TLV365DBVR [TI]

50-MHz single-supply operational amplifier with rail-to-rail input and output | DBV | 5 | -40 to 125;
TLV365DBVR
型号: TLV365DBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

50-MHz single-supply operational amplifier with rail-to-rail input and output | DBV | 5 | -40 to 125

文件: 总35页 (文件大小:2540K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
TLVx365 50MHz、零交叉、CMRRRRIO 运算放大器  
1 特性  
3 说明  
• 增益带宽50MHz  
• 零交叉失真拓扑:  
TLV365 TLV2365 器件 (TLVx365) 是零交叉、轨到  
轨输入和输出 CMOS 运算放大器系列针对低电压和  
成本敏感型应用进行了优化。得益于低噪声 (4.5nV/√  
Hz) 和高速运行50MHz 增益带宽特性此类器件  
成为在低侧电流检测、音频、信号调节和传感器放大等  
应用中驱动采样模数转换(ADC) 的理想之选。  
CMRR115dB典型值)  
– 轨至轨输入和输出  
• 输入超出电源100mV  
• 噪声4.5nV/Hz  
• 压摆率27 V/µs  
• 快速稳定0.2μs 0.01%  
• 精度:  
特殊功能包括出色的共模抑制(CMRR)、无输入级交  
叉失真、高输入阻抗和轨到轨输入和输出摆幅。输入共  
模范围同时包括正负电源。输出电压摆幅在电源轨的  
10mV 以内。  
– 温2μV/°C最大值)  
– 输入偏置电流20pA最大值)  
• 工作电压2.2V 5.5V  
TLVx365 的额定工作温度范围40°C +125°C。  
器件信息  
2 应用  
封装(1)  
器件型号  
TLV365  
TLV2365 (2)  
通道数  
DBVSOT-235)  
DSOIC8)  
• 信号调节  
数据采集  
• 有源滤波器  
• 测试设备  
音频  
单通道  
双通道  
(1) 要了解所有可用封装请见数据表末尾的可订购产品附录。  
(2) 预发布信息非量产数据。  
• 宽带放大器  
机架式服务器  
Short-Circuit  
Detection  
R2  
VTH  
2 kΩ  
LOAD  
RF  
TLV3201  
C2  
2.2 pF  
+
VS+  
VS+  
RG  
RG  
V
ISH  
REXT  
V
U2  
TLV365  
SD1  
RSH  
TLV365  
ADS7042  
BAT17  
U1  
TLV365  
+
VOUT  
CEXT  
RF  
R1  
7.5 Ω  
+
V
VREF  
C1  
VIN  
+
V
10 nF  
TLVx365 用于电流检测  
快速趋稳峰值检测器  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOSAA8  
 
 
 
 
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................13  
9 Application and Implementation..................................14  
9.1 Application Information............................................. 14  
9.2 Typical Applications.................................................. 16  
9.3 Power Supply Recommendations.............................18  
9.4 Layout....................................................................... 19  
10 Device and Documentation Support..........................20  
10.1 Device Support....................................................... 20  
10.2 Documentation Support.......................................... 21  
10.3 接收文档更新通知................................................... 21  
10.4 支持资源..................................................................21  
10.5 Trademarks.............................................................21  
10.6 静电放电警告.......................................................... 21  
10.7 术语表..................................................................... 21  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings ....................................... 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics.............................................5  
7.6 Typical Characteristics................................................6  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagram.........................................10  
8.3 Feature Description...................................................11  
Information.................................................................... 21  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2022) to Revision A (June 2023)  
Page  
OPA2365 的状态从“预发布”改为“预告信息”......................................................................................... 1  
Added Device Comparison Table ...................................................................................................................... 3  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAA8  
2
Submit Document Feedback  
Product Folder Links: TLV365 TLV2365  
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
5 Device Comparison Table  
OFFSET  
VOLTAGE  
NOISE  
(nV/Hz)  
MINIMUM  
GAIN STABLE  
(V/V)  
IQ/CHANNEL  
TYPICAL  
(mA)  
GAIN  
BANDWIDTH  
(MHz)  
DRIFT  
TYPICAL  
(µV/C)  
SLEW RATE  
(V/µs)  
DEVICE  
INPUT TYPE  
TLVx365  
OPAx607  
OPAx365  
CMOS  
CMOS  
CMOS  
0.4  
0.3  
1
1
6
1
4.6  
0.9  
4.6  
50  
50  
50  
27  
24  
25  
4.5  
3.8  
4.5  
6 Pin Configuration and Functions  
VOUT  
1
2
3
5
4
V+  
V
IN  
+IN  
6-1. TLV365 DBV Package, 5-Pin SOT-23 (Top View)  
6-1. Pin Functions: TLV365  
PIN  
TYPE  
DESCRIPTION  
NAME  
IN  
+IN  
NO.  
4
Input  
Input  
Negative (inverting) input  
Positive (noninverting) input  
Negative (lowest) power supply  
Positive (highest) power supply  
Output  
3
2
V–  
V+  
5
VOUT  
1
Output  
V
OUTA  
1
2
3
4
8
7
6
5
V+  
VOUT  
B
IN A  
+IN A  
IN B  
+IN B  
V
6-2. TLV2365 D Package, 8-Pin SOIC (Top View)  
Pin Functions: TLV2365  
PIN  
TYPE  
DESCRIPTION  
NAME  
IN A  
+IN A  
IN B  
+IN B  
V–  
NO.  
2
Input  
Input  
Input  
Input  
Negative (inverting) input signal, channel A  
3
Positive (noninverting) input signal, channel A  
Negative (inverting) input signal, channel B  
Positive (noninverting) input signal, channel B  
Negative (lowest) power supply  
Positive (highest) power supply  
Output, channel A  
6
5
4
V+  
8
VOUT  
VOUT  
A
B
1
Output  
Output  
7
Output, channel B  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV365 TLV2365  
English Data Sheet: SBOSAA8  
 
 
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
VS  
VI  
6
(V+) + 0.5  
±5  
Supply voltage, VS = (V+) (V)  
Input voltage  
V
(V) 0.5  
VID  
II  
Differential input voltage  
Continuous input current(2)  
Output short-circuit(3)  
Operating temperature  
Junction temperature  
Storage temperature  
V
±10  
mA  
ISC  
TA  
TJ  
Continuous  
125  
150  
150  
°C  
°C  
°C  
40  
Tstg  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime  
(2) Input pins are diode-clamped to the power-supply rails. Limit the current of input signals that can swing more than 0.5 V beyond the  
supply rails to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.2  
NOM  
MAX  
5.5  
UNIT  
VS  
TA  
V
Supply voltage, VS = (V+) (V)  
Specified temperature  
25  
125  
°C  
40  
7.4 Thermal Information  
TLV365  
TLV2365  
THERMAL METRIC(1)  
DBV (SOT-23)  
D (SOIC)  
8 PINS  
140  
UNIT  
5 PINS  
179  
78  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
89  
46  
80  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
19  
28  
46  
80  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAA8  
4
Submit Document Feedback  
Product Folder Links: TLV365 TLV2365  
 
 
 
 
 
 
 
 
 
 
 
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.5 Electrical Characteristics  
at VS = 2.2 V to 5.5 V, TA = 25°C, RL = 10 k, VCM,VOUT = mid-supply, and gain = 1 V/V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VOS  
Input offset voltage  
±0.4  
±0.4  
100  
±1.9  
mV  
dVOS/dT  
PSRR  
Input offset voltage drift  
Power-supply rejection ratio  
±2 µV/°C  
dB  
TA = 40°C to +125°C  
VS = 2.2 V to 5.5 V, TA = 40 to +125℃  
INPUT BIAS CURRENT  
±5  
±20  
IB  
Input bias current  
pA  
TA = 40to +125℃  
See 7-5  
NOISE  
Input voltage noise (peak-to-peak)  
Input voltage noise density  
Input current noise density  
f = 0.1 Hz to 10 Hz  
f = 500 kHz  
5.4  
4.5  
5.8  
µVPP  
eN  
in  
nV/Hz  
fA/Hz  
f = 1 kHz  
INPUT VOLTAGE  
VCM  
Common-mode voltage  
(V+) + 0.1  
V
(V) 0.1  
115  
110  
(V) 100 mV < VCM < (V+) + 100 mV  
TA = 40to +125℃  
CMRR  
Common-mode rejection ratio  
dB  
INPUT IMPEDANCE  
Differential  
Common-mode  
OPEN-LOOP GAIN  
5
1
CIN  
pF  
RL = 10 k, (V) + 0.1 V < VOUT < (V+) 0.1  
100  
95  
120  
V
RL = 10 k, TA = 40 to +125℃  
AOL  
Open-loop voltage gain  
dB  
°
RL = 600 , (V) + 0.2 V < VOUT < (V+) 0.2  
100  
94  
120  
56  
V
RL = 600 , TA = 40 to +125℃  
Phase margin  
FREQUENCY RESPONSE (VS = 5 V)  
GBW  
SR  
Gain-bandwidth product  
Slew rate  
50  
27  
MHz  
V/µs  
0.1%, 4-V step  
0.15  
tS  
Settling time  
µs  
0.01%, 4-V step  
0.2  
Overdrive recovery time  
VIN+ × gain > VS  
< 0.1  
0.00025  
µs  
%
THD + N  
Total harmonic distortion + noise(6)  
VOUT = 4 VPP, f = 1 kHz, RL = 600 Ω  
OUTPUT  
10  
12  
Output voltage swing from supply rails  
mV  
mA  
TA = 40°C to +125°C  
ISC  
Short-circuit current  
±85  
See 7-16  
40  
Capacitive load drive  
ZO  
Open-loop output impedance  
f = 1 MHz, IO = 0 mA  
Ω
POWER SUPPLY  
IO = 0 mA  
4.6  
5.8  
6.3  
IQ  
Quiescent current per amplifier  
mA  
IO = 0 mA, TA = 40°C to +125°C  
(1) Low-pass-filter bandwidth is 20 kHz for f = 1 kHz.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV365 TLV2365  
English Data Sheet: SBOSAA8  
 
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.6 Typical Characteristics  
at TA = 25°C, VS = 5 V, RL = 10 kΩ, and gain = 1 V/V (unless otherwise noted)  
120  
105  
90  
75  
60  
45  
30  
15  
0
240  
210  
180  
150  
120  
90  
120  
100  
80  
60  
40  
20  
0
Gain (dB)  
Phase Margin ()  
60  
30  
0
PSRR  
CMRR  
-15  
-30  
-30  
-60  
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
7-1. Open-Loop Gain and Phase vs Frequency  
40k  
7-2. Power-Supply and Common-Mode Rejection Ratio  
30  
VS = 5.5 V  
VS = 2.2 V  
VS = 2.2 V  
VS = 5.5 V  
27  
35k  
30k  
25k  
20k  
15k  
10k  
5k  
24  
21  
18  
15  
12  
9
6
3
0
Offset Voltage Drift (µV/°C)  
40 units, μ= 0.06 μV/°C, σ= 0.4  
μV/°C  
Input Offset Voltage (µV)  
70000 units, μ= 9.3 μV, σ= 320 μV.  
7-3. Offset Voltage Production Distribution  
7-4. Offset Voltage Drift Distribution  
250  
750  
650  
550  
450  
350  
250  
150  
50  
200  
150  
100  
50  
0
-50  
-50  
-50  
-25  
0
25  
50  
75  
100  
125  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Temmperature (C)  
Common-Mode Voltage (V)  
40 units  
40 units  
7-5. Input Bias Current vs Temperature  
7-6. Input Bias Current vs Common-Mode Voltage  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAA8  
6
Submit Document Feedback  
Product Folder Links: TLV365 TLV2365  
 
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, RL = 10 kΩ, and gain = 1 V/V (unless otherwise noted)  
120  
90  
60  
Source  
30  
0
-30  
-60  
-90  
-120  
Sink  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (C)  
VS = ±2.75 V  
20 units  
7-7. Output Voltage vs Output Current  
7-8. Short-Circuit Current vs Temperature  
3
0
3
0
-3  
-3  
-6  
-6  
VOUT = 200 mVPP  
VOUT = 1 VPP  
VOUT = 2 VPP  
VOUT = 4 VPP  
Gain = 1 V/V  
Gain = 1 V/V  
Gain = 10 V/V  
Gain = 21 V/V  
-9  
-9  
-12  
-12  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
7-9. Frequency Response vs Output Voltage  
7-10. Small-Signal Frequency Response vs Gain  
6
0.01  
Gain = 1 V/V, VRMS = 1.448 V  
Gain = 1 V/V, VRMS = 1 V  
Gain = 10 V/V, VRMS = 1.448 V  
Gain = 10 V/V, VRMS = 1 V  
3
0
0.001  
-3  
-6  
-9  
CL = 20 pF  
CL = 10 pF  
CL = 5 pF  
0.0001  
1M  
10M  
Frequency (Hz)  
100M  
100  
1k  
Frequency (Hz)  
10k  
RL = 600 Ω  
7-11. Small-Signal Response vs Capacitive Load  
7-12. Total Harmonic Distortion + Noise vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV365 TLV2365  
English Data Sheet: SBOSAA8  
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, RL = 10 kΩ, and gain = 1 V/V (unless otherwise noted)  
4
3
100  
10  
1
2
1
0
-1  
-2  
-3  
-4  
0
1
2
3
4
5
6
7
8
9
10  
10  
100  
1k  
10k  
100k  
1M  
Time (1s/div)  
Frequency (Hz)  
.
7-13. 0.1-Hz to 10-Hz Input Voltage Noise  
7-14. Input Voltage Noise Spectral Density  
10p  
1p  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain = 1 V/V  
Gain = 1 V/V  
Gain = 10 V/V  
0.1p  
10f  
1f  
0.1f  
100m  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1p  
10p  
100p  
1n  
Frequency (Hz)  
Capacitive Load (F)  
For gain 1 V/V, RF = 1 kΩ. For gain = 1 V/V, RF = 0 Ω.  
7-16. Overshoot vs Capacitive Load  
7-15. Input Current Noise Spectral Density  
3
2
VOUT  
VIN  
VOUT  
VIN  
1
0
-1  
-2  
-3  
Time (50ns/div)  
Time (200ns/div)  
RL = 600 Ω  
RL = 600 Ω  
7-17. Small-Signal Step Response  
7-18. Large-Signal Step Response  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAA8  
8
Submit Document Feedback  
Product Folder Links: TLV365 TLV2365  
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, RL = 10 kΩ, and gain = 1 V/V (unless otherwise noted)  
10k  
4
3
Ideal Output  
Measured Ouput  
2
1k  
1
0
-1  
-2  
-3  
-4  
100  
10  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Time (100 ns/div)  
Frequency (Hz)  
VS = ±2.75 V  
7-19. Overdrive Recovery  
7-20. Open-Loop Output Impedance  
120  
100  
80  
60  
40  
20  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
-3 -2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
3
10M  
100M  
Frequency (Hz)  
1G  
10G  
Output Voltage (V)  
VS = ±2.75 V  
7-21. Open Loop Voltage Gain vs Output Voltage  
7-22. Electromagnetic Interference Rejection Ratio Referred  
to Noninverting Input (EMIRR+) vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV365 TLV2365  
English Data Sheet: SBOSAA8  
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TLVx365 series of operational amplifiers feature rail-to-rail input and output, wide-bandwidth making these  
devices an excellent choice for driving ADCs. Other typical applications include signal conditioning, low-side  
current sensing, signal buffering and sensor amplification. The TLVx365 operates with either a single supply or  
dual supplies.  
Furthermore, the TLVx365 amplifier parameters are fully specified from 2.2 V to 5.5 V. Many of the specifications  
apply from 40°C to +125°C.  
8.2 Functional Block Diagram  
V+  
Low-Noise  
Charge Pump  
Bias Circuitry  
+IN  
IN  
OUT  
Input Stage Load  
Bias Circuitry  
V  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAA8  
10  
Submit Document Feedback  
Product Folder Links: TLV365 TLV2365  
 
 
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Rail-to-Rail Input  
The TLVx365 product family features true rail-to-rail input operation, with supply voltages as low as ±1.1 V  
(2.2 V). A unique zerø-crossover input topology eliminates the input offset transition region typical of many rail-  
to-rail, complementary stage operational amplifiers. As shown in 8-1, this topology also allows the TLVx365 to  
provide excellent common-mode performance over the entire input range, which extends 100 mV beyond both  
power-supply rails. When driving ADCs, the highly linear VCM range of the TLVx365 makes sure that the system  
linearity performance is not compromised. For a simplified schematic illustrating the rail-to-rail input circuitry, see  
8.2.  
200  
VS  
=
2.75 V  
150  
100  
50  
TLV365-Q1  
0
50  
100  
Competitors  
150  
200  
1
3
2
0
1
2
3
Common−Mode Voltage (V)  
8-1. TLVx365 Linear Offset Over the Entire Common-Mode Range  
8.3.2 Input and ESD Protection  
8-2 shows that the TLVx365 incorporates internal electrostatic discharge (ESD) protection circuits on all pins.  
In the case of input and output pins, this protection primarily consists of current-steering diodes connected  
between the input and power-supply pins. These ESD protection diodes also provide in-circuit, input overdrive  
protection if the current is limited to 10 mA; see also 7.1. 8-3 shows how a series input resistor can be  
added to the driven input to limit the input current. The added resistor contributes thermal noise at the amplifier  
input; the resistor must be kept to the minimum value in noise-sensitive applications.  
V+  
TVS  
V+  
IOVERLOAD  
TLV365  
10 mA max  
TLV365  
VOUT  
VIN  
5 kΩ  
+IN  
VOUT  
8-3. Input Current Protection  
–IN  
+
Power-Supply  
ESD Cell  
V–  
8-2. ESD Protection Scheme  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV365 TLV2365  
English Data Sheet: SBOSAA8  
 
 
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
8.3.3 Driving Capacitive Loads  
The TLVx365 can be used in applications where driving a capacitive load is required. An op amp in a unity-gain,  
buffer configuration and driving a capacitive load exhibits a greater tendency to be unstable than an amplifier  
operated at a higher gain. The capacitive load, in conjunction with the op-amp output impedance, creates a pole  
within the feedback loop that degrades the phase margin. The degradation of the phase margin increases as the  
capacitive loading increases.  
8-4 shows one technique to increase the capacitive-load drive capability of the amplifier operating in unity  
gain is to insert a small resistor, RISO, in series with the output. This resistor significantly reduces the overshoot  
and ringing associated with capacitive loads.  
RISO  
TLV365  
IN+  
Gain = 1 V/V  
RG  
RF  
RISO  
TLV365  
IN+  
Gain 1 V/V  
8-4. Improving Capacitive Load Drive  
A possible drawback of this technique is the voltage divider created with the added series resistor (RISO) and any  
resistor (RL) connected in parallel with the capacitive load. The voltage divider introduces a gain error at the  
output that also reduces the output swing. The error contributed by the voltage divider can be insignificant. For  
instance, with a load resistance of RL = 10 kΩand RISO = 20 Ω, the gain error is only approximately 0.2%.  
8-5 shows the recommended isolation resistor (RISO) to be connected at the output of TLVx365 for different  
capacitive loads. The TLVx365 can drive higher capacitive loads without the need of isolation resistors at higher  
gains.  
For gain > 1 V/V, RF = 1 kΩ  
For gain = 1 V/V, RF = 0 Ω  
8-5. Recommended Isolation Resistor vs Capacitive Load  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAA8  
12  
Submit Document Feedback  
Product Folder Links: TLV365 TLV2365  
 
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
8.3.4 Active Filter  
The TLVx365 is an excellent choice for active filter applications requiring a wide bandwidth, fast slew rate, low-  
noise, single-supply operational amplifier. 8-6 shows a 500-kHz, second-order, low-pass filter using a multiple-  
feedback (MFB) topology. The components have been selected to provide a maximally-flat Butterworth  
response. Beyond the cutoff frequency, rolloff is 40 dB/dec. The Butterworth response is designed for  
applications requiring predictable gain characteristics, such as the antialiasing filter used ahead of an ADC.  
R3  
549Ω  
C2  
150 pF  
V+  
R1  
R2  
549 Ω  
1.24 kΩ  
VIN  
TLV365  
VOUT  
C1  
1 nF  
V
8-6. Second-Order Butterworth, 500-kHz Low-Pass Filter  
When considering the MFB filter, the output is inverted, relative to the input. If this inversion is not desired, then a  
noninverting output can be achieved through one of these options:  
add an inverting amplifier  
add an additional second-order MFB stage  
use a noninverting filter topology, such as the Sallen-Key  
8-7 shows the Sallen-Key topology.  
C3  
220 pF  
R3  
R1  
R2  
150 kΩ  
1.8 kΩ  
19.5 kΩ  
VIN = 1VRMS  
C1  
3.3 nF  
C2  
TLV365  
VOUT  
47 pF  
8-7. Configured as a Three-Pole, 20-kHz, Sallen-Key Filter  
8.4 Device Functional Modes  
The device has one mode of operation that applies when operated within the recommended operating  
conditions.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV365 TLV2365  
English Data Sheet: SBOSAA8  
 
 
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TLVx365 offer outstanding dc and ac performance. These devices operate with up to a 5.5-V power supply,  
offer an ultra-low input bias current and a 50-MHz bandwidth with true rail-to-rail input capability.  
9.1.1 Overdrive Recovery Performance  
The TLVx365 family exhibits excellent overdrive recovery when the output is driven well beyond the V+ or V–  
supplies. When configured in a low-side current-sensing configuration (as in 9-1), the output of the op amp  
(TLVx365) is often driven to or less than ground as a result of ground bounce at the power ground or the 0-A  
current being measured across shunt resistance RSH. The TLVx365 has the ability to recover from an overdrive  
event in < 100 ns. 9-2 shows the comparison of the overdrive recovery performance of TLVx365 and other  
popular op amps in the same category.  
300 V  
3.3 V  
Switching  
Circuit  
TLV3201  
VTH  
+
10 k  
Interrupt  
ISH  
3.3 V  
3.3 V  
MCU  
1 k  
1 k  
VOUT  
RSH  
Digital I/O  
DUT  
ADS7056  
+
10 k  
GND  
9-1. Low Side Current Sensing Application Circuit  
5
OPA365  
OPA836  
OPA607  
TLV365  
4
3
2
1
0
-1  
Time (200 ns/div)  
Gain = 10 V/V. VOUT driven to (V) 1 V  
9-2. TLVx365 Overdrive Recovery  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAA8  
14  
Submit Document Feedback  
Product Folder Links: TLV365 TLV2365  
 
 
 
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.1.2 Achieving an Output Level of Zero Volts  
Certain single-supply applications require the opamp output to swing from 0 V to a positive full-scale voltage  
and have high accuracy. An example is an op amp employed to drive a single-supply ADC having an input range  
from 0 V to 3.3 V. Rail-to-rail output amplifiers with very light output loading can achieve an output level within  
few millivolts of 0 V (or V+ at the high end), but not true 0 V. Furthermore, the deviation from 0 V only becomes  
greater as the required load current increases. This increased deviation is a result of limitations of the CMOS  
output stage.  
When a pulldown resistor is connected from the amplifier output to a negative voltage source, the TLVx365 can  
achieve an output level of 0 V, and even a few millivolts below 0 V. 9-3 shows a circuit using this technique.  
V+ = +5 V  
TLV365  
VOUT  
VIN  
500 µA  
RP =10 kΩ  
Op Amps  
Negative  
Supply  
V = 5 V  
(Additional  
Grounded  
Negative Supply)  
9-3. Swing-to-Ground  
A pulldown current of approximately 500 μA is required when TLVx365 is connected as a unity-gain buffer.  
Pulldown resistor RL is calculated from RL = [(VO VNEG) / (500 μA)].  
9-4 shows the offset voltage vs output swing.  
20m  
15m  
10m  
5m  
0
5m  
10m  
15m  
20m  
-3 -2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
3
Output Voltage (V)  
VS = ±2.75 V  
9-4. Offset Voltage vs Output Swing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV365 TLV2365  
English Data Sheet: SBOSAA8  
 
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.2 Typical Applications  
9.2.1 Second-Order Low-Pass Filter  
Low-pass filters are commonly employed in signal processing applications to reduce noise and prevent aliasing.  
The TLVx365 is designed to construct high-speed, high-precision active filters. 9-5 shows a second-order low-  
pass filter commonly encountered in signal processing applications.  
R4  
2.94 k  
C5  
1 nF  
œ
R1  
590 ꢀ  
R3  
499 ꢀ  
Output  
+
Input  
C2  
39 nF  
Copyright © 2016, Texas Instruments Incorporated  
9-5. Second-Order Low-Pass Filter  
9.2.1.1 Design Requirements  
Use the following parameters for this design example:  
Gain = 5 V/V (inverting gain)  
Low-pass cutoff frequency = 25 kHz  
Second-order, Chebyshev filter response with 3-dB gain peaking in the pass band  
9.2.1.2 Detailed Design Procedure  
9-5 shows the infinite-gain, multiple-feedback circuit for a low-pass network function. Use 程式 1 to  
calculate the voltage transfer function.  
-1 R1R3C2C5  
Output  
Input  
s =  
( )  
s2 + s C 1 R +1 R +1 R +1 R R C C  
(
)
(
)
2
1
3
4
3 4 2 5  
(1)  
This circuit produces a signal inversion. For this circuit, use 方程2 to calculate the gain at dc and the low-pass  
cutoff frequency.  
R4  
Gain =  
R1  
1
fC  
=
1 R R C C  
(
3 4 2 5  
)
2p  
(2)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAA8  
16  
Submit Document Feedback  
Product Folder Links: TLV365 TLV2365  
 
 
 
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.2.1.3 Application Curve  
20  
0
-20  
-40  
-60  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
9-6. TLVx365 Second-Order 25 kHz, Chebyshev, Low-Pass Filter  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV365 TLV2365  
English Data Sheet: SBOSAA8  
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.2.2 ADC Driver and Reference Buffer  
9-7 shows the use of a TLVx365 op amp as a SAR ADC input and reference pin driver. Sensors, which are  
used for interfacing with the physical environment, exhibit high output impedance and cannot drive SAR ADC  
inputs directly. The TLVx365 devices exhibit a very low-input bias current of 20 pA (maximum), and therefore do  
not load these high-output impedance sensors. A wide-GBW amplifier connected to the output of these sensors  
is needed to charge the switching capacitors at the SAR ADC input and to settle fast, to the required accuracy,  
within the given acquisition time.  
The ADC core draws transient current from the reference input during the conversion (digitization) phase, which  
must be driven with a wide-GBW amplifier to offer fast settling and maintain a stable reference voltage for  
excellent digitization performance. The TLVx365 reference buffer is used in a composite loop with the OPA378  
precision amplifier because of limitations in precision performance of wide-GBW amplifiers. The precision  
amplifier maintains low-offset output, whereas the TLVx365 provide the output drive and fast-settling  
performance.  
RF  
RG  
5 V  
5 V  
5 V  
+
RS  
AVDD  
DVDD  
Sensor  
TLV365  
ZOUT  
ADS7945  
14-bit  
CCB  
2 MSPS  
VREF  
5 V  
5 V  
5 V  
OPA378  
+
RFILT  
Reference  
TLV365  
CFILT  
+
9-7. TLVx365 as a SAR ADC Driver  
9.3 Power Supply Recommendations  
The TLVx365 family is operational when the power-supply voltage is greater than 2.2 V (±1.1 V). The maximum  
power supply voltage for the TLVx365 family is 5.5 V (±2.75 V). The TLVx365 operate on both single and dual  
supplies. The maximum permissible voltage, VS, is 6 V.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAA8  
18  
Submit Document Feedback  
Product Folder Links: TLV365 TLV2365  
 
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.4 Layout  
9.4.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including  
the following guidelines:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole or through the  
operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance  
power sources local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
The TLVx365 is capable of peak output current (in excess of 50 mA). Applications with low impedance  
loads or capacitive loads with fast transient signals demand large currents from the power supplies. Larger  
bypass capacitors, such as 1-µF solid tantalum capacitors, can improve dynamic performance in these  
applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds paying attention to the flow of the ground current.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed  
to in parallel with the noisy trace.  
Place the external components as close to the device as possible. 9-8 shows that keeping RF and RG  
close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
9.4.2 Layout Example  
VIN A  
VIN B  
+
+
VOUT A  
VOUT B  
RG  
RG  
RF  
RF  
(Schematic Representation)  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
VOUT A  
Use low-ESR,  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
VS+  
GND  
OUT A  
V+  
RF  
VOUT B  
GND  
-IN A  
+IN A  
V–  
OUT B  
-IN B  
RF  
RG  
GND  
VIN B  
VIN A  
RG  
+IN B  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
GND  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
VS–  
Ground (GND) plane on another layer  
as possible.  
9-8. Layout Recommendation for TLV2365 SOIC Package  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV365 TLV2365  
English Data Sheet: SBOSAA8  
 
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 Development Support  
10.1.1.1 PSpice® for TI  
PSpice® for TI 是可帮助评估模拟电路性能的设计和仿真环境。在进行布局和制造之前创建子系统设计和原型解决  
方案可降低开发成本并缩短上市时间。  
10.1.1.2 TINA-TI™ 仿真软件免费下载)  
TINA-TI仿真软件是一款简单易用、功能强大且基于 SPICE 引擎的电路仿真程序。TINA-TI 仿真软件是 TINA™  
软件的一款免费全功能版本除了一系列无源和有源模型外此版本软件还预先载入了一个宏模型库。TINA-TI 仿  
真软件提供所有传统SPICE 直流、瞬态和频域分析以及其他设计功能。  
TINA-TI 仿真软件提供全面的后处理能力便于用户以多种方式获得结果用户可从设计工具和仿真网页免费下  
。虚拟仪器提供选择输入波形和探测电路节点、电压以及波形的能力从而构建一个动态的快速启动工具。  
备注  
必须安装 TINA 软件或者 TINA-TI 软件后才能使用这些文件。请从 TINA-TI™ 软件文件夹中下载免费的  
TINA-TI 仿真软件。  
10.1.1.3 DIP-Adapter-EVM  
借助 DIP-Adapter-EVM 加快运算放大器的原型设计和测试EVM 有助于快速轻松地连接小型表面贴装器件并  
且价格低廉。使用随附的 Samtec 端子板连接任何受支持的运算放大器或者将这些端子板直接连接至现有电  
路。DIP-Adapter-EVM 套件支持以下业界通用封装D U (SOIC-8)PW (TSSOP-8)DGK (VSSOP-8)、  
DBVSOT-23-6SOT-23-5 SOT-23-3DCKSC70-6 SC70-5DRL (SOT563-6)。  
10.1.1.4 DIYAMP-EVM  
DIYAMP-EVM 是一款独特的评估模(EVM)可提供真实的放大器电路使用户能够快速评估设计概念并验证仿  
真。此 EVM 采用 3 种业界通用封装选项SC70SOT23 SOIC并提供 12 种流行的放大器配置包括放大  
器、滤波器、稳定性补偿以及同时适用于单电源和双电源的比较器配置。  
10.1.1.5 TI 参考设计  
TI 参考设计是TI 的精密模拟应用专家创建的模拟解决方案。TI 参考设计提供了许多实用电路的工作原理、组件  
选择、仿真、完整印刷电路板 (PCB) 电路原理图和布局布线、物料清单以及性能测量结果。TI 参考设计可在线获  
网址https://www.ti.com/reference-designs。  
10.1.1.6 滤波器设计工具  
滤波器设计工具是一款简单、功能强大且便于使用的有源滤波器设计程序。利用滤波设计器用户可使用精选 TI  
运算放大器TI 供应商合作伙伴提供的无源器件来打造理想滤波器设计方案。  
设计工具和仿真网页以基于网络的工具形式提供滤波设计工具。用户通过该工具可在短时间内完成多级有源滤波  
器解决方案的设计、优化和仿真。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAA8  
20  
Submit Document Feedback  
Product Folder Links: TLV365 TLV2365  
 
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
10.2 Documentation Support  
10.2.1 Related Documentation  
The following documents are relevant to using the TLVx365, and recommended for reference. All are available  
for download at www.ti.com unless otherwise noted.  
Texas Instruments, FilterProsoftware user's guide  
Texas Instruments, Low Power Input and Reference Driver Circuit for ADS8318 and ADS8319 application  
report  
Texas Instruments, Op Amp Performance Analysis application bulletin  
Texas Instruments, Single-Supply Operation of Operational Amplifiers application bulletin  
Texas Instruments, The Best of Baker's Best Amplifiers eBook reference book  
10.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.5 Trademarks  
TINA-TI, FilterPro, and TI E2Eare trademarks of Texas Instruments.  
TINAis a trademark of DesignSoft, Inc.  
PSpice® is a registered trademark of Cadence Design Systems, Inc.  
所有商标均为其各自所有者的财产。  
10.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLV365 TLV2365  
English Data Sheet: SBOSAA8  
 
 
 
 
 
 
 
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLV365 TLV2365  
English Data Sheet: SBOSAA8  
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
ALL AROUND  
.0028 MIN  
[0.07]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLV365 TLV2365  
English Data Sheet: SBOSAA8  
TLV365, TLV2365  
ZHCSPF9A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLV365 TLV2365  
English Data Sheet: SBOSAA8  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV365DBVR  
XTLV2365DR  
ACTIVE  
ACTIVE  
SOT-23  
SOIC  
DBV  
D
5
8
3000 RoHS & Green  
3000 TBD  
NIPDAU  
Level-1-260C-UNLIM  
Call TI  
-40 to 125  
-40 to 125  
T365  
Samples  
Samples  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Jul-2023  
OTHER QUALIFIED VERSIONS OF TLV365 :  
Automotive : TLV365-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV365DBVR  
SOT-23  
DBV  
5
3000  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-23 DBV  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
TLV365DBVR  
5
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV369

适用于成本敏感型应用的单路、800nA、1.8V、RRIO 零交叉失真运算放大器
TI

TLV3691

小型毫微功耗单路比较器
TI

TLV3691IDCKR

小型毫微功耗单路比较器 | DCK | 5 | -40 to 125
TI

TLV3691IDCKT

小型毫微功耗单路比较器 | DCK | 5 | -40 to 125
TI

TLV3691IDPFR

小型毫微功耗单路比较器 | DPF | 6 | -40 to 125
TI

TLV3691IDPFT

小型毫微功耗单路比较器 | DPF | 6 | -40 to 125
TI

TLV369IDCKR

适用于成本敏感型应用的单路、800nA、1.8V、RRIO 零交叉失真运算放大器 | DCK | 5 | -40 to 125
TI

TLV369IDCKT

适用于成本敏感型应用的单路、800nA、1.8V、RRIO 零交叉失真运算放大器 | DCK | 5 | -40 to 125
TI

TLV3701

FAMILY OF NANOPOWER PUSH-PULL OUTPUT COMPARATORS
TI

TLV3701-EP

NANOPOWER PUSH-PULL OUTPUT COMPARATOR
TI

TLV3701-Q1

FAMILY OF NANNOPOWER PUSH=PULL OUTPUT COMPARATORS
TI

TLV3701CD

FAMILY OF NANOPOWER PUSH-PULL OUTPUT COMPARATORS
TI