TLV431B-Q1 [TI]

汽车类低电压可调节精密并联稳压器;
TLV431B-Q1
型号: TLV431B-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类低电压可调节精密并联稳压器

电源电路 参考电压源 稳压器
文件: 总21页 (文件大小:489K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢈ ꢅ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢊ ꢇꢈ ꢅ  
ꢀꢆ  
SLVS905 − DECEMBER 2008  
D
D
D
D
Qualified for Automotive Applications  
Low-Voltage Operation: V = 1.24 V  
D
D
D
Low Operational Cathode Current :80 µA Typ  
0.25-Typical Output Impedance  
See TLVH431 and TLVH432 for  
REF  
Adjustable Output Voltage, V = V  
to 6 V  
O
REF  
− Wider V  
(1.24 V to 18 V) and I (80 mA)  
KA  
K
Reference Voltage Tolerances at 255C  
− Additional SOT-89 Package  
− Multiple Pinouts for SOT-23-3 and SOT-89  
Packages  
− 0.5% for TLV431B  
− 1% for TLV431A  
D
Typical Temperature Drift: 11 mV  
DBV (SOT-23-5) PACKAGE  
(TOP VIEW)  
DBZ (SOT-23-3) PACKAGE  
(TOP VIEW)  
1
1
2
3
5
4
REF  
NC  
*
CATHODE  
ANODE  
REF  
3
ANODE  
2
CATHODE  
NC − No internal connection  
* For TLV431A: NC − No internal connection  
* For TLV431B: Pin 2 is attached to Substrate and must  
be connected to ANODE or left open.  
description/ordering information  
The TLV431 is a low-voltage 3-terminal adjustable voltage reference with specified thermal stability over  
applicable industrial and commercial temperature ranges. Output voltage can be set to any value between V  
REF  
(1.24 V) and 6 V with two external resistors (see Figure 2). These devices operate from a lower voltage (1.24 V)  
than the widely used TL431 and TL1431 shunt-regulator references.  
When used with an optocoupler, the TLV431 is an ideal voltage reference in isolated feedback circuits for 3-V  
to 3.3-V switching-mode power supplies. These devices have a typical output impedance of 0.25 . Active  
output circuitry provides a very sharp turn-on characteristic, making them excellent replacements for  
low-voltage Zener diodes in many applications, including on-board regulation and adjustable power supplies.  
ORDERING INFORMATION  
255C V  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
REF  
PACKAGE  
T
J
TOLERANCE  
SOT-23-5 (DBV)  
SOT-23-3 (DBZ)  
SOT-23-5 (DBV)  
Reel of 3000  
Reel of 3000  
Reel of 3000  
TLV431BQDBVRQ1 VOMQ  
TLV431BQDBZRQ1 VOQQ  
TLV431AQDBVRQ1 VONQ  
0.5%  
1%  
40°C to 125°C  
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see  
the TI web site at http://www.ti.com.  
Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢤ  
Copyright 2008, Texas Instruments Incorporated  
ꢠ ꢤ ꢡ ꢠꢙ ꢚꢮ ꢜꢛ ꢟ ꢧꢧ ꢥꢟ ꢝ ꢟ ꢞ ꢤ ꢠ ꢤ ꢝ ꢡ ꢩ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢊꢇ ꢈꢅ  
ꢁ ꢋꢌꢇꢂ ꢋꢁꢀꢆ ꢍꢎ ꢆꢏ ꢐ ꢑꢒꢀꢆꢊ ꢁꢎ ꢓ ꢔꢎ ꢕꢖ ꢒꢖ ꢋ ꢗ ꢒꢘꢑ ꢗꢀ ꢔꢎ ꢍꢑꢁ ꢆꢀꢋ ꢔꢒ  
SLVS905 − DECEMBER 2008  
logic block diagram  
CATHODE  
REF  
REF  
+
V
= 1.24 V  
ANODE  
equivalent schematic  
CATHODE  
REF  
ANODE  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢈ ꢅ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢊ ꢇꢈ ꢅ  
ꢁꢋ ꢌꢇꢂ ꢋꢁꢀꢆꢍ ꢎ ꢆꢏꢐ ꢑꢒ ꢀꢆꢊꢁ ꢎ ꢓꢔ ꢎꢕꢖꢒ ꢖꢋ ꢗ ꢒꢘꢑ ꢗꢀ ꢔꢎ ꢍ ꢑꢁ ꢆꢀꢋ ꢔꢒ  
SLVS905 − DECEMBER 2008  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Cathode voltage, V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
KA  
Continuous cathode current range, I  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 mA to 20 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.05 mA to 3 mA  
K
Reference current range, I  
ref  
Package thermal impedance, θ (see Notes 2 and 3): DBV package . . . . . . . . . . . . . . . . . . . . . . . . 206°C/W  
JA  
DBZ package . . . . . . . . . . . . . . . . . . . . . . . . . 206°C/W  
Operating virtual junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Voltage values are with respect to the anode terminal, unless otherwise noted.  
2. Maximum power dissipation is a function of T (max), θ , and T . The maximum allowable power dissipation at any allowable  
J
JA  
A
ambient temperature is P = (T (max) − T )/θ . Operating at the absolute maximum T of 150°C can affect reliability.  
D
J
A
JA  
J
3. The package thermal impedance is calculated in accordance with JESD 51-7.  
recommended operating conditions  
MIN  
MAX  
6
UNIT  
V
V
KA  
Cathode voltage  
V
REF  
0.1  
I
K
Cathode current  
15  
mA  
T
A
Operating free-air temperature range  
−40  
125  
°C  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢊꢇ ꢈꢅ  
ꢁ ꢋꢌꢇꢂ ꢋꢁꢀꢆ ꢍꢎ ꢆꢏ ꢐ ꢑꢒꢀꢆꢊ ꢁꢎ ꢓ ꢔꢎ ꢕꢖ ꢒꢖ ꢋ ꢗ ꢒꢘꢑ ꢗꢀ ꢔꢎ ꢍꢑꢁ ꢆꢀꢋ ꢔꢒ  
SLVS905 − DECEMBER 2008  
TLV431A electrical characteristics at 25°C free-air temperature (unless otherwise noted)  
TLV431A  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
1.228  
1.209  
TYP  
MAX  
T
A
= 25°C  
1.24 1.252  
1.271  
V
I
= V  
,
KA  
= 10 mA  
REF  
V
V
Reference voltage  
V
REF  
= full range (see Figure 1)  
T
A
K
V
deviation over full  
REF  
temperature range  
V
V
= V  
, I = 10 mA (see Figure 1)  
REF K  
11  
31  
mV  
REF(dev)  
KA  
KA  
†‡  
Ratio of V  
REF  
voltage change  
change in cathode  
V  
V  
REF  
KA  
= V  
to 6 V, I = 10 mA (see Figure 2)  
1.5  
0.15  
0.15  
2.7  
0.5  
mV/V  
µA  
REF  
K
I
Reference terminal current  
deviation over full  
I
I
= 10 mA, R1 = 10 k, R2 = open (see Figure 2)  
= 10 mA, R1 = 10 k, R2 = open (see Figure 2)  
ref  
K
I
ref  
temperature range  
I
0.5  
µA  
ref(dev)  
K
Minimum cathode current for  
regulation  
I
I
V
= V  
(see Figure 1)  
= 6 V (see Figure 3)  
KA  
55  
0.001  
0.25  
100  
0.1  
0.4  
µA  
µA  
K(min)  
KA  
REF  
Off-state cathode current  
V
V
= 0, V  
REF  
K(off)  
REF  
= V  
, f 1 kHz,  
KA  
§
|z  
|
Dynamic impedance  
KA  
I
= 0.1 mA to 15 mA (see Figure 1)  
K
Full temperature range is 40°C to 125°C.  
The deviation parameters V and I  
rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV  
are defined as the differences between the maximum and minimum values obtained over the  
REF(dev) ref(dev)  
, is defined as:  
REF  
V
REF(dev)  
6
  10  
ǒ
Ǔ
VREF (TA+25°C)  
ppm  
ǒ Ǔ+  
°C  
Ť
Ť
αVREF  
T  
A
where T is the rated operating free-air temperature range of the device.  
A
α
can be positive or negative, depending on whether minimum V  
REF  
or maximum V , respectively, occurs at the  
REF  
VREF  
lower temperature.  
V  
KA  
I  
§
ŤzkaŤ +  
The dynamic impedance is defined as  
K
When the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is defined  
as:  
V  
I  
R1  
R2  
ŤzkaŤȀ +  
ŤzkaŤ  
  ǒ1 )  
Ǔ
[
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢈ ꢅ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢊ ꢇꢈ ꢅ  
ꢁꢋ ꢌꢇꢂ ꢋꢁꢀꢆꢍ ꢎ ꢆꢏꢐ ꢑꢒ ꢀꢆꢊꢁ ꢎ ꢓꢔ ꢎꢕꢖꢒ ꢖꢋ ꢗ ꢒꢘꢑ ꢗꢀ ꢔꢎ ꢍ ꢑꢁ ꢆꢀꢋ ꢔꢒ  
SLVS905 − DECEMBER 2008  
TLV431B electrical characteristics at 25°C free-air temperature (unless otherwise noted)  
TLV431B  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
1.234  
1.221  
TYP  
MAX  
T
A
= 25°C  
1.24 1.246  
1.265  
V
I
= V  
,
KA  
= 10 mA  
REF  
V
V
Reference voltage  
V
REF  
= full range (see Figure 1)  
T
A
K
V
deviation over full  
REF  
temperature range  
V
V
= V  
, I = 10 mA (see Figure 1)  
REF K  
11  
31  
mV  
REF(dev)  
KA  
KA  
†‡  
Ratio of V  
REF  
voltage change  
change in cathode  
V  
V  
REF  
KA  
= V  
to 6 V, I = 10 mA (see Figure 2)  
1.5  
0.1  
2.7  
0.5  
mV/V  
µA  
REF  
K
I
Reference terminal current  
deviation over full  
I
I
= 10 mA, R1 = 10 k, R2 = open (see Figure 2)  
= 10 mA, R1 = 10 k, R2 = open (see Figure 2)  
ref  
K
I
ref  
temperature range  
I
0.15  
0.5  
µA  
ref(dev)  
K
†‡  
Minimum cathode current for  
regulation  
I
I
V
= V  
(see Figure 1)  
= 6 V (see Figure 3)  
KA  
55  
0.001  
0.25  
100  
0.1  
0.4  
µA  
µA  
K(min)  
KA  
REF  
Off-state cathode current  
V
V
= 0, V  
REF  
K(off)  
REF  
= V  
, f 1 kHz, I = 0.1 mA to 15 mA  
K
KA  
§
|z  
|
Dynamic impedance  
KA  
(see Figure 1)  
Full temperature range is 40°C to 125°C.  
The deviation parameters V and I  
rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV  
are defined as the differences between the maximum and minimum values obtained over the  
REF(dev) ref(dev)  
, is defined as:  
REF  
V
REF(dev)  
6
  10  
ǒ
Ǔ
VREF (TA+25°C)  
ppm  
ǒ Ǔ+  
°C  
Ť
Ť
αVREF  
T  
A
where T is the rated operating free-air temperature range of the device.  
A
α
can be positive or negative, depending on whether minimum V  
REF  
or maximum V , respectively, occurs at the  
REF  
VREF  
lower temperature.  
V  
KA  
I  
ŤzkaŤ +  
§
The dynamic impedance is defined as  
K
When the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is defined  
as:  
V  
I  
R1  
R2  
ŤzkaŤȀ +  
ŤzkaŤ  
  ǒ1 )  
Ǔ
[
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢊꢇ ꢈꢅ  
ꢁ ꢋꢌꢇꢂ ꢋꢁꢀꢆ ꢍꢎ ꢆꢏ ꢐ ꢑꢒꢀꢆꢊ ꢁꢎ ꢓ ꢔꢎ ꢕꢖ ꢒꢖ ꢋ ꢗ ꢒꢘꢑ ꢗꢀ ꢔꢎ ꢍꢑꢁ ꢆꢀꢋ ꢔꢒ  
SLVS905 − DECEMBER 2008  
PARAMETER MEASUREMENT INFORMATION  
Input  
R1  
V
O
Input  
V
O
I
K
I
K
I
ref  
R2  
V
REF  
V
REF  
Figure 1. Test Circuit for V  
= V  
,
Figure 2. Test Circuit for V  
> V  
,
KA  
REF  
REF  
KA  
REF  
V = V  
= V  
V = V  
= V  
× (1 + R1/R2) + I × R1  
O
KA  
O
KA  
REF ref  
Input  
V
O
I
K(off)  
Figure 3. Test Circuit for I  
K(off)  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢈ ꢅ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢊ ꢇꢈ ꢅ  
ꢁꢋ ꢌꢇꢂ ꢋꢁꢀꢆꢍ ꢎ ꢆꢏꢐ ꢑꢒ ꢀꢆꢊꢁ ꢎ ꢓꢔ ꢎꢕꢖꢒ ꢖꢋ ꢗ ꢒꢘꢑ ꢗꢀ ꢔꢎ ꢍ ꢑꢁ ꢆꢀꢋ ꢔꢒ  
SLVS905 − DECEMBER 2008  
PARAMETER MEASUREMENT INFORMATION  
REFERENCE VOLTAGE  
vs  
JUNCTION TEMPERATURE  
1.254  
I
K
= 10 mA  
1.252  
1.250  
1.248  
1.246  
1.244  
1.242  
1.240  
1.238  
50 25  
0
25  
50  
75  
100 125 150  
T
J
− Junction Temperature − °C  
Figure 4  
REFERENCE INPUT CURRENT  
vs  
REFERENCE INPUT CURRENT  
vs  
JUNCTION TEMPERATURE  
(for TLV431A)  
JUNCTION TEMPERATURE  
(for TLV431B)  
250  
230  
210  
190  
170  
150  
130  
110  
90  
250  
200  
I
= 10 mA  
K
I
= 10 mA  
K
R1 = 10 kΩ  
R2 = Open  
R1 = 10 kΩ  
R2 = Open  
150  
100  
70  
50  
50  
50 25  
0
25  
50  
75 100 125 150  
−50 −25  
0
25  
50  
75  
100 125 150  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 5  
Figure 5A  
Figure 5B  
Operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢊꢇ ꢈꢅ  
ꢁ ꢋꢌꢇꢂ ꢋꢁꢀꢆ ꢍꢎ ꢆꢏ ꢐ ꢑꢒꢀꢆꢊ ꢁꢎ ꢓ ꢔꢎ ꢕꢖ ꢒꢖ ꢋ ꢗ ꢒꢘꢑ ꢗꢀ ꢔꢎ ꢍꢑꢁ ꢆꢀꢋ ꢔꢒ  
SLVS905 − DECEMBER 2008  
PARAMETER MEASUREMENT INFORMATION  
CATHODE CURRENT  
vs  
CATHODE CURRENT  
vs  
CATHODE VOLTAGE  
CATHODE VOLTAGE  
15  
250  
200  
150  
100  
50  
V
T
= V  
= 25°C  
V
T
= V  
REF  
KA REF  
A
KA  
A
= 25°C  
10  
5
0
0
50  
100  
−5  
10  
150  
200  
250  
15  
−1  
0.5  
0
0.5  
1
1.5  
−1  
0.5  
0
0.5  
1
1.5  
V
KA  
− Cathode Voltage − V  
V
KA  
− Cathode Voltage − V  
Figure 6  
Figure 7  
OFF-STATE CATHODE CURRENT  
vs  
OFF-STATE CATHODE CURRENT  
vs  
JUNCTION TEMPERATURE  
(for TLV431A)  
JUNCTION TEMPERATURE  
(for TLV431B)  
3000  
40  
30  
V
V
= 5 V  
= 0  
KA  
REF  
V
KA  
V
= 6 V  
= 0  
REF  
2500  
2000  
1500  
1000  
500  
20  
10  
0
0
−50 −25  
0
25  
50  
75  
100 125 150  
50 25  
0
25  
50  
75  
100 125 150  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 8A  
Figure 8B  
Figure 8  
Operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢈ ꢅ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢊ ꢇꢈ ꢅ  
ꢁꢋ ꢌꢇꢂ ꢋꢁꢀꢆꢍ ꢎ ꢆꢏꢐ ꢑꢒ ꢀꢆꢊꢁ ꢎ ꢓꢔ ꢎꢕꢖꢒ ꢖꢋ ꢗ ꢒꢘꢑ ꢗꢀ ꢔꢎ ꢍ ꢑꢁ ꢆꢀꢋ ꢔꢒ  
SLVS905 − DECEMBER 2008  
PARAMETER MEASUREMENT INFORMATION  
RATIO OF DELTA REFERENCE VOLTAGE  
TO DELTA CATHODE VOLTAGE  
vs  
RATIO OF DELTA REFERENCE VOLTAGE  
TO DELTA CATHODE VOLTAGE  
vs  
JUNCTION TEMPERATURE  
(for TLV431A)  
JUNCTION TEMPERATURE  
(for TLV431B)  
0
0
I
= 10 mA  
K
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
−0.6  
−0.7  
−0.8  
−0.9  
0.1  
V  
KA  
= V to 6 V  
REF  
0.2  
0.3  
0.4  
0.5  
0.6  
I
= 10 mA  
K
0.7  
0.8  
V  
KA  
= V  
REF  
to 6 V  
25  
−1  
−50 −25  
0
25  
50  
75  
100 125 150  
50 25  
0
50  
75 100 125 150  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 9A  
Figure 9B  
Figure 9  
PERCENTAGE CHANGE IN V  
vs  
REF  
OPERATING LIFE AT 55°C  
0.025  
0
I
K
= 1 mA  
% Change (avg)  
% Change (3δ)  
−0.025  
−0.05  
−0.075  
−0.1  
% Change (−3δ)  
−0.125  
0
10  
20  
30  
40  
50  
60  
Operating Life at 55°C − kh  
Extrapolated from life-test data taken at 125°C; the activation energy assumed is 0.7 eV.  
Figure 10  
Operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢊꢇ ꢈꢅ  
ꢁ ꢋꢌꢇꢂ ꢋꢁꢀꢆ ꢍꢎ ꢆꢏ ꢐ ꢑꢒꢀꢆꢊ ꢁꢎ ꢓ ꢔꢎ ꢕꢖ ꢒꢖ ꢋ ꢗ ꢒꢘꢑ ꢗꢀ ꢔꢎ ꢍꢑꢁ ꢆꢀꢋ ꢔꢒ  
SLVS905 − DECEMBER 2008  
PARAMETER MEASUREMENT INFORMATION  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
FREQUENCY  
3 V  
350  
300  
250  
V
I
T
A
= V  
REF  
KA  
K
= 1 mA  
1 kΩ  
= 25°C  
+
750 Ω  
470 µF  
TLE2027  
2200 µF  
+
+
_
TP  
820 Ω  
TLV431A  
or  
TLV431B  
160 kΩ  
200  
150  
160 Ω  
TEST CIRCUIT FOR EQUIVALENT INPUT NOISE VOLTAGE  
10  
100  
1k  
10k  
100k  
f − Frequency − Hz  
Figure 11  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢈ ꢅ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢊ ꢇꢈ ꢅ  
ꢌꢇ  
ꢀꢆ  
ꢆꢀ  
SLVS905 − DECEMBER 2008  
PARAMETER MEASUREMENT INFORMATION  
EQUIVALENT INPUT NOISE VOLTAGE  
OVER A 10-s PERIOD  
10  
f = 0.1 Hz to 10 Hz  
8
I
T
= 1 mA  
= 25°C  
K
A
6
4
2
0
−2  
−4  
−6  
−8  
10  
0
2
4
6
8
10  
t − Time − s  
3 V  
1 kΩ  
0.47 µF  
+
750 Ω  
470 µF  
2200 µF  
TLE2027  
+
TP  
+
TLE2027  
+
10 k10 kΩ  
1 µF  
2.2 µF  
+
_
_
820 Ω  
160 kΩ  
0.1 µF  
TLV431A  
or  
TLV431B  
1 MΩ  
CRO  
33 kΩ  
33 kΩ  
16 Ω  
TEST CIRCUIT FOR 0.1-Hz TO 10-Hz EQUIVALENT NOISE VOLTAGE  
Figure 12  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢊꢇ ꢈꢅ  
ꢁ ꢋꢌꢇꢂ ꢋꢁꢀꢆ ꢍꢎ ꢆꢏ ꢐ ꢑꢒꢀꢆꢊ ꢁꢎ ꢓ ꢔꢎ ꢕꢖ ꢒꢖ ꢋ ꢗ ꢒꢘꢑ ꢗꢀ ꢔꢎ ꢍꢑꢁ ꢆꢀꢋ ꢔꢒ  
SLVS905 − DECEMBER 2008  
PARAMETER MEASUREMENT INFORMATION  
SMALL-SIGNAL VOLTAGE GAIN/PHASE MARGIN  
vs  
FREQUENCY  
80  
0°  
I
T
= 10 mA  
= 25°C  
K
A
70  
36°  
Output  
60  
50  
72°  
I
K
6.8 kΩ  
4.3 kΩ  
180 Ω  
108°  
10 µF  
40  
144°  
180°  
5 V  
30  
20  
10  
GND  
0
10  
20  
TEST CIRCUIT FOR VOLTAGE GAIN  
AND PHASE MARGIN  
100  
1k  
10k  
f − Frequency − Hz  
100k  
1M  
Figure 13  
REFERENCE IMPEDANCE  
vs  
FREQUENCY  
100  
10  
I
T
= 0.1 mA to 15 mA  
= 25°C  
K
A
100 Ω  
Output  
I
K
100 Ω  
1
+
GND  
0.1  
0.01  
TEST CIRCUIT FOR REFERENCE IMPEDANCE  
1k  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
Figure 14  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢈ ꢅ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢊ ꢇꢈ ꢅ  
ꢁꢋ ꢌꢇꢂ ꢋꢁꢀꢆꢍ ꢎ ꢆꢏꢐ ꢑꢒ ꢀꢆꢊꢁ ꢎ ꢓꢔ ꢎꢕꢖꢒ ꢖꢋ ꢗ ꢒꢘꢑ ꢗꢀ ꢔꢎ ꢍ ꢑꢁ ꢆꢀꢋ ꢔꢒ  
SLVS905 − DECEMBER 2008  
PARAMETER MEASUREMENT INFORMATION  
PULSE RESPONSE 1  
3.5  
3
R = 18 kΩ  
= 25°C  
T
Input  
A
18 kΩ  
Output  
2.5  
2
I
k
Pulse  
Generator  
f = 100 kHz  
50 Ω  
1.5  
1
Output  
GND  
0.5  
0
TEST CIRCUIT FOR PULSE RESPONSE 1  
0.5  
0
1
2
3
4
5
6
7
8
t − Time − µs  
Figure 15  
PULSE RESPONSE 2  
3.5  
3
R = 1.8 kΩ  
= 25°C  
T
Input  
A
1.8 kΩ  
Output  
2.5  
2
I
K
Pulse  
Generator  
f = 100 kHz  
50 Ω  
1.5  
1
Output  
GND  
0.5  
0
TEST CIRCUIT FOR PULSE RESPONSE 2  
0.5  
0
1
2
3
4
5
6
7
8
t − Time − µs  
Figure 16  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢊꢇ ꢈꢅ  
ꢁ ꢋꢌꢇꢂ ꢋꢁꢀꢆ ꢍꢎ ꢆꢏ ꢐ ꢑꢒꢀꢆꢊ ꢁꢎ ꢓ ꢔꢎ ꢕꢖ ꢒꢖ ꢋ ꢗ ꢒꢘꢑ ꢗꢀ ꢔꢎ ꢍꢑꢁ ꢆꢀꢋ ꢔꢒ  
SLVS905 − DECEMBER 2008  
PARAMETER MEASUREMENT INFORMATION  
STABILITY BOUNDARY CONDITION  
(for TLV431B)  
STABILITY BOUNDARY CONDITION  
(for TLV431A)  
15  
12  
9
15  
12  
9
T
A
= 25°C  
I
K
= 15 mA Max  
St
V
= V  
REF  
KA  
V
= 2 V  
KA  
Stable  
Stable  
V
= 2 V  
KA  
6
6
T
= 25°C  
= 15 mA MAX  
A
3
3
I
K
V
KA  
= 3 V  
For V  
= V ,  
REF  
KA  
Stable for C = 1 pF to 10k nF  
L
0
0
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
C
− Load Capacitance − µF  
C
− Load Capacitance − µF  
L
L
150 Ω  
150 Ω  
I
K
I
K
+
+
R1 = 10 kΩ  
C
C
L
L
V
bat  
V
bat  
R2  
TEST CIRCUIT FOR V  
KA  
= V  
REF  
TEST CIRCUIT FOR V  
= 2 V, 3 V  
KA  
The areas under the curves represent conditions that may cause the device to oscillate. For V  
KA  
= 2-V and 3-V curves, R2 and V were adjusted  
bat  
to establish the initial V  
and I conditions with C = 0. V  
and C then were adjusted to determine the ranges of stability.  
KA  
K
L
bat  
L
Figure 17  
Operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆꢇꢈ ꢅ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢊ ꢇꢈ ꢅ  
ꢁꢋ  
ꢌꢇ  
ꢀꢆ  
ꢆꢀ  
SLVS905 − DECEMBER 2008  
APPLICATION INFORMATION  
~
V
120 V  
I
+
P
~
V
3.3 V  
O
P
P
Gate Drive  
V
CC  
Controller  
V
FB  
Current  
Sense  
TLV431A  
or  
GND  
TLV431B  
P
P
P
P
Figure 18. Flyback With Isolation Using TLV431, TLV431A, or TLV431B  
as Voltage Reference and Error Amplifier  
Figure 18 shows the TLV431, TLV431A, or TLV431B used in a 3.3-V isolated flyback supply. Output voltage V  
O
can be as low as reference voltage V  
(1.24 V 1%). The output of the regulator, plus the forward voltage  
REF  
drop of the optocoupler LED (1.24 + 1.4 = 2.64 V), determine the minimum voltage that can be regulated in an  
isolated supply configuration. Regulated voltage as low as 2.7 Vdc is possible in the topology shown in  
Figure 18.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Jun-2009  
PACKAGING INFORMATION  
Orderable Device  
TLV431AQDBVRQ1  
TLV431BQDBVRQ1  
TLV431BQDBZRQ1  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOT-23  
DBV  
5
5
3
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOT-23  
SOT-23  
DBV  
DBZ  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV431A-Q1, TLV431B-Q1 :  
Catalog: TLV431A, TLV431B  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

TLV431BCDBVR

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDBVRE4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDBVRG4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDBVT

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDBVTE4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDBVTG4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATOR
TI

TLV431BCDBZR

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDBZRG4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDBZT

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDBZTG4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDCKR

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDCKRE4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI