117_D7 register bit  
value is ignored if the GPIO1 or GPIx pin is configured to set the microphone bias on or off.  
版权 © 2019, Texas Instruments Incorporated  
29  
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.6 Signal-Chain Processing  
The TLV320ADC6140 signal chain is comprised of very-low-noise, high-performance, and low-power analog  
blocks and highly flexible and programmable digital processing blocks. The high performance and flexibility  
combined with a compact package makes the TLV320ADC6140 optimized for a variety of end-equipments and  
applications that require multichannel audio capture. 38 shows a conceptual block diagram that highlights the  
various building blocks used in the signal chain, and how the blocks interact in the signal chain.  
PDMCLK  
PDM  
Interface  
PDMIN  
Digital Microphone  
M
U
X
Phase  
Calibration  
Decimation  
Filters  
INP  
INM  
PGA  
ADC  
Output  
Channel  
Data to ASI  
Gain  
Calibration  
Digital  
Summer/Mixer  
Biquad  
Filters  
Digital Volume  
Control (DVC)  
HPF  
Other Input Channels Processed Data  
after Gain Calibration  
38. Signal-Chain Processing Flowchart  
The front-end PGA is very low noise, with a 120-dB dynamic range performance. Along with a low-noise and low-  
distortion, multibit, delta-sigma ADC, the front-end PGA enables the TLV320ADC6140 to record a far-field audio  
signal with very high fidelity, both in quiet and loud environments. Moreover, the ADC architecture has inherent  
antialias filtering with a high rejection of out-of-band frequency noise around multiple modulator frequency  
components. Therefore, the device prevents noise from aliasing into the audio band during ADC sampling.  
Further on in the signal chain, an integrated, high-performance multistage digital decimation filter sharply cuts off  
any out-of-band frequency noise with high stop-band attenuation.  
The device also has an integrated programmable biquad filter that allows for custom low-pass, high-pass, or any  
other desired frequency shaping. Thus, the overall signal chain architecture removes the requirement to add  
external components for antialiasing low-pass filtering, and thus saves drastically on the external system  
component cost and board space. See the TLV320ADCx140 Integrated Analog Antialiasing Filter and Flexible  
Digital Filter application report for further details.  
The signal chain also consists of various highly programmable digital processing blocks such as phase  
calibration, gain calibration, high-pass filter, digital summer or mixer, biquad filters, and volume control. The  
details on these processing blocks are discussed further in this section. The device also supports up to eight  
digital PDM microphone recording channels when the analog record channels are not used. Channels 1 to 4 in  
the signal chain block diagram of 38 are as described in this section, however, channels 5 to 8 only support  
the digital microphone recording option and do not support the digital summer or mixer option.  
The desired input channels for recording can be enabled or disabled by using the IN_CH_EN (P0_R115)  
register, and the output channels for the audio serial interface can be enabled or disabled by using the  
ASI_OUT_EN (P0_R116) register. In general, the device supports simultaneous power-up and power-down of all  
active channels for simultaneous recording. However, based on the application needs, if some channels must be  
powered-up or powered-down dynamically when the other channel recording is on, then that use case is  
supported by setting the DYN_CH_PUPD_EN, P0_R117_D4 register bit to 1'b1.  
The device supports an input signal bandwidth up to 80 kHz, which allows the high-frequency non-audio signal to  
be recorded by using a 176.4-kHz (or higher) sample rate.  
For output sample rates of 48 kHz or lower, the device supports all features for 8-channel recording and various  
programmable processing blocks. However, for output sample rates higher than 48 kHz, there are limitations in  
the number of simultaneous channel recordings supported and the number of biquad filters and such. See the  
TLV320ADCx140 Sampling Rates and Programmable Processing Blocks Supported application report for further  
details.  
30  
版权 © 2019, Texas Instruments Incorporated  
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.3.6.1 Programmable Channel Gain and Digital Volume Control  
The device has an independent programmable channel gain setting for each input channel that can be set to the  
appropriate value based on the maximum input signal expected in the system and the ADC VREF setting used  
(see the Reference Voltage section), which determines the ADC full-scale signal level.  
Configure the desired channel gain setting before powering up the ADC channel and do not change this setting  
while the ADC is powered on. The programmable range supported for each channel gain is from 0 dB to 42 dB in  
steps of 1 dB. To achieve low-noise performance, the device internal logic first maximizes the gain for the front-  
end low-noise analog PGA, which supports a dynamic range of 120 dB, and then applies any residual  
programmed channel gain in the digital processing block.  
12 shows the programmable options available for the channel gain.  
12. Channel Gain Programmable Settings  
P0_R61_D[7:2] : CH1_GAIN[5:0]  
00 0000 = 0d (default)  
00 0001 = 1d  
CHANNEL GAIN SETTING FOR INPUT CHANNEL 1  
Input channel 1 gain is set to 0 dB  
Input channel 1 gain is set to 1 dB  
Input channel 1 gain is set to 2 dB  
00 0010 = 2d  
10 1001 = 41d  
Input channel 1 gain is set to 41 dB  
Input channel 1 gain is set to 42 dB  
Reserved (do not use these settings)  
10 1010 = 42d  
10 1011 to 11 1111 = 43d to 63d  
Similarly, the channel gain setting for input channel 2, channel 3, and channel 4 can be configured using the  
CH2_GAIN (P0_R66), CH3_GAIN (P0_R71), and CH4_GAIN (P0_R76) register bits, respectively. The channel  
gain feature is not available for the digital microphone record path.  
The device also has a programmable digital volume control with a range from –100 dB to 27 dB in steps of  
0.5 dB with the option to mute the channel recording. The digital volume control value can be changed  
dynamically while the ADC channel is powered-up and recording. During volume control changes, the soft ramp-  
up or ramp-down volume feature is used internally to avoid any audible artifacts. Soft-stepping can be entirely  
disabled using the DISABLE_SOFT_STEP (P0_R108_D4) register bit.  
The digital volume control setting is independently available for each output channel, including the digital  
microphone record channel. However, the device also supports an option to gang-up the volume control setting  
for all channels together using the channel 1 digital volume control setting, regardless if channel 1 is powered up  
or powered down. This gang-up can be enabled using the DVOL_GANG (P0_R108_D7) register bit.  
13 shows the programmable options available for the digital volume control.  
13. Digital Volume Control (DVC) Programmable Settings  
P0_R62_D[7:0] : CH1_DVOL[7:0]  
0000 0000 = 0d  
0000 0001 = 1d  
0000 0010 = 2d  
0000 0011 = 3d  
DVC SETTING FOR OUTPUT CHANNEL 1  
Output channel 1 DVC is set to mute  
Output channel 1 DVC is set to –100 dB  
Output channel 1 DVC is set to –99.5 dB  
Output channel 1 DVC is set to –99 dB  
1100 1000 = 200d  
1100 1001 = 201d (default)  
1100 1010 = 202d  
Output channel 1 DVC is set to –0.5 dB  
Output channel 1 DVC is set to 0 dB  
Output channel 1 DVC is set to 0.5 dB  
1111 1101 = 253d  
1111 1110 = 254d  
1111 1111 = 255d  
Output channel 1 DVC is set to 26 dB  
Output channel 1 DVC is set to 26.5 dB  
Output channel 1 DVC is set to 27 dB  
版权 © 2019, Texas Instruments Incorporated  
31  
 
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Similarly, the digital volume control setting for output channel 2 to channel 8 can be configured using the  
CH2_DVOL (P0_R67) to CH8_DVOL (P0_R97) register bits, respectively.  
The internal digital processing engine soft ramps up the volume from a muted level to the programmed volume  
level when the channel is powered up, and the internal digital processing engine soft ramps down the volume  
from a programmed volume to mute when the channel is powered down. This soft-stepping of volume is done to  
prevent abruptly powering up and powering down the record channel. This feature can also be entirely disabled  
using the DISABLE_SOFT_STEP (P0_R108_D4) register bit.  
8.3.6.2 Programmable Channel Gain Calibration  
Along with the programmable channel gain and digital volume, this device also provides programmable channel  
gain calibration. The gain of each channel can be finely calibrated or adjusted in steps of 0.1 dB for a range of  
–0.8-dB to 0.7-dB gain error. This adjustment is useful when trying to match the gain across channels resulting  
from external components and microphone sensitivity. This feature, in combination with the regular digital volume  
control, allows the gains across all channels to be matched for a wide gain error range with a resolution of  
0.1 dB. 14 shows the programmable options available for the channel gain calibration.  
14. Channel Gain Calibration Programmable Settings  
P0_R63_D[7:4] : CH1_GCAL[3:0]  
CHANNEL GAIN CALIBRATION SETTING FOR INPUT CHANNEL 1  
Input channel 1 gain calibration is set to –0.8 dB  
Input channel 1 gain calibration is set to –0.7 dB  
0000 = 0d  
0001 = 1d  
1000 = 8d (default)  
Input channel 1 gain calibration is set to 0 dB  
1110 = 14d  
1111 = 15d  
Input channel 1 gain calibration is set to 0.6 dB  
Input channel 1 gain calibration is set to 0.7 dB  
Similarly, the channel gain calibration setting for input channel 2 to channel 8 can be configured using the  
CH2_GCAL (P0_R68) to CH8_GCAL (P0_R98) register bits, respectively.  
8.3.6.3 Programmable Channel Phase Calibration  
In addition to the gain calibration, the phase delay in each channel can be finely calibrated or adjusted in steps of  
one modulator clock cycle for a cycle range of 0 to 255 for the phase error. The modulator clock, the same clock  
used for ADC_MOD_CLK, is 6.144 MHz (the output data sample rate is multiples or submultiples of 48 kHz) or  
5.6448 MHz (the output data sample rate is multiples or submultiples of 44.1 kHz) irrespective of the analog  
microphone or digital microphone use case. This feature is very useful for many applications that must match the  
phase with fine resolution between each channel, including any phase mismatch across channels resulting from  
external components or microphones. 15 shows the available programmable options for channel phase  
calibration.  
15. Channel Phase Calibration Programmable Settings  
P0_R64_D[7:0] : CH1_PCAL[7:0]  
0000 0000 = 0d (default)  
0000 0001 = 1d  
CHANNEL PHASE CALIBRATION SETTING FOR INPUT CHANNEL 1  
Input channel 1 phase calibration with no delay  
Input channel 1 phase calibration delay is set to one cycle of the modulator clock  
Input channel 1 phase calibration delay is set to two cycles of the modulator clock  
0000 0010 = 2d  
1111 1110 = 254d  
1111 1111 = 255d  
Input channel 1 phase calibration delay is set to 254 cycles of the modulator clock  
Input channel 1 phase calibration delay is set to 255 cycles of the modulator clock  
Similarly, the channel phase calibration setting for input channel 2 to channel 8 can be configured using the  
CH2_PCAL (P0_R69) to CH8_PCAL (P0_R99) register bits, respectively.  
The phase calibration feature must not be used when the analog input and PDM input are used together for  
simultaneous conversion.  
32  
版权 © 2019, Texas Instruments Incorporated  
 
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.3.6.4 Programmable Digital High-Pass Filter  
To remove the DC offset component and attenuate the undesired low-frequency noise content in the record data,  
the device supports a programmable high-pass filter (HPF). The HPF is not a channel-independent filter setting  
but is globally applicable for all ADC channels. This HPF is constructed using the first-order infinite impulse  
response (IIR) filter, and is efficient enough to filter out possible DC components of the signal. 16 shows the  
predefined –3-dB cutoff frequencies available that can be set by using the HPF_SEL[1:0] register bits of  
P0_R107. Additionally, to achieve a custom –3-dB cutoff frequency for a specific application, the device also  
allows the first-order IIR filter coefficients to be programmed when the HPF_SEL[1:0] register bits are set to  
2'b00. 39 illustrates a frequency response plot for the HPF filter.  
16. HPF Programmable Settings  
P0_R107_D[1:0] :  
HPF_SEL[1:0]  
-3-dB CUTOFF FREQUENCY  
SETTING  
-3-dB CUTOFF FREQUENCY AT  
16-kHz SAMPLE RATE  
-3-dB CUTOFF FREQUENCY AT  
48-kHz SAMPLE RATE  
00  
01 (default)  
10  
Programmable 1st-order IIR filter  
0.00025 × fS  
Programmable 1st-order IIR filter  
Programmable 1st-order IIR filter  
4 Hz  
32 Hz  
128 Hz  
12 Hz  
96 Hz  
0.002 × fS  
11  
0.008 × fS  
384 Hz  
3
0
-3  
-6  
-9  
-12  
-15  
-18  
-21  
-24  
-27  
-30  
-33  
-36  
-39  
-42  
-45  
5E-5  
HPF -3 dB Cutoff = 0.00025 ì fS  
HPF -3 dB Cutoff = 0.002 ì fS  
HPF -3 dB Cutoff = 0.008 ì fS  
0.0001  
0.0005  
0.001  
Normalized Frequency (1/fS)  
0.005  
0.01  
0.05  
D003  
39. HPF Filter Frequency Response Plot  
公式 1 gives the transfer function for the first-order programable IIR filter:  
00 + 01VF1  
231 F &1VF1  
: ;  
* V =  
(1)  
The frequency response for this first-order programmable IIR filter with default coefficients is flat at a gain of 0 dB  
(all-pass filter). The host device can override the frequency response by programming the IIR coefficients in 表  
17 to achieve the desired frequency response for high-pass filtering or any other desired filtering. If  
HPF_SEL[1:0] are set to 2'b00, the host device must write these coefficients values for the desired frequency  
response before powering-up any ADC channel for recording. 17 shows the filter coefficients for the first-order  
IIR filter.  
17. 1st-Order IIR Filter Coefficients  
FILTER  
COEFFICIENT  
DEFAULT COEFFICIENT  
VALUE  
COEFFICIENT REGISTER  
MAPPING  
FILTER  
N0  
N1  
D1  
0x7FFFFFFF  
0x00000000  
0x00000000  
P4_R72-R75  
P4_R76-R79  
P4_R80-R83  
Programmable 1st-order IIR filter (can be  
allocated to HPF or any other desired filter)  
版权 © 2019, Texas Instruments Incorporated  
33  
 
 
 
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.6.5 Programmable Digital Biquad Filters  
The device supports up to 12 programmable digital biquad filters. These highly efficient filters achieve the desired  
frequence response. In digital signal processing, a digital biquad filter is a second-order, recursive linear filter  
with two poles and two zeros. 公式 2 gives the transfer function of each biquad filter:  
00 + 201VF1 + 02VF2  
231 F 2&1VF1 F &2VF2  
: ;  
* V =  
(2)  
The frequency response for the biquad filter section with default coefficients is flat at a gain of 0 dB (all-pass  
filter). The host device can override the frequency response by programming the biquad coefficients to achieve  
the desired frequency response for a low-pass, high-pass, or any other desired frequency shaping. The  
programmable coefficients for the mixer operation are located in the Programmable Coefficient Registers: Page =  
0x02 and Programmable Coefficient Registers: Page = 0x03 sections. If biquad filtering is required, then the host  
device must write these coefficients values before powering up any ADC channels for recording. As described in  
18, these biquad filters can be allocated for each output channel based on the BIQUAD_CFG[1:0] register  
setting of P0_R108. By setting BIQUAD_CFG[1:0] to 2'b00, the biquad filtering for all record channels is disabled  
and the host device can choose this setting if no additional filtering is required for the system application. See the  
TLV320ADCx140 Programmable Biquad Filter Configuration and Applications application report for further  
details.  
18. Biquad Filter Allocation to the Record Output Channel  
RECORD OUTPUT CHANNEL ALLOCATION USING P0_R108_D[6:5] REGISTER SETTING  
BIQUAD_CFG[1:0] = 2'b01  
(1 Biquad per Channel)  
BIQUAD_CFG[1:0] = 2'b10 (Default)  
(2 Biquads per Channel)  
BIQUAD_CFG[1:0] = 2'b11  
(3 Biquads per Channel)  
PROGRAMMABLE  
BIQUAD FILTER  
SUPPORTS ALL 8 CHANNELS  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Not used  
SUPPORTS UP TO 6 CHANNELS  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 5  
Allocated to output channel 6  
Allocated to output channel 5  
Allocated to output channel 6  
SUPPORTS UP TO 4 CHANNELS  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Biquad filter 1  
Biquad filter 2  
Biquad filter 3  
Biquad filter 4  
Biquad filter 5  
Biquad filter 6  
Biquad filter 7  
Biquad filter 8  
Biquad filter 9  
Biquad filter 10  
Biquad filter 11  
Biquad filter 12  
Not used  
Not used  
Not used  
Allocated to output channel 5  
Allocated to output channel 6  
Allocated to output channel 7  
Allocated to output channel 8  
19 shows the biquad filter coefficients mapping to the register space.  
19. Biquad Filter Coefficients Register Mapping  
PROGRAMMABLE BIQUAD  
FILTER  
BIQUAD FILTER COEFFICIENTS  
REGISTER MAPPING  
PROGRAMMABLE BIQUAD  
FILTER  
BIQUAD FILTER COEFFICIENTS  
REGISTER MAPPING  
Biquad filter 1  
Biquad filter 2  
Biquad filter 3  
Biquad filter 4  
Biquad filter 5  
Biquad filter 6  
P2_R8-R27  
P2_R28-R47  
P2_R48-R67  
P2_R68-R87  
P2_R88-R107  
P2_R108-R127  
Biquad filter 7  
Biquad filter 8  
Biquad filter 9  
Biquad filter 10  
Biquad filter 11  
Biquad filter 12  
P3_R8-R27  
P3_R28-R47  
P3_R48-R67  
P3_R68-R87  
P3_R88-R107  
P3_R108-R127  
34  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.3.6.6 Programmable Channel Summer and Digital Mixer  
For applications that require an even higher SNR than that supported for each channel, the device digital  
summing mode can be used. In this mode, the digital record data are summed up across the channel with an  
equal weightage factor, which helps in reducing the effective record noise. 20 lists the configuration settings  
available for channel summing mode.  
20. Channel Summing Mode Programmable Settings  
SNR AND DYNAMIC RANGE  
P0_R107_D[3:2] : CH_SUM[2:0]  
CHANNEL SUMMING MODE FOR INPUT CHANNELS  
Channel summing mode is disabled  
BOOST  
00 (Default)  
Not applicable  
Output channel 1 = (input channel 1 + input channel 2) / 2  
Output channel 2 = (input channel 1 + input channel 2) / 2  
Output channel 3 = (input channel 3 + input channel 4) / 2  
Output channel 4 = (input channel 3 + input channel 4) / 2  
Output channel 5 = (input channel 5 + input channel 6) / 2  
Output channel 6 = (input channel 5 + input channel 6) / 2  
Around 3-dB boost in SNR and  
dynamic range  
01  
Output channel 1 = (input channel 1 + input channel 2 + input  
channel 3 + input channel 4) / 4  
Output channel 2 = (input channel 1 + input channel 2 + input  
channel 3 + input channel 4) / 4  
Around 6-dB boost in SNR and  
dynamic range  
10  
11  
Output channel 3 = (input channel 1 + input channel 2 + input  
channel 3 + input channel 4) / 4  
Output channel 4 = (input channel 1 + input channel 2 + input  
channel 3 + input channel 4) / 4  
Reserved (do not use this setting)  
Not applicable  
The device additionally supports a fully programmable mixer feature that can mix the various input channels with  
their custom programmable scale factor to generate the final output channels. The programmable mixer feature  
is available only if CH_SUM[2:0] is set to 2'b00. The mixer function is only supported for input channel 1 to  
channel 4. 40 shows a block diagram that describes the mixer 1 operation to generate output channel 1. The  
programmable coefficients for the mixer operation are located in the Programmable Coefficient Registers: Page =  
0x04 section.  
Attenuated by  
Input Channel-1  
MIX1_CH1  
Processed Data  
factor  
Attenuated by  
Input Channel-2  
Processed Data  
MIX1_CH2  
factor  
Output Channel-1  
Routed to Bi-Quad  
Filter  
+
Attenuated by  
MIX1_CH3  
factor  
Input Channel-3  
Processed Data  
Attenuated by  
MIX1_CH4  
factor  
Input Channel-4  
Processed Data  
40. Programmable Digital Mixer Block Diagram  
A similar mixer operation is performed by mixer 2, mixer 3, and mixer 4 to generate output channel 2, channel 3,  
and channel 4, respectively.  
版权 © 2019, Texas Instruments Incorporated  
35  
 
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.6.7 Configurable Digital Decimation Filters  
The device record channel includes a high dynamic range, built-in digital decimation filter to process the  
oversampled data from the multibit delta-sigma (ΔΣ) modulator to generate digital data at the same Nyquist  
sampling rate as the FSYNC rate. As illustrated in 38, this decimation filter can also be used for processing  
the oversampled PDM stream from the digital microphone. The decimation filter can be chosen from three  
different types, depending on the required frequency response, group delay, and phase linearity requirements for  
the target application. The selection of the decimation filter option can be done by configuring the DECI_FILT,  
P0_R107_D[5:4] register bits. 21 shows the configuration register setting for the decimation filter mode  
selection for the record channel.  
21. Decimation Filter Mode Selection for the Record Channel  
P0_R107_D[5:4] : DECI_FILT[1:0]  
DECIMATION FILTER MODE SELECTION  
Linear phase filters are used for the decimation  
00 (default)  
01  
10  
11  
Low latency filters are used for the decimation  
Ultra-low latency filters are used for the decimation  
Reserved (do not use this setting)  
8.3.6.7.1 Linear Phase Filters  
The linear phase decimation filters are the default filters set by the device and can be used for all applications  
that require a perfect linear phase with zero-phase deviation within the pass-band specification of the filter. The  
filter performance specifications and various plots for all supported output sampling rates are listed in this  
section.  
8.3.6.7.1.1 Sampling Rate: 8 kHz or 7.35 kHz  
41 and 42 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 8 kHz or 7.35 kHz. 22 lists the specifications for a decimation filter with an  
8-kHz or 7.35-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
41. Linear Phase Decimation Filter Magnitude Response  
42. Linear Phase Decimation Filter Pass-Band Ripple  
22. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
72.7  
81.2  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
17.1  
1/fS  
36  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.3.6.7.1.2 Sampling Rate: 16 kHz or 14.7 kHz  
43 and 44 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 16 kHz or 14.7 kHz. 23 lists the specifications for a decimation filter with an 16-kHz or 14.7-  
kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
43. Linear Phase Decimation Filter Magnitude Response  
44. Linear Phase Decimation Filter Pass-Band Ripple  
23. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
73.3  
95.0  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
15.7  
1/fS  
8.3.6.7.1.3 Sampling Rate: 24 kHz or 22.05 kHz  
45 and 46 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 24 kHz or 22.05 kHz. 24 lists the specifications for a decimation filter with an 24-kHz or  
22.05-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
45. Linear Phase Decimation Filter Magnitude Response  
46. Linear Phase Decimation Filter Pass-Band Ripple  
24. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
73.0  
96.4  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
16.6  
1/fS  
版权 © 2019, Texas Instruments Incorporated  
37  
 
 
 
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.6.7.1.4 Sampling Rate: 32 kHz or 29.4 kHz  
47 and 48 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 32 kHz or 29.4 kHz. 25 lists the specifications for a decimation filter with an 32-kHz or 29.4-  
kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
47. Linear Phase Decimation Filter Magnitude Response  
48. Linear Phase Decimation Filter Pass-Band Ripple  
25. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
73.7  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
107.2  
16.9  
1/fS  
8.3.6.7.1.5 Sampling Rate: 48 kHz or 44.1 kHz  
49 and 50 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 48 kHz or 44.1 kHz. 26 lists the specifications for a decimation filter with an 48-kHz or 44.1-  
kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
49. Linear Phase Decimation Filter Magnitude Response  
50. Linear Phase Decimation Filter Pass-Band Ripple  
26. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
73.8  
98.1  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
17.1  
1/fS  
38  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.3.6.7.1.6 Sampling Rate: 96 kHz or 88.2 kHz  
51 and 52 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 96 kHz or 88.2 kHz. 27 lists the specifications for a decimation filter with an 96-kHz or 88.2-  
kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
51. Linear Phase Decimation Filter Magnitude Response  
52. Linear Phase Decimation Filter Pass-Band Ripple  
27. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
73.6  
97.9  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
17.1  
1/fS  
8.3.6.7.1.7 Sampling Rate: 192 kHz or 176.4 kHz  
53 and 54 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 192 kHz or 176.4 kHz. 28 lists the specifications for a decimation filter with an 192-kHz or  
176.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
0.15  
0.2  
Normalized Frequency (1/fS)  
0.25  
0.3  
0.35  
0.4  
D001  
D001  
53. Linear Phase Decimation Filter Magnitude Response  
54. Linear Phase Decimation Filter Pass-Band Ripple  
28. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.3 × fS  
Frequency range is 0.473 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.3 × fS  
–0.05  
70.0  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
111.0  
11.9  
1/fS  
版权 © 2019, Texas Instruments Incorporated  
39  
 
 
 
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.6.7.1.8 Sampling Rate: 384 kHz or 352.8 kHz  
55 and 56 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 384 kHz or 352.8 kHz. 29 lists the specifications for a decimation filter with an 384-kHz or  
352.8-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
0.15  
Normalized Frequency (1/fS)  
0.2  
0.25  
0.3  
D001  
D001  
55. Linear Phase Decimation Filter Magnitude Response  
56. Linear Phase Decimation Filter Pass-Band Ripple  
29. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.212 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.212 × fS  
–0.05  
70.0  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
108.8  
7.2  
1/fS  
8.3.6.7.1.9 Sampling Rate 768 kHz or 705.6 kHz  
57 and 58 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 768 kHz or 705.6 kHz. 30 lists the specifications for a decimation filter with an 768-kHz or  
705.6-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
Normalized Frequency (1/fS)  
0.15  
0.2  
D001  
D001  
57. Linear Phase Decimation Filter Magnitude Response  
58. Linear Phase Decimation Filter Pass-Band Ripple  
30. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.113 × fS  
Frequency range is 0.58 × fS to 2 × fS  
Frequency range is 2 × fS onwards  
–0.05  
75.0  
88.0  
0.05  
dB  
Stop-band attenuation  
dB  
Group Delay or Latency Frequency range is 0 to 0.113 × fS  
5.9  
1/fS  
40  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.3.6.7.2 Low-Latency Filters  
For applications where low latency with minimal phase deviation (within the audio band) is critical, the low-  
latency decimation filters on the TLV320ADC6140 can be used. The device supports these filters with a group  
delay of approximately seven samples with an almost linear phase response within the 0.365 × fS frequency  
band. This section provides the filter performance specifications and various plots for all supported output  
sampling rates for the low-latency filters.  
8.3.6.7.2.1 Sampling Rate: 16 kHz or 14.7 kHz  
59 shows the magnitude response and 60 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 16 kHz or 14.7 kHz. 31 lists the specifications for a decimation filter  
with a 16-kHz or 14.7-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
60. Low-Latency Decimation Filter Pass-Band Ripple  
D002  
and Phase Deviation  
59. Low-Latency Decimation Filter Magnitude Response  
31. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 0.451 × fS  
Frequency range is 0.61 × fS onwards  
Frequency range is 0 to 0.363 × fS  
Frequency range is 0 to 0.363 × fS  
Frequency range is 0 to 0.363 × fS  
MIN  
–0.05  
87.3  
TYP  
MAX  
UNIT  
dB  
0.05  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.6  
1/fS  
–0.022  
–0.21  
0.022  
0.25  
1/fS  
Degrees  
版权 © 2019, Texas Instruments Incorporated  
41  
 
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.6.7.2.2 Sampling Rate: 24 kHz or 22.05 kHz  
61 shows the magnitude response and 62 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 24 kHz or 22.05 kHz. 32 lists the specifications for a decimation filter  
with a 24-kHz or 22.05-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
62. Low-Latency Decimation Filter Pass-Band Ripple  
D002  
and Phase Deviation  
61. Low-Latency Decimation Filter Magnitude Response  
32. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
–0.01  
87.2  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.459 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
0.01  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.5  
1/fS  
–0.026  
–0.26  
0.026  
0.30  
1/fS  
Degrees  
8.3.6.7.2.3 Sampling Rate: 32 kHz or 29.4 kHz  
63 shows the magnitude response and 64 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 32 kHz or 29.4 kHz. 33 lists the specifications for a decimation filter  
with a 32-kHz or 29.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
64. Low-Latency Decimation Filter Pass-Band Ripple  
D002  
and Phase Deviation  
63. Low-Latency Decimation Filter Magnitude Response  
42  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
33. Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
–0.04  
88.3  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
Frequency range is 0 to 0.457 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.368 × fS  
Frequency range is 0 to 0.368 × fS  
Frequency range is 0 to 0.368 × fS  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
8.7  
1/fS  
–0.026  
–0.26  
0.026  
0.31  
1/fS  
Degrees  
8.3.6.7.2.4 Sampling Rate: 48 kHz or 44.1 kHz  
65 shows the magnitude response and 66 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 48 kHz or 44.1 kHz. 34 lists the specifications for a decimation filter  
with a 48-kHz or 44.1-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
66. Low-Latency Decimation Filter Pass-Band Ripple  
D002  
and Phase Deviation  
65. Low-Latency Decimation Filter Magnitude Response  
34. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 0.452 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
MIN  
–0.015  
86.4  
TYP  
MAX  
UNIT  
dB  
0.015  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.7  
1/fS  
–0.027  
–0.25  
0.027  
0.30  
1/fS  
Degrees  
版权 © 2019, Texas Instruments Incorporated  
43  
 
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.6.7.2.5 Sampling Rate: 96 kHz or 88.2 kHz  
67 shows the magnitude response and 68 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 96 kHz or 88.2 kHz. 35 lists the specifications for a decimation filter  
with a 96-kHz or 88.2-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
68. Low-Latency Decimation Filter Pass-Band Ripple  
D002  
and Phase Deviation  
67. Low-Latency Decimation Filter Magnitude Response  
35. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 0.466 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
MIN  
–0.04  
86.3  
TYP  
MAX  
UNIT  
dB  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.7  
1/fS  
–0.027  
–0.26  
0.027  
0.30  
1/fS  
Degrees  
8.3.6.7.2.6 Sampling Rate 192 kHz or 176.4 kHz  
69 shows the magnitude response and 70 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 192 kHz or 176.4 kHz. 36 lists the specifications for a decimation filter  
with a 192-kHz or 176.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
70. Low-Latency Decimation Filter Pass-Band Ripple  
D002  
and Phase Deviation  
69. Low-Latency Decimation Filter Magnitude Response  
44  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
36. Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 463 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
MIN  
–0.03  
85.6  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
0.03  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.7  
1/fS  
–0.027  
–0.26  
0.027  
0.30  
1/fS  
Degrees  
8.3.6.7.3 Ultra-Low-Latency Filters  
For applications where ultra-low latency (within the audio band) is critical, the ultra-low-latency decimation filters  
on the TLV320ADC6140 can be used. The device supports these filters with a group delay of approximately four  
samples with an almost linear phase response within the 0.325 × fS frequency band. This section provides the  
filter performance specifications and various plots for all supported output sampling rates for the ultra-low-latency  
filters.  
8.3.6.7.3.1 Sampling Rate: 16 kHz or 14.7 kHz  
71 shows the magnitude response and 72 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 16 kHz or 14.7 kHz. 37 lists the specifications for a decimation filter  
with a 16-kHz or 14.7-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
72. Ultra-Low-Latency Decimation Filter Pass-Band  
71. Ultra-Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
37. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.45 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
MIN  
–0.05  
87.2  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
0.05  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
4.3  
1/fS  
–0.512  
–10.0  
0.512  
14.2  
1/fS  
Degrees  
版权 © 2019, Texas Instruments Incorporated  
45  
 
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.6.7.3.2 Sampling Rate: 24 kHz or 22.05 kHz  
73 shows the magnitude response and 74 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 24 kHz or 22.05 kHz. 38 lists the specifications for a decimation filter  
with a 24-kHz or 22.05-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
74. Ultra-Low-Latency Decimation Filter Pass-Band  
73. Ultra-Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
38. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.46 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
MIN  
–0.01  
87.1  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
0.01  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
4.1  
1/fS  
–0.514  
–10.0  
0.514  
14.3  
1/fS  
Degrees  
8.3.6.7.3.3 Sampling Rate: 32 kHz or 29.4 kHz  
75 shows the magnitude response and 76 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 32 kHz or 29.4 kHz. 39 lists the specifications for a decimation filter  
with an 32-kHz or 29.4-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
76. Ultra-Low-Latency Decimation Filter Pass-Band  
75. Ultra-Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
46  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
39. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
–0.04  
88.3  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
Frequency range is 0 to 0.457 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
5.2  
1/fS  
–0.492  
–9.5  
0.492  
13.5  
1/fS  
Degrees  
8.3.6.7.3.4 Sampling Rate: 48 kHz or 44.1 kHz  
77 shows the magnitude response and 78 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 48 kHz or 44.1 kHz. 40 lists the specifications for a decimation filter  
with a 48-kHz or 44.1-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
78. Ultra-Low-Latency Decimation Filter Pass-Band  
77. Ultra-Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
40. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.452 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
MIN  
–0.015  
86.4  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
0.015  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
4.1  
1/fS  
–0.525  
–10.3  
0.525  
14.5  
1/fS  
Degrees  
版权 © 2019, Texas Instruments Incorporated  
47  
 
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.6.7.3.5 Sampling Rate: 96 kHz or 88.2 kHz  
79 shows the magnitude response and 80 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 96 kHz or 88.2 kHz. 41 lists the specifications for a decimation filter  
with a 96-kHz or 88.2-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
10  
0
4
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
3
2
1
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-1  
-2  
-3  
-4  
-5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
80. Ultra-Low-Latency Decimation Filter Pass-Band  
79. Ultra-Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
41. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
–0.04  
86.3  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
Frequency range is 0 to 0.466 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.1625 × fS  
Frequency range is 0 to 0.1625 × fS  
Frequency range is 0 to 0.1625 × fS  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
3.7  
1/fS  
–0.091  
–0.86  
0.091  
1.30  
1/fS  
Degrees  
8.3.6.7.3.6 Sampling Rate 192 kHz or 176.4 kHz  
81 shows the magnitude response and 82 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 192 kHz or 176.4 kHz. 42 lists the specifications for a decimation filter  
with a 192-kHz or 176.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
10  
0
4
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
3
2
1
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-1  
-2  
-3  
-4  
-5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
82. Ultra-Low-Latency Decimation Filter Pass-Band  
81. Ultra-Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
48  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
42. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.463 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.085 × fS  
Frequency range is 0 to 0.085 × fS  
Frequency range is 0 to 0.085 × fS  
MIN  
–0.03  
85.6  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
0.03  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
3.7  
1/fS  
–0.024  
–0.12  
0.024  
0.18  
1/fS  
Degrees  
8.3.6.7.3.7 Sampling Rate 384 kHz or 352.8 kHz  
83 shows the magnitude response and 84 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 384 kHz or 352.8 kHz. 43 lists the specifications for a decimation filter  
with a 384-kHz or 352.8-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2
10  
0
1.6  
1.2  
0.8  
0.4  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.4  
-0.8  
-1.2  
-1.6  
-2  
Pass-Band Ripple  
Phase Deviation  
0
0.05  
0.1 0.15  
Normalized Frequency (1/fS)  
0.2  
0.25  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
84. Ultra-Low-Latency Decimation Filter Pass-Band  
D002  
Ripple and Phase Deviation  
83. Ultra-Low-Latency Decimation Filter Magnitude  
Response  
43. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.1 × fS  
Frequency range is 0.56 × fS onwards  
Frequency range is 0 to 0.157 × fS  
Frequency range is 0 to 0.157 × fS  
Frequency range is 0 to 0.157 × fS  
MIN  
–0.04  
70.1  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
0.01  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
4.1  
1/fS  
–0.18  
–0.85  
0.18  
2.07  
1/fS  
Degrees  
版权 © 2019, Texas Instruments Incorporated  
49  
 
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.7 Dynamic Range Enhancer (DRE)  
The device integrates an ultra-low noise front-end PGA with 120-dB dynamic range performance with a low-  
noise, low-distortion, multibit delta-sigma (ΔΣ) ADC with a 108-dB dynamic range. The dynamic range enhancer  
(DRE) is a digitally assisted algorithm to boost the overall channel performance. The DRE monitors the incoming  
signal amplitude and accordingly adjusts the internal PGA gain automatically. The DRE achieves a complete-  
channel dynamic range as high as 120 dB. At a system level, the DRE scheme enables far-field, high-fidelity  
recording of audio signals in very quiet environments and low-distortion recording in loud environments.  
This algorithm is implemented with very low latency and all signal chain blocks are designed to minimize any  
audible artifacts that may occur resulting from dynamic gain modulation. Additionally, the host can configure the  
target signal threshold level at which DRE is triggered by setting the appropriate value for the DRE_LVL[3:0],  
P0_R109[7:4] register bits. The DRE_LVL default level is set to –54 dB and TI recommends setting the  
DRE_LVL value lower than –30 dB to maximize the benefit of the DRE in real-world applications and to minimize  
any audible artifacts. 44 lists the DRE_LVL configuration settings.  
44. DRE Trigger Threshold Level Programmable Settings  
P0_R109_D[7:4] : DRE_LVL[3:0]  
DRE TRIGGER THRESHOLD LEVEL  
The DRE trigger threshold is the –12-dB input signal level  
0000  
0001  
The DRE trigger threshold is the –18-dB input signal level  
The DRE trigger threshold is the –24-dB input signal level  
0010  
0111 (default)  
The DRE trigger threshold is the –54-dB input signal level  
1001  
The DRE trigger threshold is the –66-dB input signal level  
Reserved (do not use these settings)  
1010 to 1111  
The DRE gain range can be dynamically modulated by using the DRE_MAXGAIN[3:0, P0_R109[3:0] register  
bits. The DRE_MAXGAIN default value is set to 24 dB, and the DRE_MAXGAIN value is recommended to be set  
lower than 24 dB to maximize the benefit of the DRE in real-world applications and to minimize any audible  
artifacts. 45 lists the DRE_MAXGAIN configuration settings.  
45. DRE Maximum Gain Programmable Settings  
P0_R109_D[3:0] : DRE_MAXGAIN[3:0]  
DRE MAXIMUM GAIN ALLOWED  
The DRE maximum gain allowed is 2 dB  
0000  
0001  
The DRE maximum gain allowed is 4 dB  
The DRE maximum gain allowed is 6 dB  
0010  
1011 (default)  
The DRE maximum gain allowed is 24 dB  
1110  
The DRE maximum gain allowed is 30 dB  
Reserved (do not use this setting)  
1111  
The DRE scheme is only supported for analog microphone recording channels with an AC-coupled input for best  
dynamic range performance. The DRE scheme can be independently enabled or disabled for each channel using  
the CH1_DREEN (P0_R60_D0), CH2_DREEN (P0_R65_D0), CH3_DREEN (P0_R70_D0), and CH4_DREEN  
(P0_R75_D0) register bits. For a DC-coupled input, the DRE scheme can be used with limited DRE_MAXGAIN  
depending on the DC differential input common-mode offset.  
Enabling the DRE for processing increases the power consumption of the device because of increased signal  
processing. Therefore, disable the DRE for low-power critical applications. Furthermore, the DRE is not  
supported for output sample rates greater than 192 kHz.  
50  
版权 © 2019, Texas Instruments Incorporated  
 
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.3.8 Automatic Gain Controller (AGC)  
The device includes an automatic gain controller (AGC) for ADC recording. As shown in 85, the AGC can be  
used to maintain a nominally constant output level when recording speech. Instead of manually setting the  
channel gain in AGC mode, the circuitry automatically adjusts the channel gain when the input signal becomes  
overly loud or very weak, such as when a person speaking into a microphone moves closer to or farther from the  
microphone. The AGC algorithm has several programmable parameters, including target level, maximum gain  
allowed, attack and release (or decay) time constants, and noise thresholds that allow the algorithm to be fine-  
tuned for any particular application.  
Input  
Signal  
Output  
Signal  
Target  
Level  
AGC  
Gain  
Decay Time  
Attack  
Time  
85. AGC Characteristics  
The target level (AGC_LVL) represents the nominal approximate output level at which the AGC attempts to hold  
the ADC output signal level. The TLV320ADC6140 allows programming of different target levels, which can be  
programmed from –6 dB to –36 dB relative to a full-scale signal, and the AGC_LVL default value is set to  
–34 dB. The target level is recommended to be set with enough margin to prevent clipping when loud sounds  
occur. 46 lists the AGC target level configuration settings.  
46. AGC Target Level Programmable Settings  
P0_R112_D[7:4] : AGC_LVL[3:0]  
AGC TARGET LEVEL FOR OUTPUT  
The AGC target level is the –6-dB output signal level  
0000  
0001  
The AGC target level is the –8-dB output signal level  
The AGC target level is the –10-dB output signal level  
0010  
1110 (default)  
1111  
The AGC target level is the –34-dB output signal level  
The AGC target level is the –36-dB output signal level  
版权 © 2019, Texas Instruments Incorporated  
51  
 
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
The maximum gain allowed (AGC_MAXGAIN) gives flexibility to the designer to restrict the maximum gain  
applied by the AGC. This feature limits the channel gain in situations where environmental noise is greater than  
the programmed noise threshold. The AGC_MAXGAIN can be programmed from 3 dB to 42 dB with steps of 3  
dB and the default value is set to 24 dB. 47 lists the AGC_MAXGAIN configuration settings.  
47. AGC Maximum Gain Programmable Settings  
P0_R112_D[3:0] : AGC_MAXGAIN[3:0]  
AGC MAXIMUM GAIN ALLOWED  
The AGC maximum gain allowed is 3 dB  
0000  
0001  
The AGC maximum gain allowed is 6 dB  
The AGC maximum gain allowed is 9 dB  
0010  
0111 (default)  
The AGC maximum gain allowed is 24 dB  
1110  
The AGC maximum gain allowed is 39 dB  
The AGC maximum gain allowed is 42 dB  
1111  
For further details on the AGC various configurable parameter and application use, see the Using the Automatic  
Gain Controller (AGC) in TLV320ADCx140 application report.  
52  
版权 © 2019, Texas Instruments Incorporated  
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.3.9 Digital PDM Microphone Record Channel  
In addition to supporting analog microphones, the device also interfaces to digital pulse-density-modulation  
(PDM) microphones and uses high-order and high-performance decimation filters to generate pulse code  
modulation (PCM) output data that can be transmitted on the audio serial interface to the host. If analog  
microphones are not used in the system, then the analog input pins (INxP and INxM) can be repurposed as the  
GPIx and GPOx pins respectively and can be configured for the PDMDINx and PDMCLK clocks for digital PDM  
microphone recording. The device supports up to eight digital microphone recording channels.  
The device internally generates PCMCLK with a programmable frequency of either 6.144 MHz, 3.072 MHz,  
1.536 MHz, or 768 kHz (for output data sample rates in multiples or submultiples of 48 kHz) or 5.6448 MHz,  
2.8224 MHz, 1.4112 MHz, or 705.6 kHz (for output data sample rates in multiples or submultiples of 44.1 kHz)  
using the PDMCLK_DIV[1:0], P0_R31_D[1:0] register bits. PDMCLK can be routed on the GPOx pin. This clock  
can be connected to the external digital microphone device. 86 shows a connection diagram of the digital  
PDM microphones.  
VDD  
VDD  
VDD  
IOVDD  
DATA  
Digital  
PDM  
SEL Microphone  
U1  
CLK  
GND  
GND  
TLV320ADCx140  
VDD  
VDD  
GPIx (PDMDINx)  
GPOx (PDMCLK)  
DATA  
CLK  
Digital  
PDM  
SEL Microphone  
U2  
GND  
GND  
86. Digital PDM Microphones Connection Diagram to the TLV320ADC6140  
The single-bit output of the external digital microphone device can be connected to the GPIx pin. This single data  
line can be shared by two digital microphones to place their data on the opposite edge of PDMCLK. Internally,  
the device latches the steady value of the data on the rising edge of PDMCLK or the falling edge of PDMCLK  
based on the configuration register bits set in P0_R32_D[7:4]. 87 shows the digital PDM microphone interface  
timing diagram.  
PDMCLK  
PDMDINx  
D1[n]  
D2[n]  
D1[n+1]  
D2[n+1]  
D1[n+2]  
Mic-1  
Data  
Mic-2  
Data  
Mic-1  
Data  
Mic-2  
Data  
Mic-1  
Data  
(n+1)th Sample  
(n+2)th Sample  
nth Sample  
87. Digital PDM Microphone Protocol Timing Diagram  
When the digital microphone is used for recording, the analog blocks of the respective ADC channel are powered  
down and bypassed for power efficiency. Use the CH1_INSRC[1:0] (P0_R60_D[6:5]), CH2_INSRC[1:0]  
(P0_R65_D[6:5]), CH3_INSRC[1:0] (P0_R70_D[6:5]), and CH4_INSRC[1:0] (P0_R75_D[6:5]) register bits to  
select the analog microphone or digital microphone for channel 1 to channel 4.  
版权 © 2019, Texas Instruments Incorporated  
53  
 
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.10 Interrupts, Status, and Digital I/O Pin Multiplexing  
Certain events in the device may require host processor intervention and can be used to trigger interrupts to the  
host processor. One such event is an audio serial interface (ASI) bus error. The device powers down the record  
channels if any faults are detected with the ASI bus error clocks, such as:  
Invalid FSYNC frequency  
Invalid SBCLK to FSYNC ratio  
Long pauses of the SBCLK or FSYNC clocks  
When an ASI bus clock error is detected, the device shuts down the record channel as quickly as possible. After  
all ASI bus clock errors are resolved, the device volume ramps back to its previous state to recover the record  
channel. During an ASI bus clock error, the internal interrupt request (IRQ) interrupt signal asserts low if the  
clock error interrupt mask register bit INT_MASK0[7], P0_R51_D7 is set low. The clock fault is also available for  
readback in the latched fault status register bit INT_LTCH0, P0_R54, which is a read-only register. Reading the  
latched fault status register, INT_LTCH0, clears all latched fault status. The device can be additionally configured  
to route the internal IRQ interrupt signal on the GPIO1 or GPOx pins and also can be configured as open-drain  
outputs so that these pins can be wire-ANDed to the open-drain interrupt outputs of other devices.  
The IRQ interrupt signal can either be configured as active low or active high polarity by setting the INT_POL,  
P0_R50_D7 register bit. This signal can also be configured as a single pulse or a series of pulses by  
programming the INT_EVENT[1:0], P0_R50_D[6:5] register bits. If the interrupts are configured as a series of  
pulses, the events trigger the start of pulses that stop when the latched fault status register is read to determine  
the cause of the interrupt.  
The device also supports read-only live-status registers to determine if the channels are powered up or down and  
if the device is in sleep mode or not. These status registers are located in P0_R118, DEV_STS0 and P0_R119,  
DEV_STS1.  
The device has a multifunctional GPIO1 pin that can be configured for a desired specific function. Additionally, if  
the channel is not used for analog input recording, then the analog input pins for that channel (INxP and INxM)  
can be repurposed as multifunction pins (GPIx and GPOx) by configuring the CHx_INSRC[1:0] register bits  
located in the CHx_CFG0 register. The maximum number of GPO pins supported by the device is four and the  
maximum number of GPI pins are four. 48 shows all possible allocations of these multifunctional pins for the  
various features.  
48. Multifunction Pin Assignments  
ROW  
Pin Function(1)  
GPIO1  
GPO1  
GPO2  
GPO3  
GPO4  
GPI1  
GPI2  
GPI3  
GPI4  
GPIO1_CFG GPO1_CFG GPO2_CFG GPO3_CFG GPO4_CFG  
GPI1_CFG  
GPI2_CFG  
GPI3_CFG  
GPI4_CFG  
P0_R33[7:4] P0_R34[7:4] P0_R35[7:4] P0_R36[7:4] P0_R37[7:4] P0_R43[6:4] P0_R43[2:0] P0_R44[6:4] P0_R44[2:0]  
A
Pin disabled  
S(2)  
S (default)  
S (default)  
S (default)  
S (default)  
S (default)  
NS(3)  
NS  
S (default)  
NS  
S (default)  
NS  
S (default)  
NS  
General-purpose output  
(GPO)  
B
C
D
E
F
S
S
S
S
S
S
S
S
S
Interrupt output (IRQ)  
S (default)  
NS  
NS  
NS  
Secondary ASI output  
(SDOUT2)(4)  
S
S
S
S
S
S
S
NS  
NS  
NS  
NS  
PDM clock output (PDMCLK)  
S
S
S
S
NS  
NS  
NS  
NS  
MiCBIAS on/off input  
(BIASEN)  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
G
H
I
General-purpose input (GPI)  
Master clock input (MCLK)  
ASI daisy-chain input (SDIN)  
PDM data input 1 (PDMDIN1)  
PDM data input 2 (PDMDIN2)  
PDM data input 3 (PDMDIN3)  
PDM data input 4 (PDMDIN4)  
S
S
S
S
S
S
S
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
J
K
L
M
(1) Only the GPIO1 pin is with reference to the IOVDD supply, the other GPOx and GPIx pins are with reference to the AVDD supply and  
their primary pin functions are for the PDMCLK or PDMDIN function.  
(2) S means the feature mentioned in this row is supported for the respective GPIO1, GPOx, or GPIx pin mentioned in this column.  
(3) NS means the feature mentioned in this row is not supported for the respective GPIO1, GPOx, or GPIx pin mentioned in this column.  
(4) For the high-speed ASI output, GPIO1 must be used instead of GPOx for the secondary ASI output. GPOx can be used only if the bus  
speed requirement is less than 6.144 MHz.  
54  
版权 © 2019, Texas Instruments Incorporated  
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Each GPOx or GPIOx pin can be independently set for the desired drive configurations setting using the  
GPOx_DRV[3:0] or GPIO1_DRV[3:0] register bits. 49 lists the drive configuration settings.  
49. GPIO or GPOx Pins Drive Configuration Settings  
P0_R33_D[3:0] : GPIO1_DRV[3:0]  
GPIO OUTPUT DRIVE CONFIGURATION SETTINGS FOR GPIO1  
The GPIO1 pin is set to high impedance (floated)  
000  
001  
The GPIO1 pin is set to be driven active low or active high  
The GPIO1 pin is set to be driven active low or weak high (on-chip pullup)  
The GPIO1 pin is set to be driven active low or Hi-Z (floated)  
The GPIO1 pin is set to be driven weak low (on-chip pulldown) or active high  
The GPIO1 pin is set to be driven Hi-Z (floated) or active high  
Reserved (do not use these settings)  
010 (default)  
011  
100  
101  
110 and 111  
Similarly, the GPO1 to GPO4 pins can be configured using the GPO1_DRV(P0_R34) to GPO4_DRV(P0_R37)  
register bits, respectively.  
When configured as a general-purpose output (GPO), the GPIO1 or GPOx pin values can be driven by writing  
the GPIO_VAL or GPOx_VAL, P0_R41 registers. The GPIO_MON, P0_R42 register can be used to readback  
the status of the GPIO1 pin when configured as a general-purpose input (GPI). Similarly, the GPI_MON, P0_R47  
register can be used to readback the status of the GPIx pins when configured as a general-purpose input (GPI).  
版权 © 2019, Texas Instruments Incorporated  
55  
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Hardware Shutdown  
The device enters hardware shutdown mode when the SHDNZ pin is asserted low or the AVDD supply voltage is  
not applied to the device. In hardware shutdown mode, the device consumes the minimum quiescent current  
from the AVDD supply. All configuration registers and programmable coefficients lose their value in this mode,  
and I2C or SPI communication to the device is not supported.  
If the SHDNZ pin is asserted low when the device is in active mode, the device ramps down volume on the  
record data, powers down the analog and digital blocks, and puts the device into hardware shutdown mode in 25  
ms (typical). The device can also be immediately put into hardware shutdown mode from active mode if the  
SHDNZ_CFG[1:0], P0_R5_D[3:2], register bits are set to 2'b00. After the SHDNZ pin is asserted low, and after  
the device enters hardware shutdown mode, keep the SHDNZ pin low for at least 1 ms before releasing SHDNZ  
for further device operation.  
Assert the SHDNZ pin high only when the IOVDD supply settles to a steady voltage level. When the SHDNZ pin  
goes high, the device sets all configuration registers and programmable coefficients to their default values, and  
then enters sleep mode.  
8.4.2 Sleep Mode or Software Shutdown  
In sleep mode or software shutdown mode, the device consumes very low quiescent current from the AVDD  
supply and, at the same time, allows the I2C or SPI communication to wake the device for active operation.  
The device can also enter sleep mode when the host device sets the SLEEP_ENZ, P0_R2_D0 bit to 1'b0. If the  
SLEEP_ENZ bit is asserted low when the device is in active mode, the device ramps down the volume on the  
record data, powers down the analog and digital blocks, and enters sleep mode. However, the device still  
continues to retain the last programmed value of the device configuration registers and programmable  
coefficients.  
In sleep mode, do not perform any I2C or SPI transactions, except for exiting sleep mode in order to enter active  
mode. After entering sleep mode, wait at least 10 ms before starting I2C or SPI transactions to exit sleep mode.  
While exiting sleep mode, the host device must configure the TLV320ADC6140 to use either an external 1.8-V  
AREG supply (default setting) or an on-chip-regulator-generated AREG supply. To configure the AREG supply,  
write to AREG_SELECT, bit D7 in the same P0_R2 register.  
8.4.3 Active Mode  
If the host device exits sleep mode by setting the SLEEP_ENZ bit to 1'b1, the device enters active mode. In  
active mode, I2C or SPI transactions can be done to configure and power-up the device for active operation.  
After entering active mode, wait at least 1 ms before starting any I2C or SPI transactions in order to allow the  
device to complete the internal wake-up sequence.  
After configuring all other registers for the target application and system settings, configure the input and output  
channel enable registers, P0_R115 (IN_CH_EN) and P0_R116 (ASI_OUT_CH_EN), respectively. Lastly,  
configure the device power-up register, P0_R117 (PWR_CFG). All the programmable coefficient values must be  
written before powering up the respective channel.  
In active mode, the power-up and power-down status of various blocks is monitored by reading the read-only  
device status bits located in the P0_R117 (DEV_STS0) and P0_R118 (DEV_STS1) registers.  
8.4.4 Software Reset  
A software reset can be done any time by asserting the SW_RESET bit, P0_R1_D0, which is a self-clearing bit.  
This software reset immediately shuts down the device, and restores all device configuration registers and  
programmable coefficients to their default values.  
56  
版权 © 2019, Texas Instruments Incorporated  
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.5 Programming  
The device contains configuration registers and programmable coefficients that can be set to the desired values  
for a specific system and application use. These registers are called device control registers and are each eight  
bits in width, mapped using a page scheme.  
Each page contains 128 configuration registers. All device configuration registers are stored in page 0, which is  
the default page setting at power up and after a software reset. All programmable coefficient registers are located  
in page 2, page 3, and page 4. The current page of the device can be switched to a new desired page by using  
the PAGE[7:0] bits located in register 0 of every page.  
8.5.1 Control Serial Interfaces  
The device control registers can be accessed using either I2C or SPI communication to the device.  
By monitoring the SDA_SSZ, SCL_MOSI, ADDR0_SCLK, and ADDR1_MISO device pins, which are the  
multiplexed pins for the I2C or SPI Interface, the device automatically detects whether the host device is using  
I2C or SPI communication to configure the device. For a given end application, the host device must always use  
either the I2C or SPI interface, but not both, to configure the device.  
8.5.1.1 I2C Control Interface  
The device supports the I2C control protocol as a slave device, and is capable of operating in standard mode,  
fast mode, and fast mode plus. The I2C control protocol requires a 7-bit slave address. The five most significant  
bits (MSBs) of the slave address are fixed at 10011 and cannot be changed. The two least significant bits (LSBs)  
are programmable and are controlled by the ADDR0_SCLK and ADDR1_MISO pins. These two pins must  
always be either pulled to VSS or IOVDD. If the I2C_BRDCAST_EN (P0_R2_D2) bit is set to 1'b1, then the I2C  
slave address is fixed to 1001100 in order to allow simultaneous I2C broadcast communication to all  
TLV320ADC6140 devices in the system. 50 lists the four possible device addresses resulting from this  
configuration.  
50. I2C Slave Address Settings  
ADDR1_MISO  
ADDR0_SCLK  
I2C_BRDCAST_EN (P0_R2_D2)  
I2C SLAVE ADDRESS  
1001 100  
0
0
1
1
X
0
1
0
1
X
0 (default)  
0 (default)  
0 (default)  
0 (default)  
1
1001 101  
1001 110  
1001 111  
1001 100  
8.5.1.1.1 General I2C Operation  
The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system using serial data transmission. The address and data 8-bit bytes are transferred MSB first. In addition,  
each byte transferred on the bus is acknowledged by the receiving device with an acknowledge bit. Each transfer  
operation begins with the master device driving a start condition on the bus and ends with the master device  
driving a stop condition on the bus. The bus uses transitions on the data pin (SDA) while the clock is at logic high  
to indicate start and stop conditions. A high-to-low transition on SDA indicates a start, and a low-to-high transition  
indicates a stop. Normal data-bit transitions must occur within the low time of the clock period.  
The master device drives a start condition followed by the 7-bit slave address and the read/write (R/W) bit to  
open communication with another device and then waits for an acknowledgment condition. The slave device  
holds SDA low during the acknowledge clock period to indicate acknowledgment. When this occurs, the master  
device transmits the next byte of the sequence. Each slave device is addressed by a unique 7-bit slave address  
plus the R/W bit (1 byte). All compatible devices share the same signals via a bidirectional bus using a wired-  
AND connection.  
版权 © 2019, Texas Instruments Incorporated  
57  
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last  
word transfers, the master device generates a stop condition to release the bus. 88 shows a generic data  
transfer sequence.  
8- Bit Data for  
Register (N)  
8- Bit Data for  
Register (N+1)  
88. Typical I2C Sequence  
In the system, use external pullup resistors for the SDA and SCL signals to set the logic high level for the bus.  
The SDA and SCL voltages must not exceed the device supply voltage, IOVDD.  
8.5.1.1.2 I2C Single-Byte and Multiple-Byte Transfers  
The device I2C interface supports both single-byte and multiple-byte read/write operations for all registers. During  
multiple-byte read operations, the device responds with data, a byte at a time, starting at the register assigned,  
as long as the master device continues to respond with acknowledges.  
The device supports sequential I2C addressing. For write transactions, if a register is issued followed by data for  
that register and all the remaining registers that follow, a sequential I2C write transaction takes place. For I2C  
sequential write transactions, the register issued then serves as the starting point, and the amount of data  
subsequently transmitted, before a stop or start is transmitted, determines how many registers are written.  
8.5.1.1.2.1 I2C Single-Byte Write  
As shown in 89, a single-byte data write transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the read/write bit. The read/write bit determines the direction of the data  
transfer. For a write-data transfer, the read/write bit must be set to 0. After receiving the correct I2C slave  
address and the read/write bit, the device responds with an acknowledge bit (ACK). Next, the master device  
transmits the register byte corresponding to the device internal register address being accessed. After receiving  
the register byte, the device again responds with an acknowledge bit (ACK). Then, the master transmits the byte  
of data to be written to the specified register. When finished, the slave device responds with an acknowledge bit  
(ACK). Finally, the master device transmits a stop condition to complete the single-byte data write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
A6 A5 A4  
A3 A2 A1 A0  
Stop  
2
I C Device Address and  
Read/Write Bit  
Register  
Data Byte  
Condition  
89. I2C Single-Byte Write Transfer  
58  
版权 © 2019, Texas Instruments Incorporated  
 
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.5.1.1.2.2 I2C Multiple-Byte Write  
As shown in 90, a multiple-byte data write transfer is identical to a single-byte data write transfer except that  
multiple data bytes are transmitted by the master device to the slave device. After receiving each data byte, the  
device responds with an acknowledge bit (ACK). Finally, the master device transmits a stop condition after the  
last data-byte write transfer.  
Register  
90. I2C Multiple-Byte Write Transfer  
8.5.1.1.2.3 I2C Single-Byte Read  
As shown in 91, a single-byte data read transfer begins with the master device transmitting a start condition  
followed by the I2C slave address and the read/write bit. For the data read transfer, both a write followed by a  
read are done. Initially, a write is done to transfer the address byte of the internal register address to be read. As  
a result, the read/write bit is set to 0.  
After receiving the slave address and the read/write bit, the device responds with an acknowledge bit (ACK). The  
master device then sends the internal register address byte, after which the device issues an acknowledge bit  
(ACK). The master device transmits another start condition followed by the slave address and the read/write bit  
again. This time, the read/write bit is set to 1, indicating a read transfer. Next, the device transmits the data byte  
from the register address being read. After receiving the data byte, the master device transmits a not-  
acknowledge (NACK) followed by a stop condition to complete the single-byte data read transfer.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
2
2
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
Register  
I C Device Address and  
Read/Write Bit  
Data Byte  
91. I2C Single-Byte Read Transfer  
8.5.1.1.2.4 I2C Multiple-Byte Read  
As shown in 92, a multiple-byte data read transfer is identical to a single-byte data read transfer except that  
multiple data bytes are transmitted by the device to the master device. With the exception of the last data byte,  
the master device responds with an acknowledge bit after receiving each data byte. After receiving the last data  
byte, the master device transmits a not-acknowledge (NACK) followed by a stop condition to complete the data  
read transfer.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A0 ACK  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
2
2
Register  
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
I C Device Address and  
Read/Write Bit  
First Data Byte  
Other Data Bytes  
Last Data Byte  
92. I2C Multiple-Byte Read Transfer  
版权 © 2019, Texas Instruments Incorporated  
59  
 
 
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.5.1.2 SPI Control Interface  
The general SPI protocol allows full-duplex, synchronous, serial communication between a host processor (the  
master) and peripheral devices (slaves). The SPI master (in this case, the host processor) generates the  
synchronizing clock (driven onto SCLK) and initiates transmissions by taking the slave-select pin SSZ from high  
to low. The SPI slave devices (such as the TLV320ADC6140) depend on a master to start and synchronize  
transmissions. A transmission begins when initiated by an SPI master. The byte from the SPI master begins  
shifting in on the slave MOSI pin under the control of the master serial clock (driven onto SCLK). When the byte  
shifts in on the MOSI pin, a byte shifts out on the MISO pin to the master shift register.  
The TLV320ADC6140 supports a standard SPI control protocol with a clock polarity setting of 0 (typical  
microprocessor SPI control bit CPOL = 0) and a clock phase setting of 1 (typical microprocessor SPI control bit  
CPHA = 1). The SSZ pin can remain low between transmissions; however, the device only interprets the first  
eight bits transmitted after the falling edge of SSZ as a command byte, and the next eight bits as a data byte only  
if writing to a register. The device is entirely controlled by registers. Reading and writing these registers is  
accomplished by an 8-bit command sent to the MOSI pin prior to the data for that register. 51 shows the  
command structure. The first seven bits specify the address of the register that is being written or read, from 0 to  
127 (decimal). The command word ends with an R/W bit, which specifies the direction of data flow on the serial  
bus.  
In the case of a register write, set the R/W bit to 0. A second byte of data is sent to the MOSI pin and contains  
the data to be written to the register. A register read is accomplished in a similar fashion. The 8-bit command  
word sends the 7-bit register address, followed by the R/W bit equal to 1 to signify a register read. The 8-bit  
register data is then clocked out of the device on the MISO pin during the second eight SCLK clocks in the  
frame. The device supports sequential SPI addressing for a multiple-byte data write/read transfer until the SSZ  
pin is pulled high. A multiple-byte data write or read transfer is identical to a single-byte data write or read  
transfer, respectively, until all data byte transfers complete. The host device must keep the SSZ pin low during all  
data byte transfers. 93 shows the single-byte write transfer and 94 shows the single-byte read transfer.  
51. SPI Command Word  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
ADDR(6)  
ADDR(5)  
ADDR(4)  
ADDR(3)  
ADDR(2)  
ADDR(1)  
ADDR(0)  
R/WZ  
SS  
SCLK  
MOSI  
Hi-Z  
Hi-Z  
RA(6)  
RA(5)  
RA(0)  
D(7)  
D(6)  
D(0)  
7-bit Register Address  
Write  
8-bit Register Data  
Hi-Z  
Hi-Z  
MISO  
93. SPI Single-Byte Write Transfer  
SS  
SCLK  
MOSI  
Hi-Z  
Hi-Z  
Hi-Z  
RA(6)  
RA(5)  
RA(0)  
Don’t Care  
7-bit Register Address  
Read  
8-bit Register Data  
Hi-Z  
MISO  
D(7)  
D(6)  
D(0)  
94. SPI Single-Byte Read Transfer  
60  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.6 Register Maps  
This section describes the control registers for the device in detail. All these registers are eight bits in width and  
allocated to device configuration and programmable coefficients settings. These registers are mapped internally  
using a page scheme that can be controlled using either I2C or SPI communication to the device. Each page  
contains 128 bytes of registers. All device configuration registers are stored in page 0, which is the default page  
setting at power up (and after a software reset). All programmable coefficient registers are located in page 2,  
page 3, and page 4. The device current page can be switch to a new desired page by using the PAGE[7:0] bits  
located in register 0 of every page.  
Do not read from or write to reserved pages or reserved registers. Write only default values for the reserved bits  
in the valid registers.  
The procedure for register access across pages is:  
Select page N (write data N to register 0 regardless of the current page number)  
Read or write data from or to valid registers in page N  
Select the new page M (write data M to register 0 regardless of the current page number)  
Read or write data from or to valid registers in page M  
Repeat as needed  
8.6.1 Device Configuration Registers  
This section describes the device configuration registers for page 0.  
Table 52. Register Summary Table, Page = 0x00  
ADDRESS  
0x00  
0x01  
0x02  
0x05  
0x07  
0x08  
0x09  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x29  
0x2A  
0x2B  
0x2C  
REGISTER  
PAGE_CFG  
SW_RESET  
SLEEP_CFG  
SHDN_CFG  
ASI_CFG0  
ASI_CFG1  
ASI_CFG2  
ASI_CH1  
DESCRIPTION  
SECTION  
Device page register  
PAGE_CFG Register (P0_R0)  
SW_RESET Register (P0_R1)  
SLEEP_CFG Register (P0_R2)  
SHDN_CFG Register (P0_R5)  
ASI_CFG0 Register (P0_R7)  
ASI_CFG1 Register (P0_R8)  
ASI_CFG2 Register (P0_R9)  
ASI_CH1 Register (P0_R11)  
ASI_CH2 Register (P0_R12)  
ASI_CH3 Register (P0_R13)  
ASI_CH4 Register (P0_R14)  
ASI_CH5 Register (P0_R15)  
ASI_CH6 Register (P0_R16)  
ASI_CH7 Register (P0_R17)  
ASI_CH8 Register (P0_R18)  
MST_CFG0 Register (P0_R19)  
MST_CFG1 Register (P0_R20)  
ASI_STS Register (P0_R21)  
CLK_SRC Register (P0_R22)  
PDMCLK_CFG Register (P0_R31)  
PDMIN_CFG Register (P0_R32)  
GPIO_CFG0 Register (P0_R33)  
GPO_CFG0 Register (P0_R34)  
GPO_CFG1 Register (P0_R35)  
GPO_CFG2 Register (P0_R36)  
GPO_CFG3 Register (P0_R37)  
GPO_VAL Register (P0_R41)  
GPIO_MON Register (P0_R42)  
GPI_CFG0 Register (P0_R43)  
GPI_CFG1 Register (P0_R44)  
Software reset register  
Sleep mode register  
Shutdown configuration register  
ASI configuration register 0  
ASI configuration register 1  
ASI configuration register 2  
Channel 1 ASI slot configuration register  
Channel 2 ASI slot configuration register  
Channel 3 ASI slot configuration register  
Channel 4 ASI slot configuration register  
Channel 5 ASI slot configuration register  
Channel 6 ASI slot configuration register  
Channel 7 ASI slot configuration register  
Channel 8 ASI slot configuration register  
ASI master mode configuration register 0  
ASI master mode configuration register 1  
ASI bus clock monitor status register  
Clock source configuration register 0  
PDM clock generation configuration register  
PDM DINx sampling edge register  
GPIO configuration register 0  
ASI_CH2  
ASI_CH3  
ASI_CH4  
ASI_CH5  
ASI_CH6  
ASI_CH7  
ASI_CH8  
MST_CFG0  
MST_CFG1  
ASI_STS  
CLK_SRC  
PDMCLK_CFG  
PDMIN_CFG  
GPIO_CFG0  
GPO_CFG0  
GPO_CFG1  
GPO_CFG2  
GPO_CFG3  
GPO_VAL  
GPIO_MON  
GPI_CFG0  
GPI_CFG1  
GPO configuration register 0  
GPO configuration register 1  
GPO configuration register 2  
GPO configuration register 3  
GPIO, GPO output value register  
GPIO monitor value register  
GPI configuration register 0  
GPI configuration register 1  
Copyright © 2019, Texas Instruments Incorporated  
61  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Register Maps (接下页)  
Table 52. Register Summary Table, Page = 0x00 (continued)  
ADDRESS  
0x2F  
0x32  
0x33  
0x36  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x52  
0x53  
0x54  
0x57  
0x58  
0x59  
0x5C  
0x5D  
0x5E  
0x61  
0x62  
0x63  
0x6B  
0x6C  
0x6D  
0x70  
0x73  
0x74  
0x75  
0x76  
0x77  
0x7E  
REGISTER  
GPI_MON  
DESCRIPTION  
SECTION  
GPI monitor value register  
GPI_MON Register (P0_R47)  
INT_CFG Register (P0_R50)  
INT_MASK0 Register (P0_R51)  
INT_LTCH0 Register (P0_R54)  
BIAS_CFG Register (P0_R59)  
CH1_CFG0 Register (P0_R60)  
CH1_CFG1 Register (P0_R61)  
CH1_CFG2 Register (P0_R62)  
CH1_CFG3 Register (P0_R63)  
CH1_CFG4 Register (P0_R64)  
CH2_CFG0 Register (P0_R65)  
CH2_CFG1 Register (P0_R66)  
CH2_CFG2 Register (P0_R67)  
CH2_CFG3 Register (P0_R68)  
CH2_CFG4 Register (P0_R69)  
CH3_CFG0 Register (P0_R70)  
CH3_CFG1 Register (P0_R71)  
CH3_CFG2 Register (P0_R72)  
CH3_CFG3 Register (P0_R73)  
CH3_CFG4 Register (P0_R74)  
CH4_CFG0 Register (P0_R75)  
CH4_CFG1 Register (P0_R76)  
CH4_CFG2 Register (P0_R77)  
CH4_CFG3 Register (P0_R78)  
CH4_CFG4 Register (P0_R79)  
CH5_CFG2 Register (P0_R82)  
CH5_CFG3 Register (P0_R83)  
CH5_CFG4 Register (P0_R84)  
CH6_CFG2 Register (P0_R87)  
CH6_CFG3 Register (P0_R88)  
CH6_CFG4 Register (P0_R89)  
CH7_CFG2 Register (P0_R92)  
CH7_CFG3 Register (P0_R93)  
CH7_CFG4 Register (P0_R94)  
CH8_CFG2 Register (P0_R97)  
CH8_CFG3 Register (P0_R98)  
CH8_CFG4 Register (P0_R99)  
DSP_CFG0 Register (P0_R107)  
DSP_CFG1 Register (P0_R108)  
DRE_CFG0 Register (P0_R109)  
AGC_CFG0 Register (P0_R112)  
IN_CH_EN Register (P0_R115)  
ASI_OUT_CH_EN Register (P0_R116)  
PWR_CFG Register (P0_R117)  
DEV_STS0 Register (P0_R118)  
DEV_STS1 Register (P0_R119)  
I2C_CKSUM Register (P0_R126)  
INT_CFG  
Interrupt configuration register  
INT_MASK0  
INT_LTCH0  
BIAS_CFG  
CH1_CFG0  
CH1_CFG1  
CH1_CFG2  
CH1_CFG3  
CH1_CFG4  
CH2_CFG0  
CH2_CFG1  
CH2_CFG2  
CH2_CFG3  
CH2_CFG4  
CH3_CFG0  
CH3_CFG1  
CH3_CFG2  
CH3_CFG3  
CH3_CFG4  
CH4_CFG0  
CH4_CFG1  
CH4_CFG2  
CH4_CFG3  
CH4_CFG4  
CH5_CFG2  
CH5_CFG3  
CH5_CFG4  
CH6_CFG2  
CH6_CFG3  
CH6_CFG4  
CH7_CFG2  
CH7_CFG3  
CH7_CFG4  
CH8_CFG2  
CH8_CFG3  
CH8_CFG4  
DSP_CFG0  
DSP_CFG1  
DRE_CFG0  
AGC_CFG0  
IN_CH_EN  
ASI_OUT_CH_EN  
PWR_CFG  
DEV_STS0  
DEV_STS1  
I2C_CKSUM  
Interrupt mask register 0  
Latched interrupt readback register 0  
Bias and ADC configuration register  
Channel 1 configuration register 0  
Channel 1 configuration register 1  
Channel 1 configuration register 2  
Channel 1 configuration register 3  
Channel 1 configuration register 4  
Channel 2 configuration register 0  
Channel 2 configuration register 1  
Channel 2 configuration register 2  
Channel 2 configuration register 3  
Channel 2 configuration register 4  
Channel 3 configuration register 0  
Channel 3 configuration register 1  
Channel 3 configuration register 2  
Channel 3 configuration register 3  
Channel 3 configuration register 4  
Channel 4 configuration register 0  
Channel 4 configuration register 1  
Channel 4 configuration register 2  
Channel 4 configuration register 3  
Channel 4 configuration register 4  
Channel 5 (PDM only) configuration register 2  
Channel 5 (PDM only) configuration register 3  
Channel 5 (PDM only) configuration register 4  
Channel 6 (PDM only) configuration register 2  
Channel 6 (PDM only) configuration register 3  
Channel 6 (PDM only) configuration register 4  
Channel 7 (PDM only) configuration register 2  
Channel 7 (PDM only) configuration register 3  
Channel 7 (PDM only) configuration register 4  
Channel 8 (PDM only) configuration register 2  
Channel 8 (PDM only) configuration register 3  
Channel 8 (PDM only) configuration register 4  
DSP configuration register 0  
DSP configuration register 1  
DRE configuration register 0  
AGC configuration register 0  
Input channel enable configuration register  
ASI output channel enable configuration register  
Power up configuration register  
Device status value register 0  
Device status value register 1  
I2C checksum register  
62  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
53 lists the access codes used for the TLV320ADC6140 registers.  
53. TLV320ADC6140 Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
R-W  
R/W  
Read or write  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default value  
8.6.1.1 Register Descriptions  
8.6.1.1.1 PAGE_CFG Register (page = 0x00, address = 0x00) [reset = 0h]  
The device memory map is divided into pages. This register sets the page.  
Figure 95. PAGE_CFG Register  
7
6
5
4
3
2
1
0
PAGE[7:0]  
R/W-0h  
Table 54. PAGE_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PAGE[7:0]  
R/W  
0h  
These bits set the device page.  
0d = Page 0  
1d = Page 1  
...  
255d = Page 255  
8.6.1.1.2 SW_RESET Register (page = 0x00, address = 0x01) [reset = 0h]  
This register is the software reset register. Asserting a software reset places all register values in their default  
power-on-reset (POR) state.  
Figure 96. SW_RESET Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
SW_RESET  
R/W-0h  
Table 55. SW_RESET Register Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
SW_RESET  
Reserved  
R/W  
0h  
Software reset. This bit is self clearing.  
0d = Do not reset  
1d = Reset  
8.6.1.1.3 SLEEP_CFG Register (page = 0x00, address = 0x02) [reset = 0h]  
This register configures the regulator, VREF quick charge, I2C broadcast, and sleep mode.  
Copyright © 2019, Texas Instruments Incorporated  
63  
 
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Figure 97. SLEEP_CFG Register  
7
6
5
4
3
2
1
0
AREG_  
SELECT  
I2C_BRDCAST  
_EN  
Reserved  
R/W-0h  
VREF_QCHG[1:0]  
R/W-0h  
Reserved  
R-0h  
SLEEP_ENZ  
R/W-0h  
R/W-0h  
R/W-0h  
Table 56. SLEEP_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
AREG_SELECT  
R/W  
0h  
The analog supply selection from either the internal regulator supply or the  
external AREG supply.  
0d = External 1.8-V AREG supply (use this setting when AVDD is 1.8 V and  
short AREG with AVDD)  
1d = Internally generated 1.8-V AREG supply using an on-chip regulator  
(use this setting when AVDD is 3.3 V)  
6-5  
4-3  
Reserved  
R/W  
R/W  
0h  
0h  
Reserved  
VREF_QCHG[1:0]  
The duration of the quick-charge for the VREF external capacitor is set using  
an internal series impedance of 200 Ω.  
0d = VREF quick-charge duration of 3.5 ms (typical)  
1d = VREF quick-charge duration of 10 ms (typical)  
2d = VREF quick-charge duration of 50 ms (typical)  
3d = VREF quick-charge duration of 100 ms (typical)  
2
I2C_BRDCAST_EN  
R/W  
0h  
I2C broadcast addressing setting.  
0d = I2C broadcast mode disabled; the I2C slave address is determined  
based on the ADDR pins  
1d = I2C broadcast mode enabled; the I2C slave address is fixed at 1001  
100  
1
0
Reserved  
R
0h  
0h  
Reserved  
SLEEP_ENZ  
R/W  
Sleep mode setting.  
0d = Device is in sleep mode  
1d = Device is not in sleep mode  
8.6.1.1.4 SHDN_CFG Register (page = 0x00, address = 0x05) [reset = 5h]  
This register configures the device shutdown.  
Figure 98. SHDN_CFG Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
INCAP_QCHG[1:0]  
R/W-0h  
SHDNZ_CFG[1:0]  
R/W-1h  
DREG_KA_TIME[1:0]  
R/W-1h  
Table 57. SHDN_CFG Register Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
INCAP_QCHG[1:0]  
SHDNZ_CFG[1:0]  
DREG_KA_TIME[1:0]  
R/W  
0h  
The duration of the quick-charge for the external AC-coupling capacitor is  
set using an internal series impedance of 800 Ω.  
0d = INxP, INxM quick-charge duration of 2.5 ms (typical)  
1d = INxP, INxM quick-charge duration of 12.5 ms (typical)  
2d = INxP, INxM quick-charge duration of 25 ms (typical)  
3d = INxP, INxM quick-charge duration of 50 ms (typical)  
3-2  
1-0  
R/W  
R/W  
1h  
1h  
Shutdown configuration.  
0d = DREG is powered down immediately after SHDNZ asserts  
1d = DREG remains active to enable a clean shut down until a time-out is  
reached; after the time-out period, DREG is forced to power off  
2d = DREG remains active until the device cleanly shuts down  
3d = Reserved  
These bits set how long DREG remains active after SHDNZ asserts.  
0d = DREG remains active for 30 ms (typical)  
1d = DREG remains active for 25 ms (typical)  
2d = DREG remains active for 10 ms (typical)  
3d = DREG remains active for 5 ms (typical)  
64  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.6.1.1.5 ASI_CFG0 Register (page = 0x00, address = 0x07) [reset = 30h]  
This register is the ASI configuration register 0.  
Figure 99. ASI_CFG0 Register  
7
6
5
4
3
2
1
0
ASI_FORMAT[1:0]  
R/W-0h  
ASI_WLEN[1:0]  
R/W-3h  
FSYNC_POL  
R/W-0h  
BCLK_POL  
R/W-0h  
TX_EDGE  
R/W-0h  
TX_FILL  
R/W-0h  
Table 58. ASI_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
ASI_FORMAT[1:0]  
R/W  
0h  
ASI protocol format.  
0d = TDM mode  
1d = I2S mode  
2d = LJ (left-justified) mode  
3d = Reserved  
5-4  
ASI_WLEN[1:0]  
R/W  
3h  
ASI word or slot length.  
0d = 16 bits  
1d = 20 bits  
2d = 24 bits  
3d = 32 bits  
3
2
1
FSYNC_POL  
BCLK_POL  
TX_EDGE  
R/W  
R/W  
R/W  
0h  
0h  
0h  
ASI FSYNC polarity.  
0d = Default polarity as per standard protocol  
1d = Inverted polarity with respect to standard protocol  
ASI BCLK polarity.  
0d = Default polarity as per standard protocol  
1d = Inverted polarity with respect to standard protocol  
ASI data output (on the primary and secondary data pin) transmit edge.  
0d = Default edge as per the protocol configuration setting in bit 2  
(BCLK_POL)  
1d = Inverted following edge (half cycle delay) with respect to the default  
edge setting  
0
TX_FILL  
R/W  
0h  
ASI data output (on the primary and secondary data pin) for any unused  
cycles  
0d = Always transmit 0 for unused cycles  
1d = Always use Hi-Z for unused cycles  
8.6.1.1.6 ASI_CFG1 Register (page = 0x00, address = 0x08) [reset = 0h]  
This register is the ASI configuration register 1.  
Figure 100. ASI_CFG1 Register  
7
6
5
4
3
2
1
0
TX_LSB  
R/W-0h  
TX_KEEPER[1:0]  
R/W-0h  
TX_OFFSET[4:0]  
R/W-0h  
Table 59. ASI_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
TX_LSB  
R/W  
0h  
ASI data output (on the primary and secondary data pin) for LSB  
transmissions.  
0d = Transmit the LSB for a full cycle  
1d = Transmit the LSB for the first half cycle and Hi-Z for the second half  
cycle  
6-5  
TX_KEEPER[1:0]  
R/W  
0h  
ASI data output (on the primary and secondary data pin) bus keeper.  
0d = Bus keeper is always disabled  
1d = Bus keeper is always enabled  
2d = Bus keeper is enabled during LSB transmissions only for one cycle  
3d = Bus keeper is enabled during LSB transmissions only for one and half  
cycles  
Copyright © 2019, Texas Instruments Incorporated  
65  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Table 59. ASI_CFG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4-0  
TX_OFFSET[4:0]  
R/W  
0h  
ASI data MSB slot 0 offset (on the primary and secondary data pin).  
0d = ASI data MSB location has no offset and is as per standard protocol  
1d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is the left  
and right slot 0) offset of one BCLK cycle with respect to standard protocol  
2d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is the left  
and right slot 0) offset of two BCLK cycles with respect to standard protocol  
3d to 30d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is  
the left and right slot 0) offset assigned as per configuration  
31d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is the left  
and right slot 0) offset of 31 BCLK cycles with respect to standard protocol  
8.6.1.1.7 ASI_CFG2 Register (page = 0x00, address = 0x09) [reset = 0h]  
This register is the ASI configuration register 2.  
Figure 101. ASI_CFG2 Register  
7
6
5
4
3
2
1
0
ASI_ERR_  
RCOV  
ASI_DAISY  
R/W-0h  
Reserved  
R-0h  
ASI_ERR  
R/W-0h  
Reserved  
R-0h  
R/W-0h  
Table 60. ASI_CFG2 Register Field Descriptions  
Bit  
Field  
ASI_DAISY  
Type  
Reset  
Description  
7
R/W  
0h  
ASI daisy-chain connection.  
0d = All devices are connected in the common ASI bus  
1d = All devices are daisy-chained for the ASI bus  
6
5
Reserved  
ASI_ERR  
R
0h  
0h  
Reserved  
R/W  
ASI bus error detection.  
0d = Enable bus error detection  
1d = Disable bus error detection  
4
ASI_ERR_RCOV  
Reserved  
R/W  
R
0h  
0h  
ASI bus error auto resume.  
0d = Enable auto resume after bus error recovery  
1d = Disable auto resume after bus error recovery and remain powered  
down until the host configures the device  
3-0  
Reserved  
8.6.1.1.8 ASI_CH1 Register (page = 0x00, address = 0x0B) [reset = 0h]  
This register is the ASI slot configuration register for channel 1.  
Figure 102. ASI_CH1 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH1_OUTPUT  
R/W-0h  
CH1_SLOT[5:0]  
R/W-0h  
Table 61. ASI_CH1 Register Field Descriptions  
Bit  
7
Field  
Reserved  
CH1_OUTPUT  
Type  
R
Reset  
0h  
Description  
Reserved  
6
R/W  
0h  
Channel 1 output line.  
0d = Channel 1 output is on the ASI primary output pin (SDOUT)  
1d = Channel 1 output is on the ASI secondary output pin (GPIO1 or GPOx)  
66  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Table 61. ASI_CH1 Register Field Descriptions (continued)  
Bit  
Field  
CH1_SLOT[5:0]  
Type  
Reset  
Description  
5-0  
R/W  
0h  
Channel 1 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.1.9 ASI_CH2 Register (page = 0x00, address = 0x0C) [reset = 1h]  
This register is the ASI slot configuration register for channel 2.  
Figure 103. ASI_CH2 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH2_OUTPUT  
R/W-0h  
CH2_SLOT[5:0]  
R/W-1h  
Table 62. ASI_CH2 Register Field Descriptions  
Bit  
7
Field  
Reserved  
Type  
R
Reset  
0h  
Description  
Reserved  
6
CH2_OUTPUT  
R/W  
0h  
Channel 2 output line.  
0d = Channel 2 output is on the ASI primary output pin (SDOUT)  
1d = Channel 2 output is on the ASI secondary output pin (GPIO1 or GPOx)  
5-0  
CH2_SLOT[5:0]  
R/W  
1h  
Channel 2 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.1.10 ASI_CH3 Register (page = 0x00, address = 0x0D) [reset = 2h]  
This register is the ASI slot configuration register for channel 3.  
Figure 104. ASI_CH3 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH3_OUTPUT  
R/W-0h  
CH3_SLOT[5:0]  
R/W-2h  
Table 63. ASI_CH3 Register Field Descriptions  
Bit  
7
Field  
Reserved  
CH3_OUTPUT  
Type  
R
Reset  
0h  
Description  
Reserved  
6
R/W  
0h  
Channel 3 output line.  
0d = Channel 3 output is on the ASI primary output pin (SDOUT)  
1d = Channel 3 output is on the ASI secondary output pin (GPIO1 or GPOx)  
Copyright © 2019, Texas Instruments Incorporated  
67  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Table 63. ASI_CH3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5-0  
CH3_SLOT[5:0]  
R/W  
2h  
Channel 3 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.1.11 ASI_CH4 Register (page = 0x00, address = 0x0E) [reset = 3h]  
This register is the ASI slot configuration register for channel 4.  
Figure 105. ASI_CH4 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH4_OUTPUT  
R/W-0h  
CH4_SLOT[5:0]  
R/W-3h  
Table 64. ASI_CH4 Register Field Descriptions  
Bit  
7
Field  
Reserved  
Type  
R
Reset  
0h  
Description  
Reserved  
6
CH4_OUTPUT  
R/W  
0h  
Channel 4 output line.  
0d = Channel 4 output is on the ASI primary output pin (SDOUT)  
1d = Channel 4 output is on the ASI secondary output pin (GPIO1 or GPOx)  
5-0  
CH4_SLOT[5:0]  
R/W  
3h  
Channel 4 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.1.12 ASI_CH5 Register (page = 0x00, address = 0x0F) [reset = 4h]  
This register is the ASI slot configuration register for channel 5.  
Figure 106. ASI_CH5 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH5_OUTPUT  
R/W-0h  
CH5_SLOT[5:0]  
R/W-4h  
Table 65. ASI_CH5 Register Field Descriptions  
Bit  
7
Field  
Reserved  
CH5_OUTPUT  
Type  
R
Reset  
0h  
Description  
Reserved  
6
R/W  
0h  
Channel 5 output line.  
0d = Channel 5 output is on the ASI primary output pin (SDOUT)  
1d = Channel 5 output is on the ASI secondary output pin (GPIO1 or GPOx)  
68  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Table 65. ASI_CH5 Register Field Descriptions (continued)  
Bit  
Field  
CH5_SLOT[5:0]  
Type  
Reset  
Description  
5-0  
R/W  
4h  
Channel 5 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.1.13 ASI_CH6 Register (page = 0x00, address = 0x10) [reset = 5h]  
This register is the ASI slot configuration register for channel 6.  
Figure 107. ASI_CH6 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH6_OUTPUT  
R/W-0h  
CH6_SLOT[5:0]  
R/W-5h  
Table 66. ASI_CH6 Register Field Descriptions  
Bit  
7
Field  
Reserved  
Type  
R
Reset  
0h  
Description  
Reserved  
6
CH6_OUTPUT  
R/W  
0h  
Channel 6 output line.  
0d = Channel 6 output is on the ASI primary output pin (SDOUT)  
1d = Channel 6 output is on the ASI secondary output pin (GPIO1 or GPOx)  
5-0  
CH6_SLOT[5:0]  
R/W  
5h  
Channel 6 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.1.14 ASI_CH7 Register (page = 0x00, address = 0x11) [reset = 6h]  
This register is the ASI slot configuration register for channel 7.  
Figure 108. ASI_CH7 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH7_OUTPUT  
R/W-0h  
CH7_SLOT[5:0]  
R/W-6h  
Table 67. ASI_CH7 Register Field Descriptions  
Bit  
7
Field  
Reserved  
CH7_OUTPUT  
Type  
R
Reset  
0h  
Description  
Reserved  
6
R/W  
0h  
Channel 7 output line.  
0d = Channel 7 output is on the ASI primary output pin (SDOUT)  
1d = Channel 7 output is on the ASI secondary output pin (GPIO1 or GPOx)  
Copyright © 2019, Texas Instruments Incorporated  
69  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Table 67. ASI_CH7 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5-0  
CH7_SLOT[5:0]  
R/W  
6h  
Channel 7 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.1.15 ASI_CH8 Register (page = 0x00, address = 0x12) [reset = 7h]  
This register is the ASI slot configuration register for channel 8.  
Figure 109. ASI_CH8 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH8_OUTPUT  
R/W-0h  
CH8_SLOT[5:0]  
R/W-7h  
Table 68. ASI_CH8 Register Field Descriptions  
Bit  
7
Field  
Reserved  
Type  
R
Reset  
0h  
Description  
Reserved  
6
CH8_OUTPUT  
R/W  
0h  
Channel 8 output line.  
0d = Channel 8 output is on the ASI primary output pin (SDOUT)  
1d = Channel 8 output is on the ASI secondary output pin (GPIO1 or GPOx)  
5-0  
CH8_SLOT[5:0]  
R/W  
7h  
Channel 8 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.1.16 MST_CFG0 Register (page = 0x00, address = 0x13) [reset = 2h]  
This register is the ASI master mode configuration register 0.  
Figure 110. MST_CFG0 Register  
7
6
5
4
3
2
1
0
MST_SLV_  
CFG  
AUTO_CLK_  
CFG  
AUTO_MODE_ BCLK_FSYNC_  
FS_MODE  
R/W-0h  
MCLK_FREQ_SEL[2:0]  
R/W-2h  
PLL_DIS  
GATE  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 69. MST_CFG0 Register Field Descriptions  
Bit  
Field  
MST_SLV_CFG  
Type  
Reset  
Description  
7
R/W  
0h  
ASI master or slave configuration register setting.  
0d = Device is in slave mode (both BCLK and FSYNC are inputs to the  
device)  
1d = Device is in master mode (both BCLK and FSYNC are generated from  
the device)  
6
AUTO_CLK_CFG  
R/W  
0h  
Automatic clock configuration setting.  
0d = Auto clock configuration is enabled (all internal clock divider and PLL  
configurations are auto derived)  
1d = Auto clock configuration is disabled (custom mode and device GUI  
must be used for the device configuration settings)  
70  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Table 69. MST_CFG0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
AUTO_MODE_PLL_DIS  
R/W  
0h  
Automatic mode PLL setting.  
0d = PLL is enabled in auto clock configuration  
1d = PLL is disabled in auto clock configuration  
4
BCLK_FSYNC_GATE  
R/W  
0h  
BCLK and FSYNC clock gate (valid when the device is in master mode).  
0d = Do not gate BCLK and FSYNC  
1d = Force gate BCLK and FSYNC when being transmitted from the device  
in master mode  
3
FS_MODE  
R/W  
R/W  
0h  
2h  
Sample rate setting (valid when the device is in master mode).  
0d = fS is a multiple (or submultiple) of 48 kHz  
1d = fS is a multiple (or submultiple) of 44.1 kHz  
2-0  
MCLK_FREQ_SEL[2:0]  
These bits select the MCLK (GPIO or GPIx) frequency for the PLL source  
clock input (valid when the device is in master mode and  
MCLK_FREQ_SEL_MODE = 0).  
0d = 12 MHz  
1d = 12.288 MHz  
2d = 13 MHz  
3d = 16 MHz  
4d = 19.2 MHz  
5d = 19.68 MHz  
6d = 24 MHz  
7d = 24.576 MHz  
8.6.1.1.17 MST_CFG1 Register (page = 0x00, address = 0x14) [reset = 48h]  
This register is the ASI master mode configuration register 1.  
Figure 111. MST_CFG1 Register  
7
6
5
4
3
2
1
0
FS_RATE[3:0]  
R/W-4h  
FS_BCLK_RATIO[3:0]  
R/W-8h  
Table 70. MST_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
FS_RATE[3:0]  
R/W  
4h  
Programmed sample rate of the ASI bus (not used when the device is  
configured in slave mode auto clock configuration).  
0d = 7.35 kHz or 8 kHz  
1d = 14.7 kHz or 16 kHz  
2d = 22.05 kHz or 24 kHz  
3d = 29.4 kHz or 32 kHz  
4d = 44.1 kHz or 48 kHz  
5d = 88.2 kHz or 96 kHz  
6d = 176.4 kHz or 192 kHz  
7d = 352.8 kHz or 384 kHz  
8d = 705.6 kHz or 768 kHz  
9d to 15d = Reserved  
3-0  
FS_BCLK_RATIO[3:0]  
R/W  
8h  
Programmed BCLK to FSYNC frequency ratio of the ASI bus (not used  
when the device is configured in slave mode auto clock configuration).  
0d = Ratio of 16  
1d = Ratio of 24  
2d = Ratio of 32  
3d = Ratio of 48  
4d = Ratio of 64  
5d = Ratio of 96  
6d = Ratio of 128  
7d = Ratio of 192  
8d = Ratio of 256  
9d = Ratio of 384  
10d = Ratio of 512  
11d = Ratio of 1024  
12d = Ratio of 2048  
13d to 15d = Reserved  
Copyright © 2019, Texas Instruments Incorporated  
71  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.6.1.1.18 ASI_STS Register (page = 0x00, address = 0x15) [reset = FFh]  
This register is the ASI bus clock monitor status register.  
Figure 112. ASI_STS Register  
7
6
5
4
3
2
1
0
FS_RATE_STS[3:0]  
R-Fh  
FS_RATIO_STS[3:0]  
R-Fh  
Table 71. ASI_STS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
FS_RATE_STS[3:0]  
R
Fh  
Detected sample rate of the ASI bus.  
0d = 7.35 kHz or 8 kHz  
1d = 14.7 kHz or 16 kHz  
2d = 22.05 kHz or 24 kHz  
3d = 29.4 kHz or 32 kHz  
4d = 44.1 kHz or 48 kHz  
5d = 88.2 kHz or 96 kHz  
6d = 176.4 kHz or 192 kHz  
7d = 352.8 kHz or 384 kHz  
8d = 705.6 kHz or 768 kHz  
9d to 14d = Reserved  
15d = Invalid sample rate  
3-0  
FS_RATIO_STS[3:0]  
R
Fh  
Detected BCLK to FSYNC frequency ratio of the ASI bus.  
0d = Ratio of 16  
1d = Ratio of 24  
2d = Ratio of 32  
3d = Ratio of 48  
4d = Ratio of 64  
5d = Ratio of 96  
6d = Ratio of 128  
7d = Ratio of 192  
8d = Ratio of 256  
9d = Ratio of 384  
10d = Ratio of 512  
11d = Ratio of 1024  
12d = Ratio of 2048  
13d to 14d = Reserved  
15d = Invalid ratio  
8.6.1.1.19 CLK_SRC Register (page = 0x00, address = 0x16) [reset = 10h]  
This register is the clock source configuration register.  
Figure 113. CLK_SRC Register  
7
6
5
4
3
2
1
0
DIS_PLL_SLV_ MCLK_FREQ_  
MCLK_RATIO_SEL[2:0]  
R/W-2h  
Reserved  
R-0h  
CLK_SRC  
SEL_MODE  
R/W-0h  
R/W-0h  
Table 72. CLK_SRC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DIS_PLL_SLV_CLK_SRC R/W  
0h  
Audio root clock source setting when the device is configured with the PLL  
disabled in the auto clock configuration for slave mode  
(AUTO_MODE_PLL_DIS = 1).  
0d = BCLK is used as the audio root clock source  
1d = MCLK (GPIO or GPIx) is used as the audio root clock source (the  
MCLK to FSYNC ratio is as per the MCLK_RATIO_SEL setting)  
6
MCLK_FREQ_SEL_MODE R/W  
0h  
Master mode MCLK (GPIO or GPIx) frequency selection mode (valid when  
the device is in auto clock configuration).  
0d = MCLK frequency is based on the MCLK_FREQ_SEL (P0_R19)  
configuration  
1d = MCLK frequency is specified as a multiple of FSYNC in the  
MCLK_RATIO_SEL (P0_R22) configuration  
72  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Table 72. CLK_SRC Register Field Descriptions (continued)  
Bit  
Field  
MCLK_RATIO_SEL[2:0]  
Type  
Reset  
Description  
5-3  
R/W  
2h  
These bits select the MCLK (GPIO or GPIx) to FSYNC ratio for master  
mode or when MCLK is used as the audio root clock source in slave mode.  
0d = Ratio of 64  
1d = Ratio of 256  
2d = Ratio of 384  
3d = Ratio of 512  
4d = Ratio of 768  
5d = Ratio of 1024  
6d = Ratio of 1536  
7d = Ratio of 2304  
2-0  
Reserved  
R
0h  
Reserved  
8.6.1.1.20 PDMCLK_CFG Register (page = 0x00, address = 0x1F) [reset = 40h]  
This register is the PDM clock generation configuration register.  
Figure 114. PDMCLK_CFG Register  
7
6
5
4
3
2
1
0
Reserved  
R/W-10h  
PDMCLK_DIV[1:0]  
R/W-0h  
Table 73. PDMCLK_CFG Register Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
R/W  
Reset  
10h  
0h  
Description  
Reserved  
Reserved  
PDMCLK_DIV[1:0]  
PDMCLK divider value.  
0d = PDMCLK is 2.8224 MHz or 3.072 MHz  
1d = PDMCLK is 1.4112 MHz or 1.536 MHz  
2d = PDMCLK is 705.6 kHz or 768 kHz  
3d = PDMCLK is 5.6448 MHz or 6.144 MHz  
8.6.1.1.21 PDMIN_CFG Register (page = 0x00, address = 0x20) [reset = 0h]  
This register is the PDM DINx sampling edge configuration register.  
Figure 115. PDMIN_CFG Register  
7
6
5
4
3
2
1
0
PDMDIN1_  
EDGE  
PDMDIN2_  
EDGE  
PDMDIN3_  
EDGE  
PDMDIN4_  
EDGE  
Reserved  
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 74. PDMIN_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PDMDIN1_EDGE  
PDMDIN2_EDGE  
PDMDIN3_EDGE  
R/W  
0h  
PDMCLK latching edge used for channel 1 and channel 2 data.  
0d = Channel 1 data are latched on the negative edge, channel 2 data are  
latched on the positive edge  
1d = Channel 1 data are latched on the positive edge, channel 2 data are  
latched on the negative edge  
6
5
R/W  
R/W  
0h  
0h  
PDMCLK latching edge used for channel 3 and channel 4 data.  
0d = Channel 3 data are latched on the negative edge, channel 4 data are  
latched on the positive edge  
1d = Channel 3 data are latched on the positive edge, channel 4 data are  
latched on the negative edge  
PDMCLK latching edge used for channel 5 and channel 6 data.  
0d = Channel 5 data are latched on the negative edge, channel 6 data are  
latched on the positive edge  
1d = Channel 5 data are latched on the positive edge, channel 6 data are  
latched on the negative edge  
Copyright © 2019, Texas Instruments Incorporated  
73  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Table 74. PDMIN_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
PDMDIN4_EDGE  
R/W  
0h  
PDMCLK latching edge used for channel 7 and channel 8 data.  
0d = Channel 7 data are latched on the negative edge, channel 8 data are  
latched on the positive edge  
1d = Channel 7 data are latched on the positive edge, channel 8 data are  
latched on the negative edge  
3-0  
Reserved  
R
0h  
Reserved  
8.6.1.1.22 GPIO_CFG0 Register (page = 0x00, address = 0x21) [reset = 22h]  
This register is the GPIO configuration register 0.  
Figure 116. GPIO_CFG0 Register  
7
6
5
4
3
2
1
0
GPIO1_CFG[3:0]  
R/W-2h  
Reserved  
R-0h  
GPIO1_DRV[2:0]  
R/W-2h  
Table 75. GPIO_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPIO1_CFG[3:0]  
R/W  
2h  
GPIO1 configuration.  
0d = GPIO1 is disabled  
1d = GPIO1 is configured as a general-purpose output (GPO)  
2d = GPIO1 is configured as a device interrupt output (IRQ)  
3d = GPIO1 is configured as a secondary ASI output (SDOUT2)  
4d = GPIO1 is configured as a PDM clock output (PDMCLK)  
5d to 7d = Reserved  
8d = GPIO1 is configured as an input to control when MICBIAS turns on or  
off (MICBIAS_EN)  
9d = GPIO1 is configured as a general-purpose input (GPI)  
10d = GPIO1 is configured as a master clock input (MCLK)  
11d = GPIO1 is configured as an ASI input for daisy-chain (SDIN)  
12d = GPIO1 is configured as a PDM data input for channel 1 and channel 2  
(PDMDIN1)  
13d = GPIO1 is configured as a PDM data input for channel 3 and channel 4  
(PDMDIN2)  
14d = GPIO1 is configured as a PDM data input for channel 5 and channel 6  
(PDMDIN3)  
15d = GPIO1 is configured as a PDM data input for channel 7 and channel 8  
(PDMDIN4)  
3
Reserved  
R
0h  
2h  
Reserved  
2-0  
GPIO1_DRV[2:0]  
R/W  
GPIO1 output drive configuration (not used when GPIO1 is configured as  
SDOUT2).  
0d = Hi-Z output  
1d = Drive active low and active high  
2d = Drive active low and weak high  
3d = Drive active low and Hi-Z  
4d = Drive weak low and active high  
5d = Drive Hi-Z and active high  
6d to 7d = Reserved  
8.6.1.1.23 GPO_CFG0 Register (page = 0x00, address = 0x22) [reset = 0h]  
This register is the GPO configuration register 0.  
Figure 117. GPO_CFG0 Register  
7
6
5
4
3
2
1
0
GPO1_CFG[3:0]  
R/W-0h  
Reserved  
R-0h  
GPO1_DRV[2:0]  
R/W-0h  
74  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Table 76. GPO_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPO1_CFG[3:0]  
R/W  
0h  
IN1M_GPO1 (GPO1) configuration.  
0d = GPO1 is disabled  
1d = GPO1 is configured as a general-purpose output (GPO)  
2d = GPO1 is configured as a device interrupt output (IRQ)  
3d = GPO1 is configured as a secondary ASI output (SDOUT2)  
4d = GPO1 is configured as a PDM clock output (PDMCLK)  
5d to 15d = Reserved  
3
Reserved  
R
0h  
0h  
Reserved  
2-0  
GPO1_DRV[2:0]  
R/W  
IN1M_GPO1 (GPO1) output drive configuration (not used when GPO1 is  
configured as SDOUT2).  
0d = Hi-Z output  
1d = Drive active low and active high  
2d = Drive active low and weak high  
3d = Drive active low and Hi-Z  
4d = Drive weak low and active high  
5d = Drive Hi-Z and active high  
6d to 7d = Reserved  
8.6.1.1.24 GPO_CFG1 Register (page = 0x00, address = 0x23) [reset = 0h]  
This register is the GPO configuration register 1.  
Figure 118. GPO_CFG1 Register  
7
6
5
4
3
2
1
0
GPO2_CFG[3:0]  
R/W-0h  
Reserved  
R-0h  
GPO2_DRV[2:0]  
R/W-0h  
Table 77. GPO_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPO2_CFG[3:0]  
R/W  
0h  
IN2M_GPO2 (GPO2) configuration.  
0d = GPO2 is disabled  
1d = GPO2 is configured as a general-purpose output (GPO)  
2d = GPO2 is configured as a device interrupt output (IRQ)  
3d = GPO2 is configured as a secondary ASI output (SDOUT2)  
4d = GPO2 is configured as a PDM clock output (PDMCLK)  
5d to 15d = Reserved  
3
Reserved  
R
0h  
0h  
Reserved  
2-0  
GPO2_DRV[2:0]  
R/W  
IN2M_GPO2 (GPO2) output drive configuration (not used when GPO2 is  
configured as SDOUT2).  
0d = Hi-Z output  
1d = Drive active low and active high  
2d = Drive active low and weak high  
3d = Drive active low and Hi-Z  
4d = Drive weak low and active high  
5d = Drive Hi-Z and active high  
6d to 7d = Reserved  
8.6.1.1.25 GPO_CFG2 Register (page = 0x00, address = 0x24) [reset = 0h]  
This register is the GPO configuration register 2.  
Figure 119. GPO_CFG2 Register  
7
6
5
4
3
2
1
0
GPO3_CFG[3:0]  
R/W-0h  
Reserved  
R-0h  
GPO3_DRV[2:0]  
R/W-0h  
Copyright © 2019, Texas Instruments Incorporated  
75  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Table 78. GPO_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPO3_CFG[3:0]  
R/W  
0h  
IN3M_GPO3 (GPO3) configuration.  
0d = GPO3 is disabled  
1d = GPO3 is configured as a general-purpose output (GPO)  
2d = GPO3 is configured as a device interrupt output (IRQ)  
3d = GPO3 is configured as a secondary ASI output (SDOUT2)  
4d = GPO3 is configured as a PDM clock output (PDMCLK)  
5d to 15d = Reserved  
3
Reserved  
R
0h  
0h  
Reserved  
2-0  
GPO3_DRV[2:0]  
R/W  
IN3M_GPO3 (GPO3) output drive configuration (not used when GPO3 is  
configured as SDOUT2).  
0d = Hi-Z output  
1d = Drive active low and active high  
2d = Drive active low and weak high  
3d = Drive active low and Hi-Z  
4d = Drive weak low and active high  
5d = Drive Hi-Z and active high  
6d to 7d = Reserved  
8.6.1.1.26 GPO_CFG3 Register (page = 0x00, address = 0x25) [reset = 0h]  
This register is the GPO configuration register 3.  
Figure 120. GPO_CFG3 Register  
7
6
5
4
3
2
1
0
GPO4_CFG[3:0]  
R/W-0h  
Reserved  
R-0h  
GPO4_DRV[2:0]  
R/W-0h  
Table 79. GPO_CFG3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPO4_CFG[3:0]  
R/W  
0h  
IN4M_GPO4 (GPO4) configuration.  
0d = GPO4 is disabled  
1d = GPO4 is configured as a general-purpose output (GPO)  
2d = GPO4 is configured as a device interrupt output (IRQ)  
3d = GPO4 is configured as a secondary ASI output (SDOUT2)  
4d = GPO4 is configured as a PDM clock output (PDMCLK)  
5d to 15d = Reserved  
3
Reserved  
R
0h  
0h  
Reserved  
2-0  
GPO4_DRV[2:0]  
R/W  
IN4M_GPO4 (GPO4) output drive configuration (not used when GPO4 is  
configured as SDOUT2).  
0d = Hi-Z output  
1d = Drive active low and active high  
2d = Drive active low and weak high  
3d = Drive active low and Hi-Z  
4d = Drive weak low and active high  
5d = Drive Hi-Z and active high  
6d to 7d = Reserved  
8.6.1.1.27 GPO_VAL Register (page = 0x00, address = 0x29) [reset = 0h]  
This register is the GPIO and GPO output value register.  
Figure 121. GPO_VAL Register  
7
6
5
4
3
2
1
0
GPIO1_VAL  
R/W-0h  
GPO1_VAL  
R/W-0h  
GPO2_VAL  
R/W-0h  
GPO3_VAL  
R/W-0h  
GPO4_VAL  
R/W-0h  
Reserved  
R-0h  
76  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Table 80. GPO_VAL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO1_VAL  
GPO1_VAL  
GPO2_VAL  
GPO3_VAL  
GPO4_VAL  
Reserved  
R/W  
0h  
GPIO1 output value when configured as a GPO.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
6
5
R/W  
R/W  
R/W  
R/W  
R
0h  
0h  
0h  
0h  
0h  
GPO1 output value when configured as a GPO.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
GPO2 output value when configured as a GPO.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
4
GPO3 output value when configured as a GPO.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
3
GPO4 output value when configured as a GPO.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
2-0  
Reserved  
8.6.1.1.28 GPIO_MON Register (page = 0x00, address = 0x2A) [reset = 0h]  
This register is the GPIO monitor value register.  
Figure 122. GPIO_MON Register  
7
6
5
4
3
2
1
0
GPIO1_MON  
R-0h  
Reserved  
R-0h  
Table 81. GPIO_MON Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO1_MON  
R
0h  
GPIO1 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
6-0  
Reserved  
R
0h  
Reserved  
8.6.1.1.29 GPI_CFG0 Register (page = 0x00, address = 0x2B) [reset = 0h]  
This register is the GPI configuration register 0.  
Figure 123. GPI_CFG0 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
GPI1_CFG[2:0]  
R/W-0h  
Reserved  
R-0h  
GPI2_CFG[2:0]  
R/W-0h  
Copyright © 2019, Texas Instruments Incorporated  
77  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Table 82. GPI_CFG0 Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
GPI1_CFG[2:0]  
Reserved  
6-4  
R/W  
0h  
IN1P_GPI1 (GPI1) configuration.  
0d = GPI1 is disabled  
1d = GPI1 is configured as a general-purpose input (GPI)  
2d = GPI1 is configured as a master clock input (MCLK)  
3d = GPI1 is configured as an ASI input for daisy-chain (SDIN)  
4d = GPI1 is configured as a PDM data input for channel 1 and channel 2  
(PDMDIN1)  
5d = GPI1 is configured as a PDM data input for channel 3 and channel 4  
(PDMDIN2)  
6d = GPI1 is configured as a PDM data input for channel 5 and channel 6  
(PDMDIN3)  
7d = GPI1 is configured as a PDM data input for channel 7 and channel 8  
(PDMDIN4)  
3
Reserved  
R
0h  
0h  
Reserved  
2-0  
GPI2_CFG[2:0]  
R/W  
IN2P_GPI2 (GPI2) configuration.  
0d = GPI2 is disabled  
1d = GPI2 is configured as a general-purpose input (GPI)  
2d = GPI2 is configured as a master clock input (MCLK)  
3d = GPI2 is configured as an ASI input for daisy-chain (SDIN)  
4d = GPI2 is configured as a PDM data input for channel 1 and channel 2  
(PDMDIN1)  
5d = GPI2 is configured as a PDM data input for channel 3 and channel 4  
(PDMDIN2)  
6d = GPI2 is configured as a PDM data input for channel 5 and channel 6  
(PDMDIN3)  
7d = GPI2 is configured as a PDM data input for channel 7 and channel 8  
(PDMDIN4)  
8.6.1.1.30 GPI_CFG1 Register (page = 0x00, address = 0x2C) [reset = 0h]  
This register is the GPI configuration register 1.  
Figure 124. GPI_CFG1 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
GPI3_CFG[2:0]  
R/W-0h  
Reserved  
R-0h  
GPI4_CFG[2:0]  
R/W-0h  
Table 83. GPI_CFG1 Register Field Descriptions  
Bit  
7
Field  
Reserved  
GPI3_CFG[2:0]  
Type  
R
Reset  
0h  
Description  
Reserved  
6-4  
R/W  
0h  
IN3P_GPI3 (GPI3) configuration.  
0d = GPI3 is disabled  
1d = GPI3 is configured as a general-purpose input (GPI)  
2d = GPI3 is configured as a master clock input (MCLK)  
3d = GPI3 is configured as an ASI input for daisy-chain (SDIN)  
4d = GPI3 is configured as a PDM data input for channel 1 and channel 2  
(PDMDIN1)  
5d = GPI3 is configured as a PDM data input for channel 3 and channel 4  
(PDMDIN2)  
6d = GPI3 is configured as a PDM data input for channel 5 and channel 6  
(PDMDIN3)  
7d = GPI3 is configured as a PDM data input for channel 7 and channel 8  
(PDMDIN4)  
3
Reserved  
R
0h  
Reserved  
78  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Table 83. GPI_CFG1 Register Field Descriptions (continued)  
Bit  
Field  
GPI4_CFG[2:0]  
Type  
Reset  
Description  
2-0  
R/W  
0h  
IN4P_GPI4 (GPI4) configuration.  
0d = GPI4 is disabled  
1d = GPI4 is configured as a general-purpose input (GPI)  
2d = GPI4 is configured as a master clock input (MCLK)  
3d = GPI4 is configured as an ASI input for daisy-chain (SDIN)  
4d = GPI4 is configured as a PDM data input for channel 1 and channel 2  
(PDMDIN1)  
5d = GPI4 is configured as a PDM data input for channel 3 and channel 4  
(PDMDIN2)  
6d = GPI4 is configured as a PDM data input for channel 5 and channel 6  
(PDMDIN3)  
7d = GPI4 is configured as a PDM data input for channel 7 and channel 8  
(PDMDIN4)  
8.6.1.1.31 GPI_MON Register (page = 0x00, address = 0x2F) [reset = 0h]  
This register is the GPI monitor value register.  
Figure 125. GPI_MON Register  
7
6
5
4
3
2
1
0
GPI1_MON  
R-0h  
GPI2_MON  
R-0h  
GPI3_MON  
R-0h  
GPI4_MON  
R-0h  
Reserved  
R-0h  
Table 84. GPI_MON Register Field Descriptions  
Bit  
Field  
GPI1_MON  
Type  
Reset  
Description  
7
R
0h  
GPI1 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
6
5
GPI2_MON  
GPI3_MON  
GPI4_MON  
Reserved  
R
R
R
R
0h  
0h  
0h  
0h  
GPI2 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
GPI3 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
4
GPI4 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
3-0  
Reserved  
8.6.1.1.32 INT_CFG Register (page = 0x00, address = 0x32) [reset = 0h]  
This register is the interrupt configuration register.  
Figure 126. INT_CFG Register  
7
6
5
4
3
2
1
0
LTCH_READ_  
CFG  
INT_POL  
R/W-0h  
INT_EVENT[1:0]  
R/W-0h  
Reserved  
R-0h  
Reserved  
R-0h  
R/W-0h  
Table 85. INT_CFG Register Field Descriptions  
Bit  
Field  
INT_POL  
Type  
Reset  
Description  
7
R/W  
0h  
Interrupt polarity.  
0b = Active low (IRQZ)  
1b = Active high (IRQ)  
Copyright © 2019, Texas Instruments Incorporated  
79  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Table 85. INT_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6-5  
INT_EVENT[1:0]  
R/W  
0h  
Interrupt event configuration.  
0d = INT asserts on any unmasked latched interrupts event  
1d = Reserved  
2d = INT asserts for 2 ms (typical) for every 4-ms (typical) duration on any  
unmasked latched interrupts event  
3d = INT asserts for 2 ms (typical) one time on each pulse for any  
unmasked interrupts event  
4-3  
2
Reserved  
R
0h  
0h  
Reserved  
LTCH_READ_CFG  
R/W  
Interrupt latch registers readback configuration.  
0b = All interrupts can be read through the LTCH registers  
1b = Only unmasked interrupts can be read through the LTCH registers  
1-0  
Reserved  
R
0h  
Reserved  
8.6.1.1.33 INT_MASK0 Register (page = 0x00, address = 0x33) [reset = FFh]  
This register is the interrupt masks register 0.  
Figure 127. INT_MASK0 Register  
7
6
5
4
3
2
1
0
INT_MASK0[7] INT_MASK0[6]  
R/W-1h R/W-1h  
Reserved  
R/W-3Fh  
Table 86. INT_MASK0 Register Field Descriptions  
Bit  
Field  
INT_MASK0[7]  
Type  
Reset  
Description  
7
R/W  
1h  
ASI clock error mask.  
0b = Do not mask  
1b = Mask  
6
INT_MASK0[6]  
Reserved  
R/W  
R/W  
1h  
PLL lock interrupt mask.  
0b = Do not mask  
1b = Mask  
5-0  
3Fh  
Reserved  
8.6.1.1.34 INT_LTCH0 Register (page = 0x00, address = 0x36) [reset = 0h]  
This register is the latched interrupt readback register 0.  
Figure 128. INT_LTCH0 Register  
7
6
5
4
3
2
1
0
INT_LTCH0[7] INT_LTCH0[6]  
R-0h R-0h  
Reserved  
R-0h  
Table 87. INT_LTCH0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_LTCH0[7]  
INT_LTCH0[6]  
Reserved  
R
0h  
Interrupt caused by an ASI bus clock error (self-clearing bit).  
0b = No interrupt  
1b = Interrupt  
6
R
R
0h  
0h  
Interrupt caused by PLL LOCK (self-clearing bit).  
0b = No interrupt  
1b = Interrupt  
5-0  
Reserved  
8.6.1.1.35 BIAS_CFG Register (page = 0x00, address = 0x3B) [reset = 0h]  
This register is the bias and ADC configuration register.  
80  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Figure 129. BIAS_CFG Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
MBIAS_VAL[2:0]  
R/W-0h  
Reserved  
R-0h  
ADC_FSCALE[1:0]  
R/W-0h  
Table 88. BIAS_CFG Register Field Descriptions  
Bit  
7
Field  
Reserved  
Type  
R
Reset  
0h  
Description  
Reserved  
6-4  
MBIAS_VAL[2:0]  
R/W  
0h  
MICBIAS value.  
0d = Microphone bias is set to VREF (2.750 V, 2.500 V, or 1.375 V)  
1d = Microphone bias is set to VREF × 1.096 (3.014 V, 2.740 V, or 1.507 V)  
2d to 5d = Reserved  
6d = Microphone bias is set to AVDD  
3-2  
1-0  
Reserved  
R
0h  
0h  
Reserved  
ADC_FSCALE[1:0]  
R/W  
ADC full-scale setting (configure this setting based on the AVDD supply  
minimum voltage used).  
0d = VREF is set to 2.75 V to support 2 VRMS for the differential input or 1  
VRMS for the single-ended input  
1d = VREF is set to 2.5 V to support 1.818 VRMS for the differential input or  
0.909 VRMS for the single-ended input  
2d = VREF is set to 1.375 V to support 1 VRMS for the differential input or  
0.5 VRMS for the single-ended input  
3d = Reserved  
8.6.1.1.36 CH1_CFG0 Register (page = 0x00, address = 0x3C) [reset = 0h]  
This register is configuration register 0 for channel 1.  
Figure 130. CH1_CFG0 Register  
7
6
5
4
3
2
1
0
CH1_INTYP  
R/W-0h  
CH1_INSRC[1:0]  
R/W-0h  
CH1_DC  
R/W-0h  
CH1_IMP[1:0]  
R/W-0h  
Reserved  
R-0h  
CH1_DREEN  
R/W-0h  
Table 89. CH1_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1_INTYP  
R/W  
0h  
Channel 1 input type.  
0d = Microphone input  
1d = Line input  
6-5  
CH1_INSRC[1:0]  
R/W  
0h  
Channel 1 input configuration.  
0d = Analog differential input (the GPI1 and GPO1 pin functions must be  
disabled)  
1d = Analog single-ended input (the GPI1 and GPO1 pin functions must be  
disabled)  
2d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN1 and PDMCLK)  
3d = Reserved  
4
CH1_DC  
R/W  
R/W  
0h  
0h  
Channel 1 input coupling (applicable for the analog input).  
0d = AC-coupled input  
1d = DC-coupled input  
3-2  
CH1_IMP[1:0]  
Channel 1 input impedance (applicable for the analog input).  
0d = Typical 2.5-kΩ input impedance  
1d = Typical 10-kΩ input impedance  
2d = Typical 20-kΩ input impedance  
3d = Reserved  
1
0
Reserved  
R
0h  
0h  
Reserved  
CH1_DREEN  
R/W  
Channel 1 dynamic range enhancer (DRE) and automatic gain controller  
(AGC) setting.  
0d = DRE and AGC disabled  
1d = DRE or AGC enabled based on the configuration of bit 3 in register 108  
(P0_R108)  
Copyright © 2019, Texas Instruments Incorporated  
81  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.6.1.1.37 CH1_CFG1 Register (page = 0x00, address = 0x3D) [reset = 0h]  
This register is configuration register 1 for channel 1.  
Figure 131. CH1_CFG1 Register  
7
6
5
4
3
2
1
0
CH1_GAIN[5:0]  
R/W-0h  
Reserved  
R-0h  
Table 90. CH1_CFG1 Register Field Descriptions  
Bit  
Field  
CH1_GAIN[5:0]  
Type  
Reset  
Description  
7-2  
R/W  
0h  
Channel 1 gain.  
0d = Channel gain is set to 0 dB  
1d = Channel gain is set to 1 dB  
2d = Channel gain is set to 2 dB  
3d to 41d = Channel gain is set as per configuration  
42d = Channel gain is set to 42 dB  
43d to 63d = Reserved  
1-0  
Reserved  
R
0h  
Reserved  
8.6.1.1.38 CH1_CFG2 Register (page = 0x00, address = 0x3E) [reset = C9h]  
This register is configuration register 2 for channel 1.  
Figure 132. CH1_CFG2 Register  
7
6
5
4
3
2
1
0
CH1_DVOL[7:0]  
R/W-C9h  
Table 91. CH1_CFG2 Register Field Descriptions  
Bit  
Field  
CH1_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
C9h  
Channel 1 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to –100 dB  
2d = Digital volume control is set to –99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.1.39 CH1_CFG3 Register (page = 0x00, address = 0x3F) [reset = 80h]  
This register is configuration register 3 for channel 1.  
Figure 133. CH1_CFG3 Register  
7
6
5
4
3
2
1
0
CH1_GCAL[3:0]  
R/W-8h  
Reserved  
R-0h  
82  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Table 92. CH1_CFG3 Register Field Descriptions  
Bit  
Field  
CH1_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
R/W  
8h  
Channel 1 gain calibration.  
0d = Gain calibration is set to –0.8 dB  
1d = Gain calibration is set to –0.7 dB  
2d = Gain calibration is set to –0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
8.6.1.1.40 CH1_CFG4 Register (page = 0x00, address = 0x40) [reset = 0h]  
This register is configuration register 4 for channel 1.  
Figure 134. CH1_CFG4 Register  
7
6
5
4
3
2
1
0
CH1_PCAL[7:0]  
R/W-0h  
Table 93. CH1_CFG4 Register Field Descriptions  
Bit  
Field  
CH1_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Channel 1 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
8.6.1.1.41 CH2_CFG0 Register (page = 0x00, address = 0x41) [reset = 0h]  
This register is configuration register 0 for channel 2.  
Figure 135. CH2_CFG0 Register  
7
6
5
4
3
2
1
0
CH2_INTYP  
R/W-0h  
CH2_INSRC[1:0]  
R/W-0h  
CH2_DC  
R/W-0h  
CH2_IMP[1:0]  
R/W-0h  
Reserved  
R-0h  
CH2_DREEN  
R/W-0h  
Table 94. CH2_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH2_INTYP  
R/W  
0h  
Channel 2 input type.  
0d = Microphone input  
1d = Line input  
6-5  
CH2_INSRC[1:0]  
R/W  
R/W  
0h  
0h  
Channel 2 input configuration.  
0d = Analog differential input (the GPI2 and GPO2 pin functions must be  
disabled)  
1d = Analog single-ended input (the GPI2 and GPO2 pin functions must be  
disabled)  
2d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN1 and PDMCLK)  
3d = Reserved  
4
CH2_DC  
Channel 2 input coupling (applicable for the analog input).  
0d = AC-coupled input  
1d = DC-coupled input  
Copyright © 2019, Texas Instruments Incorporated  
83  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Table 94. CH2_CFG0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-2  
CH2_IMP[1:0]  
R/W  
0h  
Channel 2 input impedance (applicable for the analog input).  
0d = Typical 2.5-kΩ input impedance  
1d = Typical 10-kΩ input impedance  
2d = Typical 20-kΩ input impedance  
3d = Reserved  
1
0
Reserved  
R
0h  
0h  
Reserved  
CH2_DREEN  
R/W  
Channel 2 dynamic range enhancer (DRE) and automatic gain controller  
(AGC) setting.  
0d = DRE and AGC disabled  
1d = DRE or AGC enabled based on the configuration of bit 3 in register 108  
(P0_R108)  
8.6.1.1.42 CH2_CFG1 Register (page = 0x00, address = 0x42) [reset = 0h]  
This register is configuration register 1 for channel 2.  
Figure 136. CH2_CFG1 Register  
7
6
5
4
3
2
1
0
CH2_GAIN[5:0]  
R/W-0h  
Reserved  
R-0h  
Table 95. CH2_CFG1 Register Field Descriptions  
Bit  
Field  
CH2_GAIN[5:0]  
Type  
Reset  
Description  
7-2  
R/W  
0h  
Channel 2 gain.  
0d = Channel gain is set to 0 dB  
1d = Channel gain is set to 1 dB  
2d = Channel gain is set to 2 dB  
3d to 41d = Channel gain is set as per configuration  
42d = Channel gain is set to 42 dB  
43d to 63d = Reserved  
1-0  
Reserved  
R
0h  
Reserved  
8.6.1.1.43 CH2_CFG2 Register (page = 0x00, address = 0x43) [reset = C9h]  
This register is configuration register 2 for channel 2.  
Figure 137. CH2_CFG2 Register  
7
6
5
4
3
2
1
0
CH2_DVOL[7:0]  
R/W-C9h  
Table 96. CH2_CFG2 Register Field Descriptions  
Bit  
Field  
CH2_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
C9h  
Channel 2 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to –100 dB  
2d = Digital volume control is set to –99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
84  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.6.1.1.44 CH2_CFG3 Register (page = 0x00, address = 0x44) [reset = 80h]  
This register is configuration register 3 for channel 2.  
Figure 138. CH2_CFG3 Register  
7
6
5
4
3
2
1
0
CH2_GCAL[3:0]  
R/W-8h  
Reserved  
R-0h  
Table 97. CH2_CFG3 Register Field Descriptions  
Bit  
Field  
CH2_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
R/W  
8h  
Channel 2 gain calibration.  
0d = Gain calibration is set to –0.8 dB  
1d = Gain calibration is set to –0.7 dB  
2d = Gain calibration is set to –0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
8.6.1.1.45 CH2_CFG4 Register (page = 0x00, address = 0x45) [reset = 0h]  
This register is configuration register 4 for channel 2.  
Figure 139. CH2_CFG4 Register  
7
6
5
4
3
2
1
0
CH2_PCAL[7:0]  
R/W-0h  
Table 98. CH2_CFG4 Register Field Descriptions  
Bit  
Field  
CH2_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Channel 2 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
8.6.1.1.46 CH3_CFG0 Register (page = 0x00, address = 0x46) [reset = 0h]  
This register is configuration register 0 for channel 3.  
Figure 140. CH3_CFG0 Register  
7
6
5
4
3
2
1
0
CH3_INTYP  
R/W-0h  
CH3_INSRC[1:0]  
R/W-0h  
CH3_DC  
R/W-0h  
CH3_IMP[1:0]  
R/W-0h  
Reserved  
R-0h  
CH3_DREEN  
R/W-0h  
Table 99. CH3_CFG0 Register Field Descriptions  
Bit  
Field  
CH3_INTYP  
Type  
Reset  
Description  
7
R/W  
0h  
Channel 3 input type.  
0d = Microphone input  
1d = Line input  
Copyright © 2019, Texas Instruments Incorporated  
85  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Table 99. CH3_CFG0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6-5  
CH3_INSRC[1:0]  
R/W  
0h  
Channel 3 input configuration.  
0d = Analog differential input (the GPI3 and GPO3 pin functions must be  
disabled)  
1d = Analog single-ended input (the GPI3 and GPO3 pin functions must be  
disabled)  
2d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN2 and PDMCLK)  
3d = Reserved  
4
CH3_DC  
R/W  
R/W  
0h  
0h  
Channel 3 input coupling (applicable for the analog input).  
0d = AC-coupled input  
1d = DC-coupled input  
3-2  
CH3_IMP[1:0]  
Channel 3 input impedance (applicable for the analog input).  
0d = Typical 2.5-kΩ input impedance  
1d = Typical 10-kΩ input impedance  
2d = Typical 20-kΩ input impedance  
3d = Reserved  
1
0
Reserved  
R
0h  
0h  
Reserved  
CH3_DREEN  
R/W  
Channel 3 dynamic range enhancer (DRE) and automatic gain controller  
(AGC) setting.  
0d = DRE and AGC disabled  
1d = DRE or AGC enabled based on the configuration of bit 3 in register 108  
(P0_R108)  
8.6.1.1.47 CH3_CFG1 Register (page = 0x00, address = 0x47) [reset = 0h]  
This register is configuration register 1 for channel 3.  
Figure 141. CH3_CFG1 Register  
7
6
5
4
3
2
1
0
CH3_GAIN[5:0]  
R/W-0h  
Reserved  
R-0h  
Table 100. CH3_CFG1 Register Field Descriptions  
Bit  
Field  
CH3_GAIN[5:0]  
Type  
Reset  
Description  
7-2  
R/W  
0h  
Channel 3 gain.  
0d = Channel gain is set to 0 dB  
1d = Channel gain is set to 1 dB  
2d = Channel gain is set to 2 dB  
3d to 41d = Channel gain is set as per configuration  
42d = Channel gain is set to 42 dB  
43d to 63d = Reserved  
1-0  
Reserved  
R
0h  
Reserved  
8.6.1.1.48 CH3_CFG2 Register (page = 0x00, address = 0x48) [reset = C9h]  
This register is configuration register 2 for channel 3.  
Figure 142. CH3_CFG2 Register  
7
6
5
4
3
2
1
0
CH3_DVOL[7:0]  
R/W-C9h  
86  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Table 101. CH3_CFG2 Register Field Descriptions  
Bit  
Field  
CH3_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
C9h  
Channel 3 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to –100 dB  
2d = Digital volume control is set to –99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.1.49 CH3_CFG3 Register (page = 0x00, address = 0x49) [reset = 80h]  
This register is configuration register 3 for channel 3.  
Figure 143. CH3_CFG3 Register  
7
6
5
4
3
2
1
0
CH3_GCAL[3:0]  
R/W-8h  
Reserved  
R-0h  
Table 102. CH3_CFG3 Register Field Descriptions  
Bit  
Field  
CH3_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
R/W  
8h  
Channel 3 gain calibration.  
0d = Gain calibration is set to –0.8 dB  
1d = Gain calibration is set to –0.7 dB  
2d = Gain calibration is set to –0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
8.6.1.1.50 CH3_CFG4 Register (page = 0x00, address = 0x4A) [reset = 0h]  
This register is configuration register 4 for channel 3.  
Figure 144. CH3_CFG4 Register  
7
6
5
4
3
2
1
0
CH3_PCAL[7:0]  
R/W-0h  
Table 103. CH3_CFG4 Register Field Descriptions  
Bit  
Field  
CH3_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Channel 3 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
8.6.1.1.51 CH4_CFG0 Register (page = 0x00, address = 0x4B) [reset = 0h]  
This register is configuration register 0 for channel 4.  
Copyright © 2019, Texas Instruments Incorporated  
87  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Figure 145. CH4_CFG0 Register  
7
6
5
4
3
2
1
0
CH4_INTYP  
R/W-0h  
CH4_INSRC[1:0]  
R/W-0h  
CH4_DC  
R/W-0h  
CH4_IMP[1:0]  
R/W-0h  
Reserved  
R-0h  
CH4_DREEN  
R/W-0h  
Table 104. CH4_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH4_INTYP  
R/W  
0h  
Channel 4 input type.  
0d = Microphone input  
1d = Line input  
6-5  
CH4_INSRC[1:0]  
R/W  
0h  
Channel 4 input configuration.  
0d = Analog differential input (the GPI4 and GPO4 pin functions must be  
disabled)  
1d = Analog single-ended input (the GPI4 and GPO4 pin functions must be  
disabled)  
2d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN2 and PDMCLK)  
3d = Reserved  
4
CH4_DC  
R/W  
R/W  
0h  
0h  
Channel 4 input coupling (applicable for the analog input).  
0d = AC-coupled input  
1d = DC-coupled input  
3-2  
CH4_IMP[1:0]  
Channel 4 input impedance (applicable for the analog input).  
0d = Typical 2.5-kΩ input impedance  
1d = Typical 10-kΩ input impedance  
2d = Typical 20-kΩ input impedance  
3d = Reserved  
1
0
Reserved  
R
0h  
0h  
Reserved  
CH4_DREEN  
R/W  
Channel 4 dynamic range enhancer (DRE) and automatic gain controller  
(AGC) setting.  
0d = DRE and AGC disabled  
1d = DRE or AGC enabled based on the configuration of bit 3 in register 108  
(P0_R108)  
8.6.1.1.52 CH4_CFG1 Register (page = 0x00, address = 0x4C) [reset = 0h]  
This register is configuration register 1 for channel 4.  
Figure 146. CH4_CFG1 Register  
7
6
5
4
3
2
1
0
CH4_GAIN[5:0]  
R/W-0h  
Reserved  
R-0h  
Table 105. CH4_CFG1 Register Field Descriptions  
Bit  
Field  
CH4_GAIN[5:0]  
Type  
Reset  
Description  
7-2  
R/W  
0h  
Channel 4 gain.  
0d = Channel gain is set to 0 dB  
1d = Channel gain is set to 1 dB  
2d = Channel gain is set to 2 dB  
3d to 41d = Channel gain is set as per configuration  
42d = Channel gain is set to 42 dB  
43d to 63d = Reserved  
1-0  
Reserved  
R
0h  
Reserved  
8.6.1.1.53 CH4_CFG2 Register (page = 0x00, address = 0x4D) [reset = C9h]  
This register is configuration register 2 for channel 4.  
88  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Figure 147. CH4_CFG2 Register  
7
6
5
4
3
2
1
0
CH4_DVOL[7:0]  
R/W-C9h  
Table 106. CH4_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH4_DVOL[7:0]  
R/W  
C9h  
Channel 4 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to –100 dB  
2d = Digital volume control is set to –99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.1.54 CH4_CFG3 Register (page = 0x00, address = 0x4E) [reset = 80h]  
This register is configuration register 3 for channel 4.  
Figure 148. CH4_CFG3 Register  
7
6
5
4
3
2
1
0
CH4_GCAL[3:0]  
R/W-8h  
Reserved  
R-0h  
Table 107. CH4_CFG3 Register Field Descriptions  
Bit  
Field  
CH4_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
R/W  
8h  
Channel 4 gain calibration.  
0d = Gain calibration is set to –0.8 dB  
1d = Gain calibration is set to –0.7 dB  
2d = Gain calibration is set to –0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
8.6.1.1.55 CH4_CFG4 Register (page = 0x00, address = 0x4F) [reset = 0h]  
This register is configuration register 4 for channel 4.  
Figure 149. CH4_CFG4 Register  
7
6
5
4
3
2
1
0
CH4_PCAL[7:0]  
R/W-0h  
Table 108. CH4_CFG4 Register Field Descriptions  
Bit  
Field  
CH4_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Channel 4 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
Copyright © 2019, Texas Instruments Incorporated  
89  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.6.1.1.56 CH5_CFG2 Register (page = 0x00, address = 0x52) [reset = C9h]  
This register is configuration register 2 for channel 5 (for the digital microphone PDM input only).  
Figure 150. CH5_CFG2 Register  
7
6
5
4
3
2
1
0
CH5_DVOL[7:0]  
R/W-C9h  
Table 109. CH5_CFG2 Register Field Descriptions  
Bit  
Field  
CH5_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
C9h  
Channel 5 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to –100 dB  
2d = Digital volume control is set to –99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.1.57 CH5_CFG3 Register (page = 0x00, address = 0x53) [reset = 80h]  
This register is configuration register 3 for channel 5 (for the digital microphone PDM input only).  
Figure 151. CH5_CFG3 Register  
7
6
5
4
3
2
1
0
CH5_GCAL[3:0]  
R/W-8h  
Reserved  
R-0h  
Table 110. CH5_CFG3 Register Field Descriptions  
Bit  
Field  
CH5_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
R/W  
8h  
Channel 5 gain calibration.  
0d = Gain calibration is set to –0.8 dB  
1d = Gain calibration is set to –0.7 dB  
2d = Gain calibration is set to –0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
8.6.1.1.58 CH5_CFG4 Register (page = 0x00, address = 0x54) [reset = 0h]  
This register is configuration register 4 for channel 5 (for the digital microphone PDM input only).  
Figure 152. CH5_CFG4 Register  
7
6
5
4
3
2
1
0
CH5_PCAL[7:0]  
R/W-0h  
90  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Table 111. CH5_CFG4 Register Field Descriptions  
Bit  
Field  
CH5_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Channel 5 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
8.6.1.1.59 CH6_CFG2 Register (page = 0x00, address = 0x57) [reset = C9h]  
This register is configuration register 2 for channel 6 (for the digital microphone PDM input only).  
Figure 153. CH6_CFG2 Register  
7
6
5
4
3
2
1
0
CH6_DVOL[7:0]  
R/W-C9h  
Table 112. CH6_CFG2 Register Field Descriptions  
Bit  
Field  
CH6_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
C9h  
Channel 6 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to –100 dB  
2d = Digital volume control is set to –99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.1.60 CH6_CFG3 Register (page = 0x00, address = 0x58) [reset = 80h]  
This register is configuration register 3 for channel 6 (for the digital microphone PDM input only).  
Figure 154. CH6_CFG3 Register  
7
6
5
4
3
2
1
0
CH6_GCAL[3:0]  
R/W-8h  
Reserved  
R-0h  
Table 113. CH6_CFG3 Register Field Descriptions  
Bit  
Field  
CH6_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
R/W  
8h  
Channel 6 gain calibration.  
0d = Gain calibration is set to –0.8 dB  
1d = Gain calibration is set to –0.7 dB  
2d = Gain calibration is set to –0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
8.6.1.1.61 CH6_CFG4 Register (page = 0x00, address = 0x59) [reset = 0h]  
This register is configuration register 4 for channel 6 (for the digital microphone PDM input only).  
Copyright © 2019, Texas Instruments Incorporated  
91  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Figure 155. CH6_CFG4 Register  
7
6
5
4
3
2
1
0
CH6_PCAL[7:0]  
R/W-0h  
Table 114. CH6_CFG4 Register Field Descriptions  
Bit  
Field  
CH6_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Channel 6 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
8.6.1.1.62 CH7_CFG2 Register (page = 0x00, address = 0x5C) [reset = C9h]  
This register is configuration register 2 for channel 7 (for the digital microphone PDM input only).  
Figure 156. CH7_CFG2 Register  
7
6
5
4
3
2
1
0
CH7_DVOL[7:0]  
R/W-C9h  
Table 115. CH7_CFG2 Register Field Descriptions  
Bit  
Field  
CH7_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
C9h  
Channel 7 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to –100 dB  
2d = Digital volume control is set to –99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.1.63 CH7_CFG3 Register (page = 0x00, address = 0x5D) [reset = 80h]  
This register is configuration register 3 for channel 7 (for the digital microphone PDM input only).  
Figure 157. CH7_CFG3 Register  
7
6
5
4
3
2
1
0
CH7_GCAL[3:0]  
R/W-8h  
Reserved  
R-0h  
Table 116. CH7_CFG3 Register Field Descriptions  
Bit  
Field  
CH7_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
R/W  
8h  
Channel 7 gain calibration.  
0d = Gain calibration is set to –0.8 dB  
1d = Gain calibration is set to –0.7 dB  
2d = Gain calibration is set to –0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
92  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.6.1.1.64 CH7_CFG4 Register (page = 0x00, address = 0x5E) [reset = 0h]  
This register is configuration register 4 for channel 7 (for the digital microphone PDM input only).  
Figure 158. CH7_CFG4 Register  
7
6
5
4
3
2
1
0
CH7_PCAL[7:0]  
R/W-0h  
Table 117. CH7_CFG4 Register Field Descriptions  
Bit  
Field  
CH7_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Channel 7 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
8.6.1.1.65 CH8_CFG2 Register (page = 0x00, address = 0x61) [reset = C9h]  
This register is configuration register 2 for channel 8 (for the digital microphone PDM input only).  
Figure 159. CH8_CFG2 Register  
7
6
5
4
3
2
1
0
CH8_DVOL[7:0]  
R/W-C9h  
Table 118. CH8_CFG2 Register Field Descriptions  
Bit  
Field  
CH8_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
C9h  
Channel 8 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to –100 dB  
2d = Digital volume control is set to –99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.1.66 CH8_CFG3 Register (page = 0x00, address = 0x62) [reset = 80h]  
This register is configuration register 3 for channel 8 (for the digital microphone PDM input only).  
Figure 160. CH8_CFG3 Register  
7
6
5
4
3
2
1
0
CH8_GCAL[3:0]  
R/W-8h  
Reserved  
R-0h  
Table 119. CH8_CFG3 Register Field Descriptions  
Bit  
Field  
CH8_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
R/W  
8h  
Channel 8 gain calibration.  
0d = Gain calibration is set to –0.8 dB  
1d = Gain calibration is set to –0.7 dB  
2d = Gain calibration is set to –0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
Copyright © 2019, Texas Instruments Incorporated  
93  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Table 119. CH8_CFG3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
Reserved  
R
0h  
Reserved  
8.6.1.1.67 CH8_CFG4 Register (page = 0x00, address = 0x63) [reset = 0h]  
This register is configuration register 4 for channel 8 (for the digital microphone PDM input only).  
Figure 161. CH8_CFG4 Register  
7
6
5
4
3
2
1
0
CH8_PCAL[7:0]  
R/W-0h  
Table 120. CH8_CFG4 Register Field Descriptions  
Bit  
Field  
CH8_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Channel 8 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
8.6.1.1.68 DSP_CFG0 Register (page = 0x00, address = 0x6B) [reset = 1h]  
This register is the digital signal processor (DSP) configuration register 0.  
Figure 162. DSP_CFG0 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
DECI_FILT[1:0]  
R/W-0h  
CH_SUM[1:0]  
R/W-0h  
HPF_SEL[1:0]  
R/W-1h  
Table 121. DSP_CFG0 Register Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
DECI_FILT[1:0]  
R/W  
0h  
Decimation filter response.  
0d = Linear phase  
1d = Low latency  
2d = Ultra-low latency  
3d = Reserved  
3-2  
1-0  
CH_SUM[1:0]  
R/W  
R/W  
0h  
1h  
Channel summation mode for higher SNR  
0d = Channel summation mode is disabled  
1d = 2-channel summation mode is enabled to generate a (CH1 + CH2) / 2  
and a (CH3 + CH4) / 2 output  
2d = 4-channel summation mode is enabled to generate a (CH1 + CH2 +  
CH3 + CH4) / 4 output  
3d = Reserved  
HPF_SEL[1:0]  
High-pass filter (HPF) selection.  
0d = Programmable first-order IIR filter for a custom HPF with default  
coefficient values in P4_R72 to P4_R83 set as the all-pass filter  
1d = HPF with a cutoff of 0.00025 × fS (12 Hz at fS = 48 kHz) is selected  
2d = HPF with a cutoff of 0.002 × fS (96 Hz at fS = 48 kHz) is selected  
3d = HPF with a cutoff of 0.008 × fS (384 Hz at fS = 48 kHz) is selected  
8.6.1.1.69 DSP_CFG1 Register (page = 0x00, address = 0x6C) [reset = 40h]  
This register is the digital signal processor (DSP) configuration register 1.  
94  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Figure 163. DSP_CFG1 Register  
7
6
5
4
3
2
1
0
DISABLE_  
SOFT_STEP  
DRE_AGC_  
SEL  
DVOL_GANG  
R/W-0h  
BIQUAD_CFG[1:0]  
R/W-2h  
Reserved  
R/W-0h  
R/W-0h  
R/W-0h  
Table 122. DSP_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DVOL_GANG  
R/W  
0h  
DVOL control ganged across channels.  
0d = Each channel has its own DVOL CTRL settings as programmed in the  
CHx_DVOL bits  
1d = All active channels must use the channel 1 DVOL setting (CH1_DVOL)  
irrespective of whether channel 1 is turned on or not  
6-5  
BIQUAD_CFG[1:0]  
R/W  
2h  
Number of biquads per channel configuration.  
0d = No biquads per channel; biquads are all disabled  
1d = 1 biquad per channel  
2d = 2 biquads per channel  
3d = 3 biquads per channel  
4
3
DISABLE_SOFT_STEP  
DRE_AGC_SEL  
Reserved  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Soft-stepping disable during DVOL change, mute, and unmute.  
0d = Soft-stepping enabled  
1d = Soft-stepping disabled  
DRE or AGC selection when is enabled for any channel.  
0d = DRE is selected  
1d = AGC is selected  
2-0  
Reserved  
8.6.1.1.70 DRE_CFG0 Register (page = 0x00, address = 0x6D) [reset = 7Bh]  
This register is the dynamic range enhancer (DRE) configuration register 0.  
Figure 164. DRE_CFG0 Register  
7
6
5
4
3
2
1
0
DRE_LVL[3:0]  
R/W-7h  
DRE_MAXGAIN[3:0]  
R/W-Bh  
Table 123. DRE_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DRE_LVL[3:0]  
R/W  
7h  
DRE trigger signal level threshold.  
0d = Input signal level threshold is –12 dB  
1d = Input signal level threshold is –18 dB  
2d = Input signal level threshold is –24 dB  
3d to 6d = Input signal level threshold is as per configuration  
7d = Input signal level threshold is –54 dB  
8d = Input signal level threshold is –60 dB  
9d = Input signal level threshold is –66 dB  
10d to 15d = Reserved  
3-0  
DRE_MAXGAIN[3:0]  
R/W  
Bh  
DRE maximum gain allowed.  
0d = Maximum gain allowed is 2 dB  
1d = Maximum gain allowed is 4 dB  
2d = Maximum gain allowed is 6 dB  
3d to 10d = Maximum gain allowed is as per configuration  
11d = Maximum gain allowed is 24 dB  
12d = Maximum gain allowed is 26 dB  
13d to 15d = Reserved  
8.6.1.1.71 AGC_CFG0 Register (page = 0x00, address = 0x70) [reset = E7h]  
This register is the automatic gain controller (AGC) configuration register 0.  
Copyright © 2019, Texas Instruments Incorporated  
95  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Figure 165. AGC_CFG0 Register  
7
6
5
4
3
2
1
0
AGC_LVL[3:0]  
R/W-Eh  
AGC_MAXGAIN[3:0]  
R/W-7h  
Table 124. AGC_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
AGC_LVL[3:0]  
R/W  
Eh  
AGC output signal target level.  
0d = Output signal target level is –6 dB  
1d = Output signal target level is –8 dB  
2d = Output signal target level is –10 dB  
3d to 13d = Output signal target level is as per configuration  
14d = Output signal target level is –34 dB  
15d = Output signal target level is –36 dB  
3-0  
AGC_MAXGAIN[3:0]  
R/W  
7h  
AGC maximum gain allowed.  
0d = Maximum gain allowed is 3 dB  
1d = Maximum gain allowed is 6 dB  
2d = Maximum gain allowed is 9 dB  
3d to 11d = Maximum gain allowed is as per configuration  
12d = Maximum gain allowed is 39 dB  
13d = Maximum gain allowed is 42 dB  
14d to 15d = Reserved  
8.6.1.1.72 IN_CH_EN Register (page = 0x00, address = 0x73) [reset = F0h]  
This register is the input channel enable configuration register.  
Figure 166. IN_CH_EN Register  
7
6
5
4
3
2
1
0
IN_CH1_EN  
R/W-1h  
IN_CH2_EN  
R/W-1h  
IN_CH3_EN  
R/W-1h  
IN_CH4_EN  
R/W-1h  
IN_CH5_EN  
R/W-0h  
IN_CH6_EN  
R/W-0h  
IN_CH7_EN  
R/W-0h  
IN_CH8_EN  
R/W-0h  
Table 125. IN_CH_EN Register Field Descriptions  
Bit  
Field  
IN_CH1_EN  
Type  
Reset  
Description  
7
R/W  
1h  
Input channel 1 enable setting.  
0d = Channel 1 is disabled  
1d = Channel 1 is enabled  
6
5
4
3
2
1
0
IN_CH2_EN  
IN_CH3_EN  
IN_CH4_EN  
IN_CH5_EN  
IN_CH6_EN  
IN_CH7_EN  
IN_CH8_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
0h  
0h  
0h  
0h  
Input channel 2 enable setting.  
0d = Channel 2 is disabled  
1d = Channel 2 is enabled  
Input channel 3 enable setting.  
0d = Channel 3 is disabled  
1d = Channel 3 is enabled  
Input channel 4 enable setting.  
0d = Channel 4 is disabled  
1d = Channel 4 is enabled  
Input channel 5 (PDM only) enable setting.  
0d = Channel 5 is disabled  
1d = Channel 5 is enabled  
Input channel 6 (PDM only) enable setting.  
0d = Channel 6 is disabled  
1d = Channel 6 is enabled  
Input channel 7 (PDM only) enable setting.  
0d = Channel 7 is disabled  
1d = Channel 7 is enabled  
Input channel 8 (PDM only) enable setting.  
0d = Channel 8 is disabled  
1d = Channel 8 is enabled  
96  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.6.1.1.73 ASI_OUT_CH_EN Register (page = 0x00, address = 0x74) [reset = 0h]  
This register is the ASI output channel enable configuration register.  
Figure 167. ASI_OUT_CH_EN Register  
7
6
5
4
3
2
1
0
ASI_OUT_CH1 ASI_OUT_CH2 ASI_OUT_CH3 ASI_OUT_CH4 ASI_OUT_CH5 ASI_OUT_CH6 ASI_OUT_CH7 ASI_OUT_CH8  
_EN  
_EN  
_EN  
_EN  
_EN  
_EN  
_EN  
_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 126. ASI_OUT_CH_EN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
ASI_OUT_CH1_EN  
ASI_OUT_CH2_EN  
ASI_OUT_CH3_EN  
ASI_OUT_CH4_EN  
ASI_OUT_CH5_EN  
ASI_OUT_CH6_EN  
ASI_OUT_CH7_EN  
ASI_OUT_CH8_EN  
R/W  
0h  
ASI output channel 1 enable setting.  
0d = Channel 1 output slot is in a tri-state condition  
1d = Channel 1 output slot is enabled  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
ASI output channel 2 enable setting.  
0d = Channel 2 output slot is in a tri-state condition  
1d = Channel 2 output slot is enabled  
ASI output channel 3 enable setting.  
0d = Channel 3 output slot is in a tri-state condition  
1d = Channel 3 output slot is enabled  
ASI output channel 4 enable setting.  
0d = Channel 4 output slot is in a tri-state condition  
1d = Channel 4 output slot is enabled  
ASI output channel 5 enable setting.  
0d = Channel 5 output slot is in a tri-state condition  
1d = Channel 5 output slot is enabled  
ASI output channel 6 enable setting.  
0d = Channel 6 output slot is in a tri-state condition  
1d = Channel 6 output slot is enabled  
ASI output channel 7 enable setting.  
0d = Channel 7 output slot is in a tri-state condition  
1d = Channel 7 output slot is enabled  
ASI output channel 8 enable setting.  
0d = Channel 8 output slot is in a tri-state condition  
1d = Channel 8 output slot is enabled  
8.6.1.1.74 PWR_CFG Register (page = 0x00, address = 0x75) [reset = 0h]  
This register is the power-up configuration register.  
Figure 168. PWR_CFG Register  
7
6
5
4
3
2
1
0
DYN_CH_  
PUPD_EN  
MICBIAS_PDZ  
R/W-0h  
ADC_PDZ  
R/W-0h  
PLL_PDZ  
R/W-0h  
DYN_MAXCH_SEL[1:0]  
R/W-0h  
Reserved  
R/W-0h  
R/W-0h  
Table 127. PWR_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MICBIAS_PDZ  
R/W  
0h  
Power control for MICBIAS.  
0d = Power down MICBIAS  
1d = Power up MICBIAS  
6
5
ADC_PDZ  
R/W  
R/W  
0h  
0h  
Power control for ADC and PDM channels.  
0d = Power down all ADC and PDM channels  
1d = Power up all enabled ADC and PDM channels  
PLL_PDZ  
Power control for the PLL.  
0d = Power down the PLL  
1d = Power up the PLL  
Copyright © 2019, Texas Instruments Incorporated  
97  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Table 127. PWR_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
DYN_CH_PUPD_EN  
R/W  
0h  
Dynamic channel power-up, power-down enable.  
0d = Channel power-up, power-down is not supported if any channel  
recording is on  
1d = Channel can be powered up or down individually, even if channel  
recording is on  
3-2  
DYN_MAXCH_SEL[1:0]  
R/W  
0h  
Dynamic mode maximum channel select configuration.  
0d = Channel 1 and channel 2 are used with dynamic channel power-up,  
power-down feature enabled  
1d = Channel 1 to channel 4 are used with dynamic channel power-up,  
power-down feature enabled  
2d = Channel 1 to channel 6 are used with dynamic channel power-up,  
power-down feature enabled  
3d = Channel 1 to channel 8 are used with dynamic channel power-up,  
power-down feature enabled  
1-0  
Reserved  
R/W  
0h  
Reserved  
8.6.1.1.75 DEV_STS0 Register (page = 0x00, address = 0x76) [reset = 0h]  
This register is the device status value register 0.  
Figure 169. DEV_STS0 Register  
7
6
5
4
3
2
1
0
CH1_STATUS CH2_STATUS CH3_STATUS CH4_STATUS CH5_STATUS CH6_STATUS CH7_STATUS CH8_STATUS  
R-0h R-0h R-0h R-0h R-0h R-0h R-0h R-0h  
Table 128. DEV_STS0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
CH1_STATUS  
CH2_STATUS  
CH3_STATUS  
CH4_STATUS  
CH5_STATUS  
CH6_STATUS  
CH7_STATUS  
CH8_STATUS  
R
0h  
ADC or PDM channel 1 power status.  
0d = ADC or PDM channel is powered down  
1d = ADC or PDM channel is powered up  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
ADC or PDM channel 2 power status.  
0d = ADC or PDM channel is powered down  
1d = ADC or PDM channel is powered up  
ADC or PDM channel 3 power status.  
0d = ADC or PDM channel is powered down  
1d = ADC or PDM channel is powered up  
ADC or PDM channel 4 power status.  
0d = ADC or PDM channel is powered down  
1d = ADC or PDM channel is powered up  
PDM channel 5 power status.  
0d = PDM channel is powered down  
1d = PDM channel is powered up  
PDM channel 6 power status.  
0d = PDM channel is powered down  
1d = PDM channel is powered up  
PDM channel 7 power status.  
0d = PDM channel is powered down  
1d = PDM channel is powered up  
PDM channel 8 power status.  
0d = PDM channel is powered down  
1d = PDM channel is powered up  
8.6.1.1.76 DEV_STS1 Register (page = 0x00, address = 0x77) [reset = 80h]  
This register is the device status value register 1.  
98  
Copyright © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Figure 170. DEV_STS1 Register  
7
6
5
4
3
2
1
0
MODE_STS[2:0]  
R-4h  
Reserved  
R-0h  
Table 129. DEV_STS1 Register Field Descriptions  
Bit  
Field  
MODE_STS[2:0]  
Type  
Reset  
Description  
7-5  
R
4h  
Device mode status.  
4d = Device is in sleep mode or software shutdown mode  
6d = Device is in active mode with all ADC or PDM channels turned off  
7d = Device is in active mode with at least one ADC or PDM channel turned  
on  
4-0  
Reserved  
R
0h  
Reserved  
8.6.1.1.77 I2C_CKSUM Register (page = 0x00, address = 0x7E) [reset = 0h]  
This register returns the I2C transactions checksum value.  
Figure 171. I2C_CKSUM Register  
7
6
5
4
3
2
1
0
I2C_CKSUM[7:0]  
R/W-0h  
Table 130. I2C_CKSUM Register Field Descriptions  
Bit  
Field  
I2C_CKSUM[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
These bits return the I2C transactions checksum value. Writing to this  
register resets the checksum to the written value. This register is updated on  
writes to other registers on all pages.  
版权 © 2019, Texas Instruments Incorporated  
99  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.6.2 Programmable Coefficient Registers  
8.6.2.1 Programmable Coefficient Registers: Page = 0x02  
This register page (shown in 131) consists of the programmable coefficients for the biquad 1 to biquad 6  
filters. To optimize the coefficients register transaction time for page 2, page 3, and page 4, the device also  
supports (by default) auto-incremented pages for the I2C and SPI burst writes and reads. After a transaction of  
register address 0x7F, the device auto increments to the next page at register 0x08 to transact the next  
coefficient value.  
131. Page 0x02 Programmable Coefficient Registers  
ADDRESS  
0x00  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
REGISTER  
RESET  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
DESCRIPTION  
PAGE[7:0]  
Device page register  
BQ1_N0_BYT1[7:0]  
BQ1_N0_BYT2[7:0]  
BQ1_N0_BYT3[7:0]  
BQ1_N0_BYT4[7:0]  
BQ1_N1_BYT1[7:0]  
BQ1_N1_BYT2[7:0]  
BQ1_N1_BYT3[7:0]  
BQ1_N1_BYT4[7:0]  
BQ1_N2_BYT1[7:0]  
BQ1_N2_BYT2[7:0]  
BQ1_N2_BYT3[7:0]  
BQ1_N2_BYT4[7:0]  
BQ1_D1_BYT1[7:0]  
BQ1_D1_BYT2[7:0]  
BQ1_D1_BYT3[7:0]  
BQ1_D1_BYT4[7:0]  
BQ1_D2_BYT1[7:0]  
BQ1_D2_BYT2[7:0]  
BQ1_D2_BYT3[7:0]  
BQ1_D2_BYT4[7:0]  
BQ2_N0_BYT1[7:0]  
BQ2_N0_BYT2[7:0]  
BQ2_N0_BYT3[7:0]  
BQ2_N0_BYT4[7:0]  
BQ2_N1_BYT1[7:0]  
BQ2_N1_BYT2[7:0]  
BQ2_N1_BYT3[7:0]  
BQ2_N1_BYT4[7:0]  
BQ2_N2_BYT1[7:0]  
BQ2_N2_BYT2[7:0]  
BQ2_N2_BYT3[7:0]  
BQ2_N2_BYT4[7:0]  
BQ2_D1_BYT1[7:0]  
BQ2_D1_BYT2[7:0]  
BQ2_D1_BYT3[7:0]  
BQ2_D1_BYT4[7:0]  
BQ2_D2_BYT1[7:0]  
BQ2_D2_BYT2[7:0]  
BQ2_D2_BYT3[7:0]  
BQ2_D2_BYT4[7:0]  
BQ3_N0_BYT1[7:0]  
BQ3_N0_BYT2[7:0]  
Programmable biquad 1, N0 coefficient byte[31:24]  
Programmable biquad 1, N0 coefficient byte[23:16]  
Programmable biquad 1, N0 coefficient byte[15:8]  
Programmable biquad 1, N0 coefficient byte[7:0]  
Programmable biquad 1, N1 coefficient byte[31:24]  
Programmable biquad 1, N1 coefficient byte[23:16]  
Programmable biquad 1, N1 coefficient byte[15:8]  
Programmable biquad 1, N1 coefficient byte[7:0]  
Programmable biquad 1, N2 coefficient byte[31:24]  
Programmable biquad 1, N2 coefficient byte[23:16]  
Programmable biquad 1, N2 coefficient byte[15:8]  
Programmable biquad 1, N2 coefficient byte[7:0]  
Programmable biquad 1, D1 coefficient byte[31:24]  
Programmable biquad 1, D1 coefficient byte[23:16]  
Programmable biquad 1, D1 coefficient byte[15:8]  
Programmable biquad 1, D1 coefficient byte[7:0]  
Programmable biquad 1, D2 coefficient byte[31:24]  
Programmable biquad 1, D2 coefficient byte[23:16]  
Programmable biquad 1, D2 coefficient byte[15:8]  
Programmable biquad 1, D2 coefficient byte[7:0]  
Programmable biquad 2, N0 coefficient byte[31:24]  
Programmable biquad 2, N0 coefficient byte[23:16]  
Programmable biquad 2, N0 coefficient byte[15:8]  
Programmable biquad 2, N0 coefficient byte[7:0]  
Programmable biquad 2, N1 coefficient byte[31:24]  
Programmable biquad 2, N1 coefficient byte[23:16]  
Programmable biquad 2, N1 coefficient byte[15:8]  
Programmable biquad 2, N1 coefficient byte[7:0]  
Programmable biquad 2, N2 coefficient byte[31:24]  
Programmable biquad 2, N2 coefficient byte[23:16]  
Programmable biquad 2, N2 coefficient byte[15:8]  
Programmable biquad 2, N2 coefficient byte[7:0]  
Programmable biquad 2, D1 coefficient byte[31:24]  
Programmable biquad 2, D1 coefficient byte[23:16]  
Programmable biquad 2, D1 coefficient byte[15:8]  
Programmable biquad 2, D1 coefficient byte[7:0]  
Programmable biquad 2, D2 coefficient byte[31:24]  
Programmable biquad 2, D2 coefficient byte[23:16]  
Programmable biquad 2, D2 coefficient byte[15:8]  
Programmable biquad 2, D2 coefficient byte[7:0]  
Programmable biquad 3, N0 coefficient byte[31:24]  
Programmable biquad 3, N0 coefficient byte[23:16]  
100  
版权 © 2019, Texas Instruments Incorporated  
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
131. Page 0x02 Programmable Coefficient Registers (接下页)  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
BQ3_N0_BYT3[7:0]  
BQ3_N0_BYT4[7:0]  
BQ3_N1_BYT1[7:0]  
BQ3_N1_BYT2[7:0]  
BQ3_N1_BYT3[7:0]  
BQ3_N1_BYT4[7:0]  
BQ3_N2_BYT1[7:0]  
BQ3_N2_BYT2[7:0]  
BQ3_N2_BYT3[7:0]  
BQ3_N2_BYT4[7:0]  
BQ3_D1_BYT1[7:0]  
BQ3_D1_BYT2[7:0]  
BQ3_D1_BYT3[7:0]  
BQ3_D1_BYT4[7:0]  
BQ3_D2_BYT1[7:0]  
BQ3_D2_BYT2[7:0]  
BQ3_D2_BYT3[7:0]  
BQ3_D2_BYT4[7:0]  
BQ4_N0_BYT1[7:0]  
BQ4_N0_BYT2[7:0]  
BQ4_N0_BYT3[7:0]  
BQ4_N0_BYT4[7:0]  
BQ4_N1_BYT1[7:0]  
BQ4_N1_BYT2[7:0]  
BQ4_N1_BYT3[7:0]  
BQ4_N1_BYT4[7:0]  
BQ4_N2_BYT1[7:0]  
BQ4_N2_BYT2[7:0]  
BQ4_N2_BYT3[7:0]  
BQ4_N2_BYT4[7:0]  
BQ4_D1_BYT1[7:0]  
BQ4_D1_BYT2[7:0]  
BQ4_D1_BYT3[7:0]  
BQ4_D1_BYT4[7:0]  
BQ4_D2_BYT1[7:0]  
BQ4_D2_BYT2[7:0]  
BQ4_D2_BYT3[7:0]  
BQ4_D2_BYT4[7:0]  
BQ5_N0_BYT1[7:0]  
BQ5_N0_BYT2[7:0]  
BQ5_N0_BYT3[7:0]  
BQ5_N0_BYT4[7:0]  
BQ5_N1_BYT1[7:0]  
BQ5_N1_BYT2[7:0]  
BQ5_N1_BYT3[7:0]  
BQ5_N1_BYT4[7:0]  
BQ5_N2_BYT1[7:0]  
BQ5_N2_BYT2[7:0]  
BQ5_N2_BYT3[7:0]  
BQ5_N2_BYT4[7:0]  
BQ5_D1_BYT1[7:0]  
BQ5_D1_BYT2[7:0]  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Programmable biquad 3, N0 coefficient byte[15:8]  
Programmable biquad 3, N0 coefficient byte[7:0]  
Programmable biquad 3, N1 coefficient byte[31:24]  
Programmable biquad 3, N1 coefficient byte[23:16]  
Programmable biquad 3, N1 coefficient byte[15:8]  
Programmable biquad 3, N1 coefficient byte[7:0]  
Programmable biquad 3, N2 coefficient byte[31:24]  
Programmable biquad 3, N2 coefficient byte[23:16]  
Programmable biquad 3, N2 coefficient byte[15:8]  
Programmable biquad 3, N2 coefficient byte[7:0]  
Programmable biquad 3, D1 coefficient byte[31:24]  
Programmable biquad 3, D1 coefficient byte[23:16]  
Programmable biquad 3, D1 coefficient byte[15:8]  
Programmable biquad 3, D1 coefficient byte[7:0]  
Programmable biquad 3, D2 coefficient byte[31:24]  
Programmable biquad 3, D2 coefficient byte[23:16]  
Programmable biquad 3, D2 coefficient byte[15:8]  
Programmable biquad 3, D2 coefficient byte[7:0]  
Programmable biquad 4, N0 coefficient byte[31:24]  
Programmable biquad 4, N0 coefficient byte[23:16]  
Programmable biquad 4, N0 coefficient byte[15:8]  
Programmable biquad 4, N0 coefficient byte[7:0]  
Programmable biquad 4, N1 coefficient byte[31:24]  
Programmable biquad 4, N1 coefficient byte[23:16]  
Programmable biquad 4, N1 coefficient byte[15:8]  
Programmable biquad 4, N1 coefficient byte[7:0]  
Programmable biquad 4, N2 coefficient byte[31:24]  
Programmable biquad 4, N2 coefficient byte[23:16]  
Programmable biquad 4, N2 coefficient byte[15:8]  
Programmable biquad 4, N2 coefficient byte[7:0]  
Programmable biquad 4, D1 coefficient byte[31:24]  
Programmable biquad 4, D1 coefficient byte[23:16]  
Programmable biquad 4, D1 coefficient byte[15:8]  
Programmable biquad 4, D1 coefficient byte[7:0]  
Programmable biquad 4, D2 coefficient byte[31:24]  
Programmable biquad 4, D2 coefficient byte[23:16]  
Programmable biquad 4, D2 coefficient byte[15:8]  
Programmable biquad 4, D2 coefficient byte[7:0]  
Programmable biquad 5, N0 coefficient byte[31:24]  
Programmable biquad 5, N0 coefficient byte[23:16]  
Programmable biquad 5, N0 coefficient byte[15:8]  
Programmable biquad 5, N0 coefficient byte[7:0]  
Programmable biquad 5, N1 coefficient byte[31:24]  
Programmable biquad 5, N1 coefficient byte[23:16]  
Programmable biquad 5, N1 coefficient byte[15:8]  
Programmable biquad 5, N1 coefficient byte[7:0]  
Programmable biquad 5, N2 coefficient byte[31:24]  
Programmable biquad 5, N2 coefficient byte[23:16]  
Programmable biquad 5, N2 coefficient byte[15:8]  
Programmable biquad 5, N2 coefficient byte[7:0]  
Programmable biquad 5, D1 coefficient byte[31:24]  
Programmable biquad 5, D1 coefficient byte[23:16]  
版权 © 2019, Texas Instruments Incorporated  
101  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
131. Page 0x02 Programmable Coefficient Registers (接下页)  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
BQ5_D1_BYT3[7:0]  
BQ5_D1_BYT4[7:0]  
BQ5_D2_BYT1[7:0]  
BQ5_D2_BYT2[7:0]  
BQ5_D2_BYT3[7:0]  
BQ5_D2_BYT4[7:0]  
BQ6_N0_BYT1[7:0]  
BQ6_N0_BYT2[7:0]  
BQ6_N0_BYT3[7:0]  
BQ6_N0_BYT4[7:0]  
BQ6_N1_BYT1[7:0]  
BQ6_N1_BYT2[7:0]  
BQ6_N1_BYT3[7:0]  
BQ6_N1_BYT4[7:0]  
BQ6_N2_BYT1[7:0]  
BQ6_N2_BYT2[7:0]  
BQ6_N2_BYT3[7:0]  
BQ6_N2_BYT4[7:0]  
BQ6_D1_BYT1[7:0]  
BQ6_D1_BYT2[7:0]  
BQ6_D1_BYT3[7:0]  
BQ6_D1_BYT4[7:0]  
BQ6_D2_BYT1[7:0]  
BQ6_D2_BYT2[7:0]  
BQ6_D2_BYT3[7:0]  
BQ6_D2_BYT4[7:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Programmable biquad 5, D1 coefficient byte[15:8]  
Programmable biquad 5, D1 coefficient byte[7:0]  
Programmable biquad 5, D2 coefficient byte[31:24]  
Programmable biquad 5, D2 coefficient byte[23:16]  
Programmable biquad 5, D2 coefficient byte[15:8]  
Programmable biquad 5, D2 coefficient byte[7:0]  
Programmable biquad 6, N0 coefficient byte[31:24]  
Programmable biquad 6, N0 coefficient byte[23:16]  
Programmable biquad 6, N0 coefficient byte[15:8]  
Programmable biquad 6, N0 coefficient byte[7:0]  
Programmable biquad 6, N1 coefficient byte[31:24]  
Programmable biquad 6, N1 coefficient byte[23:16]  
Programmable biquad 6, N1 coefficient byte[15:8]  
Programmable biquad 6, N1 coefficient byte[7:0]  
Programmable biquad 6, N2 coefficient byte[31:24]  
Programmable biquad 6, N2 coefficient byte[23:16]  
Programmable biquad 6, N2 coefficient byte[15:8]  
Programmable biquad 6, N2 coefficient byte[7:0]  
Programmable biquad 6, D1 coefficient byte[31:24]  
Programmable biquad 6, D1 coefficient byte[23:16]  
Programmable biquad 6, D1 coefficient byte[15:8]  
Programmable biquad 6, D1 coefficient byte[7:0]  
Programmable biquad 6, D2 coefficient byte[31:24]  
Programmable biquad 6, D2 coefficient byte[23:16]  
Programmable biquad 6, D2 coefficient byte[15:8]  
Programmable biquad 6, D2 coefficient byte[7:0]  
102  
版权 © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
8.6.2.2 Programmable Coefficient Registers: Page = 0x03  
This register page (shown in 132) consists of the programmable coefficients for the biquad 7 to biquad 12  
filters. To optimize the coefficients register transaction time for page 2, page 3, and page 4, the device also  
supports (by default) auto-incremented pages for the I2C and SPI burst writes and reads. After a transaction of  
register address 0x7F, the device auto increments to the next page at register 0x08 to transact the next  
coefficient value.  
132. Page 0x03 Programmable Coefficient Registers  
ADDR  
0x00  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
REGISTER  
RESET  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
DESCRIPTION  
PAGE[7:0]  
Device page register  
BQ7_N0_BYT1[7:0]  
BQ7_N0_BYT2[7:0]  
BQ7_N0_BYT3[7:0]  
BQ7_N0_BYT4[7:0]  
BQ7_N1_BYT1[7:0]  
BQ7_N1_BYT2[7:0]  
BQ7_N1_BYT3[7:0]  
BQ7_N1_BYT4[7:0]  
BQ7_N2_BYT1[7:0]  
BQ7_N2_BYT2[7:0]  
BQ7_N2_BYT3[7:0]  
BQ7_N2_BYT4[7:0]  
BQ7_D1_BYT1[7:0]  
BQ7_D1_BYT2[7:0]  
BQ7_D1_BYT3[7:0]  
BQ7_D1_BYT4[7:0]  
BQ7_D2_BYT1[7:0]  
BQ7_D2_BYT2[7:0]  
BQ7_D2_BYT3[7:0]  
BQ7_D2_BYT4[7:0]  
BQ8_N0_BYT1[7:0]  
BQ8_N0_BYT2[7:0]  
BQ8_N0_BYT3[7:0]  
BQ8_N0_BYT4[7:0]  
BQ8_N1_BYT1[7:0]  
BQ8_N1_BYT2[7:0]  
BQ8_N1_BYT3[7:0]  
BQ8_N1_BYT4[7:0]  
BQ8_N2_BYT1[7:0]  
BQ8_N2_BYT2[7:0]  
BQ8_N2_BYT3[7:0]  
BQ8_N2_BYT4[7:0]  
BQ8_D1_BYT1[7:0]  
BQ8_D1_BYT2[7:0]  
BQ8_D1_BYT3[7:0]  
BQ8_D1_BYT4[7:0]  
BQ8_D2_BYT1[7:0]  
BQ8_D2_BYT2[7:0]  
BQ8_D2_BYT3[7:0]  
BQ8_D2_BYT4[7:0]  
BQ9_N0_BYT1[7:0]  
BQ9_N0_BYT2[7:0]  
BQ9_N0_BYT3[7:0]  
Programmable biquad 7, N0 coefficient byte[31:24]  
Programmable biquad 7, N0 coefficient byte[23:16]  
Programmable biquad 7, N0 coefficient byte[15:8]  
Programmable biquad 7, N0 coefficient byte[7:0]  
Programmable biquad 7, N1 coefficient byte[31:24]  
Programmable biquad 7, N1 coefficient byte[23:16]  
Programmable biquad 7, N1 coefficient byte[15:8]  
Programmable biquad 7, N1 coefficient byte[7:0]  
Programmable biquad 7, N2 coefficient byte[31:24]  
Programmable biquad 7, N2 coefficient byte[23:16]  
Programmable biquad 7, N2 coefficient byte[15:8]  
Programmable biquad 7, N2 coefficient byte[7:0]  
Programmable biquad 7, D1 coefficient byte[31:24]  
Programmable biquad 7, D1 coefficient byte[23:16]  
Programmable biquad 7, D1 coefficient byte[15:8]  
Programmable biquad 7, D1 coefficient byte[7:0]  
Programmable biquad 7, D2 coefficient byte[31:24]  
Programmable biquad 7, D2 coefficient byte[23:16]  
Programmable biquad 7, D2 coefficient byte[15:8]  
Programmable biquad 7, D2 coefficient byte[7:0]  
Programmable biquad 8, N0 coefficient byte[31:24]  
Programmable biquad 8, N0 coefficient byte[23:16]  
Programmable biquad 8, N0 coefficient byte[15:8]  
Programmable biquad 8, N0 coefficient byte[7:0]  
Programmable biquad 8, N1 coefficient byte[31:24]  
Programmable biquad 8, N1 coefficient byte[23:16]  
Programmable biquad 8, N1 coefficient byte[15:8]  
Programmable biquad 8, N1 coefficient byte[7:0]  
Programmable biquad 8, N2 coefficient byte[31:24]  
Programmable biquad 8, N2 coefficient byte[23:16]  
Programmable biquad 8, N2 coefficient byte[15:8]  
Programmable biquad 8, N2 coefficient byte[7:0]  
Programmable biquad 8, D1 coefficient byte[31:24]  
Programmable biquad 8, D1 coefficient byte[23:16]  
Programmable biquad 8, D1 coefficient byte[15:8]  
Programmable biquad 8, D1 coefficient byte[7:0]  
Programmable biquad 8, D2 coefficient byte[31:24]  
Programmable biquad 8, D2 coefficient byte[23:16]  
Programmable biquad 8, D2 coefficient byte[15:8]  
Programmable biquad 8, D2 coefficient byte[7:0]  
Programmable biquad 9, N0 coefficient byte[31:24]  
Programmable biquad 9, N0 coefficient byte[23:16]  
Programmable biquad 9, N0 coefficient byte[15:8]  
版权 © 2019, Texas Instruments Incorporated  
103  
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
132. Page 0x03 Programmable Coefficient Registers (接下页)  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
BQ9_N0_BYT4[7:0]  
BQ9_N1_BYT1[7:0]  
BQ9_N1_BYT2[7:0]  
BQ9_N1_BYT3[7:0]  
BQ9_N1_BYT4[7:0]  
BQ9_N2_BYT1[7:0]  
BQ9_N2_BYT2[7:0]  
BQ9_N2_BYT3[7:0]  
BQ9_N2_BYT4[7:0]  
BQ9_D1_BYT1[7:0]  
BQ9_D1_BYT2[7:0]  
BQ9_D1_BYT3[7:0]  
BQ9_D1_BYT4[7:0]  
BQ9_D2_BYT1[7:0]  
BQ9_D2_BYT2[7:0]  
BQ9_D2_BYT3[7:0]  
BQ9_D2_BYT4[7:0]  
BQ10_N0_BYT1[7:0]  
BQ10_N0_BYT2[7:0]  
BQ10_N0_BYT3[7:0]  
BQ10_N0_BYT4[7:0]  
BQ10_N1_BYT1[7:0]  
BQ10_N1_BYT2[7:0]  
BQ10_N1_BYT3[7:0]  
BQ10_N1_BYT4[7:0]  
BQ10_N2_BYT1[7:0]  
BQ10_N2_BYT2[7:0]  
BQ10_N2_BYT3[7:0]  
BQ10_N2_BYT4[7:0]  
BQ10_D1_BYT1[7:0]  
BQ10_D1_BYT2[7:0]  
BQ10_D1_BYT3[7:0]  
BQ10_D1_BYT4[7:0]  
BQ10_D2_BYT1[7:0]  
BQ10_D2_BYT2[7:0]  
BQ10_D2_BYT3[7:0]  
BQ10_D2_BYT4[7:0]  
BQ11_N0_BYT1[7:0]  
BQ11_N0_BYT2[7:0]  
BQ11_N0_BYT3[7:0]  
BQ11_N0_BYT4[7:0]  
BQ11_N1_BYT1[7:0]  
BQ11_N1_BYT2[7:0]  
BQ11_N1_BYT3[7:0]  
BQ11_N1_BYT4[7:0]  
BQ11_N2_BYT1[7:0]  
BQ11_N2_BYT2[7:0]  
BQ11_N2_BYT3[7:0]  
BQ11_N2_BYT4[7:0]  
BQ11_D1_BYT1[7:0]  
BQ11_D1_BYT2[7:0]  
BQ11_D1_BYT3[7:0]  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Programmable biquad 9, N0 coefficient byte[7:0]  
Programmable biquad 9, N1 coefficient byte[31:24]  
Programmable biquad 9, N1 coefficient byte[23:16]  
Programmable biquad 9, N1 coefficient byte[15:8]  
Programmable biquad 9, N1 coefficient byte[7:0]  
Programmable biquad 9, N2 coefficient byte[31:24]  
Programmable biquad 9, N2 coefficient byte[23:16]  
Programmable biquad 9, N2 coefficient byte[15:8]  
Programmable biquad 9, N2 coefficient byte[7:0]  
Programmable biquad 9, D1 coefficient byte[31:24]  
Programmable biquad 9, D1 coefficient byte[23:16]  
Programmable biquad 9, D1 coefficient byte[15:8]  
Programmable biquad 9, D1 coefficient byte[7:0]  
Programmable biquad 9, D2 coefficient byte[31:24]  
Programmable biquad 9, D2 coefficient byte[23:16]  
Programmable biquad 9, D2 coefficient byte[15:8]  
Programmable biquad 9, D2 coefficient byte[7:0]  
Programmable biquad 10, N0 coefficient byte[31:24]  
Programmable biquad 10, N0 coefficient byte[23:16]  
Programmable biquad 10, N0 coefficient byte[15:8]  
Programmable biquad 10, N0 coefficient byte[7:0]  
Programmable biquad 10, N1 coefficient byte[31:24]  
Programmable biquad 10, N1 coefficient byte[23:16]  
Programmable biquad 10, N1 coefficient byte[15:8]  
Programmable biquad 10, N1 coefficient byte[7:0]  
Programmable biquad 10, N2 coefficient byte[31:24]  
Programmable biquad 10, N2 coefficient byte[23:16]  
Programmable biquad 10, N2 coefficient byte[15:8]  
Programmable biquad 10, N2 coefficient byte[7:0]  
Programmable biquad 10, D1 coefficient byte[31:24]  
Programmable biquad 10, D1 coefficient byte[23:16]  
Programmable biquad 10, D1 coefficient byte[15:8]  
Programmable biquad 10, D1 coefficient byte[7:0]  
Programmable biquad 10, D2 coefficient byte[31:24]  
Programmable biquad 10, D2 coefficient byte[23:16]  
Programmable biquad 10, D2 coefficient byte[15:8]  
Programmable biquad 10, D2 coefficient byte[7:0]  
Programmable biquad 11, N0 coefficient byte[31:24]  
Programmable biquad 11, N0 coefficient byte[23:16]  
Programmable biquad 11, N0 coefficient byte[15:8]  
Programmable biquad 11, N0 coefficient byte[7:0]  
Programmable biquad 11, N1 coefficient byte[31:24]  
Programmable biquad 11, N1 coefficient byte[23:16]  
Programmable biquad 11, N1 coefficient byte[15:8]  
Programmable biquad 11, N1 coefficient byte[7:0]  
Programmable biquad 11, N2 coefficient byte[31:24]  
Programmable biquad 11, N2 coefficient byte[23:16]  
Programmable biquad 11, N2 coefficient byte[15:8]  
Programmable biquad 11, N2 coefficient byte[7:0]  
Programmable biquad 11, D1 coefficient byte[31:24]  
Programmable biquad 11, D1 coefficient byte[23:16]  
Programmable biquad 11, D1 coefficient byte[15:8]  
104  
版权 © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
132. Page 0x03 Programmable Coefficient Registers (接下页)  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
BQ11_D1_BYT4[7:0]  
BQ11_D2_BYT1[7:0]  
BQ11_D2_BYT2[7:0]  
BQ11_D2_BYT3[7:0]  
BQ11_D2_BYT4[7:0]  
BQ12_N0_BYT1[7:0]  
BQ12_N0_BYT2[7:0]  
BQ12_N0_BYT3[7:0]  
BQ12_N0_BYT4[7:0]  
BQ12_N1_BYT1[7:0]  
BQ12_N1_BYT2[7:0]  
BQ12_N1_BYT3[7:0]  
BQ12_N1_BYT4[7:0]  
BQ12_N2_BYT1[7:0]  
BQ12_N2_BYT2[7:0]  
BQ12_N2_BYT3[7:0]  
BQ12_N2_BYT4[7:0]  
BQ12_D1_BYT1[7:0]  
BQ12_D1_BYT2[7:0]  
BQ12_D1_BYT3[7:0]  
BQ12_D1_BYT4[7:0]  
BQ12_D2_BYT1[7:0]  
BQ12_D2_BYT2[7:0]  
BQ12_D2_BYT3[7:0]  
BQ12_D2_BYT4[7:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Programmable biquad 11, D1 coefficient byte[7:0]  
Programmable biquad 11, D2 coefficient byte[31:24]  
Programmable biquad 11, D2 coefficient byte[23:16]  
Programmable biquad 11, D2 coefficient byte[15:8]  
Programmable biquad 11, D2 coefficient byte[7:0]  
Programmable biquad 12, N0 coefficient byte[31:24]  
Programmable biquad 12, N0 coefficient byte[23:16]  
Programmable biquad 12, N0 coefficient byte[15:8]  
Programmable biquad 12, N0 coefficient byte[7:0]  
Programmable biquad 12, N1 coefficient byte[31:24]  
Programmable biquad 12, N1 coefficient byte[23:16]  
Programmable biquad 12, N1 coefficient byte[15:8]  
Programmable biquad 12, N1 coefficient byte[7:0]  
Programmable biquad 12, N2 coefficient byte[31:24]  
Programmable biquad 12, N2 coefficient byte[23:16]  
Programmable biquad 12, N2 coefficient byte[15:8]  
Programmable biquad 12, N2 coefficient byte[7:0]  
Programmable biquad 12, D1 coefficient byte[31:24]  
Programmable biquad 12, D1 coefficient byte[23:16]  
Programmable biquad 12, D1 coefficient byte[15:8]  
Programmable biquad 12, D1 coefficient byte[7:0]  
Programmable biquad 12, D2 coefficient byte[31:24]  
Programmable biquad 12, D2 coefficient byte[23:16]  
Programmable biquad 12, D2 coefficient byte[15:8]  
Programmable biquad 12, D2 coefficient byte[7:0]  
版权 © 2019, Texas Instruments Incorporated  
105  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.6.2.3 Programmable Coefficient Registers: Page = 0x04  
This register page (shown in 133) consists of the programmable coefficients for mixer 1 to mixer 4 and the  
first-order IIR filter.  
133. Page 0x04 Programmable Coefficient Registers  
ADDR  
0x00  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
REGISTER  
RESET  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
DESCRIPTION  
PAGE[7:0]  
Device page register  
MIX1_CH1_BYT1[7:0]  
MIX1_CH1_BYT2[7:0]  
MIX1_CH1_BYT3[7:0]  
MIX1_CH1_BYT4[7:0]  
MIX1_CH2_BYT1[7:0]  
MIX1_CH2_BYT2[7:0]  
MIX1_CH2_BYT3[7:0]  
MIX1_CH2_BYT4[7:0]  
MIX1_CH3_BYT1[7:0]  
MIX1_CH3_BYT2[7:0]  
MIX1_CH3_BYT3[7:0]  
MIX1_CH3_BYT4[7:0]  
MIX1_CH4_BYT1[7:0]  
MIX1_CH4_BYT2[7:0]  
MIX1_CH4_BYT3[7:0]  
MIX1_CH4_BYT4[7:0]  
MIX2_CH1_BYT1[7:0]  
MIX2_CH1_BYT2[7:0]  
MIX2_CH1_BYT3[7:0]  
MIX2_CH1_BYT4[7:0]  
MIX2_CH2_BYT1[7:0]  
MIX2_CH2_BYT2[7:0]  
MIX2_CH2_BYT3[7:0]  
MIX2_CH2_BYT4[7:0]  
MIX2_CH3_BYT1[7:0]  
MIX2_CH3_BYT2[7:0]  
MIX2_CH3_BYT3[7:0]  
MIX2_CH3_BYT4[7:0]  
MIX2_CH4_BYT1[7:0]  
MIX2_CH4_BYT2[7:0]  
MIX2_CH4_BYT3[7:0]  
MIX2_CH4_BYT4[7:0]  
MIX3_CH1_BYT1[7:0]  
MIX3_CH1_BYT2[7:0]  
MIX3_CH1_BYT3[7:0]  
MIX3_CH1_BYT4[7:0]  
MIX3_CH2_BYT1[7:0]  
MIX3_CH2_BYT2[7:0]  
MIX3_CH2_BYT3[7:0]  
MIX3_CH2_BYT4[7:0]  
MIX3_CH3_BYT1[7:0]  
MIX3_CH3_BYT2[7:0]  
MIX3_CH3_BYT3[7:0]  
MIX3_CH3_BYT4[7:0]  
MIX3_CH4_BYT1[7:0]  
MIX3_CH4_BYT2[7:0]  
Digital mixer 1, channel 1 coefficient byte[31:24]  
Digital mixer 1, channel 1 coefficient byte[23:16]  
Digital mixer 1, channel 1 coefficient byte[15:8]  
Digital mixer 1, channel 1 coefficient byte[7:0]  
Digital mixer 1, channel 2 coefficient byte[31:24]  
Digital mixer 1, channel 2 coefficient byte[23:16]  
Digital mixer 1, channel 2 coefficient byte[15:8]  
Digital mixer 1, channel 2 coefficient byte[7:0]  
Digital mixer 1, channel 3 coefficient byte[31:24]  
Digital mixer 1, channel 3 coefficient byte[23:16]  
Digital mixer 1, channel 3 coefficient byte[15:8]  
Digital mixer 1, channel 3 coefficient byte[7:0]  
Digital mixer 1, channel 4 coefficient byte[31:24]  
Digital mixer 1, channel 4 coefficient byte[23:16]  
Digital mixer 1, channel 4 coefficient byte[15:8]  
Digital mixer 1, channel 4 coefficient byte[7:0]  
Digital mixer 2, channel 1 coefficient byte[31:24]  
Digital mixer 2, channel 1 coefficient byte[23:16]  
Digital mixer 2, channel 1 coefficient byte[15:8]  
Digital mixer 2, channel 1 coefficient byte[7:0]  
Digital mixer 2, channel 2 coefficient byte[31:24]  
Digital mixer 2, channel 2 coefficient byte[23:16]  
Digital mixer 2, channel 2 coefficient byte[15:8]  
Digital mixer 2, channel 2 coefficient byte[7:0]  
Digital mixer 2, channel 3 coefficient byte[31:24]  
Digital mixer 2, channel 3 coefficient byte[23:16]  
Digital mixer 2, channel 3 coefficient byte[15:8]  
Digital mixer 2, channel 3 coefficient byte[7:0]  
Digital mixer 2, channel 4 coefficient byte[31:24]  
Digital mixer 2, channel 4 coefficient byte[23:16]  
Digital mixer 2, channel 4 coefficient byte[15:8]  
Digital mixer 2, channel 4 coefficient byte[7:0]  
Digital mixer 3, channel 1 coefficient byte[31:24]  
Digital mixer 3, channel 1 coefficient byte[23:16]  
Digital mixer 3, channel 1 coefficient byte[15:8]  
Digital mixer 3, channel 1 coefficient byte[7:0]  
Digital mixer 3, channel 2 coefficient byte[31:24]  
Digital mixer 3, channel 2 coefficient byte[23:16]  
Digital mixer 3, channel 2 coefficient byte[15:8]  
Digital mixer 3, channel 2 coefficient byte[7:0]  
Digital mixer 3, channel 3 coefficient byte[31:24]  
Digital mixer 3, channel 3 coefficient byte[23:16]  
Digital mixer 3, channel 3 coefficient byte[15:8]  
Digital mixer 3, channel 3 coefficient byte[7:0]  
Digital mixer 3, channel 4 coefficient byte[31:24]  
Digital mixer 3, channel 4 coefficient byte[23:16]  
106  
版权 © 2019, Texas Instruments Incorporated  
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
133. Page 0x04 Programmable Coefficient Registers (接下页)  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
MIX3_CH4_BYT3[7:0]  
MIX3_CH4_BYT4[7:0]  
MIX4_CH1_BYT1[7:0]  
MIX4_CH1_BYT2[7:0]  
MIX4_CH1_BYT3[7:0]  
MIX4_CH1_BYT4[7:0]  
MIX4_CH2_BYT1[7:0]  
MIX4_CH2_BYT2[7:0]  
MIX4_CH2_BYT3[7:0]  
MIX4_CH2_BYT4[7:0]  
MIX4_CH3_BYT1[7:0]  
MIX4_CH3_BYT2[7:0]  
MIX4_CH3_BYT3[7:0]  
MIX4_CH3_BYT4[7:0]  
MIX4_CH4_BYT1[7:0]  
MIX4_CH4_BYT2[7:0]  
MIX4_CH4_BYT3[7:0]  
MIX4_CH4_BYT4[7:0]  
IIR_N0_BYT1[7:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Digital mixer 3, channel 4 coefficient byte[15:8]  
Digital mixer 3, channel 4 coefficient byte[7:0]  
Digital mixer 4, channel 1 coefficient byte[31:24]  
Digital mixer 4, channel 1 coefficient byte[23:16]  
Digital mixer 4, channel 1 coefficient byte[15:8]  
Digital mixer 4, channel 1 coefficient byte[7:0]  
Digital mixer 4, channel 2 coefficient byte[31:24]  
Digital mixer 4, channel 2 coefficient byte[23:16]  
Digital mixer 4, channel 2 coefficient byte[15:8]  
Digital mixer 4, channel 2 coefficient byte[7:0]  
Digital mixer 4, channel 3 coefficient byte[31:24]  
Digital mixer 4, channel 3 coefficient byte[23:16]  
Digital mixer 4, channel 3 coefficient byte[15:8]  
Digital mixer 4, channel 3 coefficient byte[7:0]  
Digital mixer 4, channel 4 coefficient byte[31:24]  
Digital mixer 4, channel 4 coefficient byte[23:16]  
Digital mixer 4, channel 4 coefficient byte[15:8]  
Digital mixer 4, channel 4 coefficient byte[7:0]  
Programmable first-order IIR, N0 coefficient byte[31:24]  
Programmable first-order IIR, N0 coefficient byte[23:16]  
Programmable first-order IIR, N0 coefficient byte[15:8]  
Programmable first-order IIR, N0 coefficient byte[7:0]  
Programmable first-order IIR, N1 coefficient byte[31:24]  
Programmable first-order IIR, N1 coefficient byte[23:16]  
Programmable first-order IIR, N1 coefficient byte[15:8]  
Programmable first-order IIR, N1 coefficient byte[7:0]  
Programmable first-order IIR, D1 coefficient byte[31:24]  
Programmable first-order IIR, D1 coefficient byte[23:16]  
Programmable first-order IIR, D1 coefficient byte[15:8]  
Programmable first-order IIR, D1 coefficient byte[7:0]  
IIR_N0_BYT2[7:0]  
IIR_N0_BYT3[7:0]  
IIR_N0_BYT4[7:0]  
IIR_N1_BYT1[7:0]  
IIR_N1_BYT2[7:0]  
IIR_N1_BYT3[7:0]  
IIR_N1_BYT4[7:0]  
IIR_D1_BYT1[7:0]  
IIR_D1_BYT2[7:0]  
IIR_D1_BYT3[7:0]  
IIR_D1_BYT4[7:0]  
版权 © 2019, Texas Instruments Incorporated  
107  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TLV320ADC6140 is a multichannel, high-performance audio analog-to-digital converter (ADC) that supports  
output sample rates of up to 768 kHz. The device supports either up to four analog microphones or up to eight  
digital pulse density modulation (PDM) microphones for simultaneous recording applications.  
Communication to the TLV320ADC6140 for configuration of the control registers is supported using an I2C or SPI  
interface. The device supports a highly flexible, audio serial interface (TDM, I2S, and LJ) to transmit audio data  
seamlessly in the system across devices.  
9.2 Typical Applications  
9.2.1 Four-Channel Analog Microphone Recording  
172 shows a typical configuration of the TLV320ADC6140 for an application using four analog microelectrical-  
mechanical system (MEMS) microphones for simultaneous recording operation with an I2C control interface and  
a time-division multiplexing (TDM) audio data slave interface. For best distortion performance, use input AC-  
coupling capacitors with a low-voltage coefficient.  
10 F  
1 F  
3.3 V  
(3.0 V to 3.6  
V)  
1 F  
GND GND  
1 F  
0.1 F  
GND  
0.1 F  
GND  
10 F  
1 F  
DREG  
VDD  
OUTP  
INP1_GPI1 (INP1)  
0.1 F  
AMIC1  
OUTM  
VSS  
GND  
INM1_GPO1 (INM1)  
0.1 F  
10 F  
1 F  
1 F  
3.3 V  
(3.0 V to 3.6 V)  
OR  
1.8 V  
(1.65 V to 1.95 V)  
GND  
VDD  
OUTP  
IOVDD  
INP2_GPI2 (INP2)  
AMIC2  
OUTM  
VSS  
0.1 F  
INM2_GPO2 (INM2)  
0.1 F  
GND  
Thermal Pad  
(VSS)  
1 F  
1 F  
TLV320ADCx140  
GND  
GND  
VDD  
OUTP  
INP3_GPI3 (INP3)  
ADDR1_MISO  
(ADDR1)  
AMIC3  
OUTM  
VSS  
INM3_GPO3 (INM3)  
0.1 F  
1 F  
1 F  
GND  
GND  
ADDR0_SCLK  
(ADDR0)  
GND  
VDD  
OUTP  
INP4_GPI4 (INP4)  
AMIC4  
OUTM  
VSS  
INM4_GPO4 (INM4)  
0.1 F  
1 F  
GND  
R ꢁ  
R ꢁ  
Host  
Processor  
172. Four-Channel Analog Microphone Recording Diagram  
108  
版权 © 2019, Texas Instruments Incorporated  
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
Typical Applications (接下页)  
9.2.1.1 Design Requirements  
134 lists the design parameters for this application.  
134. Design Parameters  
KEY PARAMETER  
SPECIFICATION  
AVDD  
3.3 V  
AVDD supply current consumption  
IOVDD  
> 23 mA (PLL on, four-channel recording, fS = 48 kHz)  
1.8 V or 3.3 V  
Maximum MICBIAS current  
10 mA (MICBIAS voltage is the same as AVDD)  
9.2.1.2 Detailed Design Procedure  
This section describes the necessary steps to configure the TLV320ADC6140 for this specific application. The  
following steps provide a sequence of items that must be executed in the time between powering the device up  
and reading data from the device or transitioning from one mode to another mode of operation.  
1. Apply power to the device:  
a. Power-up the IOVDD and AVDD power supplies, keeping the SHDNZ pin voltage low  
b. The device now goes into hardware shutdown mode (ultra-low-power mode < 1 µA)  
2. Transition from hardware shutdown mode to sleep mode (or software shutdown mode):  
a. Release SHDNZ only when the IOVDD and AVDD power supplies settle to the steady-state operating  
voltage  
b. Wait for at least 1 ms to allow the device to initialize the internal registers  
c. The device now goes into sleep mode (low-power mode < 10 µA)  
3. Transition from sleep mode to active mode whenever required for the recording operation:  
a. Wake up the device by writing to P0_R2 to disable sleep mode  
b. Wait for at least 1 ms to allow the device to complete the internal wake-up sequence  
c. Override default configuration registers or programmable coefficients value as required (this step is  
optional)  
d. Enable all desired input channels by writing to P0_R115  
e. Enable all desired audio serial interface output channels by writing to P0_R116  
f. Power-up the ADC, MICBIAS, and PLL by writing to P0_R117  
g. Apply FSYNC and BCLK with the desired output sample rates and the BCLK to FSYNC ratio  
This specific step can be done at any point in the sequence after step a.  
See the Phase-Locked Loop (PLL) and Clock Generation section for supported sample rates and the  
BCLK to FSYNC ratio.  
h. The device recording data are now sent to the host processor via the TDM audio serial data bus  
4. Transition from active mode to sleep mode (again) as required in the system for low-power operation:  
a. Enter sleep mode by writing to P0_R2 to enable sleep mode  
b. Wait at least 6 ms (when FSYNC = 48 kHz) for the volume to ramp down and for all blocks to power  
down  
c. Read P0_R119 to check the device shutdown and sleep mode status  
d. If the device P0_R119_D7 status bit is 1'b1 then stop FSYNC and BCLK in the system  
e. The device now goes into sleep mode (low-power mode < 10 µA) and retains all register values  
5. Transition from sleep mode to active mode (again) as required for the recording operation:  
a. Wake up the device by writing to P0_R2 to disable sleep mode  
b. Wait for at least 1 ms to allow the device to complete the internal wake-up sequence  
c. Apply FSYNC and BCLK with the desired output sample rates and the BCLK to FSYNC ratio  
d. The device recording data are now sent to the host processor via the TDM audio serial data bus  
版权 © 2019, Texas Instruments Incorporated  
109  
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
6. Repeat step 4 and step 5 as required for mode transitions  
7. Assert the SHDNZ pin low to enter hardware shutdown mode (again) at any time  
8. Follow step 2 onwards to exit hardware shutdown mode (again)  
9.2.1.2.1 Example Device Register Configuration Script for EVM Setup  
This section provides a typical EVM I2C register control script that shows how to set up the TLV320ADC6140 in a  
four-channel analog microphone recording mode with differential inputs.  
# Key: w 98 XX YY ==> write to I2C address 0x98, to register 0xXX, data 0xYY  
#
#
# ==> comment delimiter  
# The following list gives an example sequence of items that must be executed in the time  
# between powering the device up and reading data from the device. Note that there are  
# other valid sequences depending on which features are used.  
#
# See the TLV320ADC6140EVM user guide for jumper settings and audio connections.  
#
# Differential 4-channel : INP1/INM1 - Ch1, INP2/INM2 - Ch2, INP3/INM3 - Ch3 and INP4/INM4 - Ch4  
# FSYNC = 44.1 kHz (Output Data Sample Rate), BCLK = 11.2896 MHz (BCLK/FSYNC = 256)  
################################################################  
#
#
# Power up IOVDD and AVDD power supplies keeping SHDNZ pin voltage LOW  
# Wait for IOVDD and AVDD power supplies to settle to steady state operating voltage range.  
# Release SHDNZ to HIGH.  
# Wait for 1ms.  
#
# Wake-up device by I2C write into P0_R2 using internal AREG  
w 98 02 81  
#
# Enable Input Ch-1 to Ch-4 by I2C write into P0_R115  
w 98 73 F0  
#
# Enable ASI Output Ch-1 to Ch-4 slots by I2C write into P0_R116  
w 98 74 F0  
#
# Power-up ADC, MICBIAS and PLL by I2C write into P0_R117  
w 98 75 E0  
#
# Apply FSYNC = 44.1 kHz and BCLK = 11.2896 MHz and  
# Start recording data by host on ASI bus with TDM protocol 32-bits channel wordlength  
110  
版权 © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
9.2.1.3 Application Curves  
Measurements are done on the EVM by feeding the device analog input signal using audio precision.  
0
-20  
-60  
-70  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-3 : DRE enabled  
Channel-4 : DRE enabled  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-3 : DRE enabled  
Channel-4 : DRE enabled  
-40  
-80  
-60  
-80  
-90  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
20  
50  
100  
500  
1000  
5000 10000 20000  
D212  
Input Amplitude (dB)  
Frequency (Hz)  
TDH2D0+2  
174. THD+N vs Input Amplitude With DRE Enabled  
173. FFT With a –60-dBr Input With DRE Enabled  
0
-60  
Channel-1 : DRE disabled  
Channel-2 : DRE disabled  
Channel-1 : DRE disabled  
Channel-2 : DRE disabled  
Channel-3 : DRE disabled  
Channel-4 : DRE disabled  
-20  
Channel-3 : DRE disabled  
Channel-4 : DRE disabled  
-70  
-80  
-40  
-60  
-80  
-90  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
20  
50  
100  
500  
1000  
5000 10000 20000  
D212  
Input Amplitude (dB)  
Frequency (Hz)  
TDH2D0+2  
176. THD+N vs Input Amplitude With DRE Disabled  
175. FFT With a –60-dBr Input With DRE Disabled  
版权 © 2019, Texas Instruments Incorporated  
111  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
9.2.2 Eight-Channel Digital PDM Microphone Recording  
172 shows a typical configuration of the TLV320ADC6140 for an application using eight digital PDM MEMS  
microphones with simultaneous recording operation using an I2C control interface and the TDM audio data slave  
interface.  
10 F  
1 F  
VDD  
(3.0 V to 3.6 V)  
0.1 F  
0.1 F  
1 F  
GND  
GND  
GND  
10 F  
VDD  
SEL  
CLK  
VDD  
0.1 F  
GND  
DREG  
DMIC1  
Rterm  
0.1 F  
INP1_GPI1 (PDMDIN1)  
INM1_GPO1 (PDMCLK)  
VSS  
DOUT  
GND  
VDD  
CLK  
VDD  
0.1 F  
GND  
10 F  
SEL  
VSS  
Rterm  
DMIC2  
3.3 V  
(3.0 V to 3.6 V)  
OR  
DOUT  
Rterm  
Rterm  
VDD  
SEL  
CLK  
VDD  
0.1 F  
GND  
IOVDD  
DMIC3  
1.8 V  
(1.65 V to 1.95 V)  
0.1 F  
INP2_GPI2 (PDMDIN2)  
INM2_GPO2 (PDMCLK)  
DOUT  
VSS  
GND  
VDD  
SEL  
VSS  
CLK  
VDD  
0.1 F  
GND  
Thermal Pad  
(VSS)  
Rterm  
DMIC4  
TLV320ADCx140  
DOUT  
Rterm  
Rterm  
GND  
VDD  
SEL  
VSS  
CLK  
VDD  
0.1 F  
GND  
ADDR1_MISO  
(ADDR1)  
DMIC5  
INP3_GPI13 (PDMDIN3)  
DOUT  
GND  
GND  
VDD  
SEL  
CLK  
ADDR0_SCLK  
(ADDR0)  
INM3_GPO3 (PDMCLK)  
VDD  
0.1 F  
GND  
Rterm  
DMIC6  
VSS  
DOUT  
Rterm  
Rterm  
VDD  
SEL  
CLK  
VDD  
0.1 F  
GND  
DMIC7  
INP4_GPI4 (PDMDIN4)  
INM4_GPO4 (PDMCLK)  
VSS  
DOUT  
VDD  
CLK  
VDD  
0.1 F  
GND  
SEL  
VSS  
Rterm  
DMIC8  
DOUT  
R ꢁ  
Rterm  
R ꢁ  
Host  
Processor  
177. Eight-Channel Digital PDM Microphone Recording Diagram  
9.2.2.1 Design Requirements  
135 lists the design parameters for this application.  
135. Design Parameters  
KEY PARAMETER  
SPECIFICATION  
AVDD  
3.3 V  
AVDD supply current consumption  
IOVDD  
> 8 mA (PLL on, eight-channel recording, fS = 48 kHz)  
1.8 V or 3.3 V  
112  
版权 © 2019, Texas Instruments Incorporated  
 
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
9.2.2.2 Detailed Design Procedure  
This section describes the necessary steps to configure the TLV320ADC6140 for this specific application. The  
following steps provide a sequence of items that must be executed in the time between powering the device up  
and reading data from the device or transitioning from one mode to another mode of operation.  
1. Apply power to the device:  
a. Power up the IOVDD and AVDD power supplies, keeping the SHDNZ pin voltage low  
b. The device now goes into hardware shutdown mode (ultra-low-power mode < 1 µA)  
2. Transition from hardware shutdown mode to sleep mode (or software shutdown mode):  
a. Release SHDNZ only when the IOVDD and AVDD power supplies settle to the steady-state operating  
voltage  
b. Wait for at least 1 ms to allow the device to initialize the internal registers initialization  
c. The device now goes into sleep mode (low-power mode < 10 µA)  
3. Transition from sleep mode to active mode whenever required for the recording operation:  
a. Wake up the device by writing to P0_R2 to disable sleep mode  
b. Wait for at least 1 ms to allow the device to complete the internal wake-up sequence  
c. Override the default configuration registers or programmable coefficients value as required (this step is  
optional)  
d. Configure channel 1 to channel 4 (CHx_INSRC) for the digital microphone as the input source for  
recording  
e. Configure GPO1 to GPO4 (GPOx_CFG) as the PDMCLK output  
f. Configure GPI1 to GPI4 (GPI1x_CFG) as PDMDIN1 to PDMDIN4, respectively  
g. Enable all desired input channels by writing to P0_R115  
h. Enable all desired audio serial interface output channels by writing to P0_R116  
i. Power-up the ADC and PLL by writing to P0_R117  
j. Apply FSYNC and BCLK with the desired output sample rates and the BCLK to FSYNC ratio  
This specific step can be done at any point in the sequence after step a.  
See the Phase-Locked Loop (PLL) and Clock Generation section for supported sample rates and the  
BCLK to FSYNC ratio.  
k. The device recording data is now sent to the host processor using the TDM audio serial data bus  
4. Transition from active mode to sleep mode (again) as required in the system for low-power operation:  
a. Enter sleep mode by writing to P0_R2 to enable sleep mode  
b. Wait at least 6 ms (when FSYNC = 48 kHz) for the volume to ramp down and for all blocks to power  
down  
c. Read P0_R119 to check the device shutdown and sleep mode status  
d. If the device P0_R119_D7 status bit is 1'b1 then stop FSYNC and BCLK in the system  
e. The device now goes into sleep mode (low-power mode < 10 µA) and retains all register values  
5. Transition from sleep mode to active mode (again) as required for the recording operation:  
a. Wake up the device by writing to P0_R2 to disable sleep mode  
b. Wait at least 1 ms to allow the device to complete the internal wake-up sequence  
c. Apply FSYNC and BCLK with the desired output sample rates and the BCLK to FSYNC ratio  
d. The device recording data are now sent to the host processor using the TDM audio serial data bus  
6. Repeat step 4 and step 5 as required for mode transitions  
7. Assert the SHDNZ pin low to enter hardware shutdown mode (again) at any time  
8. Follow step 2 onwards to exit hardware shutdown mode (again)  
版权 © 2019, Texas Instruments Incorporated  
113  
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
9.2.2.2.1 Example Device Register Configuration Script for EVM Setup  
This section provides a typical EVM I2C register control script that shows how to set up the TLV320ADC6140 in  
an eight-channel digital PDM microphone recording mode.  
# Key: w 98 XX YY ==> write to I2C address 0x98, to register 0xXX, data 0xYY  
#
#
# ==> comment delimiter  
# The following list gives an example sequence of items that must be executed in the time  
# between powering the device up and reading data from the device. Note that there are  
# other valid sequences depending on which features are used.  
#
# See the TLV320ADC6140EVM user guide for jumper settings and audio connections.  
#
# PDM 8-channel : PDMDIN1 - Ch1 and Ch2, PDMDIN2 - Ch3 and Ch4,  
#
PDMDIN3 - Ch5 and Ch6, PDMDIN4 - Ch7 and Ch8  
# FSYNC = 44.1 kHz (Output Data Sample Rate), BCLK = 11.2896 MHz (BCLK/FSYNC = 256)  
################################################################  
#
#
# Power up IOVDD and AVDD power supplies keeping SHDNZ pin voltage LOW  
# Wait for IOVDD and AVDD power supplies to settle to steady state operating voltage range.  
# Release SHDNZ to HIGH.  
# Wait for 1ms.  
#
# Wake-up device by I2C write into P0_R2 using internal AREG  
w 98 02 81  
#
# Configure CH1_INSRC as Digital PDM Input by I2C write into P0_R60  
w 98 3C 40  
#
# Configure CH2_INSRC as Digital PDM Input by I2C write into P0_R65  
w 98 41 40  
#
# Configure CH3_INSRC as Digital PDM Input by I2C write into P0_R70  
w 98 46 40  
#
# Configure CH4_INSRC as Digital PDM Input by I2C write into P0_R75  
w 98 4B 40  
#
# Configure GPO1 as PDMCLK by I2C write into P0_R34  
w 98 22 41  
#
# Configure GPO2 as PDMCLK by I2C write into P0_R35  
w 98 23 41  
#
# Configure GPO3 as PDMCLK by I2C write into P0_R36  
w 98 24 41  
#
# Configure GPO4 as PDMCLK by I2C write into P0_R37  
w 98 25 41  
#
# Configure GPI1 and GPI2 as PDMDIN1 and PDMDIN2 by I2C write into P0_R43  
w 98 2B 45  
#
# Configure GPI3 and GPI4 as PDMDIN3 and PDMDIN4 by I2C write into P0_R44  
w 98 2C 67  
#
# Enable Input Ch-1 to Ch-8 by I2C write into P0_R115  
w 98 73 FF  
#
# Enable ASI Output Ch-1 to Ch-8 slots by I2C write into P0_R116  
w 98 74 FF  
#
# Power-up ADC and PLL by I2C write into P0_R117  
w 98 75 60  
#
# Apply FSYNC = 44.1 kHz and BCLK = 11.2896 MHz and  
# Start recording data by host on ASI bus with TDM protocol 32-bits channel wordlength  
114  
版权 © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
9.3 What to Do and What Not to Do  
In master mode operation with I2S or LJ format, the device generates FSYNC half a cycle earlier than the normal  
protocol timing behavior expected. This timing behavior can still function for most of the system, however for  
further details and a suggested workaround for this weakness, see the Configuring and Operating the  
TLV320ADCx140 as an Audio Bus Master application report.  
The automatic gain controller (AGC) feature has some limitation when using sampling rates lower than 44.1 kHz.  
For further details about this limitation, see the Using the Automatic Gain Controller (AGC) in TLV320ADCx140  
application report.  
10 Power Supply Recommendations  
The power-supply sequence between the IOVDD and AVDD rails can be applied in any order. However, keep  
the SHDNZ pin low until the IOVDD supply voltage settles to a stable and supported operating voltage range.  
After all supplies are stable, set the SHDNZ pin high to initialize the device.  
For the supply power-up requirement, t1 and t2 must be at least 100 µs. For the supply power-down requirement,  
t3 and t4 must be at least 10 ms. This timing (as shown in 178) allows the device to ramp down the volume on  
the record data, power down the analog and digital blocks, and put the device into hardware shutdown mode.  
The device can also be immediately put into hardware shutdown mode from active mode if SHDNZ_CFG[1:0] is  
set to 2'b00 using the P0_R5_D[3:2] bits. In that case, t3 and t4 are required to be at least 100 µs.  
AVDD  
t1  
t3  
IOVDD  
SHDNZ  
t4  
t2  
178. Power-Supply Sequencing Requirement Timing Diagram  
Make sure that the supply ramp rate is slower than 1 V/µs and that the wait time between a power-down and a  
power-up event is at least 100 ms.  
After releasing SHDNZ, or after a software reset, delay any additional I2C or SPI transactions to the device for at  
least 2 ms to allow the device to initialize the internal registers. See the Device Functional Modes section for  
details on how the device operates in various modes after the device power supplies are settled to the  
recommended operating voltage levels.  
The TLV320ADC6140 supports a single AVDD supply operation by integrating an on-chip digital regulator,  
DREG, and an analog regulator, AREG. However, if the AVDD voltage is less than 1.98 V in the system, then  
short the AREG and AVDD pins onboard and do not enable the internal AREG by keeping the AREG_SELECT  
bit to 1b'0 (default value) of P0_R2. If the AVDD supply used in the system is higher than 2.7 V, then the host  
device can set AREG_SELECT to 1'b1 while exiting sleep mode to allow the device internal regulator to generate  
the AREG supply.  
版权 © 2019, Texas Instruments Incorporated  
115  
 
TLV320ADC6140  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Each system design and printed circuit board (PCB) layout is unique. The layout must be carefully reviewed in  
the context of a specific PCB design. However, the following guidelines can optimize the device performance:  
Connect the thermal pad to ground. Use a via pattern to connect the device thermal pad, which is the area  
directly under the device, to the ground planes. This connection helps dissipate heat from the device.  
The decoupling capacitors for the power supplies must be placed close to the device pins.  
Route the analog differential audio signals differentially on the PCB for better noise immunity. Avoid crossing  
digital and analog signals to prevent undesirable crosstalk.  
The device internal voltage references must be filtered using external capacitors. Place the filter capacitors  
near the VREF pin for optimal performance.  
Directly tap the MICBIAS pin to avoid common impedance when routing the biasing or supply traces for  
multiple microphones to avoid coupling across microphones.  
Directly short the VREF and MICBIAS external capacitors ground terminal to the AVSS pin without using any  
vias for this connection trace.  
Place the MICBIAS capacitor (with low equivalent series resistance) close to the device with minimal trace  
impedance.  
Use ground planes to provide the lowest impedance for power and signal current between the device and the  
decoupling capacitors. Treat the area directly under the device as a central ground area for the device, and  
all device grounds must be connected directly to that area.  
11.2 Layout Example  
Audio output interface connections  
24  
1
SDA_SSZ  
AVDD  
AREG  
VREF  
AVSS  
VSS  
SCL_MOSI  
ADD0_SCLK  
ADD1_MISO  
MICBIAS  
SHDNZ  
Audio input signal connections  
179. Layout Example  
116  
版权 © 2019, Texas Instruments Incorporated  
TLV320ADC6140  
www.ti.com.cn  
ZHCSK12A JULY 2019REVISED OCTOBER 2019  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《具有共享 TDM I2C 总线的多个 TLV320ADCx140 器件》 应用报告  
德州仪器 (TI)《配置和操作 TLV320ADCx140 作为音频总线主设备》 应用报告  
德州仪器 (TI)TLV320ADCx140 采样率和受支持的可编程处理块》 应用报告  
德州仪器 (TI)TLV320ADCx140 可编程双二阶滤波器配置和 应用》 应用报告  
德州仪器 (TI)《用于低功耗关键应用的 TLV320ADCx140 操作》 应用报告  
德州仪器 (TI)《不同使用场景下的 TLV320ADCx140 功耗矩阵》 应用报告  
德州仪器 (TI)TLV320ADCx140 集成模拟抗混叠滤波器和灵活数字滤波器》 应用报告  
德州仪器 (TI)《使用 TLV320ADCx140 中的自动增益控制器》应用报告  
德州仪器 (TI)《使用 TLV320ADC5140/6140 中的动态范围增强器 (DRE)应用报告  
德州仪器 (TI)TLV320ADCx140 评估模块》 用户指南  
德州仪器 (TI)《适用于音频系统设计和开发的 PurePath™ 控制台图形开发套件》  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 商标  
Burr-Brown, PurePath, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
117  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV320ADC6140IRTWR  
TLV320ADC6140IRTWT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
ADC6140  
ADC6140  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Nov-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV320ADC6140IRTWR WQFN  
TLV320ADC6140IRTWT WQFN  
RTW  
RTW  
24  
24  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Nov-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV320ADC6140IRTWR  
TLV320ADC6140IRTWT  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TLV320ADC6140IRTWT

具有 122dB SNR 的四通道、768kHz Burr-Brown™ 音频模数转换器 (ADC) | RTW | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV320AIC10

General-Purpose 3V to 5.5V 16-bit 22-KSPS DSP CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV320AIC10C

General-Purpose 3V to 5.5V 16-bit 22-KSPS DSP CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV320AIC10CGQE

IC SPECIALTY CONSUMER CIRCUIT, PBGA80, MICRO, PLASTIC, BGA-80, Consumer IC:Other

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV320AIC10CGQER

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV320AIC10CPFB

General-Purpose 3V to 5.5V 16-bit 22-KSPS DSP CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV320AIC10CPFBG4

General-Purpose 3 V to 5.5V 16-Bit 22-KSPS DSP CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV320AIC10I

General-Purpose 3V to 5.5V 16-bit 22-KSPS DSP CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV320AIC10IGQE

SPECIALTY CONSUMER CIRCUIT, PBGA80, MICRO, PLASTIC, BGA-80

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV320AIC10IGQER

Low-Power Mono Voice Band CODEC 80-BGA MICROSTAR JUNIOR -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV320AIC10IPFB

General-Purpose 3V to 5.5V 16-bit 22-KSPS DSP CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV320AIC10IPFBG4

General-Purpose 3 V to 5.5V 16-Bit 22-KSPS DSP CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI