TLV3544-Q1 [TI]

汽车类 250MHz 轨到轨 I/O CMOS 四路运算放大器;
TLV3544-Q1
型号: TLV3544-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 250MHz 轨到轨 I/O CMOS 四路运算放大器

放大器 运算放大器
文件: 总29页 (文件大小:1037K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV3544-Q1  
ZHCSGU7 OCTOBER 2017  
TLV3544-Q1 250MHz,轨至轨输入输出,用于汽车的CMOS 运算放大器  
1 特性  
2 应用  
1
符合汽车应用 要求  
具有符合 AEC-Q100 标准的下列结果:  
电流感应放大器  
逆变器和电机控制  
发动机管理  
器件温度等级 1:环境工作温度范围 TA 为  
–40°C +125°C  
电池管理  
器件 HBM ESD 分类等级 1C  
器件 CDM ESD 分类等级 C3  
导航和雷达系统  
浓度传感器  
单位增益带宽:250MHz  
高带宽:100MHz GBW  
高压摆率:150V/µs  
低噪声:7.5nVHz  
轨至轨 I/O  
盲点监测系统  
短程到中程雷达  
环视和倒车摄像头视频处理  
用于送电传感器系统的汽车 SAR ADC 驱动器  
3 说明  
高输出电流:> 100mA  
出色的视频性能:  
TLV3544-Q1 系列高速电压反馈 CMOS 运算放大器专  
为视频应用和其他需要宽带宽的 应用 而设计。这些器  
件单位增益稳定,可以输出大电流。差分增益为  
0.02%,而差分相位为 0.09°。静态电流仅为每通道  
4.9mA。  
差分增益:0.02%,差分相位:0.09°  
0.1dB 增益平坦度:40MHz  
低输入偏置电流:3pA  
静态电流:5.2mA  
热关断  
TLV3544-Q1 四通道运算放大器针对低至 2.5V  
(±1.25V) 和高达 5.5V (±2.75V) 的单电源或双电源供电  
运行进行了优化。共模输入范围超出电源供电范围。电  
源轨的输出摆幅在 100mV 以内,从而支持宽动态范  
围。  
电源范围:2.5V 5.5V  
简化图  
Out A  
-In A  
+In A  
V+  
Out D  
-In D  
+In D  
V-  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
多通道版本具有完全独立的电路,可将串扰降到最低并  
彻底消除相互干扰。所有器件的额定扩展工作温度范围  
–40°C +125°C。  
A
D
器件信息(1)  
+In B  
-In B  
Out B  
+In C  
-In C  
Out C  
B
C
器件型号  
封装  
封装尺寸(标称值)  
薄型小外形尺寸封装  
(TSSOP) (14)  
TLV3544-Q1  
5.00mm x 4.40mm  
8
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS897  
 
 
 
TLV3544-Q1  
ZHCSGU7 OCTOBER 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 18  
Application and Implementation ........................ 19  
8.1 Application Information............................................ 19  
8.2 Typical Application ................................................. 19  
Power Supply Recommendations...................... 21  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information: TLV3544-Q1 ........................... 4  
10 Layout................................................................... 21  
10.1 Layout Guidelines ................................................. 21  
10.2 Layout Example .................................................... 21  
10.3 Power Dissipation ................................................. 21  
11 器件和文档支持 ..................................................... 23  
11.1 文档支持 ............................................................... 23  
11.2 接收文档更新通知 ................................................. 23  
11.3 社区资源................................................................ 23  
11.4 ....................................................................... 23  
11.5 静电放电警告......................................................... 23  
11.6 Glossary................................................................ 23  
12 机械、封装和可订购信息....................................... 23  
6.5 Electrical Characteristics: VS = 2.7 V to 5.5 V Single-  
Supply ........................................................................ 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2017 10 月  
*
初始发行版。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TLV3544-Q1  
www.ti.com.cn  
ZHCSGU7 OCTOBER 2017  
5 Pin Configuration and Functions  
PW Package  
14-Pin TSSOP  
Top View  
Out A  
-In A  
+In A  
V+  
Out D  
-In D  
+In D  
V-  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
A
D
+In B  
-In B  
Out B  
+In C  
-In C  
Out C  
B
C
8
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
–In A  
+In A  
–In B  
+In B  
–In C  
+In C  
–In D  
+In D  
Out A  
Out B  
Out C  
Out D  
V–  
NO.  
2
I
I
Inverting input, channel A  
3
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Inverting input, channel C  
Noninverting input, channel C  
Inverting input, channel D  
Noninverting input, channel D  
Output, channel A  
6
I
5
I
9
I
10  
13  
12  
1
I
I
I
O
O
O
O
7
Output, channel B  
8
Output, channel C  
14  
11  
4
Output, channel D  
Negative (lowest) supply  
Positive (highest) supply  
V+  
Copyright © 2017, Texas Instruments Incorporated  
3
TLV3544-Q1  
ZHCSGU7 OCTOBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
7.5  
UNIT  
V
Supply voltage, V+ to V  
Voltage  
Signal input terminals(2)  
(V) (0.5)  
(V+) + 0.5  
10  
Signal input terminals(2)  
Output short circuit(3)  
–10  
mA  
Current  
Continuous  
Operating, TA  
–55  
–65  
150  
150  
150  
Temperature  
Junction, TJ  
Storage, Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
MAX  
UNIT  
V
VS  
Supply voltage, V– to V+  
Specified temperature  
5.5  
–40  
125  
°C  
6.4 Thermal Information: TLV3544-Q1  
TLV3544-Q1  
PW (TSSOP)  
14 PINS  
92.6  
THERMAL METRIC  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
27.5  
33.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.9  
ψJB  
33.1  
RθJC(bot)  
4
Copyright © 2017, Texas Instruments Incorporated  
 
TLV3544-Q1  
www.ti.com.cn  
ZHCSGU7 OCTOBER 2017  
6.5 Electrical Characteristics: VS = 2.7 V to 5.5 V Single-Supply  
At TA = 25°C, RF = 0 Ω, RL = 1 kΩ, and connected to VS/2, unless otherwise noted.  
PARAMETER  
OFFSET VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOS  
Input offset voltage  
VS = 5 V, at TA = 25°C  
±2  
±10  
mV  
dVOS/dT  
Input offset voltage vs temperature  
VS = 5 V, at TA = 40°C to +125°C  
±4.5  
µV/°C  
VS = 2.7 V to 5.5 V,  
VCM = (VS/2) 0.55 V  
±200  
±800  
±900  
PSRR  
Input offset voltage vs power supply  
µV/V  
VS = 2.7 V to 5.5 V,  
VCM = (VS/2) 0.55 V,  
at TA = 40°C to +125°C  
INPUT BIAS CURRENT  
IB  
Input bias current  
3
pA  
pA  
IOS  
Input offset current  
±1  
NOISE  
en  
Input voltage noise density  
Current noise density  
f = 1 MHz  
f = 1 MHz  
7.5  
50  
nV/Hz  
fA/Hz  
in  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage  
(V) 0.1  
(V+) + 0.1  
V
VS = 5.5 V, –0.1 V < VCM < 3.5 V,  
at TA = 25°C  
66  
80  
68  
CMRR  
Common-mode rejection ratio  
dB  
VS = 5.5 V, –0.1 V < VCM < 5.6 V,  
at TA = 25°C  
56  
INPUT IMPEDANCE  
Differential  
Common-mode  
OPEN-LOOP GAIN  
1013 || 2  
1013 || 2  
Ω || pF  
Ω || pF  
VS = 5.5 V, 0.3 V < VO < 4.7 V,  
at TA = 25°C  
94  
90  
110  
AOL  
Open-loop gain  
dB  
VS = 5 V, 0.4 V < VO < 4.6 V,  
at TA = –40°C to +125°C  
FREQUENCY RESPONSE  
At G = +1, VO = 100 mVPP  
RF = 25 Ω  
,
250  
f3dB  
Small-signal bandwidth  
MHz  
At G = +2, VO = 100 mVPP  
G = +10  
90  
100  
40  
GBW  
f0.1dB  
Gain-bandwidth product  
MHz  
MHz  
Bandwidth for 0.1-dB gain flatness  
At G = +2, VO = 100 mVPP  
VS = 5 V, G = +1, 4-V step  
VS = 5 V, G = +1, 2-V step  
VS = 3 V, G = +1, 2-V step  
150  
130  
110  
SR  
Slew rate  
V/µs  
ns  
At G = +1, VO = 200 mVPP  
,
2
11  
30  
10% to 90%  
Rise-and-fall time  
At G = +1, VO = 2 VPP, 10% to 90%  
0.1%, VS = 5 V, G = +1,  
2-V output step  
Settling time  
ns  
ns  
0.01%, VS = 5 V, G = +1,  
2-V output step  
60  
5
Overload recovery time  
VIN × Gain = VS  
Copyright © 2017, Texas Instruments Incorporated  
5
TLV3544-Q1  
ZHCSGU7 OCTOBER 2017  
www.ti.com.cn  
Electrical Characteristics: VS = 2.7 V to 5.5 V Single-Supply (continued)  
At TA = 25°C, RF = 0 Ω, RL = 1 kΩ, and connected to VS/2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY RESPONSE, continued  
Second  
harmonic  
At G = +1, f = 1 MHz, VO = 2 VPP  
RL = 200 Ω, VCM = 1.5 V  
,
–75  
–83  
Harmonic distortion  
dBc  
At G = +1, f = 1 MHz, VO = 2 VPP  
,
Third harmonic  
RL = 200 Ω, VCM = 1.5 V  
Differential gain error  
Differential phase error  
NTSC, RL = 150 Ω  
NTSC, RL = 150 Ω  
0.02%  
0.09  
°
Channel-to-channel  
crosstalk  
TLV3544-Q1  
f = 5 MHz  
–84  
dB  
OUTPUT  
VS = 5 V, RL = 1 kΩ, AOL > 94 dB,  
at TA = 25°C  
Voltage output swing from rail  
Output current(1)(2)  
0.1  
0.3  
V
IO  
VS = 5 V  
100  
mA  
mA  
Ω
VS = 3 V  
50  
0.05  
35  
Closed-loop output impedance  
Open-loop output resistance  
f < 100 kHz  
RO  
Ω
POWER SUPPLY  
Specified voltage  
2.7  
2.5  
5
VS  
IQ  
V
Operating voltage  
5.5  
At TA = 25°C, VS = 5 V, enabled,  
IO = 0  
Quiescent current (per amplifier)  
5.2  
6.5  
mA  
THERMAL SHUTDOWN – JUNCTION TEMPERATURE  
Shutdown  
Reset from shutdown  
THERMAL RANGE  
Specified  
160  
140  
°C  
°C  
–40  
–55  
–65  
125  
150  
150  
°C  
°C  
°C  
Operating  
Storage  
(1) See typical characteristic curves, Output Voltage Swing vs Output Current (20 and 22).  
(2) Specified by design.  
6
版权 © 2017, Texas Instruments Incorporated  
TLV3544-Q1  
www.ti.com.cn  
ZHCSGU7 OCTOBER 2017  
6.6 Typical Characteristics  
At TA = 25°C, VS = 5 V, G = +1, RF = 0 Ω, RL = 1 kΩ, and connected to VS/2, unless otherwise noted.  
3
0
3
0
G = +1  
RF = 25W  
VO = 0.1VPP  
VO = 0.1VPP, RF = 604W  
G = +2, RF = 604W  
G = +5, RF = 604W  
G = +10, RF = 604W  
-3  
-3  
G = -1  
G = -2  
-6  
-6  
G = -5  
-9  
-9  
G = -10  
-12  
-12  
-15  
-15  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
1. Noninverting Small-Signal Frequency Response  
2. Inverting Small-Signal Frequency Response  
Time (20ns/div)  
Time (20ns/div)  
3. Noninverting Small-Signal Step Response  
4. Noninverting Large-Signal Step Response  
-50  
0.5  
VO = 0.1VPP  
0.4  
0.3  
G = -1  
f = 1MHz  
RL = 200W  
-60  
-70  
G = +1  
RF = 25W  
0.2  
0.1  
0
2nd Harmonic  
3rd Harmonic  
-80  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
G = +2  
RF = 604W  
-90  
-100  
0
1
2
3
4
100k  
1M  
10M  
100M  
1G  
Output Voltage (VPP  
)
Frequency (Hz)  
5. 0.1-dB Gain Flatness  
6. Harmonic Distortion vs Output Voltage  
版权 © 2017, Texas Instruments Incorporated  
7
 
TLV3544-Q1  
ZHCSGU7 OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C, VS = 5 V, G = +1, RF = 0 Ω, RL = 1 kΩ, and connected to VS/2, unless otherwise noted.  
-50  
-50  
VO = 2VPP  
f = 1MHz  
RL = 200W  
VO = 2VPP  
f = 1MHz  
RL = 200W  
-60  
-60  
-70  
-70  
2nd Harmonic  
2nd Harmonic  
-80  
-80  
3rd Harmonic  
-90  
-90  
3rd Harmonic  
-100  
-100  
1
10  
1
10  
Gain (V/V)  
Gain (V/V)  
7. Harmonic Distortion vs Noninverting Gain  
8. Harmonic Distortion vs Inverting Gain  
-50  
-60  
-50  
-60  
G = +1  
G = +1  
VO = 2VPP  
f = 1MHz  
VCM = 1.5V  
VO = 2VPP  
RL = 200W  
VCM = 1.5V  
-70  
-70  
2nd Harmonic  
3rd Harmonic  
2nd Harmonic  
3rd Harmonic  
-80  
-80  
-90  
-90  
-100  
-100  
100  
1k  
100k  
1M  
10M  
RL (W)  
Frequency (Hz)  
9. Harmonic Distortion vs Frequency  
10. Harmonic Distortion vs Load Resistance  
RL = 10kW  
3
0
10k  
1k  
G = +1  
RF = 0W  
-3  
Current Noise  
Voltage Noise  
VO = 0.1VPP  
RL = 1kW  
CL = 0pF  
-6  
100  
10  
1
RL = 100W  
RL = 50W  
-9  
-12  
-15  
100k  
1M  
10M  
100M  
1G  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
12. Frequency Response for Various RL  
11. Input Voltage and Current Noise  
Spectral Density vs Frequency  
8
版权 © 2017, Texas Instruments Incorporated  
TLV3544-Q1  
www.ti.com.cn  
ZHCSGU7 OCTOBER 2017  
Typical Characteristics (接下页)  
At TA = 25°C, VS = 5 V, G = +1, RF = 0 Ω, RL = 1 kΩ, and connected to VS/2, unless otherwise noted.  
9
160  
140  
120  
100  
80  
G = +1  
For 0.1 dB  
Flatness  
VO = 0.1VPP  
RS = 0W  
6
CL = 100pF  
3
0
-3  
-6  
-9  
-12  
-15  
CL = 47pF  
60  
V
R
S
IN  
V
O
TLV3544  
40  
C
1 kW  
CL = 5.6pF  
L
20  
0
1
1k  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1G  
10  
100  
Capacitive Load (pF)  
13. Frequency Response for Various CL  
14. Recommended RS vs Capacitive Load  
100  
80  
60  
40  
20  
0
3
0
G = +1,  
CL = 5.6 pF, RS = 0 W  
VO = 0.1 VPP  
CMRR  
CL = 47 pF, RS = 140 W  
-3  
PSRR+  
CL = 100 pF, RS = 120 W  
-6  
PSRR-  
-9  
V
R
S
IN  
V
O
TLV3544  
C
1 kW  
L
-12  
-15  
100k  
1G  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
15. Frequency Response vs Capacitive Load  
16. Common-Mode Rejection Ratio and  
Power-Supply Rejection Ratio vs Frequency  
180  
0.8  
160  
140  
120  
100  
80  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Phase  
dP  
60  
40  
Gain  
20  
0
-20  
-40  
dG  
1
2
3
4
10  
100  
1k  
10k 100k  
1M  
10M 100M 1G  
Frequency (Hz)  
Number of 150W Loads  
18. Composite Video Differential Gain and Phase  
17. Open-Loop Gain and Phase  
版权 © 2017, Texas Instruments Incorporated  
9
 
 
TLV3544-Q1  
ZHCSGU7 OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C, VS = 5 V, G = +1, RF = 0 Ω, RL = 1 kΩ, and connected to VS/2, unless otherwise noted.  
10k  
3
2
1
0
1k  
100  
10  
1
+125°C  
+25°C  
-55°C  
-55 -35 -15  
5
25  
45  
65  
85 105 125 135  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Output Current (mA)  
19. Input Bias Current vs Temperature  
20. Output Voltage Swing vs Output Current for  
VS = 3 V  
5
4
3
2
1
0
7
6
5
4
3
2
1
0
VS = 5V  
+25°C  
+125°C  
-55°C  
VS = 2.5V  
-55 -35 -15  
5
25  
45  
65  
85 105 125 135  
0
25  
50  
75  
100  
125  
150  
175  
200  
Temperature (°C)  
Output Current (mA)  
21. Supply Current vs Temperature  
22. Output Voltage Swing vs Output Current for  
VS = 5 V  
6
5
4
3
2
1
0
100  
10  
VS = 5.5V  
Maximum Output  
Voltage without  
Slew Rate-  
Induced Distortion  
1
VS = 2.7V  
0.1  
0.01  
TLV3544  
ZO  
100k  
1M  
10M  
100M  
1G  
1
10  
100  
Frequency (Hz)  
Frequency (MHz)  
23. Closed-Loop Output Impedance vs Frequency  
24. Maximum Output Voltage vs Frequency  
10  
版权 © 2017, Texas Instruments Incorporated  
 
 
TLV3544-Q1  
www.ti.com.cn  
ZHCSGU7 OCTOBER 2017  
Typical Characteristics (接下页)  
At TA = 25°C, VS = 5 V, G = +1, RF = 0 Ω, RL = 1 kΩ, and connected to VS/2, unless otherwise noted.  
120  
110  
100  
90  
0.5  
0.4  
RL = 1kW  
VO = 2VPP  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
80  
70  
0
10  
20 30  
40  
50  
60  
70  
80  
90 100  
-55 -35 -15  
5
25  
45  
65  
85 105 125 135  
Time (ns)  
Temperature (°C)  
25. Output Settling Time to 0.1%  
26. Open-Loop Gain vs Temperature  
100  
90  
80  
70  
60  
50  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
-8 -7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7 8  
-55 -35 -15  
5
25  
45  
65  
85 105 125 135  
Offset Voltage (mV)  
Temperature (°C)  
27. Offset Voltage Production Distribution  
28. Common-Mode Rejection Ratio and  
Power-Supply Rejection Ratio vs Temperature  
0
-20  
-40  
TLV3544  
-60  
-80  
-100  
-120  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1G  
29. Channel-to-Channel Crosstalk  
版权 © 2017, Texas Instruments Incorporated  
11  
TLV3544-Q1  
ZHCSGU7 OCTOBER 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV3544-Q1 is a quad-channel CMOS, rail-to-rail I/O, high-speed, voltage-feedback operational amplifier  
designed for video, high-speed, and other applications.  
The amplifier features a 100-MHz gain bandwidth and 150-V/µs slew rate, but it is unity-gain stable and can be  
operated as a +1-V/V voltage follower.  
7.2 Functional Block Diagram  
V+  
Reference  
Current  
VIN+  
VIN  
-
VBIAS1  
Class AB  
Control  
Circuitry  
VO  
VBIAS2  
V-  
(Ground)  
Copyright © 2017, Texas Instruments Incorporated  
12  
版权 © 2017, Texas Instruments Incorporated  
 
TLV3544-Q1  
www.ti.com.cn  
ZHCSGU7 OCTOBER 2017  
7.3 Feature Description  
7.3.1 TLV3544-Q1 Comparison  
1 lists several members of the device family that includes the TLV3544-Q1.  
1. Device Family Comparison  
FEATURES  
PRODUCT  
OPAx357  
OPAx355  
OPAx356  
Shutdown Version of TLV3544 Family  
200-MHz GBW, Rail-to-Rail Output, CMOS, Shutdown  
200-MHz GBW, Rail-to-Rail Output, CMOS  
38-MHz GBW, Rail-to-Rail Input/Output, CMOS  
75-MHz BW G = 2, Rail-to-Rail Output  
OPAx350/OPAx353  
OPA2631  
150-MHz BW G = 2, Rail-to-Rail Output  
OPA2634  
100-MHz BW, Differential Input/Output, 3.3-V Supply  
THS412x  
7.3.2 Operating Voltage  
The TLV3544-Q1 is specified over a power-supply range of 2.7 V to 5.5 V (±1.35 V to ±2.75 V). However, the  
supply voltage may range from 2.5 V to 5.5 V (±1.25 V to ±2.75 V).  
CAUTION  
Supply voltages higher than 7.5 V (absolute maximum) can permanently damage the  
amplifier.  
Parameters that vary over supply voltage or temperature are shown in Typical Characteristics of this data sheet.  
7.3.3 Rail-to-Rail Input  
The specified input common-mode voltage range of the TLV3544-Q1 extends 100 mV beyond the supply rails.  
This extended range is achieved with a complementary input stage—an N-channel input differential pair in  
parallel with a P-channel differential pair, as shown in the Functional Block Diagram. The N-channel pair is active  
for input voltages close to the positive rail, typically (V+) 1.2 V to 100 mV above the positive supply, while the  
P-channel pair is on for inputs from 100 mV below the negative supply to approximately (V+) 1.2 V. There is a  
small transition region, typically (V+) 1.5 V to (V+) 0.9 V, in which both pairs are on. This 600-mV transition  
region can vary ±500 mV with process variation. Thus, the transition region (both input stages on) can range  
from (V+) 2 V to (V+) 1.5 V on the low end, up to (V+) 0.9 V to (V+) 0.4 V on the high end.  
A double-folded cascode adds the signal from the two input pairs and presents a differential signal to the class  
AB output stage.  
7.3.4 Rail-to-Rail Output  
A class AB output stage with common-source transistors is used to achieve rail-to-rail output. For high-  
impedance loads (> 200 Ω), the output voltage swing is typically 100 mV from the supply rails. With 10-Ω loads,  
a useful output swing can be achieved while maintaining high open-loop gain. See the typical characteristic  
curves, Output Voltage Swing vs Output Current (20 and 22).  
7.3.5 Output Drive  
The TLV3544-Q1 output stage can supply a continuous output current of ±100 mA and yet provide approximately  
2.7 V of output swing on a 5-V supply, as shown in 30. For maximum reliability, TI does not recommend  
running a continuous DC current in excess of ±100 mA. Refer to the typical characteristic curves, Output Voltage  
Swing vs Output Current (20 and 22). For supplying continuous output currents greater than ±100 mA, the  
TLV3544-Q1 may be operated in parallel, as shown in 31.  
版权 © 2017, Texas Instruments Incorporated  
13  
 
TLV3544-Q1  
ZHCSGU7 OCTOBER 2017  
www.ti.com.cn  
R2  
+
1 kW  
V1  
5 V  
-
C1  
50 pF  
1 mF  
R1  
V+  
10 kW  
TLV3544  
R3  
V-  
RSHUNT  
10 kW  
VIN  
+
1 W  
R4  
1 kW  
-
1V In = 100 mA  
Out, as Shown  
Laser Diode  
Copyright © 2017, Texas Instruments Incorporated  
30. Laser Diode Driver  
The TLV3544-Q1 provides peak currents up to 200 mA, which corresponds to the typical short-circuit current.  
Therefore, an on-chip thermal shutdown circuit is provided to protect the TLV3544-Q1 from dangerously high  
junction temperatures. At 160°C, the protection circuit shuts down the amplifier. Normal operation resumes when  
the junction temperature cools to below 140°C.  
R2  
10 kW  
C1  
200 pF  
+5V  
1 mF  
R1  
100 kW  
R5  
1 W  
TLV3544-A  
R3  
100 kW  
+
-
R6  
RSHUNT  
2 V In = 200 mA  
Out, as Shown  
1 W  
1 W  
TLV3544-B  
R4  
10 kW  
Laser Diode  
Copyright © 2017, Texas Instruments Incorporated  
31. Parallel Operation  
14  
版权 © 2017, Texas Instruments Incorporated  
TLV3544-Q1  
www.ti.com.cn  
ZHCSGU7 OCTOBER 2017  
7.3.6 Video  
The TLV3544-Q1 output stage is capable of driving standard back-terminated 75-Ω video cables, as shown in 图  
32. By back-terminating a transmission line, it does not exhibit a capacitive load to its driver. A properly back-  
terminated 75-Ω cable does not appear as capacitance; it presents only a 150-Ω resistive load to the TLV3544-  
Q1 output.  
+5 V  
Video  
In  
75 W  
Video  
Output  
TLV3544  
75 W  
+2.5 V  
604 W  
604 W  
+2.5 V  
Copyright © 2017, Texas Instruments Incorporated  
32. Single-Supply Video Line Driver  
The TLV3544-Q1 can be used as an amplifier for RGB graphic signals, which have a voltage of zero at the video  
black level, by offsetting and AC-coupling the signal. See 33.  
版权 © 2017, Texas Instruments Incorporated  
15  
 
TLV3544-Q1  
ZHCSGU7 OCTOBER 2017  
www.ti.com.cn  
604W  
1mF  
+3 V  
+
10 nF  
V+  
604W  
75W  
Red  
75W  
R1  
R2  
(1)  
Red  
TLV3544-A  
V+  
R1  
R2  
(1)  
Green  
75W  
Green  
75W  
TLV3544-B  
604W  
604W  
604W  
V+  
604W  
75W  
Blue  
75W  
R1  
R2  
Blue(1)  
TLV3544-C  
Copyright © 2017, Texas Instruments Incorporated  
(1) Source video signal offset 300 mV above ground to accommodate op amp swingtoground capability.  
33. RGB Cable Driver  
16  
版权 © 2017, Texas Instruments Incorporated  
TLV3544-Q1  
www.ti.com.cn  
ZHCSGU7 OCTOBER 2017  
7.3.7 Driving Analog-to-Digital converters  
The TLV3544-Q1 series op amps offer 60 ns of settling time to 0.01%, making them a good choice for driving  
high- and medium-speed sampling A/D converters and reference circuits. The TLV3544-Q1 provides an effective  
means of buffering the A/D converter input capacitance and resulting charge injection while providing signal gain.  
For applications requiring high DC accuracy, the OPA350 series is recommended.  
34 illustrates the TLV3544-Q1 driving an A/D converter. With the TLV3544-Q1 in an inverting configuration, a  
capacitor across the feedback resistor can be used to filter high-frequency noise in the signal.  
+5 V  
330 pF  
5 kW  
5 kW  
VIN  
VREF  
V+  
ADS7816, ADS7861,  
+In  
or ADS7864  
TLV3544  
12-Bit A/D Converter  
+2.5 V  
-In  
GND  
VIN = 0V to -5 V for 0 V to 5 V output.  
NOTE: A/D converter input = 0 V to VREF  
Copyright © 2017, Texas Instruments Incorporated  
34. The TLV3544-Q1 in Inverting Configuration Driving the ADS7816  
7.3.8 Capacitive Load and Stability  
The TLV3544-Q1 series op amps can drive a wide range of capacitive loads. However, all op amps under certain  
conditions may become unstable. Op amp configuration, gain, and load value are just a few of the factors to  
consider when determining stability. An op amp in unity-gain configuration is most susceptible to the effects of  
capacitive loading. The capacitive load reacts with the device output resistance, along with any additional load  
resistance, to create a pole in the small-signal response that degrades the phase margin. Refer to the typical  
characteristic curve, Frequency Response for Various CL (13) for details.  
The TLV3544-Q1 topology enhances its ability to drive capacitive loads. In unity gain, these op amps perform  
well with large capacitive loads. Refer to the typical characteristic curves, Recommended RS vs Capacitive Load  
(14) and Frequency Response vs Capacitive Load (15) for details.  
One method of improving capacitive load drive in the unity-gain configuration is to insert a 10-Ω to 20-Ω resistor  
in series with the output, as shown in 35. This configuration significantly reduces ringing with large capacitive  
loads—see the typical characteristic curve, Frequency Response vs Capacitive Load (15). However, if there is  
a resistive load in parallel with the capacitive load, RS creates a voltage divider. This voltage division introduces a  
DC error at the output and slightly reduces output swing. This error may be insignificant. For instance, with RL =  
10 kΩ and RS = 20 Ω, there is approximately a 0.2% error at the output.  
V+  
RS  
VOUT  
TLV3544  
VIN  
RL  
CL  
Copyright © 2017, Texas Instruments Incorporated  
35. Series Resistor in Unity-Gain Configuration Improves Capacitive Load Drive  
版权 © 2017, Texas Instruments Incorporated  
17  
 
 
TLV3544-Q1  
ZHCSGU7 OCTOBER 2017  
www.ti.com.cn  
7.3.9 Wideband Transimpedance Amplifier  
Wide bandwidth, low input bias current, low input voltage, and current noise make the TLV3544-Q1 an ideal  
wideband photodiode transimpedance amplifier for low-voltage single-supply applications. Low-voltage noise is  
important because photodiode capacitance causes the effective noise gain of the circuit to increase at high  
frequency.  
The key elements to a transimpedance design, as shown in 36, are the expected diode capacitance [including  
the parasitic input common-mode and differential-mode input capacitance (2 + 2) pF for the TLV3544-Q1], the  
desired transimpedance gain (RF), and the Gain-Bandwidth Product (GBW) for the TLV3544-Q1 (100 MHz  
typical). With these three variables set, the feedback capacitor value (CF) may be set to control the frequency  
response.  
CF  
< 1 pF  
(prevents gain peaking)  
RF  
10 MW  
+V  
l
CD  
VOUT  
TLV3544  
Copyright © 2017, Texas Instruments Incorporated  
36. Transimpedance Amplifier  
To achieve a maximally flat, second-order, Butterworth frequency response, the feedback pole must be set as  
shown in 公式 1:  
1
GBP  
4pRFCD  
=
2pRFCF  
(1)  
Typical surface-mount resistors have a parasitic capacitance of approximately 0.2 pF that must be deducted from  
the calculated feedback capacitance value. Bandwidth is calculated by 公式 2:  
GBP  
f
=
Hz  
-3dB  
2pRFCD  
(2)  
For even higher transimpedance bandwidth, the high-speed CMOS OPA355 (200-MHz GBW) or the OPA655  
(400-MHz GBW) may be used.  
7.4 Device Functional Modes  
The TLV3544-Q1 is powered on when the supply is connected. The devices can be operated as single-supply  
operational amplifiers or dual-supply amplifiers depending on the application. The devices can also be used with  
asymmetrical supplies as long as the differential voltage (V– to V+) is at least 1.8 V and no greater than 5.5 V  
(example: V– set to –3.5 V and V+ set to 1.5 V).  
18  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
TLV3544-Q1  
www.ti.com.cn  
ZHCSGU7 OCTOBER 2017  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV3544-Q1 is a CMOS, rail-to-rail I/O, high-speed, voltage-feedback operational amplifier designed for  
video, high-speed, and other applications. The amplifier features a 100-MHz gain bandwidth, and 150-V/µs slew  
rate, but it is unity-gain stable and can be operated as a 1-V/V voltage follower.  
8.2 Typical Application  
Wide gain bandwidth, low input bias current, low input voltage, and current noise make the TLV3544-Q1 an ideal  
wideband photodiode transimpedance amplifier. Low-voltage noise is important because photodiode capacitance  
causes the effective noise gain of the circuit to increase at high frequency. The key elements to a  
transimpedance design, as shown in 37, are the expected diode capacitance, which include the parasitic input  
common-mode and differential-mode input capacitance; the desired transimpedance gain; and the gain-  
bandwidth (GBW) for the TLV3544-Q1 (20 MHz). With these three variables set, the feedback capacitor value  
can be set to control the frequency response. Feedback capacitance includes the stray capacitance of, which is  
0.2 pF for a typical surface-mount resistor.  
C(F)  
< 1 pF  
R(F)  
10 MW  
V(V+)  
I
C(D)  
VO  
TLV3544  
V(V-)  
Copyright © 2017, Texas Instruments Incorporated  
37. Dual-Supply Transimpedance Amplifier  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 2 as the input parameters.  
2. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
2.5 V  
Supply voltage, V(V+)  
Supply voltage, V(V-)  
–2.5 V  
版权 © 2017, Texas Instruments Incorporated  
19  
 
 
TLV3544-Q1  
ZHCSGU7 OCTOBER 2017  
www.ti.com.cn  
C(F) is optional to prevent gain peaking. C(F) includes the stray capacitance of R(F)  
.
8.2.2 Detailed Design Procedure  
To achieve a maximally-flat, second-order Butterworth frequency response, set the feedback pole using 公式 3.  
(3)  
Calculate the bandwidth using 公式 4.  
(4)  
8.2.2.1 Optimizing the Transimpedance Circuit  
To achieve the best performance, components must be selected according to the following guidelines:  
1. For lowest noise, select R(F) to create the total required gain. Using a lower value for R(F) and adding gain after  
the transimpedance amplifier generally produces poorer noise performance. The noise produced by R(F)  
increases with the square-root of R(F), whereas the signal increases linearly. Therefore, signal-to-noise ratio  
improves when all the required gain is placed in the transimpedance stage.  
2. Minimize photodiode capacitance and stray capacitance at the summing junction (inverting input). This  
capacitance causes the voltage noise of the op amp to be amplified (increasing amplification at high frequency).  
Using a low-noise voltage source to reverse-bias a photodiode can significantly reduce the capacitance. Smaller  
photodiodes have lower capacitance. Use optics to concentrate light on a small photodiode.  
3. Noise increases with increased bandwidth. Limit the circuit bandwidth to only that required. Use a capacitor  
across the R(F) to limit bandwidth, even if not required for stability.  
4. Circuit board leakage can degrade the performance of an otherwise well-designed amplifier. Clean the circuit  
board carefully. A circuit board guard trace that encircles the summing junction and is driven at the same voltage  
can help control leakage.  
8.2.3 Application Curve  
38. AC Transfer Function  
20  
版权 © 2017, Texas Instruments Incorporated  
 
 
TLV3544-Q1  
www.ti.com.cn  
ZHCSGU7 OCTOBER 2017  
9 Power Supply Recommendations  
The TLV3544-Q1 is specified for operation from 2.5 V to 5.5 V (±1.25 to ±2.75 V); many specifications apply from  
–40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are shown Typical Characteristics.  
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high  
impedance power supplies. For more detailed information on bypass capacitor placement, see Layout  
Guidelines.  
10 Layout  
10.1 Layout Guidelines  
Good high-frequency printed-circuit board (PCB) layout techniques must be employed for the TLV3544-Q1.  
Generous use of ground planes, short and direct signal traces, and a suitable bypass capacitor located at the V+  
pin assure clean, stable operation. Large areas of copper also provides a means of dissipating heat that is  
generated in normal operation.  
TI does not recommend using sockets with any high-speed amplifier.  
A 10-nF ceramic bypass capacitor is the minimum recommended value; adding a 1-µF or larger tantalum  
capacitor in parallel can be beneficial when driving a low-resistance load. Providing adequate bypass  
capacitance is essential to achieving very low harmonic and intermodulation distortion.  
10.2 Layout Example  
39. Operational Amplifier Board Layout for Noninverting Configuration  
10.3 Power Dissipation  
Power dissipation depends on power-supply voltage, signal and load conditions. With DC signals, power  
dissipation is equal to the product of output current times the voltage across the conducting output transistor,  
VS VO. Power dissipation can be minimized by using the lowest possible power-supply voltage necessary to  
assure the required output voltage swing.  
For resistive loads, the maximum power dissipation occurs at a DC output voltage of one-half the power-supply  
voltage. Dissipation with AC signals is lower. AB-039 Power Amplifier Stress and Power Handling Limitations  
explains how to calculate or measure power dissipation with unusual signals and loads, and can be found at  
www.ti.com.  
版权 © 2017, Texas Instruments Incorporated  
21  
 
TLV3544-Q1  
ZHCSGU7 OCTOBER 2017  
www.ti.com.cn  
Power Dissipation (接下页)  
Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate  
heatsink. For reliable operation, junction temperature must be limited to 150°C, maximum. To estimate the  
margin of safety in a complete design, increase the ambient temperature until the thermal protection is triggered  
at 160°C. The thermal protection should trigger more than 35°C above the maximum expected ambient condition  
of the application.  
22  
版权 © 2017, Texas Instruments Incorporated  
TLV3544-Q1  
www.ti.com.cn  
ZHCSGU7 OCTOBER 2017  
11 器件和文档支持  
11.1 文档支持  
相关文档请参见以下部分:  
ADS8326 16 位、2.7V 5.5V 高速微功耗采样模数转换器》  
《电路板布局布线技巧》  
《用直观方式补偿跨阻放大器》  
FilterPro™ 用户指南》  
《高速运算放大器噪声分析》  
OPA380 OPA2380 精密高速跨阻放大器》  
《具有关闭功能的 OPA355OPA2355 OPA3355 200MHz CMOS 运算放大器》  
OPA656 宽带单位增益稳定 FET 输入运算放大器》  
《功率放大器应力和功率处理限制》  
PowerPAD 热增强型封装》  
11.2 接收文档更新通知  
要接收文档更新通知,请转至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信  
息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2017, Texas Instruments Incorporated  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV3544QPWRQ1  
ACTIVE  
TSSOP  
PW  
14  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
3544Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV3544QPWRQ1  
TSSOP  
PW  
14  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 14  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
TLV3544QPWRQ1  
2000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLV3544IDR

四通道 200MHz RRIO CMOS 运算放大器 | D | 14 | -40 to 125
TI

TLV3544IPWR

四通道 200MHz RRIO CMOS 运算放大器 | PW | 14 | -40 to 125
TI

TLV3544QPWRQ1

汽车类 250MHz 轨到轨 I/O CMOS 四路运算放大器 | PW | 14 | -40 to 125
TI

TLV3601

TLV3601, TLV3603 325 MHz High-Speed Comparator with 2.5 ns Propagation Delay
TI

TLV3601-Q1

TLV3601, TLV3603 325 MHz High-Speed Comparator with 2.5 ns Propagation Delay
TI

TLV3601-Q1_V01

TLV3601-Q1, TLV3603-Q1 325 MHz High-Speed Comparator with 2.5 ns Propagation Delay
TI

TLV3601-Q1_V02

TLV3601-Q1, TLV3603-Q1 325 MHz High-Speed Comparator with 2.5 ns Propagation Delay
TI

TLV3601DBVR

具有推挽输出的 2.5ns 高速轨至轨比较器 | DBV | 5 | -40 to 125
TI

TLV3601DBVT

具有推挽输出的 2.5ns 高速轨至轨比较器 | DBV | 5 | -40 to 125
TI

TLV3601DCKR

TLV3601, TLV3603 325 MHz High-Speed Comparator with 2.5 ns Propagation Delay
TI

TLV3601DCKT

TLV3601, TLV3603 325 MHz High-Speed Comparator with 2.5 ns Propagation Delay
TI

TLV3601QDBVRQ1

具有推挽输出的汽车类 2.5ns 高速轨至轨比较器 | DBV | 5 | -40 to 125
TI