TLV4041R2YKAR

更新时间:2024-10-30 05:35:14
品牌:TI
描述:具有基准电压的低功耗比较器(同相、推挽) | YKA | 4 | -40 to 125

TLV4041R2YKAR 概述

具有基准电压的低功耗比较器(同相、推挽) | YKA | 4 | -40 to 125

TLV4041R2YKAR 数据手册

通过下载TLV4041R2YKAR数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV4021, TLV4031, TLV4041, TLV4051  
SNVSB04B MARCH 2019REVISED JUNE 2020  
TLV40x1 Small-Size, Low-Power Comparator with Precision Reference  
1 Features  
3 Description  
The TLV40x1 devices are low-power, high-accuracy  
comparators with precision references and fast  
response. The comparators are available in an ultra-  
small, DSBGA package measuring 0.73 mm × 0.73  
mm, making the TLV40x1 applicable for space-critical  
designs like portable or battery-powered electronics  
where low-power and fast response to changes in  
operating conditions is required.  
1
Wide supply voltage range: 1.6 V to 5.5 V  
Precision References: 0.2 V, 0.5 V, and 1.2 V  
Fixed threshold of 3.2 V  
Reference accuracy  
0.5% at 25°C  
1% over temperature  
Low quiescent current: 2 µA  
Propagation delay: 360 ns  
Push-pull and open-drain output options  
Known startup conditions  
The factory-trimmed references and precision  
hysteresis combine to make the TLV40x1 appropriate  
for voltage and current monitoring in harsh, noisy  
environments where slow moving input signals must  
be converted into clean digital outputs. Similarly, brief  
glitches on the input are rejected ensuring stable  
output operation without false triggering.  
Non-inverting and inverting input options  
Precision hysteresis  
Temperature range: –40°C to +125°C  
Packages:  
The TLV40x1 are available in multiple configurations  
allowing system designers to achieve their desired  
output response. For example, the TLV4021 and  
0.73 mm × 0.73 mm DSBGA (4-bump)  
SOT-23 (5-pin)  
TLV4041 offer  
a non-inverting input, while the  
TLV4031 and TLV4051 have an inverting input.  
Furthermore, the TLV4021 and TLV4031 feature an  
open-drain output stage, while the TLV4041 and  
TLV4051 feature a push-pull output stage. Lastly,  
each comparator in the TLV40x1 family is available  
with a 0.2V, 0.5V, or 1.2V precision reference.  
2 Applications  
Mobile phones and tablets  
Headsets/headphones & earbuds  
PC & notebooks  
(1)  
Device Information  
Gas detector  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
0.73 mm × 0.73 mm  
2.9 mm × 1.6 mm  
Smoke & heat detector  
Motion detector  
TLV4021, TLV4031,  
TLV4041, TLV4051  
DSBGA (4)  
Gas meter  
TLV4041, TLV4051 SOT-23 (5)  
Servo drive position sensor  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
TLV40x1 Configurations  
Non-Inverting  
Inverting  
Fixed Threshold  
IN  
V+  
V+  
V+  
IN  
IN  
OUT  
OUT  
+
t
+
t
+
t
TLV4021  
TLV4041  
TLV4031  
TLV4051  
TLV4021S5  
1.2V  
REF  
REF  
ë5  
ë5  
ë5  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
 
 
 
 
 
 
TLV4021, TLV4031, TLV4041, TLV4051  
SNVSB04B MARCH 2019REVISED JUNE 2020  
www.ti.com  
Table 1. TLV40x1 Truth Table  
DEVICE  
Input Configuration  
Reference  
Output Type  
Open-Drain  
Push-Pull  
TLV4021R1  
TLV4041R1  
TLV4041R5  
TLV4021R2  
TLV4041R2  
TLV4031R1  
TLV4051R1  
TLV4051R5  
TLV4031R2  
TLV4051R2  
1.2 V  
Non-Inverting  
0.5 v  
Push-Pull  
Open-Drain  
Push-Pull  
0.2 V  
Open-Drain  
Push-Pull  
1.2 V  
0.5 V  
0.2 V  
Inverting  
Push-Pull  
Open-Drain  
Push-Pull  
DEVICE  
Input Configuration  
Fixed Threshold  
Output Type  
TLV4021S5  
Non-Inverting  
3.2 V  
Open-Drain  
VPU  
VPU  
VPU  
VPU  
TLV4041R2  
TLV4041R1  
TLV4021R2  
TLV4021R1  
V+  
V+  
V+  
V+  
+
OUT  
+
t
OUT  
+
t
OUT  
+
t
OUT  
IN  
IN  
IN  
IN  
t
1.2V  
0.2V  
1.2V  
0.2V  
ë5  
ë5  
ë5  
ë5  
VPU  
TLV4051R2  
TLV4051R1  
TLV4031R2  
TLV4031R1  
V+  
V+  
V+  
V+  
t
t
t
t
OUT  
OUT  
OUT  
OUT  
+
+
+
+
IN  
IN  
IN  
IN  
1.2V  
0.2V  
1.2V  
0.2V  
ë5  
ë5  
ë5  
ë5  
TLV4041R5  
TLV4051R5  
TLV4021S5  
V+  
V+  
V+  
IN  
t
+
t
OUT  
OUT  
+
IN  
IN  
+
t
1.2V  
1.2V  
1.2V  
ë5  
ë5  
ë5  
2
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
 
TLV4021, TLV4031, TLV4041, TLV4051  
www.ti.com  
SNVSB04B MARCH 2019REVISED JUNE 2020  
Table of Contents  
7.4 Device Functional Modes........................................ 17  
Application and Implementation ........................ 20  
8.1 Application Information............................................ 20  
8.2 Typical Application .................................................. 22  
8.3 What to Do and What Not to Do ............................ 24  
Power Supply Recommendations...................... 25  
1
2
3
4
5
6
Features.................................................................. 1  
8
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics.......................................... 8  
6.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 16  
7.3 Feature Description................................................. 17  
9
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 25  
11 Device and Documentation Support ................. 26  
11.1 Related Links ........................................................ 26  
11.2 Receiving Notification of Documentation Updates 26  
11.3 Community Resources.......................................... 26  
11.4 Trademarks........................................................... 26  
11.5 Electrostatic Discharge Caution............................ 26  
11.6 Glossary................................................................ 26  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 27  
4 Revision History  
Changes from Revision A (May 2019) to Revision B  
Page  
Added SOT-23 package option with 0.5V reference. ............................................................................................................ 1  
Changed configuration diagram and TLV40x1 Truth Table. ................................................................................................. 1  
Added Configuration diagrams for entire TLV40x1 family...................................................................................................... 2  
Changes from Original (October 2018) to Revision A  
Page  
Changed Product Preview to Production Data ...................................................................................................................... 1  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
 
TLV4021, TLV4031, TLV4041, TLV4051  
SNVSB04B MARCH 2019REVISED JUNE 2020  
www.ti.com  
5 Pin Configuration and Functions  
YKA Package  
4-Bump DSBGA  
Top View  
Top View  
A
B
OUT  
IN  
V+  
V-  
1
2
DSBGA Package Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
OUT  
V+  
NUMBER  
A1  
B1  
B2  
A2  
O
P
P
I
Comparator output: OUT is push-pull on TLV4041/4051 and open-drain on TLV4021/4031  
Positive (highest) power supply  
V–  
Negative (lowest) power supply  
IN  
Comparator input: IN is non-Inverting on TLV4021/4041 and inverting on TLV4031/4051  
SOT-23 Package  
5-pin  
Top View  
Top View  
V+  
V-  
1
2
5
4
OUT  
IN  
NC  
3
SOT-23 Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
V+  
NUMBER  
1
2
P
P
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
No connect; this pin is not internally connected to the die. It can be grounded if that is preferred  
in the system.  
NC  
3
x
IN  
4
5
I
Comparator input: IN is inverting on TLV4051  
Comparator output: OUT is push-pull  
OUT  
O
4
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
www.ti.com  
SNVSB04B MARCH 2019REVISED JUNE 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
V
Supply voltage: VS = (V+) – (V–)  
6
(2)  
Input voltage (IN) from (V–)  
6
V
Input Current (IN)(2)  
±10  
mA  
V
TLV4021, TLV4031  
Output voltage (OUT) from (V-)  
–0.3  
–0.3  
6
(V+) + 0.3  
10  
TLV4041, TLV4051  
V
Output short-circuit duration(3)  
Junction temperature, TJ  
Storage temperature, Tstg  
s
150  
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to (V–). Input signals that can swing more than 0.3 V below (V–) must be current-limited to 10 mA or  
less.  
In addition, IN can be greater than (V+) and OUT as long as it is within the –0.3 V to 6 V range. Input signals that can swing beyond this  
range must be current-limited to 10 mA or less.  
(3) Short-circuit to ground.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
5.5  
UNIT  
Supply voltage: VS = (V+) – (V–)  
Ambient temperature, TA  
1.6  
V
–40  
125  
°C  
6.4 Thermal Information  
TLV40x1  
(1)  
THERMAL METRIC  
YKA (DSBGA)  
4 BUMPS  
SOT-23 (DBV)  
5 PINS  
181.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
205.5  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
1.8  
101.1  
75.3  
0.9  
52.0  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
28.2  
ψJB  
74.7  
N/A  
51.6  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
SNVSB04B MARCH 2019REVISED JUNE 2020  
www.ti.com  
6.5 Electrical Characteristics  
VS = 1.8 V to 5 V, typical values are at TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Postive-going input threshold  
voltage  
VS = 1.8 V and 5 V, TA = 25°C  
1.194  
1.2  
1.206  
VIT+  
VIT-  
VIT+  
VIT-  
Postive-going input threshold  
voltage  
VS = 1.8 V and 5 V, TA = -40to +125℃  
VS = 1.8 V and 5 V, TA = 25°C  
1.188  
1.174  
1.168  
0.197  
0.196  
0.177  
0.176  
1.212  
1.186  
1.192  
0.203  
0.204  
0.183  
0.184  
TLV40x1R1  
V
Negative-going input  
threshold voltage  
1.18  
0.2  
Negative-going input  
threshold voltage  
VS = 1.8 V and 5 V, TA = -40°C to +125°C  
VS = 1.8 V and 5 V, TA = 25°C  
Postive-going input threshold  
voltage  
Postive-going input threshold  
voltage  
VS = 1.8 V and 5 V, TA = -40to +125℃  
VS = 1.8 V and 5 V, TA = 25°C  
TLV40x1R2  
V
Negative-going input  
threshold voltage  
0.18  
Negative-going input  
threshold voltage  
VS = 1.8 V and 5 V, TA = -40°C to +125°C  
Postive-going input threshold  
voltage  
(TLV40x1R5 only)  
VS = 1.8 V and 5 V, TA = 25°C  
0.495  
0.49  
0.5  
0.505  
0.51  
V
V
V
V
VIT+  
Postive-going input threshold  
voltage  
(TLV40x1R5 only)  
VS = 1.8 V and 5 V, TA = -40to +125℃  
VS = 1.8 V and 5 V, TA = 25°C  
TLV40x1R5  
Negative-going input  
threshold voltage  
(TLV40x1R5 only)  
0.4752  
0.4704  
0.48  
0.4848  
0.4896  
VIT-  
Negative-going input  
threshold voltage  
VS = 1.8 V and 5 V, TA = -40°C to +125°C  
(TLV40x1R5 only)  
Postive-going input threshold  
voltage  
VS = 1.8 V and 5 V, TA = 25°C  
3.238  
3.221  
3.184  
3.168  
3.254  
3.2  
3.270  
3.287  
3.216  
3.232  
V
V
V
VIT+  
Postive-going input threshold  
voltage  
VS = 1.8 V and 5 V, TA = -40to +125℃  
VS = 1.8 V and 5 V, TA = 25°C  
TLV4021S5  
Negative-going input  
threshold voltage  
VIT-  
Negative-going input  
threshold voltage  
VS = 1.8 V and 5 V, TA = -40to +125℃  
VS = 1.8 V and 5 V, TA = 25℃  
V
(1)  
(1)  
VHYS  
VHYS  
Input hysteresis voltage  
TLV40x1Ry  
TLV40x1R5  
TLV40x1S5  
20  
20  
54  
mV  
mV  
Input hysteresis voltage  
(TLV40x1R5 only)  
VS = 1.8 V and 5 V, TA = 25℃  
VHYS  
VIN  
Input hysteresis voltage  
Input voltage range  
Input bias current  
VS = 1.8 V and 5 V, TA = 25°C  
TA = -40to +125℃  
Over VIN range  
mV  
V
V–  
5.5  
IBIAS  
10  
pA  
Input bias current  
(TLV4021S5 only)  
IBIAS  
IN = 3.3 V  
1.65  
µA  
mV  
mV  
mV  
mV  
ISINK = 200 µA, OUT asserted low,  
VS = 5 V, TA = –40°C to +125°C  
100  
400  
100  
400  
Voltage output swing  
from (V–)  
VOL  
ISINK = 3 mA, OUT asserted low,  
VS = 5 V, TA = –40°C to +125°C  
ISOURCE = 200 µA, OUT asserted high,  
VS = 5 V, TA = –40°C to +125°C  
Voltage output swing  
from (V+)  
(TLV4041/4051 only)  
VOH  
ISOURCE = 3 mA, OUT asserted high,  
VS = 5 V, TA = –40°C to +125°C  
Open-drain output leakage  
current  
(TLV4021/4031 only)  
VS = 5 V, OUT asserted high  
VPULLUP = (V+), TA = 25°C  
IO-LKG  
20  
pA  
ISC  
ISC  
Short-circuit current  
VS = 5 V, sinking, TA = 25°C  
55  
50  
mA  
mA  
VS = 5 V, sourcing, TA = 25°C  
(TLV4041/4051 only)  
Short-circuit current  
(1) See Section 7.4.3 (Switching Thresholds and Hysteresis) for more details.  
Submit Documentation Feedback  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
6
Copyright © 2019–2020, Texas Instruments Incorporated  
TLV4021, TLV4031, TLV4041, TLV4051  
www.ti.com  
SNVSB04B MARCH 2019REVISED JUNE 2020  
Electrical Characteristics (continued)  
VS = 1.8 V to 5 V, typical values are at TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
3.5  
5
UNIT  
µA  
No load, TA = 25°C, Output Low, VS = 1.8 V  
2
IQ  
Quiescent current  
No load, TA = –40°C to +125°C, Output Low, VS = 1.8 V  
µA  
(2)  
VPOR  
Power-on reset voltage  
1.45  
V
(2) See Section 7.4.1 (Power ON Reset) for more details.  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
SNVSB04B MARCH 2019REVISED JUNE 2020  
www.ti.com  
6.6 Switching Characteristics  
Typical values are at TA = 25°C, VS = 3.3 V, CL = 15 pF; Input overdrive = 100 mV for TLV40x1Ry & 5% for  
TLV4021S5, RP=4.99 kfor open-drain options (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
Midpoint of input to midpoint of output  
Midpoint of input to midpoint of output  
MIN  
TYP  
360  
360  
MAX  
UNIT  
ns  
(1)  
(1)  
tPHL  
tPLH  
Propagation delay, high-to-low  
Propagation delay, low-to-high  
ns  
Propagation delay, high-to-low  
(1)(TLV4021S5 only)  
tPHL  
tPLH  
tR  
Midpoint of input to midpoint of output  
Midpoint of input to midpoint of output  
2
2
µs  
µs  
ns  
Propagation delay, low-to-  
high (1)(TLV4021S5 only)  
Rise time  
(TLV4041/4051 only)  
20% to 80%  
20% to 80%  
10  
tF  
Fall time  
10  
ns  
µs  
(2)  
tON  
Power-up time  
500  
(1) High-to-low and low-to-high refers to the transition at the input.  
(2) During power on cycle, VS must exceed 1.6 V for tON before the output will reflect the condition on the input. Prior to tON elapsing, the  
output is controlled by the POR circuit.  
VIT+  
VHYS  
V5  
IN  
tPHL  
tPLH  
OUT  
Figure 1. Timing Diagram Non-Inverting Input  
8
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
www.ti.com  
SNVSB04B MARCH 2019REVISED JUNE 2020  
6.7 Typical Characteristics  
at TJ = 25°C and VS = 3.3 V (unless otherwise noted)  
21000  
19500  
18000  
16500  
15000  
13500  
12000  
10500  
9000  
7500  
6000  
4500  
3000  
1500  
0
1.2012  
1.2009  
1.2006  
1.2003  
1.2  
VS = 1.8V  
VS = 3.3V  
VS = 5.0V  
1.1997  
1.1994  
1.1991  
1.1988  
1.1985  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
1.198 1.1986 1.1992 1.1998 1.2004 1.201 1.2016  
VIT+ (V)  
TLV40x1R1  
Figure 2. Positive Threshold vs Temperature  
TLV40x1R1  
VS = 5 V  
Figure 3. Positive Threshold Histogram  
1.1811  
1.1808  
1.1805  
1.1802  
1.1799  
1.1796  
1.1793  
1.179  
21000  
VS = 1.8V  
VS = 3.3V  
VS = 5.0V  
19500  
18000  
16500  
15000  
13500  
12000  
10500  
9000  
7500  
6000  
4500  
3000  
1500  
0
1.1787  
1.1784  
1.1781  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
1.1778 1.1784 1.179 1.1796 1.1802 1.1808 1.1814  
VIT- (V)  
TLV40x1R1  
TLV40x1R1  
VS = 5 V  
Figure 4. Negative Threshold vs Temperature  
Figure 5. Negative Threshold Histogram  
20.64  
20.56  
20.48  
20.4  
20000  
VS = 1.8V  
VS = 3.3V  
VS = 5.0V  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
20.32  
20.24  
20.16  
20.08  
20  
19.92  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
17  
18  
19  
20  
VHYST (mV)  
21  
22  
23  
TLV40x1R1  
TLV40x1R1  
Figure 7. Hysteresis Histogram  
VS = 5 V  
Figure 6. Hysteresis vs Temperature  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
SNVSB04B MARCH 2019REVISED JUNE 2020  
www.ti.com  
Typical Characteristics (continued)  
at TJ = 25°C and VS = 3.3 V (unless otherwise noted)  
0.2004  
30000  
27000  
24000  
21000  
18000  
15000  
12000  
9000  
6000  
3000  
0
VS = 1.8V  
VS = 3.3V  
VS = 5.0V  
0.20025  
0.2001  
0.19995  
0.1998  
0.19965  
0.1995  
0.19935  
0.1992  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
0.198 0.1986 0.1992 0.1998 0.2004 0.201 0.2016  
VIT+ (V)  
TLV40x1R2  
Figure 8. Positive Threshold vs Temperature  
TLV40x1R2  
VS = 5 V  
Figure 9. Positive Threshold Histogram  
0.18016  
0.18008  
0.18  
30000  
27000  
24000  
21000  
18000  
15000  
12000  
9000  
6000  
3000  
0
VS = 1.8V  
VS = 3.3V  
VS = 5.0V  
0.17992  
0.17984  
0.17976  
0.17968  
0.1796  
0.17952  
0.17944  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
0.1776  
0.1784  
0.1792  
0.18  
VIT- (V)  
0.1808  
0.1816  
TLV40x1R2  
TLV40x1R2  
VS = 5 V  
Figure 10. Negative Threshold vs Temperature  
Figure 11. Negative Threshold Histogram  
20.22  
20.2  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VS = 1.8V  
VS = 3.3V  
VS = 5.0V  
20.18  
20.16  
20.14  
20.12  
20.1  
20.08  
20.06  
20.04  
20.02  
20  
0
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
17  
18  
19  
20  
VHYST (mV)  
21  
22  
23  
TLV40x1R2  
Figure 12. Hysteresis vs Temperature  
TLV40x1R2  
Figure 13. Hysteresis Histogram  
VS = 5 V  
10  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
www.ti.com  
SNVSB04B MARCH 2019REVISED JUNE 2020  
Typical Characteristics (continued)  
at TJ = 25°C and VS = 3.3 V (unless otherwise noted)  
3.2545  
25000  
22500  
20000  
17500  
15000  
12500  
10000  
7500  
5000  
2500  
0
3.254  
3.2535  
3.253  
3.2525  
3.252  
3.2515  
3.251  
3.2505  
3.25  
3.2495  
VS = 1.8V  
VS = 3.3V  
VS = 5.0V  
3.249  
3.2485  
3.248  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
3.2475  
3.2505  
3.2535  
VIT+ (V)  
3.2565  
3.2595  
TLV4021S5  
TLV4021S5  
Figure 14. Positive Threshold vs Temperature  
Figure 15. Positive Threshold Histogram  
3.2015  
3.201  
3.2005  
3.2  
25000  
22500  
20000  
17500  
15000  
12500  
10000  
7500  
5000  
2500  
0
3.1995  
3.199  
3.1985  
3.198  
3.1975  
3.197  
3.1965  
3.196  
3.1955  
3.195  
3.1945  
VS = 1.8V  
VS = 3.3V  
VS = 5.0V  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
3.196  
3.1975  
3.199  
3.2005  
VIT- (V)  
3.202  
3.2035  
3.205  
TLV4021S5  
TLV4021S5  
Figure 16. Negative Threshold vs Temperature  
Figure 17. Negative Threshold Histogram  
53.8  
53.6  
53.4  
53.2  
53  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
52.8  
52.6  
52.4  
-40°C  
25°C  
85°C  
125°C  
1.5  
2
2.5  
3
3.5  
VS (V)  
4
4.5  
5
5.5  
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62  
Hysteresis (mV)  
TLV4021S5  
TLV4021S5  
Figure 19. Hysteresis Histogram  
Figure 18. Hysteresis vs Supply Voltage  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
SNVSB04B MARCH 2019REVISED JUNE 2020  
www.ti.com  
Typical Characteristics (continued)  
at TJ = 25°C and VS = 3.3 V (unless otherwise noted)  
5000  
5000  
1000  
VS = 1.8V  
VS = 3.3V  
VS = 5V  
1000  
100  
10  
100  
10  
1
0.1  
1
-40°C  
25°C  
85°C  
125°C  
0.1  
0.01  
0.001  
0.01  
0.001  
0.1  
0.2 0.3  
0.5 0.7 1  
VIN (V)  
2
3
4
5 6 7 8 10  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
VS = 1.8V to 5V  
TLV40x1Ry  
Figure 20. Bias Current vs Common Mode Voltage  
Figure 21. Output Current Leakage vs Temperature  
2
2
1
1
0.7  
0.5  
0.5  
0.3  
0.2  
0.3  
0.2  
0.1  
0.1  
0.07  
0.05  
0.05  
0.03  
0.02  
-40°C  
0°C  
25°C  
125°C  
-40°C  
0°C  
25°C  
125°C  
0.03  
0.02  
0.01  
0.005  
0.01  
0.1 0.2 0.3 0.5  
1
Output Sinking Current (mA)  
2
3 4 567 10  
20 30 50 70100  
0.1 0.2 0.3 0.5  
1
Output Sourcing Current (mA)  
2
3 4 567 10  
20 30 50 70100  
VS = 1.8V  
VS = 1.8V  
Figure 22. Output Voltage vs Output Sinking Current  
Figure 23. Output Voltage vs Output Sourcing Current  
5
5
3
2
3
2
1
1
0.5  
0.5  
0.3  
0.2  
0.3  
0.2  
0.1  
0.1  
0.05  
0.05  
0.03  
0.02  
0.03  
-40°C  
0°C  
25°C  
125°C  
-40°C  
0.02  
0.01  
0.005  
0°C  
25°C  
125°C  
0.01  
0.005  
0.1 0.2 0.3 0.5  
1
Output Sinking Current (mA)  
2
3 4 567 10  
20 30 50 70100  
0.1 0.2 0.3 0.5  
1
Output Sourcing Current (mA)  
2
3 4 567 10  
20 30 50 70100  
VS = 3.3V  
VS = 3.3V  
Figure 24. Output Voltage vs Output Sinking Current  
Figure 25. Output Voltage vs Output Sourcing Current  
12  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
www.ti.com  
SNVSB04B MARCH 2019REVISED JUNE 2020  
Typical Characteristics (continued)  
at TJ = 25°C and VS = 3.3 V (unless otherwise noted)  
10  
10  
5
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
-40°C  
0°C  
25°C  
125°C  
-40°C  
0°C  
25°C  
125°C  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.1 0.2 0.3 0.5  
1
Output Sinking Current (mA)  
2
3 4 567 10  
20 30 50 70100  
0.1 0.2 0.3 0.5  
1
Output Sourcing Current (mA)  
2
3 4 567 10  
20 30 50 70100  
VS = 5V  
Figure 26. Output Voltage vs Output Sinking Current  
VS = 5V  
Figure 27. Output Voltage vs Output Sourcing Current  
3.2  
1500  
-40°C  
25°C  
85°C  
125°C  
1400  
1300  
1200  
1100  
1000  
900  
3
2.8  
2.6  
2.4  
2.2  
2
800  
700  
600  
500  
1.8  
1.6  
1.4  
VS = 1.8V  
VS = 3.3V  
VS = 5V  
400  
300  
200  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
0
20 40 60 80 100 120 140 160 180 200 220  
VOD (mV)  
VS = 1.8V to 5V  
TLV40x1R2  
Figure 28. Supply Current vs Temperature  
Figure 29. Propagation Delay Low-High vs Input Overdrive  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
6
-40°C  
-40°C  
25°C  
85°C  
125°C  
5.5  
25°C  
85°C  
125°C  
5
4.5  
4
3.5  
3
2.5  
2
600  
1.5  
1
400  
200  
0
20 40 60 80 100 120 140 160 180 200 220  
VOD (mV)  
0
1
2
3
4
5 6  
VOD (%)  
7
8
9
10 11  
VS = 1.8V to 5V  
TLV40x1R2  
VS = 1.8V to 5V  
TLV4021S5  
Figure 30. Propagation Delay High-Low vs Input Overdrive  
Figure 31. Propagation Delay Low-High vs Input Overdrive  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
SNVSB04B MARCH 2019REVISED JUNE 2020  
www.ti.com  
Typical Characteristics (continued)  
at TJ = 25°C and VS = 3.3 V (unless otherwise noted)  
7.5  
-40°C  
25°C  
85°C  
125°C  
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0
1
2
3
4
5 6  
VOD (%)  
7
8
9
10 11  
VS = 1.8V to 5V  
Figure 32. Propagation Delay High-Low vs Input Overdrive  
TLV4021S5  
14  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
www.ti.com  
SNVSB04B MARCH 2019REVISED JUNE 2020  
7 Detailed Description  
7.1 Overview  
The TLV40x1 devices are low-power comparators that are well suited for compact, low-current, precision voltage  
detection applications. With high-accuracy, switching thresholds options of 0.2V, 0.5 V, 1.2V, and 3.2V, 2uA of  
quiescent current, and propagation delay of 450ns and 2us, the TLV40x1 comparator family enables power  
conscious systems to monitor and respond quickly to fault conditions.  
The TLV40x1Ry comparators assert the output signal as shown in Table 2. VIT+ represents the positive-going  
input threshold that causes the comparator output to change state, while VIT- represents the negative-going input  
threshold that causes the output to change state. Since VIT+ and VIT- are factory trimmed and warranted over  
temperature, the TLV40x1 is equally suited for undervoltage and overvoltage applications. In order to monitor  
any voltage above the internal reference voltage, an external resistor divider network is required.  
The TLV4021S5 functions similar to the TLV40x1Ry comparators except the resistor divider is internal to the  
device. Having the resistor divider internal to the device allows the TLV4021S5 to have switching thresholds  
higher than the internal reference voltage of 1.2V without any external components.  
Table 2. TLV40x1 Truth Table  
OUTPUT  
DEVICE  
(VIT+, VIT-  
)
TOPOLOGY  
INPUT VOLTAGE  
IN > VIT+  
OUTPUT LOGIC LEVEL  
Output high impedance  
Output asserted low  
TLV4021R2  
TLV4021R1  
0.2V, 0.18V  
1.2V, 1.18V  
Open-Drain  
IN < VIT-  
TLV4041R2  
TLV4041R5  
TLV4041R1  
0.2V, 0.18V  
0.5V, 0.48V  
1.2V, 1.18V  
IN > VIT+  
Output asserted high  
Push-Pull  
Open-Drain  
Push-Pull  
IN < VIT-  
Output asserted low  
IN > VIT+  
IN < VIT-  
IN > VIT+  
Output asserted low  
Output high impedance  
Output asserted low  
TLV4031R2  
TLV4031R1  
0.2V, 0.18V  
1.2V, 1.18V  
TLV4051R2  
TLV4051R5  
TLV4051R1  
0.2V, 0.18V  
0.5V, 0.48V  
1.2V, 1.18V  
IN < VIT-  
Output asserted high  
IN > VIT+  
IN < VIT-  
Output high impedance  
Output asserted low  
TLV4021S5  
3.254V, 3.2V  
Open-Drain  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
 
TLV4021, TLV4031, TLV4041, TLV4051  
SNVSB04B MARCH 2019REVISED JUNE 2020  
www.ti.com  
7.2 Functional Block Diagram  
VPU  
VPU  
TLV4041R2  
TLV4041R1  
TLV4021R2  
TLV4021R1  
V+  
V+  
V+  
V+  
+
t
OUT  
+
t
OUT  
+
t
OUT  
+
t
OUT  
IN  
IN  
IN  
IN  
1.2V  
0.2V  
1.2V  
0.2V  
ë5  
ë5  
ë5  
ë5  
VPU  
VPU  
TLV4051R2  
TLV4051R1  
TLV4031R2  
TLV4031R1  
V+  
V+  
V+  
V+  
t
t
t
t
OUT  
OUT  
OUT  
OUT  
+
+
+
+
IN  
IN  
IN  
IN  
1.2V  
0.2V  
1.2V  
0.2V  
ë5  
ë5  
ë5  
ë5  
VPU  
TLV4041R5  
TLV4051R5  
TLV4021S5  
V+  
V+  
V+  
IN  
t
+
t
OUT  
OUT  
+
IN  
IN  
+
t
1.2V  
1.2V  
1.2V  
ë5  
ë5  
ë5  
16  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
www.ti.com  
SNVSB04B MARCH 2019REVISED JUNE 2020  
7.3 Feature Description  
The TLV40x1 is a family of 4-pin, precision, low-power comparators with precision switching thresholds. The  
TLV40x1 comparators feature a rail-to-rail input stage with factory programmed switching thresholds for both  
rising and falling input waveforms. The comparator family also supports open-drain and push-pull output  
configurations as well as non-inverting and inverting inputs.  
7.4 Device Functional Modes  
7.4.1 Power ON Reset (POR)  
The TLV40x1 comparators have a Power-on-Reset (POR) circuit which provides system designers a known  
start-up condition for the output of the comparators. When the power supply (VS) is ramping up or ramping down,  
the POR circuit will be active when VS is below VPOR. For the TLV4021 and TLV4031, the POR circuit will force  
the output to High-Z, and for the TLV4041 and TLV4051, the POR circuit will hold the output low at (V-). When  
VS is greater than, or equal to, the minimum recommended operating voltage, the comparator output reflects the  
state of the input (IN).  
The following pictures represent how the TLV40x1 outputs respond for VS rising and falling. For the comparators  
with open-drain outputs (TLV4021/4031), IN is connected to (V-) to highlight the transition from POR circuit  
control to standard comparator operation where the output reflects the input condition. Note how the output goes  
low when VS reaches 1.45V. Likewise, for the comparators with push-pull outputs (TLV4041/4051), the input is  
connected to (V+). Note how the output goes high when VS reaches 1.45V.  
5
4.5  
4
5
4.5  
4
VS  
VOUT  
VS  
VOUT  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-0.5  
-0.3 -0.2 -0.1  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
Time (s)  
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05  
Time (s)  
Figure 33. TLV4021/4031 Output for VS Rising  
5.5  
Figure 34. TLV4021/4031 Output for VS Falling  
5.5  
VS  
VOUT  
5
4.5  
5
4.5  
4
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
VS  
VOUT  
0
-0.5  
-0.5  
-0.5 -0.4 -0.3 -0.2 -0.1  
0
Time (s)  
0.1 0.2 0.3 0.4 0.5  
-0.05  
-0.03  
-0.01  
0.01  
Time (s)  
0.03  
0.05  
Figure 35. TLV4041/4051 Output for VS Rising  
7.4.2 Input (IN)  
Figure 36. TLV4041/4051 Output for VS Falling  
The TLV40x1 comparators have two inputs: one external input (IN) and one internal input that is connected to  
the integrated voltage reference. The comparator rising threshold is trimmed to the reference voltage (VIT+) while  
the falling threshold is trimmed to (VIT-). Since the rising and falling thresholds are both trimmed and warranted in  
the Electrical Characteristics Table, the TLV40x1 is equally suited for undervoltage and overvoltage detection.  
The difference between (VIT+) and (VIT-) is referred to as the comparator hysteresis and is 20 mV for TLV40x1Ry  
and 54 mV for TLV4021S5. The integrated hysteresis makes the TLV40x1 less sensitive to supply-rail noise and  
provides stable operation in noisy environments without having to add external positive feedback to create  
hysteresis.  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
SNVSB04B MARCH 2019REVISED JUNE 2020  
www.ti.com  
Device Functional Modes (continued)  
The comparator input (IN) is able to swing 5.5 V above (V-) regardless of the device supply voltage. This  
includes the instance when no supply voltage is applied to the comparator (VS = 0 V). As a result, the TLV40x1 is  
referred to as fault tolerant, meaning it maintains the same high input impedance when VS is unpowered or  
ramping up. While not required in most cases, in order to reduce sensitivity to transients and layout parasitics for  
extremely noisy applications, place a 1 nF to 100 nF bypass capacitor at the comparator input.  
For the TLV40x1Ry comparators, the input bias current is typically 10 pA for input voltages between (V-) and  
(V+) and the value typically doubles for every 10°C temperature increase. The comparator input is protected from  
voltages below (V-) by an internal diode connected to (V-). As the input voltage goes below (V-), the protection  
diode becomes forward biased and begins to conduct causing the input bias current to increase exponentially. A  
series resistor is recommended to limit the input current when sources have signal content that is less than (V-).  
For the TLV4021S5, the input bias current is limited by the internal resistor divider with typical impedance of 2M  
ohms.  
7.4.3 Switching Thresholds and Hysteresis (VHYS  
)
The TLV40x1 transfer curve is shown in Figure 37.  
VIT+ represents the positive-going input threshold that causes the comparator output to change from a logic  
low state to a logic high state.  
VIT- represents the negative-going input threshold that causes the comparator output to change from a logic  
high state to a logic low state.  
VHYS represents the difference between VIT+ and VIT- and is 20 mV for TLV40x1Ry and 54 mV for  
TLV4021S5.  
VHYS = (VIT+) œ (VIT-  
)
VIT-  
VIT+  
Figure 37. Transfer Curve  
VIT+ and VIT- have mV's of variation over temperature. The significant portion of the variation of these parameters  
is a result of the internal bandgap voltage from which VIT+ and VIT- are derived. The following hysteresis  
histograms demonstrate the performance of the TLV40x1 hysteresis circuitry. Since the bandgap reference is  
used to set VIT+ and VIT-, each of these parameters have a tendency to error (track) in the same direction. For  
example, if VIT+ has a positive 0.5% error, VIT- would have a tendency to have a similar positive percentage error.  
As a result, the variation of hysteresis will never be equal to the difference of the highest VIT+ value of its range  
and the lowest VIT- value of its range.  
18  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
 
TLV4021, TLV4031, TLV4041, TLV4051  
www.ti.com  
SNVSB04B MARCH 2019REVISED JUNE 2020  
Device Functional Modes (continued)  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
20000  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
0
17  
18  
19  
20  
VHYST (mV)  
21  
22  
23  
17  
18  
19  
20  
VHYST (mV)  
21  
22  
23  
Figure 38. VHYST Histogram (TLV40x1R2, VS=5V)  
18000  
Figure 39. VHYST Histogram (TLV40x1R1, VS=5V)  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62  
Hysteresis (mV)  
Figure 40. VHYST Histogram (TLV40x1S5, VS=5V)  
7.4.4 Output (OUT)  
The TLV4041 and TLV4051 feature a push-pull output stage which eliminates the need for an external pull-up  
resistor while providing a low impedance output driver. Likewise, the TLV4021 and TLV4031 feature an open-  
drain output stage which enables the output logic levels to be pulled-up to an external source as high as 5.5 V  
independent of the supply voltage.  
In a typical TLV40x1 application, OUT is connected to an enable input of a processor or a voltage regulator such  
as a dc-dc converter or low-dropout regulator (LDO). The open-drain output versions (TLV4021/4031) are used if  
the power supply of the comparator is different than the supply voltage of the device being controlled. In this  
usage case, a pull-up resistor holds OUT high when the comparator output goes high impedance. The correct  
interface-voltage level is provided (also known as level-shifting) by connecting the pull-up resistor on OUT to the  
appropriate voltage rail. The TLV4021/4031 output can be pulled up to 5.5 V, independent of the device supply  
voltage (VS). However, if level-shifting is not required, the push-pull output versions (TLV4041/4051) should be  
utilized in order to eliminate the need for the pull-up resistor.  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
SNVSB04B MARCH 2019REVISED JUNE 2020  
www.ti.com  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV40x1 is a 4-pin, low-power comparator with a precision, integrated reference. The comparators in this  
family are well suited for monitoring voltages and currents in portable, battery powered devices.  
8.1.1 Monitoring (V+)  
Many applications monitor the same rail that is powering the comparator. In these applications the resistor divider  
is simply connected to the (V+) rail.  
Supply  
V+  
IN  
OUT  
ë5  
Figure 41. Supply Monitoring  
20  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
www.ti.com  
SNVSB04B MARCH 2019REVISED JUNE 2020  
Application Information (continued)  
8.1.2 Monitoring a Voltage Other than (V+)  
Some applications monitor rails other than the one that is powering the comparator. In these applications the  
resistor divider used to set the desired threshold is connected to the rail that is being monitored.  
VMON  
Supply  
V+  
TLV40x1  
IN  
OUT  
REF  
ë5  
Figure 42. Monitoring a Voltage Other than the Supply  
The TLV40x1Ry can monitor a voltage greater than the maximum (V+) with the use of an external resistor divider  
network. Likewise, the TLV40x1 can monitor voltages as low as the internal reference voltage (0.2 V, 0.5 V, or  
1.2 V). The TLV40x1Ry also has the advantage of being able to monitor high impedance sources since the input  
bias current of the input (IN) is low. This provides an advantage over voltage supervisors that can only monitor  
the voltage rail that is powering them. Supervisors configured in this fashion have limitations in source  
impedance and minimum sensing voltage.  
8.1.3 VPULLUP to a Voltage Other than (V+)  
For applications where the output of the comparator needs to interface with a reset/enable pin that operates from  
a different supply voltage, the open-drain comparators (TLV4021/4031) should be selected. In these usage  
cases, the output can be pulled up to any voltage that is lower than 5.5V (independent of (V+)). This technique is  
commonly referred to as "level-shifting."  
VMON  
Supply  
VPULLUP  
(up to 5.5V)  
RPULLUP  
V+  
IN  
OUT  
ë5  
Figure 43. Level-Shifting  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
SNVSB04B MARCH 2019REVISED JUNE 2020  
www.ti.com  
8.2 Typical Application  
8.2.1 Under-Voltage Detection  
Under-voltage detection is frequently required in battery-powered, portable electronics to alert the system that a  
battery voltage has dropped below the usable voltage level. Figure 44 shows a simple under-voltage detection  
circuit using the TLV4041R1 which is a non-inverting comparator with an integrated 1.2 V reference and a push-  
pull output stage. The non-inverting TLV4041 option was selected in this example since the micro-controller  
required an active low signal when an undervoltage level occurs. However, if an active high signal was required,  
the TLV4051 option with an inverting input stage would be utilized.  
VBAT  
3.3V  
R1  
V+  
V+  
TLV4041R1  
+
t
ALERT  
IN  
OUT  
1.2V  
Micro-  
controller  
R2  
ë5  
Figure 44. Under-Voltage Detection  
8.2.1.1 Design Requirements  
For this design, follow these design requirements:  
Operate from 3.3 V power supply that powers the microcontroller.  
Under-voltage alert is active low.  
Logic low output when VBAT is less than 2.0V.  
8.2.1.2 Detailed Design Procedure  
Configure the circuit as shown in Figure 44. Connect (V+) to 3.3 V which also powers the micro-controller.  
Resistors R1 and R2 create the under-voltage alert level of 2.0 V. When the battery voltage sags down to 2.0 V,  
the resistor divider voltage crosses the (VIT-) threshold of the TLV4041R1. This causes the comparator output to  
transition from a logic high to a logic low. The push-pull option of the TLV40x1 family is selected since the  
comparator operating voltage is shared with the microcontroller which is receiving the under-voltage alert signal.  
The TLV4041 option with the 1.2 V internal reference is selected because it is the closest internal reference  
option that is less than the critical under-voltage level of 2.0 V. Choosing the internal reference option that is  
closest to the critical under-voltage level minimizes the resistor divider ratio which optimizes the accuracy of the  
circuit. Error at the falling edge threshold of (VIT-) is amplified by the inverse of the resistor divider ratio. So  
minimizing the resistor divider ratio is a way of optimizing voltage monitoring accuracy.  
Equation 1 is derived from the analysis of Figure 44.  
(1)  
where  
R1 and R2 are the resistor values for the resistor divider connected to IN  
VBAT is the voltage source that is being monitored for an undervoltage condition.  
VIT- is the falling edge threshold where the comparator output changes state from high to low  
Rearranging Equation 1 and solving for R1 yields Equation 2.  
22  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
 
 
TLV4021, TLV4031, TLV4041, TLV4051  
www.ti.com  
SNVSB04B MARCH 2019REVISED JUNE 2020  
Typical Application (continued)  
(2)  
For the specific undervoltage detection of 2.0 V using the TLV4041R1, the following results are calculated.  
(3)  
where  
R2 is set to 1 MΩ  
VBAT is set to 2.0 V  
VIT- is set to1.18 V  
Choose RTOTAL (R1 + R2) such that the current through the divider is at least 100 times higher than the input bias  
current (IBIAS). The resistors can have high values to minimize current consumption in the circuit without adding  
significant error to the resistive divider.  
8.2.1.3 Application Curve  
2.03V  
2V  
IN  
3.3V  
OUT  
0V  
Normal Operating  
Voltage  
Under-Voltage  
Alert  
Normal Operating  
Voltage  
Figure 45. Under-Voltage Detection  
8.2.2 Additional Application Information  
8.2.2.1 Pull-up Resistor Selection  
For the TLV4021 (open-drain output versions of the TLV40x1 family), care should be taken in selecting the pull-  
up resistor (RPU) value to ensure proper output voltage levels. First, consider the required output high logic level  
requirement of the logic device that is being driven by the comparator when calculating the maximum RPU value.  
When in a logic high output state, the output impedance of the comparator is very high but there is a finite  
amount of leakage current that needs to be accounted for. Use IO-LKG from the EC Table and the VIH minimum  
from the logic device being driven to determine RPU maximum using Equation 4.  
(4)  
Next, determine the minimum value for RPU by using the VIL maximum from the logic device being driven. In  
order for the comparator output to be recognized as a logic low, VIL maximum is used to determine the upper  
boundary of the comparator's VOL. VOL maximum for the comparator is available in the EC Table for specific sink  
current levels and can also be found from the VOUT versus ISINK curve in the Typical Application curves. A good  
design practice is to choose a value for VOL maximum that is 1/2 the value of VIL maximum for the input logic  
device. The corresponding sink current and VOL maximum value will be needed to calculate the minimum RPU  
.
This method will ensure enough noise margin for the logic low level. With VOL maximum determined and the  
corresponding ISINK obtained, the minimum RPU value is calculated with Equation 5.  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
 
TLV4021, TLV4031, TLV4041, TLV4051  
SNVSB04B MARCH 2019REVISED JUNE 2020  
www.ti.com  
Typical Application (continued)  
(5)  
Since the range of possible RPU values is large, a value between 5 kΩ and 100 kΩ is generally recommended. A  
smaller RPU value provides faster output transition time and better noise immunity, while a larger RPU value  
consumes less power when in a logic low output state.  
8.2.2.2 Input Supply Capacitor  
Although an input capacitor is not required for stability, for good analog design practice, connect a 100 nF low  
equivalent series resistance (ESR) capacitor from (V+) to (V-).  
8.2.2.3 Sense Capacitor  
Although not required in most cases, for extremely noisy applications, place a 1 nF to 100 nF bypass capacitor  
from the comparator input (IN) to the (V-) for good analog design practice. This capacitor placement reduces  
device sensitivity to transients.  
8.3 What to Do and What Not to Do  
Do connect a 100 nF decoupling capacitor from (V+) to (V-) for best system performance.  
If the monitored voltage is noisy, do connect a decoupling capacitor from the comparator input (IN) to (V-).  
Don't use resistors for the voltage divider that cause the current through them to be less than 100 times the input  
current of the comparator without also accounting for the impact on accuracy.  
Don't use a pull-up resistor that is too small because the larger current sunk by the output may exceed the  
desired low-level output voltage (VOL).  
24  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
www.ti.com  
SNVSB04B MARCH 2019REVISED JUNE 2020  
9 Power Supply Recommendations  
These devices operate from an input voltage supply range between 1.7 V and 5.5 V.  
10 Layout  
10.1 Layout Guidelines  
A power supply bypass capacitor of 100 nF is recommended when supply output impedance is high, supply  
traces are long, or when excessive noise is expected on the supply lines. Bypass capacitors are also  
recommended when the comparator output drives a long trace or is required to drive a capacitive load. Due to  
the fast rising and falling edge rates and high-output sink and source capability of the TLV40x1 output stage,  
higher than normal quiescent current can be drawn from the power supply when the output transitions. Under this  
circumstance, the system would benefit from a bypass capacitor across the supply pins.  
10.2 Layout Example  
VBAT  
OUT  
V+  
IN  
V-  
C1 (0402)  
Figure 46. Layout Example  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
SNVSB04B MARCH 2019REVISED JUNE 2020  
www.ti.com  
11 Device and Documentation Support  
11.1 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
Table 3. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TLV4021  
TLV4031  
TLV4041  
TLV4051  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 Community Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
E2E is a trademark of Texas Instruments.  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
26  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
TLV4021, TLV4031, TLV4041, TLV4051  
www.ti.com  
SNVSB04B MARCH 2019REVISED JUNE 2020  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: TLV4021 TLV4031 TLV4041 TLV4051  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Aug-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
DBV  
YKA  
YKA  
DBV  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV4021R1YKAR  
TLV4021R2YKAR  
TLV4021S5YKAR  
TLV4031R1YKAR  
TLV4031R2YKAR  
TLV4041R1YKAR  
TLV4041R2YKAR  
TLV4041R5DBVR  
TLV4051R1YKAR  
TLV4051R2YKAR  
TLV4051R5DBVR  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
SOT-23  
DSBGA  
DSBGA  
SOT-23  
4
4
4
4
4
4
4
5
4
4
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Z
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SAC396 | SNAGCU  
SNAGCU  
6
Green (RoHS  
& no Sb/Br)  
O
Green (RoHS  
& no Sb/Br)  
1
Green (RoHS  
& no Sb/Br)  
SNAGCU  
7
Green (RoHS  
& no Sb/Br)  
SNAGCU  
2
Green (RoHS  
& no Sb/Br)  
SNAGCU  
8
Green (RoHS  
& no Sb/Br)  
NIPDAU  
23XT  
C
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
9
Green (RoHS  
& no Sb/Br)  
NIPDAU  
23ZT  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Aug-2020  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Aug-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV4021R1YKAR  
TLV4021R2YKAR  
TLV4021S5YKAR  
TLV4031R1YKAR  
TLV4031R2YKAR  
TLV4041R1YKAR  
TLV4041R2YKAR  
TLV4041R5DBVR  
TLV4051R1YKAR  
TLV4051R2YKAR  
TLV4051R5DBVR  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
SOT-23  
DSBGA  
DSBGA  
SOT-23  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
DBV  
YKA  
YKA  
DBV  
4
4
4
4
4
4
4
5
4
4
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
178.0  
180.0  
180.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
9.0  
8.4  
8.4  
9.0  
0.84  
0.84  
0.84  
0.84  
0.84  
0.84  
0.84  
2.4  
0.84  
0.84  
0.84  
0.84  
0.84  
0.84  
0.84  
2.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1.2  
0.5  
0.5  
1.2  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q3  
Q1  
Q1  
Q3  
0.84  
0.84  
2.4  
0.84  
0.84  
2.5  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Aug-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV4021R1YKAR  
TLV4021R2YKAR  
TLV4021S5YKAR  
TLV4031R1YKAR  
TLV4031R2YKAR  
TLV4041R1YKAR  
TLV4041R2YKAR  
TLV4041R5DBVR  
TLV4051R1YKAR  
TLV4051R2YKAR  
TLV4051R5DBVR  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
SOT-23  
DSBGA  
DSBGA  
SOT-23  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
DBV  
YKA  
YKA  
DBV  
4
4
4
4
4
4
4
5
4
4
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
180.0  
182.0  
182.0  
180.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
180.0  
182.0  
182.0  
180.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
18.0  
20.0  
20.0  
18.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YKA0004  
DSBGA - 0.4 mm max height  
SCALE 14.000  
DIE SIZE BALL GRID ARRAY  
A
D
B
E
BALL A1  
CORNER  
0.4 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.13  
BALL TYP  
0.35 TYP  
B
A
SYMM  
0.35  
TYP  
D: Max = 0.76 mm, Min = 0.7 mm  
E: Max = 0.76 mm, Min = 0.7 mm  
1
2
0.25  
0.15  
C A B  
4X  
0.015  
SYMM  
4221909/B 08/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YKA0004  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
4X ( 0.2)  
(0.35) TYP  
2
1
A
B
SYMM  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:60X  
(
0.2)  
0.0325 MIN  
0.0325 MAX  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
(
0.2)  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221909/B 08/2018  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YKA0004  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
4X ( 0.21)  
(R0.05) TYP  
2
1
A
B
SYMM  
(0.35)  
TYP  
METAL  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm - 0.1 mm THICK STENCIL  
SCALE:60X  
4221909/B 08/2018  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
2X 0.95  
1.9  
3.05  
2.75  
1.9  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/E 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/E 09/2019  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/E 09/2019  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

TLV4041R2YKAR 相关器件

型号 制造商 描述 价格 文档
TLV4041R5 TI TLV40x1 Small-Size, Low-Power Comparator with Precision Reference 获取价格
TLV4041R5DBVR TI TLV40x1 Small-Size, Low-Power Comparator with Precision Reference 获取价格
TLV4041R5YKAR TI 具有基准电压的低功耗比较器(同相、推挽) | YKA | 4 | -40 to 125 获取价格
TLV4051 TI 具有基准电压的低功耗比较器(反相、推挽) 获取价格
TLV4051R1YKAR TI 具有基准电压的低功耗比较器(反相、推挽) | YKA | 4 | -40 to 125 获取价格
TLV4051R2YKAR TI TLV40x1 Small-Size, Low-Power Comparator with Precision Reference 获取价格
TLV4051R5 TI TLV40x1 Small-Size, Low-Power Comparator with Precision Reference 获取价格
TLV4051R5DBVR TI TLV40x1 Small-Size, Low-Power Comparator with Precision Reference 获取价格
TLV4062 TI 具有集成基准的双路比较器(推挽式) 获取价格
TLV4062-Q1 TI TLV4062-Q1, TLV4082-Q1 Dual, Low-Power Comparator with Integrated Reference 获取价格

TLV4041R2YKAR 相关文章

  • HARTING(浩亭)圆形连接器产品选型手册
    2024-10-31
    6
  • HYCON(宏康科技)产品选型手册
    2024-10-31
    6
  • GREEGOO整流二极管和晶闸管产品选型手册
    2024-10-31
    7
  • 西门子豪掷106亿美元,战略收购工程软件巨头Altair
    2024-10-31
    8