TLV5614CPW [TI]

2.7-V TO 5.5-V 12-BIT 3-mS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN; 2.7 V至5.5 V 12 - BIT 3毫秒翻两番DIGITAL- TO- ANALOG与电源降压转换器
TLV5614CPW
型号: TLV5614CPW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.7-V TO 5.5-V 12-BIT 3-mS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN
2.7 V至5.5 V 12 - BIT 3毫秒翻两番DIGITAL- TO- ANALOG与电源降压转换器

转换器
文件: 总27页 (文件大小:369K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
Four 12-Bit D/A Converters  
Dual 2.7-V to 5.5-V Supply (Separate Digital  
and Analog Supplies)  
Programmable Settling Time of Either 3 µs  
or 9 µs Typ  
Hardware Power Down (10 nA)  
Software Power Down (10 nA)  
Simultaneous Update  
TMS320, (Q)SPI, and Microwire Compatible  
Serial Interface  
Internal Power-On Reset  
applications  
Low Power Consumption:  
8 mW, Slow Mode – 5-V Supply  
3.6 mW, Slow Mode – 3-V Supply  
Battery Powered Test Instruments  
Digital Offset and Gain Adjustment  
Industrial Process Controls  
Reference Input Buffer  
Voltage Output Range . . . 2× the Reference  
Input Voltage  
Machine and Motion Control Devices  
Communications  
Monotonic Over Temperature  
Arbitrary Waveform Generation  
D OR PW PACKAGE  
(TOP VIEW)  
description  
The TLV5614 is a quadruple 12-bit voltage output  
digital-to-analog converter (DAC) with a flexible  
4-wire serial interface. The 4-wire serial interface  
allows glueless interface to TMS320, SPI, QSPI,  
and Microwire serial ports. The TLV5614 is  
programmed with a 16-bit serial word comprised  
ofaDACaddress, individualDACcontrolbits, and  
a 12-bit DAC value. The device has provision for  
two supplies: one digital supply for the serial  
AV  
REFINAB  
OUTA  
OUTB  
OUTC  
OUTD  
REFINCD  
AGND  
DV  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DD  
DD  
PD  
LDAC  
DIN  
SCLK  
CS  
FS  
DGND  
interface (via pins DV  
and DGND), and one for  
DD  
the DACs, reference buffers, and output buffers (via pins AV  
and AGND). Each supply is independent of the  
DD  
other, and can be any value between 2.7 V and 5.5 V. The dual supplies allow a typical application where the  
DAC will be controlled via a microprocessor operating on a 3 V supply (also used on pins DV and DGND),  
DD  
with the DACs operating on a 5 V supply. Of course, the digital and anlog supplies can be tied together.  
The resistor string output voltage is buffered by a x2 gain rail-to-rail output buffer. The buffer features a Class AB  
output stage to improve stability and reduce settling time. A rail-to-rail output stage and a power-down mode  
makes it ideal for single voltage, battery based applications. The settling time of the DAC is programmable to  
allow the designer to optimize speed versus power dissipation. The settling time is chosen by the control bits  
within the 16-bit serial input string. A high-impedance buffer is integrated on the REFINAB and REFINCD  
terminals to reduce the need for a low source impedance drive to the terminal. REFINAB and REFINCD allow  
DACs A and B to have a different reference voltage then DACs C and D.  
The TLC5614 is implemented with a CMOS process and is available in a 16-terminal SOIC package. The  
TLV5614C is characterized for operation from 0°C to 70°C. The TLV5614I is characterized for operation from  
40°C to 85°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1998, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
AVAILABLE OPTIONS  
PACKAGE  
T
A
SOIC  
(D)  
TSSOP  
(PW)  
0°C to 70°C  
TLV5614CD  
TLV5614ID  
TLV5614CPW  
TLV5614IPW  
40°C to 85°C  
functional block diagram  
AV  
16  
DV  
1
DD  
DD  
15  
REFINAB  
DAC A  
+
_
Power-On  
Reset  
+
_
14  
OUTA  
10  
12  
12-Bit  
DAC  
Latch  
14-Bit  
Data  
and  
2
Control  
Register  
2-Bit  
Control  
Data  
2
2
14  
Serial  
4
Power-Down/  
Speed Control  
DIN  
Input  
Latch  
Register  
2
7
DAC Select/  
Control  
FS  
SCLK  
CS  
5
6
13  
12  
11  
OUTB  
OUTC  
OUTD  
DAC B  
Logic  
DAC C  
DAC D  
10  
REFINCD  
3
2
9
8
PD  
AGND  
DGND  
LDAC  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
Terminal Functions  
TERMINAL  
NAME NO.  
AGND  
AV  
I/O  
DESCRIPTION  
9
16  
6
Analog ground  
Analog supply  
DD  
CS  
I
I
Chip select. This terminal is active low.  
Digital ground  
DGND  
DIN  
8
4
Serial data input  
DV  
1
Digital supply  
DD  
7
I
I
I
Frame sync input. The falling edge of the frame sync pulse indicates the start of a serial data frame shifted out to  
the TLV5614.  
FS  
2
3
Power down pin. Powers down all DACs (overriding their individual power down settings), and all output stages.  
This terminal is active low.  
PD  
Load DAC. When the LDAC signal is high, no DAC output updates occur when the input digital data is read into  
the serial interface. The DAC outputs are only updated when LDAC is low.  
LDAC  
REFINAB  
REFINCD  
SCLK  
15  
10  
5
I
Voltage reference input for DACs A and B.  
Voltage reference input for DACs C and D.  
Serial Clock input  
I
I
OUTA  
14  
13  
12  
11  
O
O
O
O
DACA output  
OUTB  
DACB output  
OUTC  
DACC output  
OUTD  
DACD output  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, (DV , AV  
Supply voltage difference, (AV  
to GND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DD  
DD  
to DV  
)
DD  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –2.8 V to 2.8 V  
DD  
Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to DV  
Reference input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to AV  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
Operating free-air temperature range, T : TLV5614C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
TLV5614I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C  
Storage temperature range, T  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
recommended operating conditions  
MIN NOM  
MAX  
5.5  
UNIT  
5-V supply  
3-V supply  
4.5  
2.7  
2
5
3
Supply voltage, AV , DV  
DD  
V
DD  
3.3  
High-level digital input, V  
IH  
DV  
DV  
= 2.7 V to 5.5 V  
= 2.7 V to 5.5 V  
V
V
DD  
DD  
Low-level digital input, V  
IL  
0.8  
5-V supply, See Note 1  
3-V supply, See Note 1  
0
0
2
2.048  
1.024  
10  
V
V
–1.5  
–1.5  
DD  
Reference voltage, V to REFINAB, REFINCD terminal  
ref  
V
DD  
Load resistance, R  
k  
pF  
L
Load capacitance, C  
100  
20  
L
Serial clock rate, SCLK  
MHz  
TLV5614C  
TLV5614I  
0
70  
Operating free-air temperature  
°C  
–40  
85  
NOTE 1: Voltages greater than AV /2 will cause output saturation for large DAC codes.  
DD  
electrical characteristics over recommended operating free-air temperature range, supply  
voltages, and reference voltages (unless otherwise noted)  
static DAC specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
bits  
Resolution  
12  
Integral nonlinearity (INL), end point adjusted  
Differential nonlinearity (DNL)  
See Note 2  
±1.5  
±0.5  
±4  
±1  
LSB  
See Note 3  
See Note 4  
See Note 5  
LSB  
E
E
Zero scale error (offset error at zero scale)  
Zero scale error temperature coefficient  
±12  
mV  
ZS  
10  
ppm/°C  
% of FS  
voltage  
Gain error  
See Note 6  
See Note 7  
±0.6  
G
Gain error temperature coefficient  
10  
80  
80  
ppm/°C  
dB  
Zero scale  
Power supply rejection ratio  
Full scale  
PSRR  
See Notes 8 and 9  
dB  
NOTES: 2. The relative accuracy or integral nonlinearity (INL) sometimes referred to as linearity error, is the maximum deviation of the output  
from the line between zero and full scale excluding the effects of zero code and full-scale errors.  
3. The differential nonlinearity (DNL) sometimes referred to as differential error, is the difference between the measured and ideal  
1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains  
constant) as a change in the digital input code.  
4. Zero-scale error is the deviation from zero voltage output when the digital input code is zero.  
6
5. Zero-scale-error temperature coefficient is given by: E  
ZS  
TC = [E  
(T  
) – E  
(T  
)]/V × 10 /(T  
– T  
).  
min  
ZS max  
ZS min  
ref max  
6. Gain error is the deviation from the ideal output (2 V – 1 LSB) with an output load of 10 kexcluding the effects of the zero-error.  
ref  
6
7. Gain temperature coefficient is given by: E TC = [E (T  
) – E (T  
)]/V × 10 /(T  
– T  
).  
min  
G
G
max  
G
min ref max  
8. Zero-scale-error rejection ratio (EZS–RR) is measured by varying the AV  
proportion of this signal imposed on the zero-code output voltage.  
from 5 ± 0.5 V and 3 ± 0.5 V dc, and measuring the  
DD  
9. Full-scale rejection ratio (EG-RR) is measured by varying the AV  
from 5 ± 0.5 V and 3 ± 0.5 V dc and measuring the proportion  
DD  
of this signal imposed on the full-scale output voltage after subtracting the zero scale change.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
electrical characteristics over recommended operating free-air temperature range, supply  
voltages, and reference voltages (unless otherwise noted) (continued)  
individual DAC output specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
O
Voltage output range  
R
R
= 10 kΩ  
0
AV –0.4  
DD  
V
L
L
% of FS  
voltage  
Output load regulation accuracy  
= 2 kvs 10 kΩ  
0.1  
0.25  
reference inputs (REFINAB, REFINCD)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
I
Input voltage range  
Input resistance  
See Note 10  
0
AV –1.5  
DD  
R
C
10  
5
MΩ  
pF  
I
I
Input capacitance  
REFIN = 1 V at 1 kHz + 1.024 V dc  
pp  
(see Note 11)  
Reference feed through  
–75  
dB  
Slow  
Fast  
0.5  
1
Reference input bandwidth  
REFIN = 0.2 V + 1.024 V dc large signal  
pp  
MHz  
NOTES: 10. Reference input voltages greater than V /2 will cause output saturation for large DAC codes.  
DD  
11. Reference feedthrough is measured at the DAC output with an input code = 000 hex and a V  
ref (REFINAB or REFINCD)  
input = 1.024 Vdc + 1 V at 1 kHz.  
pp  
digital inputs (DIN, CS, LDAC, PD)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
±1  
UNIT  
µA  
I
I
High-level digital input current  
Low-level digital input current  
Input capacitance  
V = V  
I
IH  
DD  
V = 0 V  
±1  
µA  
IL  
I
C
3
pF  
I
power supply  
PARAMETER  
TEST CONDITIONS  
5-V supply,  
No load, Clock running,  
MIN  
TYP  
MAX  
UNIT  
Slow  
Fast  
Slow  
Fast  
1.6  
2.4  
mA  
3.8  
1.2  
5.6  
1.8  
4.8  
All inputs 0 V or V  
DD  
I
Power supply current  
DD  
3-V supply,  
mA  
nA  
No load, Clock running,  
All inputs 0 V or DV  
3.2  
10  
DD  
Power down supply current (see Figure 12)  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
electrical characteristics over recommended operating free-air temperature range, supply  
voltages, and reference voltages (unless otherwise noted) (continued)  
analog output dynamic performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
C
= 100 pF,  
= 10% to 90%,  
= 2.048 V, 1024 V  
R
= 10 k,  
L
Fast  
5
V/µs  
L
SR  
Output slew rate  
V
V
O
Slow  
1
V/µs  
µs  
ref  
To ± 0.5 LSB,  
= 10 k, See Notes 12 and 14  
Fast  
Slow  
Fast  
Slow  
3
9
5.5  
20  
C
= 100 pF,  
L
t
t
Output settling time  
s
R
L
1
To ± 0.5 LSB,  
R
C = 100 pF,  
L
Output settling time, code to code  
µs  
s(c)  
= 10 k, See Note 15  
2
L
Glitch energy  
Code transition from 7FF to 800  
10  
74  
nV-sec  
SNR  
Signal-to-noise ratio  
Sinewave generated by DAC,  
Reference voltage = 1.024 at 3 V and 2.048 at 5 V,  
f = 400 KSPS,  
S/(N+D) Signal to noise + distortion  
66  
s
dB  
f
C
= 1.1 kHz sinewave,  
THD  
Total harmonic Distortion  
–68  
OUT  
= 100 pF,  
R = 10 k,  
L
L
SFDR  
Spurious free dynamic range  
70  
BW = 20 kHz  
NOTES: 12. Settling time is the time for the output signal to remain within ±0.5 LSB of the final measured value for a digital input code change  
ofFFF hex to 080 hex for 080 hex to FFF hex.  
13. Settling time is the time for the output signal to remain within ±0.5 LSB of the final measured value for a digital input code change  
of one count.  
14. Limits are ensured by design and characterization, but are not production tested.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
electrical characteristics over recommended operating free-air temperature range, supply  
voltages, and reference voltages (unless otherwise noted) (continued)  
digital input timing requirements  
MIN NOM  
MAX  
UNIT  
ns  
t
t
Setup time, CS low before FS↓  
10  
8
su(CS–FS)  
Setup time, FS low before first negative SCLK edge  
ns  
su(FS–CK)  
Setup time, sixteenth negative edge after FS low on which bit D0 is sampled before rising  
edge of FS  
t
10  
ns  
su(C16–FS)  
su(C16–CS)  
Setuptime,sixteenthpositiveSCLKedge(firstpositiveafterD0issampled)beforeCSrising  
edge. If FS is used instead of the sixteenth positive edge to update the DAC, then the setup  
time is between the FS rising edge and CS rising edge.  
t
10  
ns  
t
t
t
Pulse duration, SCLK high  
25  
25  
8
ns  
ns  
ns  
wH  
Pulse duration, SCLK low  
wL  
Setup time, data ready before SCLK falling edge  
su(D)  
t
Hold time, data held valid after SCLK falling edge  
Pulse duration, FS high  
5
ns  
ns  
h(D)  
t
20  
wH(FS)  
PARAMETER MEASUREMENT INFORMATION  
t
t
wH  
wL  
SCLK  
DIN  
1
2
3
4
5
15  
16  
t
t
su(D)  
h(D)  
D14  
D15  
D13  
D12  
D1  
D0  
t
su(FS-CK)  
t
su(C16-CS)  
t
su(CS-FS)  
CS  
FS  
t
wH(FS)  
t
su(C16-FS)  
Figure 1. Timing Diagram  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
TYPICAL CHARACTERISTICS  
LOAD REGULATION  
LOAD REGULATION  
0.2  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.35  
0.30  
0.25  
V
= 3 V,  
= 1 V,  
= Full Scale  
V
= 5 V,  
= 2 V,  
= Full Scale  
DD  
DD  
V
V
ref  
V
ref  
V
O
O
3 V Slow Mode, Sink  
5 V Slow Mode, Sink  
5 V Fast Mode, Sink  
0.20  
3 V Fast Mode, Sink  
0.15  
0.10  
0.06  
0.04  
0.05  
0
0.02  
0
0
0.01 0.02 0.05 0.1 0.2 0.5  
Load Current – mA  
1
2
0
0.02 0.04 0.1 0.2 0.4  
Load Current – mA  
1
2
4
Figure 2  
Figure 3  
LOAD REGULATION  
LOAD REGULATION  
3 V Slow Mode, Source  
4.01  
2.001  
2.001  
5 V Slow Mode, Source  
5 V Fast Mode, Source  
4.005  
2.000  
2.000  
1.999  
1.999  
1.998  
3 V Fast Mode, Source  
4
3.995  
1.998  
1.997  
3.99  
V
= 5 V,  
= 2 V,  
= Full Scale  
V
V
= 3 V,  
= 1 V,  
DD  
DD  
V
ref  
ref  
V = Full Scale  
O
1.997  
1.996  
V
O
3.985  
0
0.02 0.04 0.1 0.2 0.4  
1
2
4
0
0.01 0.02 0.05 0.1 0.2 0.5  
Load Current – mA  
1
2
Load Current – mA  
Figure 4  
Figure 5  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
TEMPERATURE  
TEMPERATURE  
4
4
V
= 3 V,  
= 1.024 V,  
DD  
V
ref  
Full Scale  
3.5  
3.5  
V
O
Fast Mode  
(Worst Case For I  
DD  
)
Fast Mode  
3
3
V
= 5 V,  
= 1.024 V,  
Full Scale  
2.5  
DD  
2.5  
V
ref  
V
O
2
2
(Worst Case For I )  
DD  
1.5  
1.5  
1
1
Slow Mode  
Slow Mode  
0.5  
0.5  
–55 –40 –25  
0
25  
40 70  
85 125  
–55 –40 –25  
0
25 40  
70  
85 125  
T – Temperature – °C  
T – Temperature – °C  
Figure 6  
Figure 7  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
FREQUENCY  
FREQUENCY  
0
0
V
= 1 V dc + 1 V p/p Sinewave,  
ref  
V
= 1 V dc + 1 V p/p Sinewave,  
ref  
–10  
Output Full Scale  
–10  
Output Full Scale  
–20  
–30  
–20  
–30  
––40  
––40  
–50  
–60  
–50  
–60  
Fast Mode  
Slow Mode  
–70  
–80  
–70  
–80  
0
5
10  
20  
30  
50  
100  
0
5
10  
20  
30  
50  
100  
f – Frequency – kHz  
f – Frequency – kHz  
Figure 8  
Figure 9  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION AND NOISE  
TOTAL HARMONIC DISTORTION AND NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
0
0
V
= 1 V dc + 1 V p/p Sinewave,  
V
= 1 V dc + 1 V p/p Sinewave,  
ref  
Output Full Scale  
ref  
Output Full Scale  
–10  
–10  
–20  
–30  
–20  
–30  
––40  
––40  
–50  
–60  
–50  
–60  
Fast Mode  
Slow Mode  
–70  
–80  
–70  
–80  
0
5
10  
20  
30  
50  
100  
0
5
10  
20  
30  
50  
100  
f – Frequency – kHz  
f – Frequency – kHz  
Figure 10  
Figure 11  
SUPPLY CURRENT  
vs  
TIME  
(WHEN ENTERING POWER-DOWN MODE)  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
0
200  
400  
600  
800  
1000  
t – Time – ns  
Figure 12  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY  
0.3  
V
CC  
= 5 V, V = 2 V, SCLK = 1 MHz)  
0.25  
0.2  
ref  
0.15  
0.1  
0.05  
0
–0.05  
–0.1  
–0.15  
–0.2  
–0.25  
–0.3  
0
256 512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072 3328 3584 3840  
Digital Code  
Figure 13  
INTEGRAL NONLINEARITY  
1
V
= 5 V, V = 2 V,  
ref  
CC  
SCLK = 1 MHz  
0.5  
0
–0.5  
–1  
–1.5  
0
256 512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072 3328 3584 3840  
Digital Code  
Figure 14  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
APPLICATION INFORMATION  
general function  
TheTLV5614isa12-bitsinglesupplyDACbasedonaresistorstringarchitecture. Thedeviceconsistsofaserial  
interface, speed and power down control logic, a reference input buffer, a resistor string, and a rail-to-rail output  
buffer.  
The output voltage (full scale determined by external reference) is given by:  
CODE  
2 REF  
[V]  
0x1000  
Where REF is the reference voltage and CODE is the digital input value within the range of 0x000 to 0xFFF.  
A power-on reset initially resets the internal latches to a defined state (all bits zero).  
serial interface  
Explanation of data transfer: First, the device has to be enabled with CS set to low. Then, a falling edge of FS  
starts shifting the data bit-per-bit (starting with the MSB) to the internal register on the falling edges of SCLK.  
After 16 bits have been transferred or FS rises, the content of the shift register is moved to the DAC latch which  
updates the voltage output to the new level.  
The serial interface of the TLV5614 can be used in two basic modes:  
four wire (with chip select)  
three wire (without chip select)  
Using chip select (four wire mode), it is possible to have more than one device connected to the serial port of  
the data source (DSP or microcontroller). The interface is compatible with the TMS320 family. Figure 15 shows  
an example with two TLV5614s connected directly to a TMS320 DSP.  
TLV5614  
TLV5614  
CS FS DIN SCLK  
CS FS DIN SCLK  
TMS320  
DSP  
XF0  
XF1  
FSX  
DX  
CLKX  
Figure 15. TMS320 Interface  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
APPLICATION INFORMATION  
serial interface (continued)  
If there is no need to have more than one device on the serial bus, then CS can be tied low. Figure 16 shows  
an example of how to connect the TLV5614 to a TMS320, SPI, or Microwire port using only three pins.  
TMS320  
DSP  
TLV5614  
SPI  
TLV5614  
Microwire  
TLV5614  
FSX  
FS  
SS  
FS  
I/O  
FS  
DIN  
DIN  
DIN  
DX  
MOSI  
SCLK  
SO  
SK  
CLKX  
SCLK  
CS  
SCLK  
CS  
SCLK  
CS  
Figure 16. Three-Wire Interface  
Notes on SPI and Microwire: Before the controller starts the data transfer, the software has to generate a falling  
edge on the I/O pin connected to FS. If the word width is 8 bits (SPI and Microwire), two write operations must  
be performed to program the TLV5614. After the write operation(s), the DAC output is updated automatically  
on the sixteenth positive clock edge.  
serial clock frequency and update rate  
The maximum serial clock frequency is given by:  
1
f
20 MHz  
SCLKmax  
t
t
wH(min)  
wL(min)  
The maximum update rate is:  
1
f
1.25 MHz  
UPDATEmax  
16  
t
t
wH(min)  
wL(min)  
Note that the maximum update rate is a theoretical value for the serial interface since the settling time of the  
TLV5614 has to be considered also.  
data format  
The 16-bit data word for the TLV5614 consists of two parts:  
Control bits  
(D15 . . . D12)  
(D11 . . . D0)  
New DAC value  
D15  
A1  
D14  
A0  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PWR  
SPD  
New DAC value (12 bits)  
X: don’t care  
SPD: Speed control bit.  
1 fast mode  
0 slow mode  
PWR: Power control bit. 1 power down  
0 normal operation  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
APPLICATION INFORMATION  
In power down mode, all amplifiers within the TLV5614 are disabled. A particular DAC (A, B, C, D) of the  
TLV5614 is selected by A1 and A0 within the input word.  
A1  
0
A0  
0
DAC  
A
0
1
B
1
0
C
1
1
D
TLV5614 interfaced to TMS320C203 DSP  
hardware interfacing  
Figure 17 shows an example of how to connect the TLV5614 to a TMS320C203 DSP. The serial port is  
configured in burst mode, with FSX generated by the TMS320C203 to provide the frame sync (FS) input to the  
TLV5614. Data is transmitted on the DX line, with the serial clock input on the CLKX line. The general-purpose  
input/outputportbitsIO0andIO1areusedtogeneratethechipselect(CS)andDAClatchupdate(LDAC)inputs  
to the TLV5614. The active low power down (PD) is pulled high all the time to ensure the DACs are enabled.  
TMS320C203  
TLV5614  
SDIN  
SCLK  
FS  
V
DX  
DD  
PD  
CLKX  
FSX  
I/O 0  
I/O 1  
CS  
VOUTA  
VOUTB  
VOUTC  
VOUTD  
LDAC  
REFINAB  
REFINCD  
REF  
V
SS  
Figure 17. TLV5614 Interfaced with TMS320C203  
software  
The application example outputs a differential in-phase (sine) signal between the VOUTA and VOUTB pins, and  
it’s quadrature (cosine) signal as the differential signal between VOUTC and VOUTD.  
The on-chip timer is used to generate interrupts at a fixed frequency. The related interrupt service routine pulses  
LDAC low to update all 4 DACs simultaneously, then fetches and writes the next sample to all 4 DACs. The  
samples are stored in a look-up table, which describes two full periods of a sine wave.  
The synchronous serial port of the DSP is used in burst mode. In this mode, the processor generates an FS  
pulse preceding the MSB of every data word. If multiple, contiguous words are transmitted, a violation of the  
tsu(C16–FS)timingrequirementwilloccur. Toavoidthis, theprogramwaitsuntilthetransmissionoftheprevious  
word has been completed.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
APPLICATION INFORMATION  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; Processor: TMS320C203 runnning at 40 MHz  
;
; Description:  
;
; This program generates a differential in–phase (sine) on (OUTA–OUTB) and it’s  
; quadrature (cosine) as a differential signal on (OUTC–OUTD).  
;
; The DAC codes for the signal samples are stored as a table of 64 12–bit values,  
; describing 2 periods of a sine function. A rolling pointer is used to address the  
; table location in the first period of this waveform, from which the DAC A samples  
; are read. The samples for the other 3 DACs are read at an offset to this rolling  
; pointer:  
;
;
;
;
;
;
DAC  
A
Function  
sine  
Offset from rolling pointer  
0
B
inverse sine 16  
C
D
cosine  
inverse cosine24  
8
; The on–chip timer is used to generate interrupts at a fixed rate. The interrupt  
; service routine first pulses LDAC low to update all DACs simultaneously  
; with the values which were written to them in the previous interrupt. Then all  
; 4 DAC values are fetched and written out through the synchronous serial interface  
; Finally, the rolling pointer is incremented to address the next sample, ready for  
; the next interrupt.  
;
;
1998, Texas Instruments Inc.  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
;–––––––––––––––––––––––––––––– I/O and memory mapped regs –––––––––––––––––––––––––––––  
.include ”regs.asm”  
;–––––––jump vectors –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
.ps  
b
0h  
start  
int1  
b
b
b
int23  
timer_isr;  
––––––––––– variables –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
temp  
.equ  
.equ  
.equ  
.equ  
.equ  
.equ  
.equ  
0060h  
0061h  
0062h  
0063h  
0064h  
0065h  
0066h  
r_ptr  
iosr_stat  
DACa_ptr  
DACb_ptr  
DACc_ptr  
DACd_ptr  
;–––––––––––constants––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; DAC control bits to be OR’ed onto data  
; all fast mode  
DACa_control .equ  
DACb_control .equ  
DACc_control .equ  
DACd_control .equ  
01000h  
05000h  
09000h  
0d000h  
;––––––––––– tables ––––––––––––––––––––––––––––––––  
.ds  
sinevals  
02000h  
.word 00800h  
.word 0097Ch  
.word 00AE9h  
.word 00C3Ah  
.word 00D61h  
.word 00E53h  
.word 00F07h  
.word 00F76h  
.word 00F9Ch  
.word 00F76h  
.word 00F07h  
.word 00E53h  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
APPLICATION INFORMATION  
.word 00D61h  
.word 00C3Ah  
.word 00AE9h  
.word 0097Ch  
.word 00800h  
.word 00684h  
.word 00517h  
.word 003C6h  
.word 0029Fh  
.word 001ADh  
.word 000F9h  
.word 0008Ah  
.word 00064h  
.word 0008Ah  
.word 000F9h  
.word 001ADh  
.word 0029Fh  
.word 003C6h  
.word 00517h  
.word 00684h  
.word 00800h  
.word 0097Ch  
.word 00AE9h  
.word 00C3Ah  
.word 00D61h  
.word 00E53h  
.word 00F07h  
.word 00F76h  
.word 00F9Ch  
.word 00F76h  
.word 00F07h  
.word 00E53h  
.word 00D61h  
.word 00C3Ah  
.word 00AE9h  
.word 0097Ch  
.word 00800h  
.word 00684h  
.word 00517h  
.word 003C6h  
.word 0029Fh  
.word 001ADh  
.word 000F9h  
.word 0008Ah  
.word 00064h  
.word 0008Ah  
.word 000F9h  
.word 001ADh  
.word 0029Fh  
.word 003C6h  
.word 00517h  
.word 00684h  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
APPLICATION INFORMATION  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; Main Program  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
.ps  
.entry  
1000h  
start  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; disable interrupts  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
setc  
splk  
splk  
INTM  
; disable maskable interrupts  
#0ffffh, IFR; clear all interrupts  
#0004h, IMR; timer interrupts unmasked  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; set up the timer  
; timer period set by values in PRD and TDDR  
; period = (CLKOUT1 period) x (1+PRD) x (1+TDDR)  
; examples for TMS320C203 with 40MHz main clock  
; Timer rate  
TDDR  
9
9
PRD  
24 (18h)  
39 (27h)  
;
;
80 kHz  
50 kHz  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
prd_val.equ  
tcr_val.equ  
splk  
0018h  
0029h  
#0000h, temp; clear timer  
out  
temp, TIM  
splk  
#prd_val, temp; set PRD  
out  
temp, PRD  
splk  
#tcr_val, temp; set TDDR, and TRB=1 for auto–reload  
temp, TCR  
out  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; Configure IO0/1 as outputs to be :  
; IO0 CS – and set high  
; IO1 LDAC  
– and set high  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
in  
temp, ASPCR; configure as output  
lacl  
or  
temp  
#0003h  
sacl  
out  
in  
lacl  
or  
sacl  
out  
temp  
temp, ASPCR  
temp, IOSR; set them high  
temp  
#0003h  
temp  
temp, IOSR  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; set up serial port for  
; SSPCR.TXM=1  
; SSPCR.MCM=1  
; SSPCR.FSM=1  
Transmit mode – generate FSX  
Clock mode – internal clock source  
Burst mode  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
splk  
out  
splk  
out  
#0000Eh, temp  
temp, SSPCR; reset transmitter  
#0002Eh, temp  
temp,SSPCR  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; reset the rolling pointer  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
lacl  
sacl  
#000h  
r_ptr  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; enable interrupts  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
clrc  
INTM  
; enable maskable interrupts  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; loop forever!  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
APPLICATION INFORMATION  
next  
idle  
b
;wait for interrupt  
next  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; all else fails stop here  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
done  
b
done  
;hang there  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; Interrupt Service Routines  
;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
int1  
ret  
; do nothing and return  
; do nothing and return  
int23 ret  
timer_isr:  
in  
iosr_stat, IOSR; store IOSR value into variable space  
lacl  
and  
iosr_stat  
#0FFFDh  
temp  
temp, IOSR  
#0002h  
temp  
temp, IOSR  
#0FFFEh  
temp  
temp, IOSR  
r_ptr  
; load acc with iosr status  
; reset IO1 – LDAC low  
sacl  
out  
;
;
or  
; set IO1 – LDAC high  
sacl  
out  
;
;
and  
; reset IO0 – CS low  
sacl  
out  
;
;
lacl  
add  
; load rolling pointer to accumulator  
; add pointer to table start  
; to get a pointer for next DAC a sample  
; add 8 to get to DAC C pointer  
#sinevals  
DACa_ptr  
#08h  
sacl  
add  
sacl  
add  
DACc_ptr  
#08h  
; add 8 to get to DAC B pointer  
; add 8 to get to DAC D pointer  
; set ar0 as current AR  
sacl  
add  
DACb_ptr  
#08h  
sacl  
mar  
DACd_ptr  
*,ar0  
; DAC A  
lar  
ar0, DACa_ptr; ar0 points to DAC a sample  
* ; get DAC a sample into accumulator  
lacl  
or  
#DACa_control; OR in DAC A control bits  
sacl  
out  
temp  
;
temp, SDTR  
; send data  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; We must wait for transmission to complete before writing next word to the SDTR.;  
TLV5614/04 interface does not allow the use of burst mode with the full packet; rate, as  
we need a CLKX –ve edge to clock in last bit before FS goes high again,; to allow SPI  
compatibility.  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
rpt  
nop  
#016h  
; wait long enough for this configuration  
; of MCLK/CLKOUT1 rate  
; DAC B  
lar  
ar0, dacb_ptr; ar0 points to DAC a sample  
* ; get DAC a sample into accumulator  
lacl  
or  
#DACb_control; OR in DAC B control bits  
sacl  
out  
rpt  
nop  
temp  
;
temp, SDTR  
#016h  
; send data  
; wait long enough for this configuration  
; of MCLK/CLKOUT1 rate  
; DAC C  
lar  
ar0, dacc_ptr; ar0 points to dac a sample  
; get DAC a sample into accumulator  
#DACc_control; OR in DAC C control bits  
temp  
temp, SDTR; send data  
lacl  
or  
*
sacl  
out  
rpt  
nop  
;
#016h  
; wait long enough for this configuration  
; of MCLK/CLKOUT1 rate  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
APPLICATION INFORMATION  
; DAC D  
lar  
ar0, dacd_ptr; ar0 points to DAC a sample  
lacl  
or  
*
; get DAC a sample into accumulator  
#dacd_control; OR in DAC D control bits  
sacl  
out  
temp  
temp, SDTR  
;
; send data  
lacl  
add  
r_ptr  
#1h  
#001Fh  
r_ptr  
#016h  
; load rolling pointer to accumulator  
; increment rolling pointer  
and  
; count 0–31 then wrap back round  
; store rolling pointer  
sacl  
rpt  
nop  
; wait long enough for this configuration  
; of MCLK/CLKOUT1 rate  
; now take CS high again  
lacl  
or  
iosr_stat  
#0001h  
temp  
temp, IOSR  
intm  
; load acc with iosr status  
; set IO0 – CS high  
sacl  
out  
clrc  
ret  
;
;
; re-enable interrupts  
; return from interrupt  
.end  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
APPLICATION INFORMATION  
TLV5614 interfaced to MCS 51 microcontroller  
hardware iInterfacing  
Figure 18 shows an example of how to connect the TLV5614 to an MCS 51 Microcontroller. The serial DAC  
input data and external control signals are sent via I/O Port 3 of the controller. The serial data is sent on the RxD  
line, with the serial clock output on the TxD line. Port 3 bits 3, 4, and 5 are configured as outputs to provide the  
DAC latch update (LDAC), chip select (CS) and frame sync (FS) signals for the TLV5614. The active low power  
down pin (PD) of the TLV5614 is pulled high to ensure that the DACs are enabled.  
MCS 51  
TLV5614  
SDIN  
V
DD  
PD  
RxD  
SCLK  
TxD  
LDAC  
CS  
P3.3  
P3.4  
P3.4  
VOUTA  
VOUTB  
VOUTC  
VOUTD  
FS  
REFINAB  
REFINCD  
REF  
V
SS  
Figure 18. TLV5614 Interfaced with MCS 51  
software  
The example is the same as for the TMS320C203 in this datasheet, but adapted for a MCS 51 controller. It  
generates a differential in-phase (sine) signal between the VOUTA and VOUTB pins, and it’s quadrature  
(cosine) signal as the differential signal between VOUTC and VOUTD.  
The on-chip timer is used to generate interrupts at a fixed frequency. The related interrupt service routine pulses  
LDAC low to update all 4 DACs simultaneously, then fetches and writes the next sample to all 4 DACs. The  
samples are stored as a look-up table, which describes one full period of a sine wave.  
The serial port of the controller is used in Mode 0, which transmits 8 bits of data on RxD, accompanied by a  
synchronous clock on TxD. Two writes concatenated together are required to write a comlpete word to the  
TLV5614. The CS and FS signals are provided in the required fashion through control of IO port 3, which has  
bit addressable outputs.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
APPLICATION INFORMATION  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; Processor: 80C51  
;
; Description:  
;
; This program generates a differential in-phase  
(sine) on (OUTA–OUTB) ; and it’s quadrature (cosine)  
as a differential signal on (OUTC–OUTD).  
;
;
1998, Texas Instruments Inc.  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
NAME  
MAIN  
ISR  
GENIQ  
SEGMENT  
SEGMENT  
CODE  
CODE  
CODE  
DATA  
IDATA  
SINTBL SEGMENT  
VAR1  
SEGMENT  
STACK SEGMENT  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; Code start at address 0, jump to start  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
CSEG AT  
0
LJMP start  
; Execution starts at address 0 on power–up.  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; Code in the timer0 interrupt vector  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
CSEG AT  
0BH  
LJMP timer0isr  
; Jump vector for timer 0 interrupt is 000Bh  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; Global variables need space allocated  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
RSEG  
VAR1  
DS  
temp_ptr:  
rolling_ptr: DS  
1
1
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––;  
Interrupt service routine for timer 0 interrupts  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
RSEG  
timer0isr:  
PUSH  
ISR  
PSW  
PUSH  
ACC  
CLR  
INT1  
INT1  
; pulse LDAC low  
SETB  
; to latch all 4 previous values at the same time  
; 1st thing done in timer isr => fixed period  
; set CS low  
CLR  
T0  
; The signal to be output on each DAC is a sine function.  
; One cycle of a sine wave is held in a table @ sinevals  
; as 32 samples of msb, lsb pairs (64 bytes).  
; We have ; one pointer which rolls round this table, rolling_ptr,  
; incrementing by 2 bytes (1 sample) on each interrupt (at the end of  
; this routine).  
; The DAC samples are read at an offset to this rolling pointer:  
; DAC Function Offset from rolling_ptr  
;
A
B
C
D
sine  
0
;
inverse sine 32  
;
;
MOV  
cosine  
inverse cosine48  
16  
DPTR,#sinevals; set DPTR to the start of the table  
; of sine signal values  
MOV  
R7,rolling_ptr; R7 holds the pointer  
;into the sine table  
MOV  
MOVC  
A,R7  
A,@A+DPTR  
; get DAC A msb  
; msb of DAC A is in the ACC  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
APPLICATION INFORMATION  
CLR  
MOV  
T1  
SBUF,A  
; transmit it – set FS low  
; send it out the serial port  
INC  
R7  
; increment the pointer in R7  
MOV  
A,R7  
; to get the next byte from the table  
; which is the lsb of this sample, now in ACC  
MOVC  
A_MSB_TX:  
JNB  
CLR  
MOV  
A,@A+DPTR  
TI,A_MSB_TX ; wait for transmit to complete  
TI  
SBUF,A  
; clear for new transmit  
; and send out the lsb of DAC A  
; DAC C next  
; DAC C codes should be taken from 16 bytes (8 samples) further on  
; in the sine table – this gives a cosine function  
MOV  
ADD  
ANL  
MOV  
A,R7  
; pointer in R7  
A,#0FH  
; add 15 – already done one INC  
; wrap back round to 0 if > 64  
; pointer back in R7  
A,#03FH  
R7,A  
MOVC  
ORL  
A,@A+DPTR  
A,#01H  
; get DAC C msb from the table  
; set control bits to DAC C address  
A_LSB_TX:  
JNB  
TI,A_LSB_TX ; wait for DAC A lsb transmit to complete  
SETB  
CLRT1  
CLR  
T1  
; toggle FS  
TI  
; clear for new transmit  
MOV  
SBUF,A  
R7  
; and send out the msb of DAC C  
; increment the pointer in R7  
INC  
MOV  
A,R7  
A,@A+DPTR  
; to get the next byte from the table  
; which is the lsb of this sample, now in ACC  
MOVC  
C_MSB_TX:  
JNB  
TI,C_MSB_TX ; wait for transmit to complete  
CLR  
MOV  
TI  
SBUF,A  
; clear for new transmit  
; and send out the lsb of DAC C  
; DAC B next  
; DAC B codes should be taken from 16 bytes (8 samples) further on  
; in the sine table – this gives an inverted sine function  
MOV  
ADD  
ANL  
MOV  
A,R7  
; pointer in R7  
A,#0FH  
; add 15 – already done one INC  
; wrap back round to 0 if > 64  
; pointer back in R7  
A,#03FH  
R7,A  
MOVC  
ORL  
A,@A+DPTR  
A,#02H  
; get DAC B msb from the table  
; set control bits to DAC B address  
C_LSB_TX:  
JNB  
TI,C_LSB_TX ; wait for DAC C lsb transmit to complete  
SETB  
CLR  
T1  
; toggle FS  
T1  
CLR  
MOV  
TI  
SBUF,A  
; clear for new transmit  
; and send out the msb of DAC B  
; get DAC B LSB  
INC  
R7  
; increment the pointer in R7  
; to get the next byte from the table  
; which is the lsb of this sample, now in ACC  
MOV  
A,R7  
A,@A+DPTR  
MOVC  
B_MSB_TX:  
JNB  
TI,B_MSB_TX ; wait for transmit to complete  
CLR  
TI  
; clear for new transmit  
MOV  
SBUF,A  
; and send out the lsb of DAC B  
; DAC D next  
; DAC D codes should be taken from 16 bytes (8 samples) further on  
; in the sine table – this gives an inverted cosine function  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
APPLICATION INFORMATION  
MOV  
ADD  
ANL  
MOV  
MOVC  
ORL  
A,R7  
; pointer in R7  
A,#0FH  
; add 15 – already done one INC  
; wrap back round to 0 if > 64  
; pointer back in R7  
A,#03FH  
R7,A  
A,@A+DPTR  
A,#03H  
; get DAC D msb from the table  
; set control bits to DAC D address  
B_LSB_TX:  
JNB  
TI,B_LSB_TX ; wait for DAC B lsb transmit to complete  
SETB  
CLR  
T1  
T1  
; toggle FS  
CLR  
TI ; clear for new transmit  
MOV  
SBUF,A  
; and send out the msb of DAC D  
INC  
R7  
; increment the pointer in R7  
; to get the next byte from the table  
; which is the lsb of this sample, now in ACC  
MOV  
A,R7  
MOVC  
A,@A+DPTR  
D_MSB_TX:  
JNB  
TI,D_MSB_TX ; wait for transmit to complete  
CLR  
TI  
; clear for new transmit  
MOV  
SBUF,A  
; and send out the lsb of DAC D  
; increment the rolling pointer to point to the next sample  
; ready for the next interrupt  
MOV  
ADD  
A,rolling_ptr  
A,#02H  
; add 2 to the rolling pointer  
; wrap back round to 0 if > 64  
ANL  
A,#03FH  
MOV  
rolling_ptr,A; store in memory again  
D_LSB_TX:  
JNB  
TI,D_LSB_TX ; wait for DAC D lsb transmit to complete  
CLR  
TI  
; clear for next transmit  
; FS high  
SETB  
SETB  
POP  
POP  
RETI  
T1  
T0  
; CS high  
ACC  
PSW  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; Stack needs definition  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
RSEG STACK  
DS  
10h  
; 16 Byte Stack!  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; Main program code  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
RSEG  
start:  
MAIN  
MOV  
CLRA  
MOV  
MOV  
MOV  
SETB  
SETB  
SETB  
SETB  
SETB  
MOV  
SP,#STACK–1 ; first set Stack Pointer  
SCON,A  
TMOD,#02H  
TH0,#038H  
INT1  
; set serial port 0 to mode 0  
; set timer 0 to mode 2 – auto–reload  
; set TH0 for 5kHs interrupts  
; set LDAC = 1  
T1  
; set FS = 1  
T0  
; set CS = 1  
; enable timer 0 interrupts  
; enable all interrupts  
ET0  
EA  
rolling_ptr,A; set rolling pointer to 0  
SETB  
always:  
SJMP  
RET  
TR0  
; start timer 0  
; while(1) !  
always  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
; Table of 32 sine wave samples used as DAC data  
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  
RSEG  
SINTBL  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
APPLICATION INFORMATION  
sinevals:  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
01000H  
0903EH  
05097H  
0305CH  
0B086H  
070CAH  
0F0E0H  
0F06EH  
0F039H  
0F06EH  
0F0E0H  
070CAH  
0B086H  
0305CH  
05097H  
0903EH  
01000H  
06021H  
0A0E8H  
0C063H  
040F9H  
080B5H  
0009FH  
00051H  
00026H  
00051H  
0009FH  
080B5H  
040F9H  
0C063H  
0A0E8H  
DW 06021H  
END  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.010 (0,25)  
M
0.014 (0,35)  
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5614  
2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS  
WITH POWER DOWN  
SLAS188 – SEPTEMBER 1998  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0,30  
0,19  
0,65  
M
0,10  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
0,75  
0,50  
A
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4040064/E 08/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TLV5614CPWG4

2.7-V TO 5.5-V 12-BIT 3-mS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN
TI

TLV5614CPWLE

QUAD, SERIAL INPUT LOADING, 9us SETTLING TIME, 12-BIT DAC, PDSO16
TI

TLV5614CPWR

2.7-V TO 5.5-V 12-BIT 3-mS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN
TI

TLV5614CPWRG4

2.7-V TO 5.5-V 12-BIT 3-mS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN
TI

TLV5614D

2.7-V TO 5.5-V 12-BIT 3-mS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN
TI

TLV5614ID

2.7-V TO 5.5-V 12-BIT 3-mS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN
TI

TLV5614IDG4

2.7-V TO 5.5-V 12-BIT 3-mS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN
TI

TLV5614IDR

2.7-V TO 5.5-V 12-BIT 3-mS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN
TI

TLV5614IDRG4

2.7-V TO 5.5-V 12-BIT 3-mS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN
TI

TLV5614IPW

2.7-V TO 5.5-V 12-BIT 3-mS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN
TI

TLV5614IPWG4

2.7-V TO 5.5-V 12-BIT 3-mS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN
TI

TLV5614IPWLE

QUAD, SERIAL INPUT LOADING, 9us SETTLING TIME, 12-BIT DAC, PDSO16
TI