TLV5626 [TI]

2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN; 2.7 V至5.5 V低功耗双通道8位具内部基准和断电数位类比转换器
TLV5626
型号: TLV5626
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN
2.7 V至5.5 V低功耗双通道8位具内部基准和断电数位类比转换器

转换器
文件: 总16页 (文件大小:228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV5626  
2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN  
SLAS236 –JUNE 1999  
D PACKAGE  
(TOP VIEW)  
features  
Dual 8-Bit Voltage Output DAC  
DIN  
SCLK  
CS  
V
DD  
OUTB  
REF  
1
2
3
4
8
7
6
5
Programmable Internal Reference  
Programmable Settling Time:  
0.8 µs in Fast Mode ,  
OUTA  
AGND  
2.8 µs in Slow Mode  
Compatible With TMS320 and SPI Serial  
Ports  
Differential Nonlinearity <0.1 LSB Typ  
Monotonic Over Temperature  
applications  
Digital Servo Control Loops  
Digital Offset and Gain Adjustment  
Industrial Process Control  
Machine and Motion Control Devices  
Mass Storage Devices  
description  
The TLV5626 is a dual 8-bit voltage output DAC with a flexible 3-wire serial interface.The serial interface allows  
glueless interface to TMS320 and SPI , QSPI , and Microwire serial ports. It is programmed with a 16-bit  
serial string containing 2 control and 8 data bits.  
The resistor string output voltage is buffered by a x2 gain rail-to-rail output buffer. The buffer features a Class AB  
output stage to improve stability and reduce settling time. The programmable settling time of the DAC allows  
the designer to optimize speed versus power dissipation. With its on-chip programmable precision voltage  
reference, the TLV5626 simplifies overall system design.  
Because of its ability to source up to 1 mA, the reference can also be used as a system reference. Implemented  
with a CMOS process, the device is designed for single supply operation from 2.7 V to 5.5 V. It is available in  
an 8-pin SOIC package to reduce board space in standard commercial and industrial temperature ranges.  
AVAILABLE OPTIONS  
PACKAGE  
T
A
SOIC  
(D)  
0°C to 70°C  
TLV5626CD  
TLV5626ID  
40°C to 85°C  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
SPI and QSPI are trademarks of Motorola, Inc.  
Microwire is a trademark of National Semiconductor Corporation.  
Copyright 1999, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5626  
2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN  
SLAS236 –JUNE 1999  
functional block diagram  
REF  
AGND  
V
DD  
PGA With  
Output Enable  
Voltage  
Bandgap  
Power  
and Speed  
Control  
Power-On  
Reset  
2
2
2-Bit  
Control  
Latch  
x2  
OUTA  
DIN  
8-Bit  
DAC A  
Latch  
8
8
SCLK  
CS  
Serial  
Interface  
and  
8
Buffer  
Control  
8
8
8-Bit  
DAC B  
Latch  
x2  
OUTB  
Terminal Functions  
TERMINAL  
I/O/P  
DESCRIPTION  
NAME  
NO.  
5
AGND  
CS  
P
I
Ground  
3
Chip select. Digital input active low, used to enable/disable inputs  
Digital serial data input  
DIN  
1
I
OUTA  
OUTB  
REF  
4
I
DAC A analog voltage output  
7
O
I/O  
I
DAC B analog voltage output  
6
Analog reference voltage input/output  
Digital serial clock input  
SCLK  
2
V
DD  
8
P
Positive power supply  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5626  
2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN  
SLAS236 –JUNE 1999  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage (V  
to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DD  
Reference input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to V  
Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to V  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
Operating free-air temperature range, T : TLV5626C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
TLV5626I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Storage temperature range, T  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
MIN  
4.5  
2.7  
0.55  
2
NOM  
MAX  
5.5  
3.3  
2
UNIT  
V
V
V
= 5 V  
= 3 V  
5
3
DD  
Supply voltage, V  
DD  
V
DD  
Power on threshold voltage, POR  
High-level digital input voltage, V  
V
V
DD  
V
DD  
V
DD  
V
DD  
= 2.7 V to 5.5 V  
= 2.7 V to 5.5 V  
= 5 V (see Note 1)  
= 3 V (see Note 1)  
V
IH  
Low-level digital input voltage, V  
0.8  
V
IL  
Reference voltage, V to REF terminal  
ref  
Reference voltage, V to REF terminal  
AGND  
AGND  
2
2.048  
1.024  
V
–1.5  
1.5  
V
DD  
V
V
ref  
DD  
Load resistance, R  
kΩ  
pF  
MHz  
L
Load capacitance, C  
100  
20  
L
Clock frequency, f  
CLK  
TLV5626C  
TLV5626I  
0
70  
Operating free-air temperature, T  
°C  
A
–40  
85  
NOTE 1: Due to the x2 output buffer, a reference input voltage (V  
– 0.4 V)/2 causes clipping of the transfer function. The output buffer of the  
DD  
internal reference must be disabled, if an external reference is used.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5626  
2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN  
SLAS236 –JUNE 1999  
electrical characteristics over recommended operating conditions (unless otherwise noted)  
power supply  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Fast  
4.2  
5
mA  
V
= 5 V,  
DD  
Int. ref.  
Slow  
Fast  
2
2.5  
4.6  
mA  
mA  
3.7  
V
= 3 V,  
DD  
Int. ref.  
No load,  
Slow  
Fast  
1.7  
3.8  
2.2  
4.6  
mA  
mA  
All inputs = AGND or V  
DAC latch = 0x800  
,
I
Power supply current  
DD  
DD  
V
= 5 V,  
DD  
Ext. ref.  
Slow  
Fast  
1.7  
3.4  
2.1  
4.2  
mA  
mA  
V
= 3 V,  
DD  
Ext. ref.  
Slow  
1.4  
1
1.8  
mA  
Power-down supply current  
Power supply rejection ratio  
µA  
Zero scale, See Note 2  
Full scale, See Note 3  
–65  
–65  
PSRR  
dB  
NOTES: 2. Power supply rejection ratio at zero scale is measured by varying V  
and is given by:  
and is given by:  
DD  
PSRR = 20 log [(E (V max) – E (V min))/V max]  
ZS DD ZS DD DD  
3. Power supply rejection ratio at full scale is measured by varying V  
DD  
PSRR = 20 log [(E (V max) – E (V min))/V max]  
DD DD DD  
G
G
static DAC specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
bits  
Resolution  
8
INL  
Integral nonlinearity, end point adjusted  
Differential nonlinearity  
See Note 4  
See Note 5  
See Note 6  
See Note 7  
±0.4  
±0.1  
±1  
±0.5  
±24  
LSB  
DNL  
LSB  
E
Zero-scale error (offset error at zero scale)  
TC Zero-scale-error temperature coefficient  
mV  
ZS  
ZS  
E
10  
ppm/°C  
% full  
scale V  
E
Gain error  
See Note 8  
See Note 9  
±0.6  
G
E
G
T
Gain error temperature coefficient  
10  
ppm/°C  
C
NOTES: 4. The relative accuracy or integral nonlinearity (INL) sometimes referred to as linearity error, is the maximum deviation of the output  
from the line between zero and full scale excluding the effects of zero code and full-scale errors.  
5. The differential nonlinearity (DNL) sometimes referred to as differential error, is the difference between the measured and ideal 1  
LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains  
constant) as a change in the digital input code.  
6. Zero-scale error is the deviation from zero voltage output when the digital input code is zero.  
6
7. Zero-scale-error temperature coefficient is given by: E  
TC = [E  
(T  
ZS max  
) – E  
(T  
)]/V × 10 /(T  
ref max  
– T  
).  
min  
ZS  
8. Gain error is the deviation from the ideal output (2V – 1 LSB) with an output load of 10 k excluding the effects of the zero-error.  
ZS min  
ref  
9. Gain temperature coefficient is given by: E TC = [E (T  
6
) – E (T  
)]/V × 10 /(T  
min ref max  
– T  
).  
min  
G
G
max  
G
output specifications  
PARAMETER  
Output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
–0.4  
UNIT  
V
O
R
= 10 kΩ  
0
V
V
L
DD  
±0.25  
% full  
scale V  
Output load regulation accuracy  
V
O
= 4.096 V, 2.048 V,  
R = 2 kvs 10 k  
L
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5626  
2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN  
SLAS236 –JUNE 1999  
electrical characteristics over recommended operating conditions (unless otherwise noted)  
(Continued)  
reference pin configured as output (REF)  
PARAMETER  
Low reference voltage  
High reference voltage  
Output source current  
Output sink current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
1.003 1.024 1.045  
ref(OUTL)  
V
V
DD  
> 4.75 V  
2.027 2.048 2.069  
V
ref(OUTH)  
I
1
mA  
mA  
pF  
ref(source)  
ref(sink)  
I
–1  
Load capacitance  
100  
–65  
PSRR  
Power supply rejection ratio  
dB  
reference pin configured as input (REF)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
I
Input voltage  
0
V
DD–1.5  
R
C
Input resistance  
Input capacitance  
10  
5
MΩ  
pF  
I
I
Fast  
1.3  
525  
80  
MHz  
kHz  
dB  
Reference input bandwidth  
Reference feedthrough  
REF = 0.2 V + 1.024 V dc  
pp  
Slow  
REF = 1 V at 1 kHz + 1.024 V dc (see Note 10)  
pp  
NOTE 10: Reference feedthrough is measured at the DAC output with an input code = 0x000.  
digital inputs  
PARAMETER  
High-level digital input current  
TEST CONDITIONS  
V = V  
MIN  
TYP  
MAX  
UNIT  
µA  
I
I
1
IH  
I
DD  
Low-level digital input current  
Input capacitance  
V = 0 V  
I
–1  
µA  
IL  
C
8
pF  
i
analog output dynamic performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.8  
2.8  
0.4  
0.8  
12  
MAX  
2.4  
UNIT  
Fast  
Slow  
Fast  
Slow  
Fast  
Slow  
R
= 10 k,  
See Note 11  
C
C
C
= 100 pF,  
= 100 pF,  
= 100 pF,  
L
L
t
t
Output settling time, full scale  
Output settling time, code to code  
Slew rate  
µs  
s(FS)  
5.5  
1.2  
R
= 10 k,  
See Note 12  
L
L
µs  
s(CC)  
1.6  
R
= 10 k,  
L
L
SR  
V/µs  
See Note 13  
1.8  
DIN = 0 to 1,  
f
= 100 kHz,  
CLK  
Glitch energy  
5
nV–S  
CS = V  
DD  
SNR  
Signal-to-noise ratio  
53  
48  
57  
47  
S/(N+D) Signal-to-noise + distortion  
f = 480 kSPS,  
f
C
= 1 kHz,  
= 100 pF  
L
s
out  
dB  
R
= 10 k,  
THD  
Total harmonic distortion  
–50  
62  
–48  
L
SFDR  
Spurious free dynamic range  
50  
NOTES: 11. Settling time is the time for the output signal to remain within ±0.5 LSB of the final measured value for a digital input code change  
of 0x020 to 0xFD0 or 0xFD0 to 0x020 respectively. Not tested, assured by design.  
12. Settling time is the time for the output signal to remain within ± 0.5 LSB of the final measured value for a digital input code change  
of one count. Not tested, assured by design.  
13. Slew rate determines the time it takes for a change of the DAC output from 10% to 90% full-scale voltage.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5626  
2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN  
SLAS236 –JUNE 1999  
digital input timing requirements  
MIN NOM  
MAX  
UNIT  
ns  
t
t
t
t
t
t
Setup time, CS low before first negative SCLK edge  
10  
10  
25  
25  
10  
5
su(CS–CK)  
su(C16-CS)  
wH  
th  
Setup time, 16 negative SCLK edge (when D0 is sampled) before CS rising edge  
ns  
SCLK pulse width high  
ns  
SCLK pulse width low  
ns  
wL  
Setup time, data ready before SCLK falling edge  
Hold time, data held valid after SCLK falling edge  
ns  
su(D)  
ns  
h(D)  
PARAMETER MEASUREMENT INFORMATION  
t
t
wL  
wH  
SCLK  
DIN  
X
X
X
1
2
3
4
5 15  
16  
t
t
su(D) h(D)  
D15  
D14  
D13  
D12  
D1  
D0  
X
t
su(C16-CS)  
t
su(CS-CK)  
CS  
Figure 1. Timing Diagram  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5626  
2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN  
SLAS236 –JUNE 1999  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
vs  
FREE-AIR TEMPERATURE  
4.5  
4.5  
4
3.5  
3
4
3.5  
3
Fast Mode  
Fast Mode  
2.5  
2.5  
2
2
Slow Mode  
Slow Mode  
1.5  
1.5  
V
V
= 5 V  
= Int. 2 V  
DD  
ref  
V
= 3 V  
= Int. 1 V  
DD  
1
1
V
ref  
Input Code = 1023 (Both DACs)  
Input Code = 1023 (Both DACs)  
0.5  
0.5  
–40 –30 –20 –10 0 10 20 30 40 50 60 70 80 90  
–40 –30 –20 –10 0 10 20 30 40 50 60 70 80 90  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 2  
Figure 3  
POWER DOWN SUPPLY CURRENT  
OUTPUT VOLTAGE  
vs  
LOAD CURRENT  
vs  
TIME  
2.6  
2.4  
2.2  
2
2.064  
2.062  
2.06  
V
= 3 V  
= Int. 1 V  
DD  
Fast Mode  
Slow Mode  
V
ref  
Input Code = 4095  
1.8  
1.6  
1.4  
2.058  
1.2  
1
2.056  
2.054  
0.8  
0.6  
0.4  
2.052  
2.05  
0.2  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
t – Time – µs  
Source Current – mA  
Figure 4  
Figure 5  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5626  
2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN  
SLAS236 –JUNE 1999  
TYPICAL CHARACTERISTICS  
OUTPUT VOLTAGE  
vs  
LOAD CURRENT  
OUTPUT VOLTAGE  
vs  
LOAD CURRENT  
3
4.128  
V = 3 V  
DD  
ref  
Input Code = 0  
V
V
= 5 V  
= Int. 2 V  
DD  
ref  
V
= Int. 1 V  
Fast Mode  
Slow Mode  
4.126  
4.124  
4.122  
4.12  
2.5  
2
Input Code = 4095  
Fast Mode  
1.5  
1
4.118  
0.5  
0
4.116  
4.114  
Slow Mode  
3
0
0.5  
1
1.5  
2
2.5  
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Sink Current – mA  
Source Current – mA  
Figure 6  
Figure 7  
OUTPUT VOLTAGE  
vs  
LOAD CURRENT  
TOTAL HARMONIC DISTORTION AND NOISE  
vs  
FREQUENCY  
5
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
V
V
= 5 V  
= Int. 2 V  
DD  
ref  
V
= 5 V  
DD  
4.5  
4
V
ref  
= 1 V dc + 1 V p/p Sinewave  
Input Code = 0  
Output Full Scale  
3.5  
3
Fast Mode  
2.5  
2
Slow Mode  
1.5  
Fast Mode  
1
0.5  
0
–90  
Slow Mode  
3.5  
–100  
0
0.5  
1
1.5  
2
2.5  
3
4
100  
1000  
10000  
100000  
Sink Current – mA  
f – Frequency – Hz  
Figure 8  
Figure 9  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5626  
2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN  
SLAS236 –JUNE 1999  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION  
vs  
FREQUENCY  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
V
= 5 V  
DD  
V
ref  
= 1 V dc + 1 V p/p Sinewave  
Output Full Scale  
Slow Mode  
Fast Mode  
–90  
–100  
100  
1000  
10000  
100000  
f – Frequency – Hz  
Figure 10  
DIFFERENTIAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
0.20  
0.15  
0.10  
0.05  
–0.00  
–0.05  
–0.10  
–0.15  
–0.2  
0
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256  
Digital Output Code  
Figure 11  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5626  
2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN  
SLAS236 –JUNE 1999  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
–0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256  
Digital Output Code  
Figure 12  
APPLICATION INFORMATION  
general function  
The TLV5626 is a dual 8-bit, single supply DAC, based on a resistor string architecture. It consists of a serial  
interface, a speed and power-down control logic, a programmable internal reference, a resistor string, and a  
rail-to-rail output buffer.  
The output voltage (full scale determined by reference) is given by:  
CODE  
2 REF  
[V]  
0x1000  
Where REF is the reference voltage and CODE is the digital input value in the range 0x000 to 0xFF0.Bits 3 to  
0 must be set to zero. A power on reset initially puts the internal latches to a defined state (all bits zero).  
serial interface  
A falling edge of CS starts shifting the data bit-per-bit (starting with the MSB) to the internal register on the falling  
edges of SCLK. After 16 bits have been transferred or CS rises, the content of the shift register is moved to the  
target latches (DAC A, DAC B, BUFFER, CONTROL), depending on the control bits within the data word.  
Figure 13 shows examples of how to connect the TLV5626 to TMS320, SPI , and Microwire .  
TMS320  
DSP  
TLV5626  
CS  
DIN  
SPI  
TLV5626  
CS  
DIN  
Microwire  
I/O  
TLV5626  
CS  
DIN  
FSX  
DX  
I/O  
MOSI  
SCK  
SO  
SK  
CLKX  
SCLK  
SCLK  
SCLK  
Figure 13. Three-Wire Interface  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5626  
2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN  
SLAS236 –JUNE 1999  
APPLICATION INFORMATION  
Notes on SPI and Microwire : Before the controller starts the data transfer, the software has to generate a  
falling edge on the I/O pin connected to CS. If the word width is 8 bits (SPI and Microwire ), two write  
operations must be performed to program the TLV5626. After the write operation(s), the holding registers or the  
th  
control register are updated automatically on the 16 positive clock edge.  
serial clock frequency and update rate  
The maximum serial clock frequency is given by:  
1
f
20 MHz  
sclkmax  
t
t
wlmin  
whmin  
The maximum update rate is:  
1
f
1.25 MHz  
updatemax  
16 t  
t
wlmin  
whmin  
The maximum update rate is just a theoretical value for the serial interface, as the settling time of the TLV5626  
has to be considered, too.  
data format  
The 16-bit data word for the TLV5626 consists of two parts:  
Program bits  
New data  
(D15..D12)  
(D11..D0)  
D15  
R1  
D14  
D13  
D12  
R0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SPD  
PWR  
12 Data bits  
SPD: Speed control bit  
PWR: Power control bit  
1 fast mode  
1 power down  
0 slow mode  
0 normal operation  
The following table lists the possible combination of the register select bits:  
register select bits  
R1  
0
R0  
0
REGISTER  
Write data to DAC B and BUFFER  
Write data to BUFFER  
0
1
1
0
Write data to DAC A and update DAC B with BUFFER content  
Write data to control register  
1
1
The meaning of the 12 data bits depends on the register. If one of the DAC registers or the BUFFER is selected,  
then the 12 data bits determine the new DAC value:  
data bits: DAC A, DAC B and BUFFER  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
New DAC Value  
If control is selected, then D1, D0 of the 12 data bits are used to program the reference voltage:  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5626  
2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN  
SLAS236 –JUNE 1999  
APPLICATION INFORMATION  
data bits: CONTROL  
D11  
X
D10  
X
D9  
X
D8  
X
D7  
X
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D1  
D0  
REF1  
REF0  
X: don’t care  
REF1 and REF0 determine the reference source and, if internal reference is selected, the reference voltage.  
reference bits  
REF1  
REF0  
REFERENCE  
External  
0
0
1
1
0
1
0
1
1.024 V  
2.048 V  
External  
CAUTION:  
If external reference voltage is applied to the REF pin, external reference MUST be selected.  
examples of operation:  
Set DAC A output, select fast mode, select internal reference at 2.048 V:  
1. Set reference voltage to 2.048 V (CONTROL register):  
D15  
1
D14  
1
D13  
0
D12  
1
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
1
D0  
0
2. Write new DAC A value and update DAC A output:  
D15  
1
D14  
1
D13  
0
D12  
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
New DAC A output value  
The DAC A output is updated on the rising clock edge after D0 is sampled.  
To output data consecutively using the same DAC configuration, it is not necessary to program the CONTROL  
register again.  
Set DAC B output, select fast mode, select external reference:  
3. Select external reference (CONTROL register):  
D15  
1
D14  
1
D13  
0
D12  
1
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
4. Write new DAC B value to BUFFER and update DAC B output:  
D15  
0
D14  
1
D13  
0
D12  
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
New BUFFER content and DAC B output value  
X = Don’t care  
The DAC A output is updated on the rising clock edge after D0 is sampled.  
To output data consecutively using the same DAC configuration, it is not necessary to program the CONTROL  
register again.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5626  
2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN  
SLAS236 –JUNE 1999  
APPLICATION INFORMATION  
examples of operation: (continued)  
Set DAC A value, set DAC B value, update both simultaneously, select slow mode, select internal reference  
at 1.024 V:  
1. Set reference voltage to 1.024 V (CONTROL register):  
D15  
1
D14  
0
D13  
0
D12  
1
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
1
2. Write data for DAC B to BUFFER:  
D15  
0
D14  
0
D13  
0
D12  
1
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
New DAC B value  
X = Don’t care  
3. Write new DAC A value and update DAC A and B simultaneously:  
D15  
1
D14  
0
D13  
0
D12  
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D3  
0
D2  
0
D1  
0
D0  
0
New DAC A value  
X = Don’t care  
Both outputs are updated on the rising clock edge after D0 from the DAC A data word is sampled.  
Set power-down mode:  
D15  
X
D14  
X
D13  
1
D12  
X
D11  
X
D10  
X
D9  
X
D8  
X
D7  
X
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
X = Don’t care  
linearity, offset, and gain error using single ended supplies  
When an amplifier is operated from a single supply, the voltage offset can still be either positive or negative. With  
a positive offset, the output voltage changes on the first code change. With a negative offset, the output voltage  
may not change with the first code, depending on the magnitude of the offset voltage.  
The output amplifier attempts to drive the output to a negative voltage. However, because the most negative  
supply rail is ground, the output cannot drive below ground and clamps the output at 0 V.  
The output voltage then remains at zero until the input code value produces a sufficient positive output voltage  
to overcome the negative offset voltage, resulting in the transfer function shown in Figure 14.  
Output  
Voltage  
0 V  
DAC Code  
Negative  
Offset  
Figure 14. Effect of Negative Offset (single supply)  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5626  
2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN  
SLAS236 –JUNE 1999  
APPLICATION INFORMATION  
This offset error, not the linearity error, produces this breakpoint. The transfer function would have followed the  
dotted line if the output buffer could drive below the ground rail.  
For a DAC, linearity is measured between zero-input code (all inputs 0) and full-scale code (all inputs 1) after  
offset and full scale are adjusted out or accounted for in some way. However, single supply operation does not  
allow for adjustment when the offset is negative due to the breakpoint in the transfer function. So the linearity  
is measured between full-scale code and the lowest code that produces a positive output voltage.  
definitions of specifications and terminology  
integral nonlinearity (INL)  
The relative accuracy or integral nonlinearity (INL), sometimes referred to as linearity error, is the maximum  
deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale  
errors.  
differential nonlinearity (DNL)  
The differential nonlinearity (DNL), sometimes referred to as differential error, is the difference between the  
measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage  
changes in the same direction (or remains constant) as a change in the digital input code.  
zero-scale error (E  
)
ZS  
Zero-scale error is defined as the deviation of the output from 0 V at a digital input value of 0.  
gain error (E )  
G
Gain error is the error in slope of the DAC transfer function.  
signal-to-noise ratio + distortion (S/N+D)  
S/N+D is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components  
below the Nyquist frequency, including harmonics but excluding dc. The value for S/N+D is expressed in  
decibels.  
spurious free dynamic range (SFDR)  
Spurious free dynamic range is the difference between the rms value of the output signal and the rms value of  
the spurious signal within a specified bandwidth. The value for SFDR is expressed in decibels.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5626  
2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN  
SLAS236 –JUNE 1999  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.010 (0,25)  
M
0.014 (0,35)  
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TLV5626CD

2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN
TI

TLV5626CDG4

8-Bit, 1 us Dual DAC, Serial Input, Pgrmable Int. Ref., Settling Time 8-SOIC 0 to 70
TI

TLV5626CDR

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN
TI

TLV5626CDRG4

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN
TI

TLV5626D

2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN
TI

TLV5626ID

2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN
TI

TLV5626IDG4

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN
TI

TLV5626IDR

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN
TI

TLV5626IDRG4

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN
TI

TLV5627

2.7-V TO 5.5-V 8-BIT 4-CHANNEL DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN
TI

TLV5627C

2.7-V TO 5.5-V 8-BIT 4-CHANNEL DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN
TI

TLV5627CD

2.7-V TO 5.5-V 8-BIT 4-CHANNEL DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN
TI