TLV61070A [TI]

具有 0.5V 超低输入电压的 5V、2A 升压转换器;
TLV61070A
型号: TLV61070A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 0.5V 超低输入电压的 5V、2A 升压转换器

升压转换器
文件: 总23页 (文件大小:2736K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
TLV61070A 0.5V 超低输入电压2.5A 升压转换器  
1 特性  
3 说明  
• 输入电压范围0.5V 5.5V  
• 启动时的最小输入电压1.3V  
• 输出电压设置范围2.2V 5.5V  
• 两69mΩ(LS)/89mΩ(HS) MOSFET  
2.5A 谷值开关电流限制  
TLV61070A 器件是一款具有 0.5V 超低输入电压的同  
步升压转换器。该器件可以为由多种电池和超级电容器  
供电的便携式设备和智能设备提供电源解决方案。在整  
个温度范围内TLV61070A 具有 2.5A 的典型谷值开  
关电流限制。在 0.5V 5.5V 的宽输入电压范围内,  
TLV61070A 支持超级电容器备用电源应用这可能导  
致超级电容器深度放电。  
VIN = 3.6VVOUT = 5V IOUT = 1.0 A 时效率为  
92.3%  
VIN > 1.5V 时开关频率1MHzVIN < 1V 时开关  
频率0.55MHz  
VIN SW 关断电流典型值0.1µA  
40°C +125°C 温度范围内基准电压精度  
±2.5%  
• 轻负载下采用自PFM 运行模式  
VIN > VOUT 时切换为直通模式  
• 在关断期间真正断开输入域输出之间的连接  
• 输出过压和热关断保护  
• 输出短路保护  
2.9mm × 1.6mm SOT23-6 (DDC) 6 引脚封装  
当输入电压高于 1.5V TLV61070A 的工作频率为  
1MHz。当输入电压低1.5V 甚至降1V 开关频  
率逐渐降至 0.55MHzTLV61070A 在轻负载条件下会  
进入省电模式以便在整个负载电流范围内保持高效  
率。在轻负载条件下TLV61070A VOUT 处消耗  
20µA 的静态电流。在关断期间TLV61070A 与输入  
电源完全断开仅消耗 0.1µA 的电流从而能够实现  
较长的电池寿命。TLV61070A 具有 5.7V 输出过压保  
护、输出短路保护和热关断保护。  
TLV61070A 采用 2.9mm × 1.6mm SOT23-6 (DBV) 封  
更大限度地减少了外部元件的数量因而拥有非常  
小巧的解决方案尺寸。  
2 应用  
电子货架标签  
可视门铃  
远程控制器  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TLV61070A  
SOT-23 (6)  
2.90mm × 1.60mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
L1  
2.7 V ~ 4.35 V  
C1  
VIN  
SW  
5.0 V  
VOUT  
GND  
C2  
TLV61070A  
R1  
R2  
FB  
EN  
ON  
OFF  
典型应用电路  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGK6  
 
 
 
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes............................................9  
8 Application and Implementation.................................. 11  
8.1 Application Information..............................................11  
8.2 Typical Application.................................................... 11  
8.3 Power Supply Recommendations.............................16  
8.4 Layout....................................................................... 16  
9 Device and Documentation Support............................18  
9.1 Device Support......................................................... 18  
9.2 接收文档更新通知..................................................... 18  
9.3 支持资源....................................................................18  
9.4 Trademarks...............................................................18  
9.5 Electrostatic Discharge Caution................................18  
9.6 术语表....................................................................... 18  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................6  
7 Detailed Description........................................................7  
7.1 Overview.....................................................................7  
7.2 Functional Block Diagram...........................................7  
7.3 Feature Description.....................................................8  
Information.................................................................... 18  
4 Revision History  
DATE  
REVISION  
NOTES  
September 2022  
*
Initial release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV61070A  
 
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
6
5
SW  
GND  
EN  
VIN  
2
VOUT  
FB  
3
4
5-1. DBV Package 6-Pin SOT236 Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
The switch pin of the converter. It is connected to the drain of the internal low-side power  
MOSFET and the source of the internal high-side power MOSFET.  
1
SW  
PWR  
2
3
4
GND  
EN  
PWR  
Ground pin of the IC  
Enable logic input. Logic high voltage enables the device. Logic low voltage disables the  
device and turns it into shutdown mode.  
I
I
FB  
Voltage feedback of adjustable output voltage  
5
6
VOUT  
VIN  
PWR  
I
Boost converter output  
IC power supply input  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV61070A  
 
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.7  
0.7  
40  
65  
MAX  
7
UNIT  
V
VIN, EN, FB, SW, VOUT  
Voltage range at terminals(2)  
SW spike at 10ns  
SW spike at 1ns  
8
V
9
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.5  
2.2  
0.7  
1.0  
4
NOM  
MAX  
5.5  
UNIT  
VIN  
VOUT  
L
Input voltage range  
V
V
Output voltage setting range  
Effective inductance range  
Effective input capacitance range  
Effective output capacitance range  
Operating junction temperature  
5.5  
1.0  
4.7  
10  
6.1  
µH  
µF  
µF  
°C  
CIN  
COUT  
TJ  
1000  
125  
40  
6.4 Thermal Information  
TLV61070A  
DBV - 6 PINS  
Standard  
139.1  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
34.8  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
42.5  
1.4  
40.7  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV61070A  
 
 
 
 
 
 
 
 
 
 
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
TJ = 40°C to 125°C, VIN = 3.6 V and VOUT = 5.0 V. Typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
0.5  
5.5  
1.3  
0.5  
V
V
V
VIN rising  
VIN falling  
1.0  
0.4  
VIN_UVLO  
Under-voltage lockout threshold  
IC enabled, No load, No switching VIN  
=
Quiescent current into VIN pin  
1.3 V to 5.5 V, VFB = VREF + 0.1 V, TJ up  
to 85°C  
0.9  
3.0  
µA  
IQ  
IC enabled, No load, No switching VOUT  
2.2 V to 5.5 V, VFB = VREF + 0.1 V, TJ up  
to 85°C  
=
Quiescent current into VOUT pin  
20  
30  
µA  
µA  
ISD  
Shutdown current into VIN and SW pin  
IC disabled, VIN = VSW = 3.6 V, TJ = 25°C  
0.1  
0.2  
OUTPUT  
VOUT  
Output voltage setting range  
2.2  
5.5  
V
mV  
mV  
V
PWM mode  
PFM mode  
485  
500  
505  
5.7  
0.1  
4
515  
VREF  
Reference voltage at the FB pin  
VOVP  
Output over-voltage protection threshold VOUT rising  
Over-voltage protection hysteresis  
5.5  
6.0  
VOVP_HYS  
IFB_LKG  
V
Leakage current at FB pin  
50  
3
nA  
IC disabled, VIN = 0 V, VSW = 0 V, VOUT  
5.5 V, TJ = 25°C  
=
IVOUT_LKG  
Leakage current into VOUT pin  
Soft startup time  
1
µA  
From active EN to VOUT regulation.  
VIN = 2.5 V, VOUT = 5.0 V, COUT_EFF  
=
tSS  
750  
μs  
10μF, IOUT = 0  
POWER SWITCH  
High-side MOSFET on resistance  
Low-side MOSFET on resistance  
VOUT = 5.0 V  
89  
69  
mohm  
mohm  
MHz  
MHz  
ns  
RDS(on)  
VOUT = 5.0 V  
VIN = 3.6 V, VOUT = 5.0 V, PWM mode  
VIN = 1.0 V, VOUT = 5.0 V, PWM mode  
1.0  
0.55  
96  
fSW  
Switching frequency  
tON_min  
tOFF_min  
ILIM_SW  
Minimum on time  
Minimum off time  
Valley current limit  
40  
130  
120  
80  
ns  
VIN = 3.6 V, VOUT = 5.0 V,TJ = 25°C  
2.00  
1.80  
2.45  
A
VIN = 3.6 V, VOUT = 5.0 V,TJ = 40°C to  
125°C  
ILIM_SW  
Valley current limit  
Pre-charge current  
2.45  
A
VIN = 1.3 - 5.5 V, VOUT < 0.4 V  
VIN = 2.4 V, VOUT = 2.15 V  
100  
200  
185  
385  
mA  
mA  
ILIM_CHG  
LOGIC INTERFACE  
VEN_H  
EN logic high threshold  
VIN > 1.3 V or VOUT > 2.2 V  
VIN > 1.3 V or VOUT > 2.2 V  
1.2  
V
VEN_L  
EN logic low threshold  
0.35  
0.42  
0.45  
PROTECTION  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
150  
20  
°C  
°C  
TSD_HYS  
TJ falling below TSD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV61070A  
 
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics  
VIN = 3.6 V, VOUT = 5 V, TJ = 25°C, unless otherwise noted  
100  
95  
90  
85  
80  
5.15  
5.1  
5.05  
5
VIN=1.3V  
VIN=2.7V  
VIN=3.3V  
VIN=3.6V  
VIN=4.2V  
VIN=1.3 V  
VIN=2.7 V  
VIN=3.3 V  
VIN=3.6 V  
VIN=4.2V  
75  
70  
4.95  
0.0001  
65  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2
0.001  
0.01  
0.05  
0.2 0.5  
1
2
Output Current (A)  
Output Current (A)  
VIN = 1.3 V, 2.7 V, 3.3 V, 3.6 V4.2 V; VOUT = 5 V  
VIN = 1.3 V, 2.7 V, 3.3 V, 3.6 V4.2 V; VOUT = 5 V  
6-2. Load Regulation  
6-1. Load Efficiency with Different Input  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV61070A  
 
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV61070A synchronous step-up converter is designed to operate from an input voltage supply range  
between 0.5 V and 5.5 V with 2.5-A valley switch current limit. The TLV61070A typically operates at a quasi-  
constant frequency pulse width modulation (PWM) at moderate to heavy load currents. The switching frequency  
is 1 MHz when the input voltage is above 1.5 V. The switching frequency reduces down to 0.55 MHz gradually  
when the input voltage goes down from 1.5 V to 1 V and keeps at 0.55 MHz when the input voltage is below 1 V.  
At light load conditions, the TLV61070A converter operates in Power Save mode with pulse frequency  
modulation (PFM). During PWM operation, the converter uses adaptive constant on-time valley current mode  
control scheme to achieve excellent line regulation and load regulation and allows the use of a small inductor  
and ceramic capacitors. Internal loop compensation simplifies the design process while minimizing the number  
of external components.  
7.2 Functional Block Diagram  
SW  
5
Undervoltage  
Lockout  
VIN  
VOUT  
VIN  
3
6
VOUT  
Valley Current Sense  
EN  
2
Gate Driver  
Logic  
4
GND  
Thermal  
Shutdown  
PWM Control  
1
FB  
Overvoltage  
Protection and Short  
Circuit Protection  
VOUT  
EA  
1
Soft Start-up  
VREF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV61070A  
 
 
 
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Undervoltage Lockout  
The TLV61070A has a built-in undervoltage lockout (UVLO) circuit to ensure the device working properly. When  
the input voltage is above the UVLO rising threshold of 1.3 V, the TLV61070A can be enabled to boost the output  
voltage. After the TLV61070A starts up and the output voltage is above 2.2 V, the TLV61070A works with input  
voltage as low as 0.5 V.  
7.3.2 Enable and Soft Start  
When the input voltage is above the UVLO rising threshold and the EN pin is pulled to a voltage above 1.2 V, the  
TLV61070A is enabled and starts up. At the beginning, the TLV61070A charges the output capacitors with a  
current of about 185 mA when the output voltage is below 0.4 V. When the output voltage is charged above 0.4  
V, the output current is changed to having output current capability to drive the 5-Ω resistance load. After the  
output voltage reaches the input voltage, the TLV61070A starts switching, and the output voltage ramps up  
further. The typical start-up time is 700 µs accounting from EN high to output, reaching target voltage for the  
application with input voltage is 2.5 V. Output voltage is 5 V, output effective capacitance is 10 µF, and no load.  
When the voltage at the EN pin is below 0.4 V, the internal enable comparator turns the device into Shutdown  
mode. In shutdown mode, the device is entirely turned off. The output is disconnected from the input power  
supply.  
7.3.3 Switching Frequency  
The TLV61070A switches at a quasi-constant 1-MHz frequency when the input voltage is above 1.5 V. When the  
input voltage is lower than 1.5 V, the switching frequency is reduced gradually to 0.55 MHz to improve the  
efficiency and get higher boost ratio. When the input voltage is below 1 V, the switching frequency is fixed at a  
quasi-constant 0.55 MHz.  
7.3.4 Current Limit Operation  
The TLV61070A uses a valley current limit sensing scheme. Current limit detection occurs during the off time by  
sensing of the voltage drop across the synchronous rectifier.  
When the load current is increased such that the inductor current is above the current limit within the whole  
switching cycle time, the off-time is increased to allow the inductor current to decrease to this threshold before  
the next on time begins (so called frequency foldback mechanism). When the current limit is reached, the output  
voltage decreases during further load increase.  
The maximum continuous output current (IOUT(LC)) before entering current limit (CL) operation can be defined by  
方程1.  
1
IOUT(CL) = 1-D ì I  
+
DIL P-P  
(
)
LIM  
÷
(
)
2
«
(1)  
where  
D is the duty cycle  
• ΔIL(P-P) is the inductor ripple current  
The duty cycle can be estimated by 方程2.  
V
IN ì h  
D = 1-  
VOUT  
(2)  
where  
VOUT is the output voltage of the boost converter  
VIN is the input voltage of the boost converter  
ηis the efficiency of the converter, use 90% for most applications  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV61070A  
 
 
 
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
www.ti.com.cn  
The peak-to-peak inductor ripple current is calculated by 方程3.  
V ìD  
L ì fSW  
IN  
DIL P-P  
=
(
)
(3)  
where  
L is the inductance value of the inductor  
fSW is the switching frequency  
D is the duty cycle  
VIN is the input voltage of the boost converter  
7.3.5 Pass-Through Operation  
When the input voltage is higher than the setting output voltage, the output voltage is higher than the target  
regulation voltage. When the output voltage is 101% of the setting target voltage, the TLV61070A stops  
switching and fully turns on the high-side PMOS FET. The device works in pass-through mode. The output  
voltage is the input voltage minus the voltage drop across the DCR of the inductor and the RDS(on) of the PMOS  
FET. When the output voltage drops below the 97% of the setting target voltage as the input voltage declines or  
the load current increases, the TLV61070A resumes switching again to regulate the output voltage.  
7.3.6 Overvoltage Protection  
The TLV61070A has an output overvoltage protection (OVP) to protect the device if the external feedback  
resistor divider is wrongly populated. When the output voltage is above 5.7 V typically, the device stops  
switching. Once the output voltage falls 0.1 V below the OVP threshold, the device resumes operating again.  
7.3.7 Output Short-to-Ground Protection  
The TLV61070A starts to limit the output current when the output voltage is below 1.8 V. The lower the output  
voltage reaches, the smaller the output current is. When the VOUT pin is short to ground, and the output voltage  
becomes less than 0.4 V, the output current is limited to approximately 185 mA. Once the short circuit is  
released, the TLV61070A goes through the soft start-up again to the regulated output voltage.  
7.3.8 Thermal Shutdown  
The TLV61070A goes into thermal shutdown once the junction temperature exceeds 150°C. When the junction  
temperature drops below the thermal shutdown recovery temperature, typically 130°C, the device starts  
operating again.  
7.4 Device Functional Modes  
The TLV61070A has two switching operation modes: PWM mode in moderate to heavy load conditions and  
power save mode with pulse frequency modulation (PFM) in light load conditions.  
7.4.1 PWM Mode  
The TLV61070A uses a quasi-constant 1.0-MHz frequency pulse width modulation (PWM) at moderate-to-heavy  
load current. Based on the input voltage to output voltage ratio, a circuit predicts the required on time. At the  
beginning of the switching cycle, the NMOS switching FET. The input voltage is applied across the inductor and  
the inductor current ramps up. In this phase, the output capacitor is discharged by the load current. When the on  
time expires, the main switch NMOS FET is turned off, and the rectifier PMOS FET is turned on. The inductor  
transfers its stored energy to replenish the output capacitor and supply the load. The inductor current declines  
because the output voltage is higher than the input voltage. When the inductor current hits the valley current  
threshold determined by the output of the error amplifier, the next switching cycle starts again.  
The TLV61070A has a built-in compensation circuit that can accommodate a wide range of input voltage, output  
voltage, inductor value, and output capacitor value for stable operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV61070A  
 
 
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
www.ti.com.cn  
7.4.2 Power Save Mode  
The TLV61070A integrates a Power Save mode with PFM to improve efficiency at light load. When the load  
current decreases, the inductor valley current set by the output of the error amplifier no longer regulates the  
output voltage. When the inductor valley current hits the low limit, the output voltage exceeds the setting voltage  
as the load current decreases further. When the FB voltage hits the PFM reference voltage, the TLV61070A  
goes into the Power Save mode. In Power Save mode, when the FB voltage rises and hits the PFM reference  
voltage, the device continues switching for several cycles because of the delay time of the internal comparator,  
then it stops switching. The load is supplied by the output capacitor, and the output voltage declines. When the  
FB voltage falls below the PFM reference voltage, after the delay time of the comparator, the device starts  
switching again to ramp up the output voltage.  
Output voltage  
PFM mode at light load  
1.01 × VOUT_NOM  
VOUT_NOM  
PWM mode at heavy load  
7-1. Output Voltage in PWM Mode and PFM Mode  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV61070A  
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TLV61070A is a synchronous boost converter designed to operate from an input voltage supply range  
between 0.5 V and 5.5 V with a typical 2.5-A valley switch current limit. The TLV61070A typically operates at a  
quasi-constant 1-MHz frequency PWM at moderate-to-heavy load currents when the input voltage is above 1.5  
V. The switching frequency changes to 0.55 MHz gradually with the input voltage changing from 1.5 V to 1 V for  
better efficiency and high step-up ratio. When the input voltage is below 1 V, the switching frequency is fixed at a  
quasi-constant 0.55 MHz. At light load currents, the TLV61070A converter operates in Power Save mode with  
PFM to achieve high efficiency over the entire load current range.  
8.2 Typical Application  
The TLV61070A provides a power supply solution for portable devices powered by batteries or backup  
applications powered by super-capacitors. The TLV61070A can output 5 V and 1.0 A from a single-cell Li-ion  
battery.  
L1  
2.7 V ~ 4.35 V  
C1  
VIN  
SW  
5.0 V  
VOUT  
GND  
C2  
TLV61070A  
R1  
R2  
FB  
EN  
ON  
OFF  
8-1. Li-ion Battery to 5-V Boost Converter  
8.2.1 Design Requirements  
The design parameters are listed in 8-1.  
8-1. Design Parameters  
PARAMETERS  
Input voltage  
VALUES  
2.7 V to 4.35 V  
5 V  
Output voltage  
Output current  
1.0 A  
Output voltage ripple  
±50 mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV61070A  
 
 
 
 
 
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Setting the Output Voltage  
The output voltage is set by an external resistor divider (R1, R2 in 8-1). When the output voltage is regulated,  
the typical voltage at the FB pin is VREF. Thus, the resistor divider is determined by 方程4.  
«
VOUT  
VREF  
R1=  
-1 ìR2  
÷
(4)  
where  
VOUT is the regulated output voltage  
VREF is the internal reference voltage at the FB pin  
For the best accuracy, keep R2 smaller than 100 kΩ to ensure the current flowing through R2 is at least 100  
times larger than the FB pin leakage current. Changing R2 towards a lower value increases the immunity against  
noise injection. Changing the R2 towards a higher value reduces the quiescent current for achieving highest  
efficiency at low load currents.  
8.2.2.2 Inductor Selection  
Since the selection of the inductor affects steady-state operation, transient behavior, and loop stability, the  
inductor is the most important component in power regulator design. There are three important inductor  
specifications: inductor value, saturation current, and DC resistance (DCR).  
The TLV61070A is designed to work with inductor values between 2.2 µH and 4.7 µH. Follow 方程式 5 to 方程式  
7 to calculate the inductor peak current for the application. To calculate the current in the worst case, use the  
minimum input voltage, maximum output voltage, and maximum load current of the application. To have enough  
design margins, choose the inductor value with 30% tolerances and low power-conversion efficiency for the  
calculation.  
In a boost regulator, the inductor DC current can be calculated by 方程5.  
VOUT ìIOUT  
IL DC  
=
(
)
V ì h  
IN  
(5)  
where  
VOUT is the output voltage of the boost converter  
IOUT is the output current of the boost converter  
VIN is the input voltage of the boost converter  
ηis the power conversion efficiency, use 90% for most applications  
The inductor ripple current is calculated by 方程6.  
V ìD  
L ì fSW  
IN  
DIL P-P  
=
(
)
(6)  
where  
D is the duty cycle, which can be calculated by 方程2  
L is the inductance value of the inductor  
fSW is the switching frequency  
VIN is the input voltage of the boost converter  
Therefore, the inductor peak current is calculated by 方程7.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV61070A  
 
 
 
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
www.ti.com.cn  
DIL P-P  
(
)
IL P = IL DC  
+
(
)
(
)
2
(7)  
Normally, it is advisable to work with an inductor peak-to-peak current of less than 40% of the average inductor  
current for maximum output current. A smaller ripple from a larger valued inductor reduces the magnetic  
hysteresis losses in the inductor and EMI. But in the same way, load transient response time is increased. The  
saturation current of the inductor must be higher than the calculated peak inductor current. 8-2 lists the  
recommended inductors for the TLV61070A.  
8-2. Recommended Inductors for the TLV61070A  
DCR MAX  
(mΩ)  
SATURATION CURRENT  
(A)  
PART NUMBER(1)  
L (µH)  
SIZE (LxWxH)  
VENDOR  
XGL4030-222ME  
74438357022  
2.2  
2.2  
15.0  
13.5  
7.0  
7.0  
4.0 × 4.0 × 3.1  
4.1 x 4.1 x 3.1  
Coilcraft  
Wurth Elecktronik  
(1) See the Third-party Products disclaimer.  
8.2.2.3 Output Capacitor Selection  
The output capacitor is mainly selected to meet the requirements for output ripple and loop stability. The ripple  
voltage is related to capacitor capacitance and its equivalent series resistance (ESR). Assuming a ceramic  
capacitor with zero ESR, the minimum capacitance needed for a given ripple voltage can be calculated by 方程  
8.  
IOUT ìDMAX  
fSW ì VRIPPLE  
COUT  
=
(8)  
where  
DMAX is the maximum switching duty cycle  
VRIPPLE is the peak-to-peak output ripple voltage  
IOUT is the maximum output current  
fSW is the switching frequency  
The ESR impact on the output ripple must be considered if tantalum or aluminum electrolytic capacitors are  
used. The output peak-to-peak ripple voltage caused by the ESR of the output capacitors can be calculated by  
方程9.  
VRIPPLE(ESR) = IL(P) ìRESR  
(9)  
Take care when evaluating the derating of a ceramic capacitor under DC bias voltage, aging, and AC signal. For  
example, the DC bias voltage can significantly reduce capacitance. A ceramic capacitor can lose more than 50%  
of its capacitance at its rated voltage. Therefore, always leave margin on the voltage rating to ensure adequate  
capacitance at the required output voltage. Increasing the output capacitor makes the output ripple voltage  
smaller in PWM mode.  
TI recommends using the X5R or X7R ceramic output capacitor in the range of 4-μF to 1000-μF effective  
capacitance. The output capacitor affects the small signal control loop stability of the boost regulator. If the  
output capacitor is below the range, the boost regulator can potentially become unstable. Increasing the output  
capacitor makes the output ripple voltage smaller in PWM mode.  
8.2.2.4 Loop Stability, Feedforward Capacitor Selection  
When the switching waveform shows large duty cycle jitter or the output voltage or inductor current shows  
oscillations, the regulation loop can be unstable.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV61070A  
 
 
 
 
 
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
www.ti.com.cn  
The load transient response is another approach to check the loop stability. During the load transient recovery  
time, VOUT can be monitored for settling time, overshoot or ringing that helps judge the stability of the converters.  
Without any ringing, the loop has usually more than 45° of phase margin.  
A feedforward capacitor (C3 in the 8-2) in parallel with R1 induces a pair of zero and pole in the loop transfer  
function. By setting the proper zero frequency, the feedforward capacitor can increase the phase margin to  
improve the loop stability. For large output capacitance more than 40 μF application, TI recommends a  
feedforward capacitor to set the zero frequency (fFFZ) to 1 kHz. As for the input voltage lower than 1-V  
application, TI recommends to use the effective output capacitance is about 100 µF and set the zero frequency  
(fFFZ) to 1 kHz. The value of the feedforward capacitor can be calculated by 方程10.  
1
C3 =  
2pì fFFZ ìR1  
(10)  
where  
R1 is the resistor between the VOUT pin and FB pin  
fFFZ is the zero frequency created by the feedforward capacitor  
L1  
C1  
VIN  
SW  
VOUT  
GND  
C2  
C3  
TLV61070A  
R1  
R2  
FB  
EN  
ON  
OFF  
8-2. TLV61070A Circuit With Feedforward Capacitor  
8.2.2.5 Input Capacitor Selection  
Multilayer X5R or X7R ceramic capacitors are excellent choices for the input decoupling of the step-up converter  
as they have extremely low ESR and are available in small footprints. Input capacitors must be located as close  
as possible to the device. While a 10-μF input capacitor is sufficient for most applications, larger values may be  
used to reduce input current ripple without limitations. Take care when using only ceramic input capacitors.  
When a ceramic capacitor is used at the input and the power is being supplied through long wires, a load step at  
the output can induce ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop  
instability or could even damage the part. In this circumstance, place additional bulk capacitance (tantalum or  
aluminum electrolytic capacitor) between the ceramic input capacitor and the power source to reduce ringing that  
can occur between the inductance of the power source leads and ceramic input capacitor.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV61070A  
 
 
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
www.ti.com.cn  
8.2.3 Application Curves  
Vout(5V o set)  
20mV/div  
Vout(5V o set)  
50mV/div  
Inductor Current  
500mA/div  
Inductor Current  
500mA/div  
SW  
2V/div  
SW  
2V/div  
Time Scale: 500ns/div  
VIN = 3.6 V, VOUT = 5 V, IOUT = 1 A  
Time Scale: 5μs/div  
VIN = 3.6 V, VOUT = 5 V, IOUT = 50 mA  
8-3. Switching Waveform at Heavy Load  
8-4. Switching Waveform at Light Load  
EN  
EN  
2.0V/div  
2.0V/div  
Vout  
2.0V/div  
Vout  
2.0V/div  
Inductor Current  
200mA/div  
Inductor Current  
200mA/div  
Time Scale: 200 s/div  
Time Scale: 10 s/div  
VIN = 3.6 V, VOUT = 5 V, 250 mA load current  
VIN = 3.6 V, VOUT = 5 V, 250 mA load current  
8-5. Start-Up Waveform  
8-6. Shutdown Waveform  
Vout (5V o set)  
200mV/div  
Vout (5V o set)  
500mV/div  
Output Current  
500mA/div  
Vin  
1V/div  
Time Scale: 100μs/div  
Time Scale: 200μs/div  
VIN = 3.6 V, VOUT = 5 V, IOUT = 800 mA to 1.5 A with 20-μs  
VIN = 2.7 V to 4.35 V with 20-μs slew rate, VOUT = 5 V  
slew rate  
IOUT = 1 A  
8-7. Load Transient  
8-8. Line Transient  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV61070A  
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
www.ti.com.cn  
Vin  
1V/div  
Vout (5V o set)  
100mV/div  
Vout (5V o set)  
100mV/div  
Output Current  
500mA/div  
Inductor Current  
1A/div  
Time Scale: 2ms/div  
Time Scale: 10ms/div  
VIN = 3.6 V, VOUT = 5 V, IOUT = 0 A to 1.5 A Sweep  
VIN = 0 V to 4.35 V Sweep, VOUT = 5 V, 250 mA load current  
8-9. Load Sweep  
8-10. Line Sweep  
Vout  
2V/div  
SW  
2V/div  
Vout  
2V/div  
SW  
2V/div  
Inductor Current  
1A/div  
Inductor Current  
1A/div  
Time Scale: 5 s/div  
Time Scale: 100 s/div  
VIN = 3.6 V, VOUT = 5 V, IOUT = 250 mA  
VIN = 3.6 V, VOUT = 5 V, IOUT = 250 mA  
8-12. Output Short Protection (Recover)  
8-11. Output Short Protection (Entry)  
8.3 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 0.5 V to 5.5 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk  
capacitance may be required in addition to the ceramic bypass capacitors. A typical choice is a tantalum or  
aluminum electrolytic capacitor with a value of 100 μF. Output current of the input power supply must be rated  
according to the supply voltage, output voltage, and output current of the TLV61070A.  
8.4 Layout  
8.4.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design, especially at high-peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
tracks. The input capacitor, output capacitor, and the inductor should be placed as close as possible to the IC.  
Use a common ground node for power ground and a different one for control ground to minimize the effects of  
ground noise. Connect these ground nodes at any place close to the ground pin of the IC.  
The feedback divider should be placed as close as possible to the ground pin of the IC. To lay out the control  
ground, it is recommended to use short traces as well, separated from the power ground traces. This avoids  
ground shift problems, which can occur due to superimposition of power ground current and control ground  
current.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV61070A  
 
 
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
www.ti.com.cn  
8.4.2 Layout Example  
8-13. PCB Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV61070A  
TLV61070A  
ZHCSP20 SEPTEMBER 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV61070A  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV61070ADBVR  
ACTIVE  
SOT-23  
DBV  
6
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
2N5F  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLV61070ADBVR

具有 0.5V 超低输入电压的 5V、2A 升压转换器 | DBV | 6 | -40 to 125
TI

TLV61220

LOW INPUT VOLTAGE STEP-UP CONVERTER IN THIN SOT-23 PACKAGE
TI

TLV61220DBVR

LOW INPUT VOLTAGE STEP-UP CONVERTER IN THIN SOT-23 PACKAGE
TI

TLV61220DBVT

LOW INPUT VOLTAGE STEP-UP CONVERTER IN THIN SOT-23 PACKAGE
TI

TLV61224

Single Cell High Efficient Step-Up Converter in 6 Pin SC-70 Package
TI

TLV61224DCK

BATTERY CHARGE CONTROLLER, PDSO6, PLASTIC, SC-70, 6 PIN
TI

TLV61224DCKR

Single Cell High Efficient Step-Up Converter in 6 Pin SC-70 Package
TI

TLV61224DCKT

Single Cell High Efficient Step-Up Converter in 6 Pin SC-70 Package
TI

TLV61225

SINGLE CELL HIGH EFFICIENT STEP-UP CONVERTER IN 6 PIN SC-70 PACKAGE
TI

TLV61225DCK

BATTERY CHARGE CONTROLLER, PDSO6, GREEN, PLASTIC, SC-70, 6 PIN
TI

TLV61225DCKR

Single cell 3.3V output voltage high efficient step-up converter in 6 pin SC-70 package 6-SC70 -40 to 85
TI

TLV61225DCKT

暂无描述
TI