TLV5580IDWR [TI]

8-BIT, 80 MSPS LOW-POWER A/D CONVERTER;
TLV5580IDWR
型号: TLV5580IDWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8-BIT, 80 MSPS LOW-POWER A/D CONVERTER

光电二极管 转换器
文件: 总34页 (文件大小:531K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
DW OR PW PACKAGE  
(TOP VIEW)  
8-Bit Resolution 80 MSPS Sampling  
Analog-to-Digital Converter (ADC)  
Low Power Consumption: 165 mW Typ  
Using External references  
DRV  
AV  
AV  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
DD  
D0  
SS  
DD  
2
Wide Analog Input Bandwidth: 700 MHz Typ  
3.3 V Single-Supply Operation  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
AIN  
3
CML  
4
PWDN_REF  
3.3 V TTL/CMOS-Compatible Digital I/O  
5
AV  
6
SS  
Internal Bottom and Top Reference  
Voltages  
REFBO  
REFBI  
REFTI  
REFTO  
7
8
Adjustable Reference Input Range  
Power Down (Standby) Mode  
9
DRV  
DV  
10  
11  
SS  
SS  
Separate Power Down for Internal Voltage  
References  
AV  
SS  
CLK 12  
OE 13  
17 BG  
16 AV  
Three-State Outputs  
DD  
DV  
14  
15 STBY  
DD  
28-Pin Small Outline IC (SOIC) and Thin  
Shrink SOP (TSSOP) Packages  
Applications  
– Digital Communications (IF Sampling)  
– Flat Panel Displays  
– High-Speed DSP Front-End  
(TMS320C6000)  
– Medical Imaging  
– Graphics Processing (Scan Rate/Format  
Conversion)  
– DVD Read Channel Digitization  
description  
The TLV5580 is an 8-bit 80 MSPS high-speed A/D converter. It converts the analog input signal into 8-bit  
binary-coded digital words up to a sampling rate of 80 MHz. All digital inputs and outputs are 3.3 V  
TTL/CMOS-compatible.  
The device consumes very little power due to the 3.3 V supply and an innovative single-pipeline architecture  
implemented in a CMOS process. The user obtains maximum flexibility by setting both bottom and top voltage  
references from user-supplied voltages. If no external references are available, on-chip references are  
available for internal and external use. The full-scale range is 1 Vpp up to 1.6 Vpp, depending on the analog  
supply voltage. If external references are available, the internal references can be disabled independently from  
the rest of the chip, resulting in an even greater power saving.  
While usable in a wide variety of applications, the device is specifically suited for the digitizing of high-speed  
graphics and for interfacing to LCD panels or LCD/DMD projection modules . Other applications include DVD  
read channel digitization, medical imaging and communications. This device is suitable for IF sampling of  
communication systems using sub-Nyquist sampling methods because of its high analog input bandwidth.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1999, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
SOIC-28  
TSSOP-28  
TLV5580CPW  
TLV5580IPW  
0°C to 70°C  
TLV5580CDW  
TLV5580IDW  
40°C to 85°C  
functional block diagram  
+
ADC  
SHA  
SHA  
SHA  
SHA  
SHA  
SHA  
2
ADC  
DAC  
2
2
2
2
2
2
Correction Logic  
Output Buffers  
D0(LSB)–D7(MSB)  
The single-pipeline architecture uses 6 ADC/DAC stages and one final flash ADC. Each stage produces a  
resolution of 2 bits. The correction logic generates its result using the 2-bit result from the first stage, 1 bit from  
each of the 5 succeeding stages, and 1 bit from the final stage in order to arrive at an 8-bit result. The correction  
logic guarantees no missing codes over the full operating temperature range.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
circuit diagrams of inputs and outputs  
ALL DIGITAL INPUT CIRCUITS  
AIN INPUT CIRCUIT  
DV  
AV  
DD  
DD  
0.5 pF  
REFERENCE INPUT CIRCUIT  
AV  
D0–D7 OUTPUT CIRCUIT  
DRV  
DD  
DD  
Internal  
Reference  
Generator  
REFTO  
or  
REFBO  
D
AV  
DD  
D_Out  
OE  
REFBI  
or  
REFTI  
DRV  
SS  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
Terminal Functions  
TERMINAL  
NAME  
AIN  
I/O  
DESCRIPTION  
NO.  
26  
I
I
Analog input  
AV  
16, 27  
18, 23, 28  
17  
Analog supply voltage  
Analog ground  
DD  
SS  
AV  
I
BG  
O
Band gap reference voltage. A 1 µF capacitor (with an optional 0.1 µF capacitor in parallel) should be  
connected between this terminal and AV for external filtering.  
SS  
Clock input. The input is sampled on each rising edge of CLK.  
Common mode level. This voltage is equal to (AV – AV ) ÷ 2. An external 0.1 µF capacitor should be  
CLK  
CML  
12  
25  
I
O
DD SS  
connected between this terminal and AV  
.
SS  
D0 – D7  
2 – 9  
1
O
I
Data outputs. D7 is the MSB  
DRV  
DRV  
Supply voltage for digital output drivers  
Ground for digital output drivers  
Digital supply voltage  
DD  
SS  
10  
14  
13  
11  
I
DV  
OE  
DV  
I
DD  
I
Output enable. When high the D0 – D7 outputs go in high-impedance mode.  
Digital ground  
I
SS  
PWDN_REF  
24  
I
Power down for internal reference voltages. A high on this terminal will disable the internal reference  
circuit.  
REFBI  
21  
I
Reference voltage bottom input. The voltage at this terminal defines the bottom reference voltage for the  
ADC. It can be connected to REFBO or to an externally generated reference level. Sufficient filtering  
should be applied to this input. The use a 0.1 µF capacitor connected between REFBI and AV  
recommended. Additionaly, a 0.1 µF capacitor can be connected between REFTI and REFBI.  
is  
SS  
REFBO  
REFTI  
22  
20  
O
I
Reference voltage bottom output. An internally generated reference is available at this terminal. It can be  
connected to REFBI or left unconnected. A 1 µF capacitor between REFBO and AV  
sufficient decoupling required for this output.  
will provide  
SS  
Reference voltage top input. The voltage at this terminal defines the top reference voltage for the ADC.  
It can be connected to REFTO or to an externally generated reference level. Sufficient filtering should be  
appliedtothisinput.Theuseofa0.1µFcapacitorbetweenREFTIandAV isrecommended. Additionaly,  
SS  
a 0.1 µF capacitor can be connected between REFTI and REFBI.  
REFTO  
STBY  
19  
15  
O
I
Reference voltage top output. An internally generated reference is available at this terminal. It can be  
connectedtoREFTIorleftunconnected.A1µFcapacitorbetweenREFTOandAV willprovidesufficient  
SS  
decoupling required for this output.  
Standby input. A high level on this input enables a powerdown mode.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage: AV  
Supply voltage: AV  
to AGND, DV  
to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 4.5 V  
DD  
DD  
DD  
to DV , AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 0.5 V  
DD  
Digital input voltage range to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to DV  
Analog input voltage range to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to AV  
Digital output voltage applied from external source to DGND . . . . . . . . . . . . . . . . . . . 0.5 V to DV  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
DD  
DD  
DD  
DD  
Reference voltage input range to AGND: V  
, V  
, V  
, V  
0.5 V to AV  
(REFTI) (REFTO) (REFBI) (REFBO)  
Operating free-air temperature range, T : TLV5580C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
TLV5580I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions over operating free-temperature range  
power supply  
MIN NOM  
MAX  
UNIT  
AV  
DD  
Supply voltage  
DV  
3
3.3  
3.6  
V
DD  
DRV  
DD  
analog and reference inputs  
MIN  
NOM  
MAX  
UNIT  
Reference input voltage (top), V  
(NOM) – 0.2 2 + (AV  
– 3)  
DD  
(NOM) + 0.2  
1.2  
V
V
V
V
(REFTI)  
Reference input voltage (bottom), V  
0.8  
1
(REFBI)  
– V  
Reference voltage differential, V  
1 + (AV – 3)  
DD  
(REFTI)  
(REFBI)  
Analog input voltage, V  
V
V
(REFTI)  
(AIN)  
(REFBI)  
digital inputs  
MIN NOM  
MAX  
UNIT  
V
High-level input voltage, V  
2.0  
DV  
IH  
DD  
0.2xDV  
Low-level input voltage, V  
DGND  
V
IL  
DD  
Clock period, t  
12.5  
5.25  
ns  
ns  
c
Pulse duration, clock high, t  
w(CLKH)  
Pulse duration, clock low, t  
5.25  
ns  
w(CLKL)  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
electrical characteristics over recommended operating conditions with f  
of external voltage references (unless otherwise noted)  
= 80 MSPS and use  
CLK  
power supply  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
57  
3
MAX  
71  
UNIT  
AV  
DD  
AV  
DD  
L
= DV  
= 3.3 V, DRV  
= 3 V,  
DD  
DD  
= 15 pF, V = 1 MHz, –1 dBFS  
I
Operating supply current  
DV  
3.6  
7.5  
270  
210  
15  
mA  
DD  
DD  
DRV  
C
I
5
DD  
PWDN_REF = L  
213  
165  
11  
P
P
Power dissipation  
Standby power  
D
PWDN_REF = H  
mW  
STBY = H, CLK held high or low  
D(STBY)  
digital logic inputs  
PARAMETER  
High-level input current on CLK  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
I
AV  
AV  
= DV  
= DV  
= DRV  
= DRV  
= CLK = 3.6 V  
= 3.6 V,  
10  
µA  
IH  
DD  
DD  
DD  
DD  
Low-level input current on digital inputs  
(OE, STDBY, PWDN_REF, CLK)  
DD  
DD  
10  
µA  
IL  
Digital inputs at 0 V  
C
Input capacitance  
5
pF  
I
I
leakage current on other digital inputs (OE, STDBY, PWDN_REF) is not measured since these inputs have an internal pull-down resistor of  
IH  
4 Kto DGND.  
logic outputs  
PARAMETER  
TEST CONDITIONS  
= DRV = 3 V at I  
MIN  
TYP  
MAX  
UNIT  
AV  
DD  
= DV  
= 50 µA,  
OH  
DD  
DD  
V
V
High-level output voltage  
2.8  
V
OH  
Digital output forced high  
AV = DV = DRV  
Digital output forced low  
= 3.6 V at I = 50 µA,  
OL  
DD DD  
DD  
Low-level output voltage  
Output capacitance  
0.1  
V
OL  
C
5
pF  
µA  
O
High-impedance state output current to  
high level  
I
10  
10  
OZH  
AV  
DD  
= DV  
= DRV = 3.6 V  
DD  
DD  
High-impedance state output current to  
low level  
I
µA  
OZL  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
electrical characteristics over recommended operating conditions with f  
of external voltage references (unless otherwise noted)  
= 80 MSPS and use  
CLK  
dc accuracy  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
±1  
MAX  
2
UNIT  
LSB  
LSB  
LSB  
%FS  
%FS  
T
= 25°C  
–2  
–2.4  
–1  
A
Integral nonlinearity (INL), best-fit  
Internal references (see Note 1)  
Internal references (see Note 2),  
T
A
= –40°C to 85°C  
= –40°C to 85°C  
±1  
2.4  
1.3  
5
Differential nonlinearity (DNL)  
Zero error  
T
A
±0.6  
AV  
DD  
= DV  
= 3.3 V, DRV = 3 V See Note 3  
DD  
DD  
Full scale error  
5
NOTES: 1. Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero to full scale. The point used as zero  
occurs 1/2 LSB before the first code transition. The full–scale point is defined as a level 1/2 LSB beyond the last code transition.  
The deviation is measured from the center of each particular code to the true straight line between these two endpoints.  
2. AnidealADCexhibitscodetransitionsthatareexactly1LSBapart. DNListhedeviationfromthisidealvalue.Thereforethismeasure  
indicates how uniform the transfer function step sizes are. The ideal step size is defined here as the step size for the device under  
n
test (i.e., (last transition level – first transition level) ÷ (2 – 2)). Using this definition for DNL separates the effects of gain and offset  
error. A minimum DNL better than –1 LSB ensures no missing codes.  
3. Zero error is defined as the difference in analog input voltage – between the ideal voltage and the actual voltage – that will switch  
the ADC output from code 0 to code 1. The ideal voltage level is determined by adding the voltage corresponding to 1/2 LSB to the  
bottom reference level. The voltage corresponding to 1 LSB is found from the difference of top and bottom references divided by  
the number of ADC output levels (256).  
Full-scaleerrorisdefinedasthedifferenceinanaloginputvoltagebetweentheidealvoltageandtheactualvoltagethatwillswitch  
the ADC output from code 254 to code 255. The ideal voltage level is determined by subtracting the voltage corresponding to 1.5  
LSB from the top reference level. The voltage corresponding to 1 LSB is found from the difference of top and bottom references  
divided by the number of ADC output levels (256).  
analog input  
PARAMETER  
Input capacitance  
TEST CONDITIONS  
TEST CONDITIONS  
MIN  
MIN  
TYP  
MAX  
MAX  
UNIT  
C
4
pF  
I
reference input (AV  
= DV  
= DRV  
= 3.6 V)  
DD  
DD  
DD  
PARAMETER  
Reference input resistance  
Reference input current  
TYP  
200  
5
UNIT  
R
ref  
I
mA  
ref  
reference outputs  
PARAMETER  
TEST CONDITIONS  
Absolute min/max values valid  
and tested for AV = 3.3 V  
MIN  
2.07  
1.09  
TYP  
MAX  
2.21  
1.21  
UNIT  
V
V
V
Reference top offset voltage  
2 + [(AV  
– 3) ÷ 2]  
– 3) ÷ 2]  
(REFTO)  
DD  
DD  
Reference bottom offset voltage  
1 + [(AV  
V
(REFBO)  
DD  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
electrical characteristics over recommended operating conditions with f  
of external voltage references (unless otherwise noted) (continued)  
= 80 MSPS and use  
CLK  
dynamic performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
7.0  
MAX  
UNIT  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
= 1 MHz  
6.6  
6.6  
in  
in  
in  
in  
in  
in  
in  
in  
in  
in  
in  
in  
in  
in  
in  
in  
= 4.43 MHz  
= 15 MHz  
= 76 MHz  
= 1 MHz  
7.0  
Effective number of bits, ENOB  
Bits  
6.5  
6.6  
41.5  
41.5  
43.5  
43.5  
41  
= 4.43 MHz  
= 15 MHz  
= 76 MHz  
= 1 MHz  
Signal-to-total harmonic distortion + noise, S/(THD+N)  
Total harmonic distortion (THD)  
dB  
dB  
dB  
41.5  
–50  
–49  
–44  
–45.5  
53  
–46  
= 4.43 MHz  
= 15 MHz  
= 76 MHz  
= 1 MHz  
–45.5  
48  
48  
= 4.43 MHz  
= 15 MHz  
= 76 MHz  
53  
Spurious free dynamic range (SFDR)  
46.5  
48.5  
700  
0.8  
Analog input full-power bandwidth, BW  
Differential phase, DP  
See Note 4  
MHz  
°
f
= 40 MHz, f = 4.43 MHz,  
clk  
in  
20 IRE amplitude vs. full-scale of 140 IRE  
Differential gain, DG  
0.6  
%
Based on analog input voltage of 1 dBFS referenced to a 1.3 V  
full-scale input range and using the external voltage references at  
pp  
= 3.0 V at 25°C.  
f
= 80 MSPS with AV  
= DV  
= 3.3 V and DRV  
DD DD  
clk  
DD  
NOTE 4: The analog input bandwidth is defined as the maximum frequency of a –1 dBFS input sine that can be applied to the device for which  
an extra 3 dB attenuation is observed in the reconstructed output signal.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
electrical characteristics over recommended operating conditions with f  
of external voltage references (unless otherwise noted) (continued)  
= 80 MSPS and use  
CLK  
timing requirements  
PARAMETER  
Maximum conversion rate  
Minimum conversion rate  
Output delay time (see Figure 1)  
Output hold time  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
kHz  
ns  
f
f
t
t
80  
clk  
10  
9
clk  
C
C
= 10 pF,  
= 2 pF,  
See Notes 5 and 6  
See Note 5  
d(o)  
h(o)  
L
L
2
ns  
CLK  
cycles  
t
Pipeline delay (latency)  
See Note 6  
4.5  
4.5  
4.5  
d(pipe)  
t
t
t
t
Aperture delay time  
3
1.5  
5
ns  
ps, rms  
ns  
d(a)  
j(a)  
dis  
en  
Aperture jitter  
See Note 5  
Disable time, OE rising to Hi-Z  
Enable, OE falling to valid data  
8
8
5
ns  
NOTES: 5. Outputtiming t  
is measured from the 1.5 V level oftheCLKinputfallingedgetothe10%/90%levelofthedigitaloutput. Thedigital  
d(o)  
output load is not higher than 10 pF.  
Output hold time t  
is measured from the 1.5 V level of the CLK input falling edge to the 10%/90% level of the digital output. The  
h(o)  
digital output is load is not less than 2 pF.  
Aperture delay t  
is measured from the 1.5 V level of the CLK input to the actual sampling instant.  
d(A)  
The OE signal is asynchronous.  
OE timing t is measured from the V  
level of OE to the high-impedance state of the output data. The digital output load is  
IH(MIN)  
dis  
not higher than 10 pF.  
OE timing t is measured from the V  
en  
level of OE to the instant when the output data reaches V  
or V output  
OL(max)  
IL(MAX)  
levels. The digital output load is not higher than 10 pF.  
OH(min)  
6. The number of clock cycles between conversion initiation on an input sample and the corresponding output data being made  
available from the ADC pipeline. Once the data pipeline is full, new valid output data is provided on every clock cycle. In order to  
know when data is stable on the output pins, the output delay time t  
(i.e., the delay time through the digital output buffers) needs  
is more than 1/2 clock period at 80 MHz; data cannot be reliably  
d(o)  
to be added to the pipeline latency. Note that since the max. t  
d(o)  
clocked in on a rising edge of CLK at this speed. The falling edge should be used.  
N+3  
N
N+1  
N+5  
N+2  
N+4  
t
j(A)  
t
d(A)  
V
IL  
(max)  
V
(min)  
CLK  
IH  
1.5 V  
1.5 V  
t
w(CLKH)  
1/f  
CLK  
t
w(CLKL)  
t
d(o)  
t
h(o)  
V
OH(min)  
90%  
10%  
D0–D7  
N–4  
N–3  
N–2  
N–1  
N
N+1  
V
OL(max)  
t
dis  
t
en  
t
d(pipe)  
V
IH(min)  
OE  
V
IL(max)  
Figure 1. Timing Diagram  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
performance plots at 25°C  
1
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
50  
100  
150  
200  
250  
ADC Code  
Figure 2. DNL vs Input Code At 80 MSPS (With External Reference, PW Package)  
2
1.5  
1
0.5  
0
–0.5  
–1  
–1.5  
–2  
0
50  
100  
150  
200  
250  
ADC Code  
Figure 3. INL vs Input Code At 80 MSPS (With External Reference, PW Package)  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
performance plots at 25°C (continued)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
60 MSPS  
80 MSPS  
40 MSPS  
5
0
0
10 20 30 40 50 60 70 80 90 100  
Analog Input Frequency – MHz  
Figure 4. S/(THD+N) vs V At 80 MSPS (Internal Reference),  
IN  
60 MSPS (External Reference), 40 MSPS (External Reference)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
5
10  
15  
20  
25  
30  
f – Frequency – MHz  
Figure 5. Spectral Plot f = 1.011 MHz At 60 MSPS  
IN  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
performance plots at 25°C (continued)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
5
10  
15  
20  
25  
30  
35  
40  
f – Frequency – MHz  
Figure 6. Spectral Plot f = 0.996 MHz At 80MSPS  
IN  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
5
10  
15  
20  
25  
30  
35  
40  
f – Frequency – MHz  
Figure 7. Spectral Plot f = 15.527 MHz At 80 MSPS  
IN  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
5
10  
15  
20  
25  
30  
35  
40  
f – Frequency – MHz  
Figure 8. Spectral Plot f = 75.02 MHz At 80MSPS  
IN  
(Plot shows folded spectrum of undersampled input signal)  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
performance plots at 25°C (continued)  
250  
5
4.5  
4
200  
150  
100  
3.5  
3
2.5  
2
1.5  
1
50  
0
0.5  
0
0
10 20 30 40 50 60 70 80 90 100  
Sampling Frequency – MHz  
0
10 20 30 40 50 60 70 80 90 100  
Sampling Frequency – MHz  
Figure 9. Power vs f  
Figure 10. IDRVDD vs f  
CLK  
CLK  
At V = 1 MHz, –1 dBFS  
At V = 1 MHz, –1 dBFS  
IN  
IN  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
6
7
10  
8
10  
9
10  
10  
Analog Input Frequency – Hz  
Figure 11. ADC Output Power With Respect To –1 dBFS V  
(Internal Reference, DW Package)  
IN  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
PRINCIPLE OF OPERATION  
The TLV5580 implements a high-speed 80 Msps converter in a cost-effective CMOS process. Powered from  
3.3 V, the single-pipeline design architecture ensures low-power operation and 8 bit accuracy. Signal input and  
clock signals are all single-ended. The digital inputs are 3.3 V TTL/CMOS compatible. Internal voltage  
references are included for both bottom and top voltages. Therefore the converter forms a self-contained  
solution. Alternatively the user may apply externally generated reference voltages. In doing so, both input offset  
and input range can be modified to suit the application.  
A high-speed sampling-and-hold captures the analog input signal. Multiple stages will generate the output code  
with a pipeline delay of 4.5 CLK cycles. Correction logic combines the multistage data and aligns the 8-bit output  
word. All digital logic operates at the rising edge of CLK.  
analog input  
TLV5580  
S1  
R
S
AIN  
R
SW  
C
I
V
S
Figure 12. Simplified Equivalent Input Circuit  
A first-order approximation for the equivalent analog input circuit of the TLV5580 is shown in Figure 12. The  
equivalent input capacitance C is 4 pF typical. The input must charge/discharge this capacitance within the  
I
sample period of one half clock cycle. When a full-scale voltage step is applied, the input source provides the  
charging current through the switch resistance R  
impedance is low. Alternatively, when the source voltage equals the value previously stored on C , the hold  
capacitor requires no input current and the equivalent input impedance is very high.  
(200 ) of S1 and quickly settles. In this case the input  
SW  
I
To maintain the frequency performance outlined in the specifications, the total source impedance should be  
limited to about 80 , as follows from the equation with f  
= 80 MHz, C = 4 pF, R  
= 200 :  
CLK  
I
SW  
R
1 ÷ 2f  
C
In(256) –R  
S
CLK  
I
SW  
So, for applications running at a lower f  
, the total source resistance can increase proportionally.  
CLK  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
PRINCIPLE OF OPERATION  
dc coupled input  
REFTI  
REFTI  
R
IN  
REFTO  
REFTO  
R
IN  
V
IN  
V
IN  
_
TLV5580  
TLV5580  
+
_
AIN  
AIN  
V
REF  
+
R
1
AV  
DD  
REFBI  
REFBI  
REFBO  
REFBO  
R
2
(b)  
(a)  
Figure 13. DC-Coupled Input Circuit  
For dc-coupled systems an opamp can level-shift a ground-referenced input signal. A circuit as shown in  
Figure 13(a) is acceptable. Alternatively, the user might want a bipolar shift together with the bottom reference  
voltage as seen in Figure 13(b). In this case the AIN voltage is given by:  
AIN  
2
R
÷ R  
R
V
– V  
2
2
REF  
IN  
1
ac coupled input  
C1  
C2  
TLV5580  
R1  
V
IN  
AIN  
R2  
+
V
BIAS  
Figure 14. AC-Coupled Input Circuit  
For many applications, especially in single supply operation, ac coupling offers a convenient way for biasing  
the analog input signal at the proper signal range. Figure 14 shows a typical configuration. To maintain the  
outlined specifications, the component values need to be carefully selected. The most important issue is the  
positioning of the 3 dB high-pass corner point f  
, which is a function of R and the parallel combination of  
–3 dB  
2
C and C , called C . This is given by the following equation:  
1
2
eq  
f
1 ÷ 2π x R x C  
eq  
2
–3 dB  
where C is the parallel combination of C and C .  
eq  
1
2
Since C1 is typically a large electrolytic or tantalum capacitor, the impedance becomes inductive at higher  
frequencies. Adding a small ceramic or polystyrene capacitor, C2 of approximately 0.01 µF, which is not  
inductive within the frequency range of interest, maintains low impedance. If the minimum expected input signal  
frequency is 20 kHz, and R2 equals 1 kand R1 equals 50 , the parallel capacitance of C1 and C2 must be  
a minimum of 8 nF to avoid attenuating signals close to 20 kHz.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
PRINCIPLE OF OPERATION  
reference terminals  
The voltages on terminals REFBI and REFTI determine the TLV5580’s input range. Since the device has an  
internal voltage reference generator with outputs available on REFBO respectively REFTO, corresponding  
terminals can be directly connected externally to provide a contained ADC solution. Especially at higher  
sampling rates, it is advantageous to have a wider analog input range. The wider analog input range is  
achievable by using external voltage references (e.g., at AVDD = 3.3 V, the full scale range can be extended  
from 1 Vpp (internal reference) to 1.3 Vpp (external reference) as shown in Table 1). These voltages should not  
be derived via a voltage divider from a power supply source. Instead, use a bandgap-derived voltage reference  
to derive both references via an opamp circuit. Refer to the schematic of the TLV5580 evaluation module for  
an example circuit.  
When using external references, the full-scale ADC input range and its dc position can be adjusted. The  
full-scale ADC range is always equal to V  
asshowninthespecificationsection.Inadditiontothelimitationontheirdifference,V  
have limits on their useful range. These limits are also dependent on AV  
– V  
. The maximum full-scale range is dependent on AV  
REFT  
REFB DD  
andV  
eachalso  
REFT  
REFB  
.
DD  
Table 3 summarizes these limits for 3 cases.  
Table 1. Recommended Operating Modes  
AV  
DD  
V
V
V
V
[V  
–V  
]
REFB(min)  
REFB(max)  
REFT(min)  
REFT(max)  
REFT REFB max  
3 V  
0.8 V  
1.2 V  
1.8 V  
2.2 V  
1 V  
3.3 V  
3.6 V  
0.8 V  
0.8 V  
1.2 V  
1.2 V  
2.1 V  
2.4 V  
2.5 V  
2.8 V  
1.3 V  
1.6 V  
digital inputs  
The digital inputs are CLK, STDBY, PWDN_REF, and OE. All these signals, except CLK, have an internal  
pull-down resistor to connect to digital ground. This provides a default active operation mode using internal  
references when left unconnected.  
The CLK signal at high frequencies should be considered as an analog input. Overshoot/undershoot should be  
minimized by proper termination of the signal close to the TLV5580. An important cause of performance  
degradation for a high-speed ADC is clock jitter. Clock jitter causes uncertainty in the sampling instant of the  
ADC, in addition to the inherent uncertainty on the sampling instant caused by the part itself, as specified by  
N
its aperture jitter. There is a theoretical relationship between the frequency (f) and resolution (2 ) of a signal  
that needs to be sampled and the maximum amount of aperture error dt  
formula shows the relation:  
that is tolerable. The following  
max  
N
1
dt  
1
f 2  
max  
As an example, for an 8–bit converter with a 15-MHz input, the jitter needs to be kept <41 pF in order not to have  
changes in the LSB of the ADC output due to the total aperture error.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
PRINCIPLE OF OPERATION  
digital outputs  
The output of TLV5580 is a standard binary code. Capacitive loading on the output should be kept as low as  
possible (a maximum loading of 10 pF is recommended) to provide best performance. Higher output loading  
causes higher dynamic output currents and can increase noise coupling into the device’s analog front end. To  
drive higher loads, use an output buffer is recommended.  
When clocking output data from TLV5580, it is important to observe its timing relation to CLK. Pipeline ADC  
delay is 4.5 clock cycles to which the maximum output propagation delay is added. See Note 6 in the  
specification section for more details.  
layout, decoupling and grounding rules  
It is necessary for any PCB using the TLV5580 to have proper grounding and layout to achieve the stated  
performance. Separate analog and digital ground planes that are spliced underneath the device are advisable.  
TLV5580 has digital and analog terminals on opposite sides of the package to make proper grounding easier.  
Since there is no internal connection between analog and digital grounds, they have to be joined on the PCB.  
Joining the digital and analog grounds at a point in close proximity to the TLV5580 is advised.  
As for power supplies, separate analog and digital supply terminals are provided on the device (AV /DV ).  
DD  
DD  
The supply to the digital output drivers is kept separate also (DRV ). Lowering the voltage on this supply from  
DD  
the nominal 3.3 V to 3 V improves performance because of the lower switching noise caused by the output  
buffers.  
Due to the high sampling rate and switched-capacitor architecture, TLV5580 generates transients on the supply  
and reference lines. Proper decoupling of these lines is essential. Decoupling as shown in the schematic of the  
TLV5580 EVM is recommended.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
TLV5580 EVALUATION MODULE  
TLV5580 evaluation module  
TI provides an evaluation module (EVM) for TLV5580. The EVM also includes a 10b 80 MSPS DAC so that the  
user can convert the digitized signal back to the analog domain for functional testing. Performance  
measurements can be done by capturing the ADC’s output data.  
The EVM provides the following additional features:  
Provision of footprint for the connection of an onboard crystal oscillator, instead of using an external clock  
input.  
Use of TLV5580 internal or external voltage references. In the case of external references, an onboard  
circuit is used that derives adjustable bottom and top reference voltages from a bandgap reference. Two  
potentiometers allow for the independent adjustments of both references. The full scale ADC range can be  
adjusted to the input signal amplitude.  
All digital output, control signal I/O (output enable, standby, reference powerdown) and clock I/O are  
provided on a single connector. The EVM can thus be part of a larger (DSP) system for prototyping.  
Onboard prototyping area with analog and digital supply and ground connections.  
Figure 15 shows the EVM schematic.  
The EVM is factory shipped for use in the following configuration:  
Use of external (onboard) voltage references  
External clock input  
analog input  
AsignalintherangebetweenV  
andV  
shouldbeappliedtoavoidoverflow/underflowonconnector  
(REFBI)  
(REFTI)  
J10. This signal is onboard terminated with 50. There is no onboard biasing of the signal. When using external  
(onboard) references, these levels can be adjusted with R7 (V ) and R6 (V ). Adjusting R7 causes  
(REFTI)  
(REFBI)  
both references to shift. R6 only impacts the bottom reference. The range of these signals for which the device  
is specified depends on AV and is shown under the Recommended Operating Conditions.  
DD  
Internally generated reference levels are also dependent on AV  
section.  
as shown in the electrical characteristics  
DD  
clock input  
A clock signal should be applied with amplitudes ranging from 0 to AV  
with a frequency equal to the desired  
DD  
sampling frequency on connector J9. This signal is onboard terminated with 50 . Both ADC and DAC run off  
the same clock signal. Alternatively the clock can be applied from terminal 1 on connector J11. A third option  
is using a crystal oscillator. The EVM board provides the footprint for a crystal oscillator that can be populated  
by the end-user, depending on the desired frequency. The footprint is compatible with the Epson EG-8002DC  
series of programmable high-frequency crystal oscillators. Refer to the TLV5580 EVM Settings for selecting  
between the different clock modes.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
TLV5580 EVALUATION MODULE  
power supplies  
The board provides seven power supply connectors (see Table 2). For optimum performance, analog and digital  
supplies should be kept separate. Using separate supplies for the digital logic portion of TLV5580 (DV ) and  
DD  
its output drivers (DRV ) benefits dynamic performance, especially when DRV  
is put at the minimum  
DD  
DD  
required voltage (3 V), while DV  
caused by the output drivers.  
might be higher (up to 3.6 V). This lowers the switching noise on the die  
DD  
Table 2. Power Supplies  
SIGNAL  
BOARD  
LABEL  
CONNECTOR  
DESCRIPTION  
NAME  
DRV3  
DV3  
J1  
J2  
J3  
J4  
J5  
3DRV  
3VD  
5VD  
3VA  
3.3 V digital supply for TLV5580 (digital output drivers)  
3.3 V digital supply for TLV5580 (digital logic) and peripherals  
5 V digital supply for D/A converter and peripherals  
3.3 V analog supply for TLV5580  
DV5  
AV3  
AV5  
5VA  
5 V analog supply for onboard reference circuit and D/A converter. Can be left unconnected if  
internal references are used and no D/A conversion is required.  
AV+12  
AV–12  
J6  
J7  
12VA  
12 V analog supply for onboard reference circuit. Can be left unconnected if internal references  
are used.  
–12VA  
–12 V analog supply for onboard reference circuit. Can be left unconnected if internal  
references are used.  
voltage references  
SW1 and SW2 switch between internal and external top and bottom references respectively. The external  
references are onboard generated from a stable bandgap-derived 3.3 V signal (using TI’s TPS7133 and  
quad-opamp TLE2144). They can be adjusted via potentiometers R6 (V  
to power down the internal voltage references by asserting PWN_REF when onboard references are used.  
) and R7 (V  
). It isadvised  
(REFBI)  
(REFTI)  
The references are measured at test points TP3 (V ) and TP4 (V ).  
(REFB)  
(REFT)  
DAC output  
The onboard DAC is a 10-bit 80 MSPS converter. It is connected back-to-back to the TLV5580. While the user  
could use its analog output for measurements, the DAC output is directly connected to connector J8 and does  
not pass through an analog reconstruction filter. So mirror spectra from aliased signal components feed through  
into the analog output.  
For this reason and to separate ADC and DAC contributions, performance measurements should be made by  
capturing the ADC output data available on connector J11 and not by evaluating the DAC output.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
TLV5580 EVALUATION MODULE  
TLV5580 EVM settings  
clock input settings  
REFERENCE  
DESIGNATOR  
FUNCTION  
W1  
W2  
Clock selection switch  
1–2 J11: clock from pin1 on J11 connector  
2–3 J9: clock from J9 SMA connector  
Clock source switch  
XTL: clock from onboard crystal oscillator  
CLK: clock from pin 1 on J11 connector (if W1/1–2) or J9 SMA connector (if W1/2–3)  
NOTE: If set to XTL and a XTL oscillator is populated, no clock signal should be applied to J9 or J11, depending on the W1  
setting.  
W3  
Clock output switch  
1–2 Rising: clock output on J11 connector is the same phase as the clock to the digital output buffer. Data changes on rising  
CLK edge.  
2–3Falling: clockoutputonJ11connectoristheoppositephaseasthedigitaloutputbuffer.DatachangesonfallingCLKedge.  
reference settings  
REFERENCE  
DESIGNATOR  
FUNCTION  
SW1  
SW2  
REFT external/internal switch  
REFT internal: REFT from TLV5580 internal reference  
REFT external: REFT from onboard voltage reference circuit  
REFB external/internal switch  
REFB internal: REFB from TLV5580 internal reference  
REFB external: REFB from onboard voltage reference circuit  
control settings  
REFERENCE  
DESIGNATOR  
FUNCTION  
W4  
TLV5580 and digital output buffer output enable control (1)  
5580-574 OE-connected: Connects OEs of TLV5580 and digital output buffer (574 buffer). Use this when no  
board-external OE is used. In addition, close W5 to have both OEs permanently enabled.  
5580-574 OE-disconnected: Disconnects OEs of TLV5580 and digital output buffer (574 buffer). The OE for the output  
buffer needs to be pulled low from pin 5 on J11 connector to enable. The OE for TLV5580 is independently controlled from  
pin 7 on J11 connector (W5 open) or is permanently enabled if W5 is closed.  
W5  
W6  
TLV5580 and digital output buffer output enable control (2)  
5580OE to GND: Connects OEs of TLV5580 to GND. Additionally connects OE of 74ALS574 to GND if W4 is 5580-574  
OE-connected.  
5580 OE external: Enables control of OE of TLV5580 via pin 7 on J11 connector. When taken high (internal pulldown)  
the output can be disabled.  
TLV5580 STDBY control  
Stdby: STDBY is active (high).  
Active: STDBY is low, via internal pulldown. STDBY can be taken high from pin 9 on J11 connector to enable standby  
mode.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
TLV5580 EVALUATION MODULE  
control settings (continued)  
REFERENCE  
DESIGNATOR  
FUNCTION  
W7  
TLV5580 PWDN REF control  
Pwdn_ref: PWDN_REF is active (high).  
Active: PWDN_REFislow, viainternalpulldown. PWDN_REFcanbetakenhighfrompin10onJ11connectortoenable  
pwdn_ref mode.  
W8  
DAC enable  
Active: D/A on  
Standby: D/A off  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
2 6  
2 5  
2 4  
2 3  
2 2  
2 1  
2 0  
1 9  
1 8  
1 7  
1 6  
1 5  
1 4  
1 3  
1 2  
1 1  
1 0  
9
8
7
6
5
4
3
2
1
I R E F  
N C  
8
1 7  
S R E F  
V R E F  
V A D D  
D 9  
D 8  
D 7  
D 6  
D 5  
D 4  
D 3  
1 8  
1 9  
2 0  
2 1  
2 2  
2 3  
2 4  
7
R 1 8  
R 1 9  
R 2 0  
R 2 1  
R 2 2  
R 2 3  
2 0  
2 0  
2 0  
2 0  
2 0  
2 0  
6
5
4
3
2
1
V A D D  
V G  
I O  
I O  
2 0  
R 2 5  
Figure 15. EVM Schematic  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
TLV5580 EVALUATION MODULE  
Digital +5 V  
Analog +12 V  
L3  
J3  
1
L6  
J6  
1
DV5  
C17  
AV +12 V  
C20  
4.7 µH  
4.7 µH  
+
+
+
+
C5  
1 µF  
C6  
10 µF  
C11  
1 µF  
C12  
10 µF  
10 µF  
10 µF  
2
2
Digital +3.3 V (DVDD)  
Analog –12 V  
L2  
L7  
J2  
1
J7  
1
DV3  
C16  
AV –12 V  
4.7 µH  
4.7 µH  
+
+
C13  
1 µF  
C3  
1 µF  
C4  
10 µF  
C14  
10 µF  
C21  
10 µF  
+
+
10 µF  
2
2
Analog +5 V  
Digital +3.3 V (DRVDD)  
L5  
L1  
J5  
1
J1  
1
AV5  
C19  
DRV3  
C15  
4.7 µH  
4.7 µH  
+
+
+
+
C9  
C10  
C1  
C2  
1 µF  
10 µF  
10 µF  
1 µF  
10 µF  
10 µF  
2
2
Analog +3.3 V  
L4  
J4  
1
AV3  
C18  
4.7 µH  
+
+
C7  
C8  
1 µF  
10 µF  
10 µF  
2
Figure 15. EVM Schematic (Continued)  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
TLV5580 EVALUATION MODULE  
Top Overlay  
Figure 15. EVM Schematic (Continued)  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
TLV5580 EVALUATION MODULE  
Top Layer  
Figure 15. EVM Schematic (Continued)  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
TLV5580 EVALUATION MODULE  
Internal Plane 1  
Figure 15. EVM Schematic (Continued)  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
TLV5580 EVALUATION MODULE  
Internal Plane 2  
Figure 15. EVM Schematic (Continued)  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
TLV5580 EVALUATION MODULE  
4200 (mil)  
Drill Drawing for Through Hole  
Figure 15. EVM Schematic (Continued)  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
TLV5580 EVALUATION MODULE  
Bottom Layer  
Figure 15. EVM Schematic (Continued)  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
TLV5580 EVALUATION MODULE  
Table 3. TLV5580EVM Bill of Material  
MANUFACTURER/  
PART NUMBER  
QTY. REFERENCE DESIGNATOR  
VALUE  
SIZE  
DESCRIPTION  
7
C1, C11, C13, C3, C5, C7, C9  
1 µF  
1206  
3216  
ceramic multilayer capacitor  
Any  
18  
C10, C12, C14, C15, C16,  
C17, C18, C19, C2, C20, C21,  
C22, C23, C4, C6, C8, C38,  
C44  
10 µF  
16 V, 10 µF, tantalum capacitor  
Any  
2
C36, C43  
0.01 µF  
0.1 µF  
805  
805  
Ceramic multilayer  
Any  
Any  
19  
C24, C25, C26, C27, C28,  
C29, C30, C31, C32, C33,  
C34, C35, C37, C39, C40,  
C41, C42, C45, C46  
Ceramic multilayer capacitor  
7
3
1
7
J1, J2, J3, J4, J5, J6, J7  
Screw Con  
SMA  
2 terminal screw connector  
PCM mount, SMA Jack  
Lumberg  
KRMZ2  
J10, J8, J9  
Johnson Components  
142-0701-206  
J11  
IDC26  
13 × 2.025 square pin header Samtec  
TSW-113-07-L-D  
L1, L2, L3, L4, L5, L6, L7  
4.7 µH  
4.7 µH DO1608C-472-Coil Craft Coil Craft  
DO1608-472  
1
2
R2  
0
1206  
1206  
1206  
Chip resistor  
Chip resistor  
Chip resistor  
Any  
R26, R27  
10  
Any  
Any  
12  
R1, R11, R14, R40, R41, R42,  
R43, R44, R45, R46, R47, R48  
10 K  
6
1
R10, R12, R15, R16, R8, R9  
R5  
1 K  
2.1 K  
20  
1206  
1206  
1206  
Chip resistor  
Chip resistor  
Chip resistor  
Any  
Any  
Any  
20  
R13, R17, R18, R19, R20,  
R21, R22, R23, R24, R25,  
R29, R30, R31, R32, R33,  
R35, R36, R37, R38, R39  
1
1
2
1
R3  
200  
3.24 K  
49.9  
1206  
1206  
1206  
Chip resistor  
Any  
Any  
Any  
R4  
Chip resistor  
R28, R34  
R6  
Chip resistor  
5 K  
4 mm SM pot-top adjust  
Bourns  
3214W-5K  
1
2
4
R7  
1 K  
SPDT  
TP  
4 mm SM pot-top adjust  
Bourns  
3214W-1K  
SW1, SW2  
TP1, TP2, TP3, TP4  
C&K tiny series–slide switch  
Test point, single 0.025 pin  
C&K  
TS01CLE  
Samtec  
TSW-101-07-L-S  
or equivalent  
1
1
1
U3  
U2  
U5  
CXD2306Q  
SN74ALVC00D  
SN74LVT574DW  
Sony  
CXD2306Q  
14-SOIC (D)  
Quad 2-input positive NAND  
Texas Instruments  
SN74ALVC00D  
20-SOP (DW)  
Texas Instruments  
SN74LVT574DW  
Manufacturer and part number data for reference only. Equivalent parts might be substituted on the EVM.  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
TLV5580 EVALUATION MODULE  
Table 3. TLV5580EVM Bill of Material (Continued)  
MANUFACTURER/  
PART NUMBER  
QTY. REFERENCE DESIGNATOR  
VALUE  
SIZE  
DESCRIPTION  
Quad op amp  
1
U4  
TLE2144CDW  
16-SOP(D)  
Texas Instruments  
TLE2144CDW/  
TLE2144IDW  
1
1
6
U6  
TLV5580PW  
TPS7133  
SPST  
28-TSSOP (PW)  
8-SOP(D)  
Texas Instruments  
TLV5580PW  
U1  
Low-dropout voltage regulator  
2 position jumper, 0.1 spacing  
Texas Instruments  
TPS7133QD  
W2, W4, W5, W6, W7, W8  
Samtec  
TSW-102-07-L-S  
or equivalent  
2
1
W1, W3  
X1  
DPFT  
NA  
3 position jumper, 0.1 spacing  
Crystal oscillator  
Samtec  
TSW-103-07-L-S  
or equivalent  
Epson  
SG-8002DC series  
Manufacturer and part number data for reference only. Equivalent parts might be substituted on the EVM.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
MECHANICAL DATA  
DW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
16 PIN SHOWN  
0.050 (1,27)  
16  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
9
0.419 (10,65)  
0.400 (10,15)  
0.010 (0,25) NOM  
0.299 (7,59)  
0.293 (7,45)  
Gage Plane  
0.010 (0,25)  
1
8
0°8°  
0.050 (1,27)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.012 (0,30)  
0.004 (0,10)  
0.104 (2,65) MAX  
PINS **  
16  
20  
24  
28  
0.710  
DIM  
0.410  
0.510  
0.610  
A MAX  
A MIN  
(10,41) (12,95) (15,49) (18,03)  
0.400  
0.500  
0.600  
0.700  
(10,16) (12,70) (15,24) (17,78)  
4040000/C 07/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-013  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5580  
8-BIT, 80 MSPS LOW-POWER A/D CONVERTER  
SLAS205A – DECEMBER 1998 – REVISED JANUARY 1999  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0,30  
0,19  
0,65  
M
0,10  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
0,75  
A
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4040064/E 08/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TLV5580IDWRG4

1-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, GREEN, PLASTIC, SOIC-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV5580IPW

8-BIT, 80 MSPS LOW-POWER A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV5580IPW

1-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, GREEN, PLASTIC, TSSOP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

TLV5580IPWR

1-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, GREEN, PLASTIC, TSSOP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV5580IPWRG4

1-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, GREEN, PLASTIC, TSSOP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV5580PW

8-BIT, 80 MSPS LOW-POWER A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV5590

2-BIT ANALOG-TO-DIGITAL CONVERTER FOR FLEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV5590ED

2-BIT ANALOG-TO-DIGITAL CONVERTER FOR FLEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV5590EDR

2-Bit ADC for FLEX(TM) Pager Chipset 14-SOIC 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV5590EDR

1-CH 2-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO14, SOIC-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

TLV5590_08

2-BIT ANALOG-TO-DIGITAL CONVERTER FOR FLEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV5591

SEMICONDUCTOR SIGNAL PROCESSOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI