TLV5628IDWR [TI]

暂无描述;
TLV5628IDWR
型号: TLV5628IDWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

暂无描述

转换器
文件: 总14页 (文件大小:215K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV5628C, TLV5628I  
OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS  
SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995  
DW OR N PACKAGE  
(TOP VIEW)  
Eight 8-Bit Voltage Output DACs  
3-V Single Supply Operation  
Serial Interface  
DACC  
DACD  
REF1  
DACB  
DACA  
GND  
1
2
3
4
5
6
7
8
16  
15  
14  
High-Impedance Reference Inputs  
Programmable for 1 or 2 Times Output  
Range  
13 LDAC  
12 LOAD  
DATA  
CLK  
Simultaneous Update Facility  
Internal Power-On Reset  
Low Power Consumption  
Half-Buffered Output  
11  
10  
9
REF2  
DACH  
DACG  
V
DD  
DACE  
DACF  
applications  
Programmable Voltage Sources  
Digitally Controlled Amplifiers/Attenuators  
Mobile Communications  
Automatic Test Equipment  
Process Monitoring and Control  
Signal Synthesis  
description  
The TLV5628C and TLV5628I are octal 8-bit voltage output digital-to-analog converters (DACs) with buffered  
reference inputs (high impedance). The DACs produce an output voltage that varies between one or two times  
the reference voltages and GND, and the DACs are monotonic. The device is simple to use, running from a  
single supply of 3 to 3.6 V. A power-on reset function is incorporated to ensure repeatable start-up conditions.  
Digital control of the TLV5628C and TLV5628I is over a simple 3-wire serial bus that is CMOS compatible and  
easily interfaced to all popular microprocessor and microcontroller devices. The 12-bit command word  
comprises 8 bits of data, 3 DAC select bits and a range bit, the latter allowing selection between the times 1  
or times 2 output range. The DAC registers are double buffered, allowing a complete set of new values to be  
written to the device, then all DAC outputs are updated simultaneously through control of the LDAC terminal.  
The digital inputs feature Schmitt triggers for high noise immunity.  
The 16-terminal small-outline D package allows digital control of analog functions in space-critical applications.  
The TLV5628C is characterized for operation from 0°C to 70°C. The TLV5628I is characterized for operation  
from 40°C to 85°C. The TLV5628C and TLV5628I do not require external trimming.  
AVAILABLE OPTIONS  
PACKAGE  
SMALL OUTLINE  
(DW)  
PLASTIC DIP  
(N)  
T
A
0°C to 70°C  
TLV5628CDW  
TLV5628IDW  
TLV5628CN  
TLV5628IN  
40°C to 85°C  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1995, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5628C, TLV5628I  
OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS  
SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995  
functional block diagram  
REF1  
+
DAC  
+
DACA  
× 2  
9
8
Latch  
Latch  
DAC  
DAC  
+
DACD  
DACE  
× 2  
× 2  
8
8
Latch  
Latch  
Latch  
Latch  
REF2  
+
+
DAC  
+
DACH  
× 2  
8
Latch  
Latch  
CLK  
Power-On  
Reset  
Serial  
Interface  
LDAC  
DATA  
LOAD  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
CLK  
NO.  
5
I
O
O
O
O
O
O
O
O
I
Serial-interface clock, data enters on the negative edge  
DACA analog output  
DACA  
DACB  
DACC  
DACD  
DACE  
DACF  
DACG  
DACH  
DATA  
GND  
2
1
DACB analog output  
16  
15  
7
DACC analog output  
DACD analog output  
DACE analog output  
8
DACF analog output  
9
DACG analog output  
10  
4
DACH analog output  
Serial-interface digital data input  
Ground return and reference terminal  
DAC-update latch control  
Serial-interface load control  
Reference voltage input to DACA  
Reference voltage input to DACB  
Positive supply voltage  
3
I
LDAC  
LOAD  
REF1  
REF2  
13  
12  
14  
11  
6
I
I
I
I
V
I
DD  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5628C, TLV5628I  
OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS  
SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995  
detailed description  
The TLV5628 is implemented using eight resistor-string DACs. The core of each DAC is a single resistor with  
256 taps, corresponding to the 256 possible codes listed in Table 1. One end of each resistor string is connected  
to the GND terminal and the other end is fed from the output of the reference input buffer. Monotonicity is  
maintainedbyuseoftheresistorstrings. Linearitydependsuponthematchingoftheresistorelementsandupon  
the performance of the output buffer. Because the inputs are buffered, the DACs always present a  
high-impedance load to the reference sources. There are two input reference terminals; REF1 is used for DACA  
through DACD and REF2 is used by DACE through DACH.  
Each DAC output is buffered by a configurable-gain output amplifier, which can be programmed to times 1 or  
times 2 gain.  
On power-up, the DACs are reset to CODE 0.  
Each output voltage is given by:  
CODE  
V (DACA|B|C|D|E|F|G|H)  
REF  
(1 RNG bit value)  
O
256  
where CODE is in the range of 0 to 255 and the range (RNG) bit is a 0 or 1 within the serial-control word.  
data interface  
With LOAD high, data is clocked into the DATA terminal on each falling edge of CLK. Once all data bits have  
been clocked in, LOAD is pulsed low to transfer the data from the serial-input register to the selected DAC as  
shown in Figure 1. When LDAC is low, the selected DAC output voltage is updated and LOAD goes low. When  
LDAC is high during serial programming, the new value is stored within the device and can be transferred to  
the DAC output at a later time by pulsing LDAC low as shown in Figure 2. Data is entered MSB first. Data  
transfers using two 8 clock cycle periods are shown in Figures 3 and 4.  
CLK  
t
su(DATA-CLK)  
t
su(LOAD-CLK)  
D2 D1  
su(CLK-LOAD)  
t
v(DATA-CLK)  
DATA  
LOAD  
A2  
A1 A0  
RNG  
D7  
D6  
D5  
D4  
D0  
t
t
w(LOAD)  
DAC Update  
Figure 1. LOAD-Controlled Update (LDAC = Low)  
CLK  
t
su(DATA-CLK)  
t
v(DATA-CLK)  
DATA  
A2  
A1 A0  
RNG  
D7  
D6  
D5  
D4  
D2  
D1  
D0  
t
su(LOADLDAC)  
LOAD  
LDAC  
t
w(LDAC)  
DAC Update  
Figure 2. LDAC-Controlled Update  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CLK Low  
CLK  
A1  
A0  
RNG  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DATA  
LOAD  
LDAC  
Figure 3. Load Controlled Update Using 8-Bit Serial Word (LDAC = Low)  
CLK Low  
CLK  
A1  
A0  
RNG  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DATA  
LOAD  
LDAC  
Figure 4. LDAC Controlled Update Using 8-Bit Serial Word  
TLV5628C, TLV5628I  
OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS  
SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995  
data interface (continued)  
Table 2 lists the A2, A1, and A0 bits and the selection of the updated DACs. The RNG bit controls the DAC output  
range. When RNG = low, the output range is between the applied reference voltage and GND, and when  
RNG = high, the range is between twice the applied reference voltage and GND.  
Table 1. Ideal Output Transfer  
D7  
0
0
D6  
0
0
D5  
0
0
D4  
0
0
D3  
0
0
D2  
0
0
D1  
0
0
D0  
0
1
OUTPUT VOLTAGE  
GND  
(1/256) × REF (1+RNG)  
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
(127/256) × REF (1+RNG)  
(128/256) × REF (1+RNG)  
1
1
1
1
1
1
1
1
(255/256) × REF (1+RNG)  
Table 2. Serial Input Decode  
A2  
0
A1  
0
A0  
0
DAC UPDATED  
DACA  
0
0
1
DACB  
0
1
0
DACC  
0
1
1
DACD  
1
0
0
DACE  
1
0
1
DACF  
1
1
0
DACG  
1
1
1
DACH  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5628C, TLV5628I  
OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS  
SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995  
linearity, offset, and gain error  
When an amplifier is operated from a single supply, the voltage offset can still be either positive or negative. With  
a positive offset, the output voltage changes on the first code change. With a negative offset the output voltage  
may not change with the first code depending on the magnitude of the offset voltage.  
The output amplifier, with a negative voltage offset, attempts to drive the output to a negative voltage. However,  
since the most negative supply rail is ground, the output cannot drive to a negative voltage.  
So when the output offset voltage is negative, the output voltage remains at 0 volts until the input code value  
produces a sufficient output voltage to overcome the inherent negative offset voltage resulting in the transfer  
function shown in Figure 5.  
Output  
Voltage  
0 V  
DAC Code  
Negative  
Offset  
Figure 5. Effect of Negative Offset (Single Supply)  
The negative offset error produces a breakpoint, not a linearity error. The transfer function would follow the  
dotted line if the output buffer could drive to a negative voltage.  
For a DAC, linearity is measured between zero input code (all inputs 0) and full scale code (all inputs 1) after  
offset and full scale is adjusted out or accounted for in some way. However, single supply operation does not  
allow for adjustment when the offset is negative due to the breakpoint in the transfer function. The linearity in  
the unipolar mode is measured between full scale code and the lowest code which produces a positive output  
voltage.  
The code is calculated from the maximum specification for the negative offset.  
equivalent inputs and outputs  
INPUT CIRCUIT  
OUTPUT CIRCUIT  
V
DD  
V
DD  
_
+
Input from  
Decoded DAC  
Register String  
DAC  
Voltage Output  
V
ref  
Input  
× 1  
84 k  
Output  
Range  
Select  
To DAC  
Resistor  
String  
I
× 2  
SINK  
60 µA  
Typical  
84 kΩ  
GND  
GND  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5628C, TLV5628I  
OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS  
SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage (V  
Digital input voltage range, V  
Reference input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND – 0.3 V to V  
Operating free-air temperature range, T : TLV5628C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
– GND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DD  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND – 0.3 V to V  
+ 0.3 V  
+ 0.3 V  
ID  
DD  
DD  
A
TLV5628I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Storage temperature range, T  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
V
Supply voltage, V  
2.7  
3.3  
5.25  
DD  
High-level digital input voltage, V  
0.8 V  
V
IH  
DD  
Low-level digital input voltage, V  
0.8  
V
IL  
Reference voltage, V [A|B|C|D|E|F|G|H], X1 gain  
V
1.5  
V
ref  
DD  
Load resistance, R  
10  
kΩ  
ns  
ns  
ns  
ns  
L
Setup time, data input, t  
su(DATA-CLK)  
Valid time, data input valid after CLK, t  
(see Figures 1 and 2)  
50  
50  
(see Figures 1 and 2)  
v(DATA-CLK)  
Setup time, CLK eleventh falling edge to LOAD, t  
(see Figure 1)  
50  
su(CLK-LOAD)  
(see Figure 1)  
Setup time, LOADto CLK, t  
50  
su(LOAD-CLK)  
Pulse duration, LOAD, t  
Pulse duration, LDAC, t  
(see Figure 1)  
(see Figure 2)  
250  
250  
0
ns  
ns  
ns  
w(LOAD)  
w(LDAC)  
Setup time, LOADto LDAC, t  
(see Figure 2)  
su(LOAD-LDAC)  
CLK frequency  
1
MHz  
°C  
TLV5628C  
TLV5628I  
0
70  
85  
Operating free-air temperature, T  
A
40  
°C  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5628C, TLV5628I  
OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS  
SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995  
electrical characteristics over recommended operating free-air temperature range,  
V
= 3 V to 3.6 V, V = 2 V, × 1 gain output range (unless otherwise noted)  
DD  
ref  
PARAMETER  
High-level digital input current  
Low-level digital input current  
Output sink current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
±10  
±10  
UNIT  
µA  
I
I
I
I
V = V  
I
IH  
DD  
V = 0 V  
µA  
IL  
I
20  
1
µA  
O(sink)  
O(source)  
Each DAC output  
Output source current  
mA  
Input capacitance  
15  
15  
C
pF  
i
Reference input capacitance  
Supply current  
I
I
V
V
= 3.3 V  
= 3.3 V,  
4
±10  
±1  
mA  
µA  
DD  
DD  
Reference input current  
Linearity error (end point corrected)  
Differential linearity error  
Zero-scale error  
V
ref  
= 1.5 V  
ref  
DD  
E
E
E
V
ref  
= 1.25 V, × 2 gain (see Note 1)  
= 1.25 V, × 2 gain (see Note 2)  
= 1.25 V, × 2 gain (see Note 3)  
= 1.25 V, × 2 gain (see Note 4)  
= 1.25 V, × 2 gain (see Note 5)  
= 1.25 V, × 2 gain (see Note 6)  
LSB  
LSB  
mV  
L
V
ref  
±0.9  
30  
D
V
ref  
0
ZS  
Zero-scale error temperature coefficient  
Full-scale error  
V
ref  
10  
µV/°C  
mV  
E
FS  
V
ref  
±60  
Full-scale error temperature coefficient  
Power supply sensitivity  
V
±25  
µV/°C  
mV/V  
ref  
See Notes 7 and 8  
PSRR  
0.5  
NOTES: 1. Integral nonlinearity (INL) is the maximum deviation of the output from the line between zero-scale and full scale (excluding the  
effects of zero code and full-scale errors).  
2. Differentialnonlinearity (DNL) is the difference between the measured and ideal 1 LSB amplitude change of any two adjacent codes.  
Monotonic means the output voltage changes in the same direction (or remains constant) as a change in the digital input code.  
3. Zero-scale error is the deviation from zero voltage output when the digital input code is zero.  
6
4. Zero-scale error temperature coefficient is given by: ZSETC = [ZSE(T  
) – ZSE(T  
)]/V × 10 /(T  
– T  
).  
min  
max  
min ref max  
5. Full-scale error is the deviation from the ideal full-scale output (V – 1 LSB) with an output load of 10 k.  
ref  
6
6. Full-scale temperature coefficient is given by: FSETC = [FSE(T  
max  
) – FSE (T  
)]/V × 10 /(T  
ref max  
voltage from 4.5 V to 5.5 V dc and measuring the effect  
– T  
).  
min  
min  
7. Zero-scale error rejection ratio (ZSE-RR) is measured by varying the V  
of this signal on the zero-code output voltage.  
DD  
8. Full-scale error rejection ratio (FSE-RR) is measured by varing the V  
this signal on the full-scale output voltage.  
voltage from 3 V to 3.6 V dc and measuring the effect of  
DD  
operating characteristics over recommended operating free-air temperature range,  
= 3 V to 3.6 V, V = 2 V, × 1 gain output range (unless otherwise noted)  
V
DD  
ref  
TEST CONDITIONS  
MIN  
TYP  
1
MAX  
UNIT  
V/µs  
µs  
Output slew rate  
C
= 100 pF,  
R
C
= 10 kΩ  
L
L
L
Output settling time  
To 0.5 LSB,  
= 100 pF,  
R
= 10 k, See Note 9  
10  
L
Large-signal bandwidth  
Digital crosstalk  
Measured at 3 dB point  
100  
50  
60  
60  
100  
kHz  
dB  
CLK = 1-MHz square wave measured at DACA-DACH  
Reference feedthrough  
Channel-to-channel isolation  
Reference input bandwidth  
See Note 10  
See Note 11  
See Note 12  
dB  
dB  
kHz  
NOTES: 9. Settling time is the time for the output signal to remain within ±0.5 LSB of the final measured value for a digital input code change  
of 00 hex to FF hex or FF hex to 00 hex. For TLC5628C V = 5 V, V = 2 V and range = ×2. For TLC5628I V = 3 V,  
DD ref DD  
V
ref  
= 1.25 V and range ×2.  
10. Reference feedthrough is measured at any DAC output with an input code = 00 hex with a V input = 1 V dc + 1 V  
at 10 kHz.  
ref PP  
11. Channel-to-channel isolation is measured by setting the input code of one DAC to FF hex and the code of all other DACs to 00 hex  
with V input = 1 V dc + 1 V at 10 kHz.  
ref PP  
12. Reference bandwidth is a –3 dB bandwidth with an input at V = 1.25 V dc + 2 V  
ref  
and with a full-scale digital input code.  
PP  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5628C, TLV5628I  
OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS  
SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995  
PARAMETER MEASUREMENT INFORMATION  
TLV5628  
DACA  
DACB  
10 kΩ  
C
= 100 pF  
L
DACH  
Figure 6. Slewing Settling Time and Linearity Measurements  
TYPICAL CHARACTERISTICS  
POSITIVE RISE TIME AND SETTLING TIME  
NEGATIVE FALL TIME AND SETTLING TIME  
3
2.5  
2
3
2.5  
2
V
T
A
= 3 V  
DD  
= 25°C  
Code FF to  
00 Hex  
Range = ×2  
1.5  
1
1.5  
1
V
= 1.25 V  
ref  
V
= 3 V  
DD  
= 25°C  
(see Note B)  
T
A
0.5  
0.5  
Code 00 to  
FF Hex  
Range = ×2  
0
0
V
ref  
= 1.25 V  
(see Note A)  
0.5  
0.5  
–1  
–1  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
Time – µs  
Time – µs  
NOTE A: Rise time = 2.05 µs, positive slew rate = 0.96 V/µs,  
settling time = 4.5 µs.  
NOTE B: Fall time = 4.25 µs, negative slew rate = 0.46 µs,  
settling time = 8.5 µs.  
Figure 7  
Figure 8  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5628C, TLV5628I  
OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS  
SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995  
TYPICAL CHARACTERISTICS  
DAC OUTPUT VOLTAGE  
DAC OUTPUT VOLTAGE  
vs  
vs  
LOAD  
LOAD  
3
2.8  
2.6  
2.4  
2.2  
2
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
1.8  
1.6  
V
= 3 V,  
= 1.5 V,  
DD  
V
ref  
1.4  
1.2  
1
V
= 3 V,  
= 1.5 V,  
DD  
Range = 2x  
V
ref  
Range = 1x  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
Load – kΩ  
Load – kΩ  
Figure 9  
Figure 10  
SUPPLY CURRENT  
vs  
TEMPERATURE  
1.2  
1.15  
1.1  
Range = ×2  
Input Code = 255  
V
V
= 3 V  
1.25 V  
DD  
ref  
1.05  
1
0.95  
0.9  
0.85  
0.8  
50  
0
50  
100  
t – Temperature – °C  
Figure 11  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5628C, TLV5628I  
OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS  
SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995  
APPLICATION INFORMATION  
_
+
TLV5628  
V
O
DACA  
DACB  
R
DACH  
NOTE A: Resistor R  
10 kΩ  
Figure 12. Output Buffering Scheme  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5628C, TLV5628I  
OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS  
SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995  
MECHANICAL DATA  
DW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
16 PIN SHOWN  
PINS **  
0.050 (1,27)  
16  
20  
24  
28  
DIM  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
0.410  
0.510  
0.610  
0.710  
A MAX  
(10,41) (12,95) (15,49) (18,03)  
16  
9
0.400  
0.500  
0.600  
0.700  
A MIN  
(10,16) (12,70) (15,24) (17,78)  
0.419 (10,65)  
0.400 (10,15)  
0.010 (0,25) NOM  
0.299 (7,59)  
0.293 (7,45)  
Gage Plane  
0.010 (0,25)  
1
8
0°8°  
0.050 (1,27)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.012 (0,30)  
0.004 (0,10)  
0.104 (2,65) MAX  
4040000/B 10/94  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-013  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5628C, TLV5628I  
OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS  
SLAS108A – JANUARY 1995 – REVISED NOVEMBER 1995  
MECHANICAL DATA  
N (R-PDIP-T**)  
PLASTIC DUAL-IN-LINE PACKAGE  
16 PIN SHOWN  
A
PINS **  
14  
16  
18  
20  
16  
9
DIM  
0.775  
0.775  
0.920  
0.975  
A MAX  
(19,69) (19,69) (23.37) (24,77)  
0.260 (6,60)  
0.240 (6,10)  
0.745  
0.745  
0.850  
0.940  
A MIN  
(18,92) (18,92) (21.59) (23,88)  
1
8
0.070 (1,78) MAX  
0.020 (0,51) MIN  
0.310 (7,87)  
0.290 (7,37)  
0.035 (0,89) MAX  
0.200 (5,08) MAX  
0.125 (3,18) MIN  
Seating Plane  
0.100 (2,54)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
14 Pin Only  
4040049/C 7/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001 (20-pin package is shorter than MS-001)  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TLV5628IDWRG4

8 位、10us 八路 DAC、串行输入、可编程 1x 或 2x 输出、低功耗 | DW | 16
TI

TLV5628IN

OCTAL 8-BIT DIGITAL-TO-ANALOG CONVERTERS
TI

TLV5628INE4

8-Bit, 10us Octal DAC, Serial Input, Pgrmable 1x or 2x Output, Low Power 16-PDIP
TI

TLV5629

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5629IDW

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5629IDWG4

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER
TI

TLV5629IDWR

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER
TI

TLV5629IDWRG4

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER
TI

TLV5629IPW

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5629IPWG4

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER
TI

TLV5629IPWR

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER
TI

TLV5629IPWRG4

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER
TI