TLV70018QDDCRQ1 [TI]

具有使能功能的汽车类、300mA、高 PSRR、低 IQ、低压降稳压器,1.8V 输出 | DDC | 5 | -40 to 125;
TLV70018QDDCRQ1
型号: TLV70018QDDCRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的汽车类、300mA、高 PSRR、低 IQ、低压降稳压器,1.8V 输出 | DDC | 5 | -40 to 125

稳压器
文件: 总25页 (文件大小:1581K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV70018-Q1, TLV70012-Q1  
ZHCS844C NOVEMBER 2011REVISED JUNE 2017  
TLV700xx-Q1 300mA、低 IQ、低压差稳压器  
1 特性  
3 说明  
1
符合汽车应用 要求  
具有符合 AEC-Q100 标准的下列结果:  
TLV70018-Q1 TLV70012-Q1 低压差 (LDO) 线性稳  
压器为低静态电流器件,具有出色的线路和负载瞬态性  
能。高精度带隙与误差放大器支持 2% 的总精度。本  
系列器件具有低输出噪声、高电源抑制比 (PSRR) 和  
低压差电压等特性,非常适合为功率敏感型负载供电。  
所有器件版本均具有热关断保护和电流限制,以便检测  
故障状况。  
器件温度 1 级:-40°C 125°C 的环境运行温  
度范围  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 H2  
器件组件充电模式 (CDM) ESD 分类等级 C3B  
精度 2%  
此外,这些器件在有效输出电容只有 0.1μF 时保持稳  
定。这一特性允许使用具有较高偏置电压和温度降额的  
成本效益型电容器。这些器件在不产生输出负载的情况  
下可调节至特定的精度。  
IQ35μA  
固定输出电压:1.2V 1.8V  
高电源抑制比 (PSRR):频率 1kHz 时为 68dB  
可在采用 0.1 μF(1) 的有效电容时保持稳定  
热关断保护和过流保护  
器件信息(1)  
(1)  
器件型号  
TLV70018-Q1  
TLV70012-Q1  
封装  
封装尺寸(标称值)  
请参阅 输入和输出电容器要求。  
小外形尺寸晶体管  
(SOT) (5)  
2.90mm x 1.60mm  
2 应用  
汽车音响主机  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
摄像头传感器和模块  
抬头显示 (HUD)  
空白  
空白  
空白  
空白  
空白  
空白  
远程信息处理控制单元  
典型应用  
VIN  
VOUT  
IN  
OUT  
1 mF  
Ceramic  
CIN  
COUT  
TLV700xx  
GND  
On  
EN  
Off  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSB67  
 
 
 
 
 
 
 
TLV70018-Q1, TLV70012-Q1  
ZHCS844C NOVEMBER 2011REVISED JUNE 2017  
www.ti.com.cn  
目录  
8.1 Application Information............................................ 13  
8.2 Typical Application .................................................. 13  
Power Supply Recommendations...................... 14  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagrams ..................................... 11  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 12  
Application and Implementation ........................ 13  
9
10 Layout................................................................... 15  
10.1 Layout Guidelines ................................................. 15  
10.2 Layout Example .................................................... 15  
10.3 Thermal Considerations........................................ 15  
10.4 Power Dissipation ................................................. 15  
11 器件和文档支持 ..................................................... 17  
11.1 器件支持................................................................ 17  
11.2 文档支持................................................................ 17  
11.3 相关链接................................................................ 17  
11.4 接收文档更新通知 ................................................. 17  
11.5 社区资源................................................................ 17  
11.6 ....................................................................... 17  
11.7 静电放电警告......................................................... 17  
11.8 Glossary................................................................ 17  
12 机械、封装和可订购信息....................................... 17  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (January 2016) to Revision C  
Page  
已更改 固定输出电压 特性 由固定输出电压组合(可能为 1.2V 4.8V更改为固定输出电压(1.2V 1.8V................. 1  
已更改 应用部分...................................................................................................................................................................... 1  
已更改 说明部分的第一段:将 TLV700xx-Q1 系列更改为 TLV70018-Q1 TLV70012-Q1、删除了第二句、将多种电  
池供电型手持设备更改为为功率敏感型负载供电,并将安全更改为检测故障状.................................................................. 1  
已删除 典型应用标题中的固定电压版本.................................................................................................................................. 1  
Changed Input voltage parameter: changed symbol from VI to VIN, moved EN and OUT rows to standalone  
parameters ............................................................................................................................................................................. 5  
Changed maximum specification of Output voltage parameter from 5.5 V to 1.8 V ............................................................. 5  
Added IOUT symbol to Current output parameter ................................................................................................................... 5  
Deleted TLV70018-Q1 column from Thermal Information table ............................................................................................ 5  
Added TLV70018-Q1 to TLV70012-Q1 column in Thermal Information table; all thermal values for TLV70018-Q1  
changed to the TLV70012-Q1 thermal values........................................................................................................................ 5  
Changed VOUT(TYP) to VOUT(NOM) in conditions statement of Electrical Characteristics table .................................................. 6  
Changed symbols for Line regulation, Load regulation, and Output noise voltage parameters from ΔVO/ΔVIN to  
ΔVOUT/ΔVIN, ΔVO/ΔIOUT to ΔVOUT/ΔIOUT, and VN to Vn (respectively) in Electrical Characteristics table.................................. 6  
Changed VOUT(TYP) to VOUT(NOM) in Typical Characteristics conditions statement .................................................................. 7  
Deleted Dropout Voltage vs Input Voltage and Dropout Voltage vs Output Current curves ................................................. 7  
Changed TLV700xx-Q1 to TLV70018-Q1 and TLV70012-Q1 in Overview section............................................................. 11  
Added TLV70012-Q1 to sub-sections of Feature Description and Device Functional Modes sections .............................. 11  
Changed 160°C to 165°C, 140°C to 145°C, and 35°C to 40°C in Thermal Shutdown section .......................................... 12  
Changed Application Information section: changed first two sentences, deleted second paragraph ................................. 13  
Changed Example Value column values for 2nd and 3rd rows in Design Parameters table............................................... 13  
Added TLV70012-Q1 to Input and Output Capacitor Requirements section ....................................................................... 14  
Deleted first and last paragraphs from Thermal Considerations section ............................................................................ 15  
Deleted second sentence from second paragraph of Power Dissipation section ............................................................... 15  
Added TLV70012-Q1 to Power Dissipation section ............................................................................................................ 15  
2
版权 © 2011–2017, Texas Instruments Incorporated  
 
TLV70018-Q1, TLV70012-Q1  
www.ti.com.cn  
ZHCS844C NOVEMBER 2011REVISED JUNE 2017  
修订历史记录 (接下页)  
Changes from Revision A (March 2012) to Revision B  
Page  
已添加 ESD 额定值表、建议运行条件表、热性能信息表、详细 说明部分、应用和实施部分、应用和实施部分、布局  
部分、器件和文档支持部分以及机械、封装和可订购信息部分............................................................................................... 1  
Deleted the Dissipation Ratings table..................................................................................................................................... 5  
Copyright © 2011–2017, Texas Instruments Incorporated  
3
TLV70018-Q1, TLV70012-Q1  
ZHCS844C NOVEMBER 2011REVISED JUNE 2017  
www.ti.com.cn  
5 Pin Configuration and Functions  
DDC Package  
5-Pin SOT  
Top View  
1
2
3
5
OUT  
NC  
IN  
GND  
EN  
4
Pin Functions  
PIN  
DESCRIPTION  
NO.  
1
NAME  
IN  
Input pin. A small 1-μF ceramic capacitor is recommended from this pin to ground to assure stability and good  
transient performance.(1)  
2
GND  
EN  
Ground pin  
Enable pin. Driving EN over 0.9 V turns on the regulator. Driving EN below 0.4 V puts the regulator into shutdown  
mode and reduces operating current to 1 μA, nominal.  
3
4
5
NC  
No connection. This pin can be tied to ground to improve thermal dissipation.  
Regulated output voltage pin. A small 1-μF ceramic capacitor is needed from this pin to ground to assure stability.(1)  
OUT  
(1) See Input and Output Capacitor Requirements section for more details.  
4
Copyright © 2011–2017, Texas Instruments Incorporated  
TLV70018-Q1, TLV70012-Q1  
www.ti.com.cn  
ZHCS844C NOVEMBER 2011REVISED JUNE 2017  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range, unless otherwise noted.(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
6.0  
UNIT  
IN  
V
V
V
Voltage(2)  
EN  
6.0  
OUT  
OUT  
6.0  
Current (source)  
Internally Limited  
Indefinite  
Output short-circuit duration  
Operating virtual junction, TJ  
Storage temperature, Tstg  
–55  
–55  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
2000  
750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range, unless otherwise noted.  
MIN  
MAX  
5.5  
UNIT  
V
VIN  
Input voltage  
IN  
2
0
VEN  
VOUT  
IOUT  
TJ  
Enable voltage  
EN  
OUT  
5.5  
V
Output voltage  
0
1.8  
V
Current output  
0
300  
150  
mA  
°C  
Operating junction temperature  
–40  
6.4 Thermal Information  
TLV70018-Q1,  
TLV70012-Q1  
THERMAL METRIC(1)  
UNIT  
DDC (SOT)  
5 PINS  
262.8  
68.2  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
81.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.1  
ψJB  
80.9  
RθJC(bot)  
NA  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2011–2017, Texas Instruments Incorporated  
5
 
 
TLV70018-Q1, TLV70012-Q1  
ZHCS844C NOVEMBER 2011REVISED JUNE 2017  
www.ti.com.cn  
6.5 Electrical Characteristics  
At VIN = VOUT(NOM) + 0.5 V or 2 V (whichever is greater); IOUT = 10 mA, VEN = 0.9 V, COUT = 1.0 μF, and TA = –40°C to 125°C,  
unless otherwise noted. Typical values are at TA = 25°C, unless otherwise noted.  
PARAMETER  
Input voltage range  
DC output accuracy  
Line regulation  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN  
2
5.5  
2%  
5
V
VOUT  
–40°C TA 125°C  
–2% 0.5%  
ΔVOUT/ΔVIN  
VOUT(NOM) + 0.5 V VIN 5.5 V, IOUT = 10 mA  
0 mA IOUT 300 mA, TLV70018-Q1  
0 mA IOUT 300 mA, TLV70012-Q1  
VOUT = 0.9 × VOUT(NOM)  
1
1
1
mV  
mV  
15  
20  
ΔVOUT/ΔIOUT Load regulation  
ICL  
Output current limit  
Ground pin current  
320  
500  
35  
370  
400  
1
860 mA  
IOUT = 0 mA  
55  
μA  
μA  
nA  
μA  
μA  
dB  
IGND  
IOUT = 300 mA, VIN = VOUT + 0.5 V  
V
V
V
EN 0.4 V, VIN = 2.0 V  
ISHDN  
Ground pin current (shutdown)  
EN 0.4 V, 2.0 V VIN 4.5 V, TA = –40°C to 85°C  
EN 0.4 V, 2.0 V VIN 4.5 V, TA = 85°C to 125°C  
2
1
2.5  
PSRR  
Vn  
Power-supply rejection ratio  
Output noise voltage  
VIN = 2.3 V, VOUT = 1.8 V, IOUT = 10 mA, f = 1 kHz  
68  
BW = 100 Hz to 100 kHz,  
VIN = 2.3 V, VOUT = 1.8 V, IOUT = 10 mA  
48  
μVRMS  
tSTR  
Startup time(1)  
COUT = 1.0 μF, IOUT = 300 mA  
100  
μs  
V
VEN(HI)  
VEN(LO)  
IEN  
Enable pin high (enabled)  
Enable pin low (disabled)  
Enable pin current  
0.9  
0
VIN  
0.4  
V
VIN = VEN = 5.5 V  
0.04  
1.9  
μA  
V
UVLO  
Undervoltage lockout  
VIN rising  
Shutdown, temperature increasing  
Reset, temperature decreasing  
165  
145  
°C  
°C  
°C  
TSD  
TA  
Thermal shutdown temperature  
Operating temperature  
–40  
125  
(1) Startup time = time from EN assertion to 0.98 × VOUT(NOM)  
.
6
Copyright © 2011–2017, Texas Instruments Incorporated  
TLV70018-Q1, TLV70012-Q1  
www.ti.com.cn  
ZHCS844C NOVEMBER 2011REVISED JUNE 2017  
6.6 Typical Characteristics  
Over operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(NOM) + 0.5 V or 2 V, whichever is greater; IOUT = 10 mA,  
VEN = VIN, COUT = 1.0 μF, unless otherwise noted. Typical values are at TJ = 25°C.  
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
VOUT = 1.8 V  
IOUT = 10 mA  
VOUT = 1.8 V  
IOUT = 300 mA  
+125°C  
+85°C  
+25°C  
-40°C  
+125°C  
+85°C  
+25°C  
-40°C  
2.1  
2.6  
3.1  
3.6  
4.1  
4.6  
5.1  
5.6  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
VIN (V)  
VIN (V)  
Figure 1. Line Regulation 10 mA  
Figure 2. Line Regulation 300 mA  
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
VOUT = 1.8 V  
VOUT = 1.8 V  
+125°C  
+85°C  
+25°C  
-40°C  
10mA  
150mA  
200mA  
0
50  
100  
150  
200  
250  
300  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
IOUT (mA)  
Figure 4. Output Voltage vs Temperature  
Figure 3. Load Regulation  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
450  
400  
350  
300  
250  
200  
150  
100  
50  
VOUT = 1.8 V  
VOUT = 1.8 V  
+125°C  
+85°C  
+25°C  
-40°C  
+125°C  
+85°C  
+25°C  
-40°C  
0
0
2.1  
2.6  
3.1  
3.6  
4.1  
4.6  
5.1  
5.6  
0
50  
100  
150  
200  
250  
300  
VIN (V)  
IOUT (mA)  
Figure 5. Ground Pin Current vs Input Voltage  
Figure 6. Ground Pin Current vs Load  
Copyright © 2011–2017, Texas Instruments Incorporated  
7
TLV70018-Q1, TLV70012-Q1  
ZHCS844C NOVEMBER 2011REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
Over operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(NOM) + 0.5 V or 2 V, whichever is greater; IOUT = 10 mA,  
VEN = VIN, COUT = 1.0 μF, unless otherwise noted. Typical values are at TJ = 25°C.  
2.5  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VOUT = 1.8 V  
VOUT = 1.8 V  
2
1.5  
1
+125°C  
+85°C  
+25°C  
-40°C  
0.5  
0
0
2.1  
2.6  
3.1  
3.6  
4.1  
4.6  
5.1  
5.6  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
VIN (V)  
Temperature (°C)  
Figure 7. Ground Pin Current vs Temperature  
Figure 8. Shutdown Current vs Input Voltage  
700  
600  
500  
400  
300  
200  
100  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 1.8 V  
IOUT = 10 mA  
IOUT = 150 mA  
+125°C  
+85°C  
+25°C  
-40°C  
VIN - VOUT = 0.5 V  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
VIN (V)  
Frequency (Hz)  
Figure 9. Current Limit vs Input Voltage  
Figure 10. Power-Supply Ripple Rejection vs Frequency  
10  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 1.8 V  
VOUT = 1.8 V  
1 kHz  
IOUT = 10 mA  
CIN = COUT = 1 mF  
1
10 kHz  
100 kHz  
0.1  
0.01  
0.001  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
Frequency (Hz)  
Input Voltage (V)  
Figure 12. Output Spectral Noise Density vs Frequency  
Figure 11. Power-Supply Ripple Rejection vs Input Voltage  
8
Copyright © 2011–2017, Texas Instruments Incorporated  
 
TLV70018-Q1, TLV70012-Q1  
www.ti.com.cn  
ZHCS844C NOVEMBER 2011REVISED JUNE 2017  
Typical Characteristics (continued)  
Over operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(NOM) + 0.5 V or 2 V, whichever is greater; IOUT = 10 mA,  
VEN = VIN, COUT = 1.0 μF, unless otherwise noted. Typical values are at TJ = 25°C.  
tR = tF = 1 ms  
tR = tF = 1 ms  
200 mA  
10 mA  
0 mA  
IOUT  
IOUT  
0 mA  
VOUT  
VOUT  
VOUT = 1.8 V  
VOUT = 1.8 V  
10 ms/div  
10 ms/div  
Figure 13. Load Transient Response  
Figure 14. Load Transient Response  
tR = tF = 1 ms  
tR = tF = 1 ms  
300 mA  
IOUT  
50 mA  
0 mA  
IOUT  
0 mA  
VOUT  
VOUT  
VOUT = 1.8 V  
VOUT = 1.8 V  
10 ms/div  
10 ms/div  
Figure 16. Load Transient Response  
Figure 15. Load Transient Response  
Slew Rate = 1 V/ms  
Slew Rate = 1 V/ms  
VIN  
2.9 V  
2.9 V  
2.3 V  
VIN  
2.3 V  
VOUT  
VOUT  
VOUT = 1.8 V  
VOUT = 1.8 V  
IOUT = 1 mA  
IOUT = 300 mA  
1 ms/div  
1 ms/div  
Figure 17. Line Transient Response  
Figure 18. Line Transient Response  
Copyright © 2011–2017, Texas Instruments Incorporated  
9
TLV70018-Q1, TLV70012-Q1  
ZHCS844C NOVEMBER 2011REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
Over operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(NOM) + 0.5 V or 2 V, whichever is greater; IOUT = 10 mA,  
VEN = VIN, COUT = 1.0 μF, unless otherwise noted. Typical values are at TJ = 25°C.  
Slew Rate = 1 V/ms  
VOUT = 1.8 V  
VOUT = 1.8 V  
IOUT = 1 mA  
VIN  
5.5 V  
IOUT = 300 mA  
VIN  
2.1 V  
VOUT  
VOUT  
1 ms/div  
200 ms/div  
Figure 19. Line Transient Response  
Figure 20. VIN Ramp Up, Ramp Down Response  
10  
Copyright © 2011–2017, Texas Instruments Incorporated  
TLV70018-Q1, TLV70012-Q1  
www.ti.com.cn  
ZHCS844C NOVEMBER 2011REVISED JUNE 2017  
7 Detailed Description  
7.1 Overview  
The TLV70018-Q1 and TLV70012-Q1 low-dropout (LDO) linear regulators are low-quiescent-current devices with  
excellent line and load transient performance. These LDOs are designed for power-sensitive applications. A  
precision bandgap and error amplifier provides overall 2% accuracy together with low output noise, very high  
power-supply rejection ratio (PSRR), and low dropout voltage.  
7.2 Functional Block Diagrams  
IN  
OUT  
Current  
Limit  
Thermal  
Shutdown  
UVLO  
Bandgap  
EN  
LOGIC  
TLV700xx Series  
GND  
7.3 Feature Description  
7.3.1 Internal Current Limit  
The TLV70018-Q1 and TLV70012-Q1 internal current limit helps to protect the regulator during fault conditions.  
During current limit, the output sources a fixed amount of current that is largely independent of the output  
voltage. In such a case, the output voltage is not regulated, and is VOUT = ILIMIT × RLOAD. The PMOS pass  
transistor dissipates (VIN – VOUT) × ILIMIT until thermal shutdown is triggered and the device turns off. As the  
device cools, it is turned on by the internal thermal shutdown circuit. If the fault condition continues, the device  
cycles between current limit and thermal shutdown. See the Thermal Considerations section for more details.  
The PMOS pass element in the TLV70018-Q1 and TLV70012-Q1 has a built-in body diode that conducts current  
when the voltage at OUT exceeds the voltage at IN. This current is not limited, so if extended reverse voltage  
operation is anticipated, external limiting to 5% of the rated output current is recommended.  
7.3.2 Dropout Voltage  
The TLV70018-Q1 and TLV70012-Q1 use a PMOS pass transistor to achieve low dropout. When (VIN – VOUT) is  
less than the dropout voltage (VDO), the PMOS pass device is in the linear region of operation and the input-to-  
output resistance is the RDS(ON) of the PMOS pass element. VDO scales approximately with output current  
because the PMOS device behaves as a resistor in dropout.  
As with any linear regulator, PSRR and transient response are degraded as (VIN – VOUT) approaches dropout.  
Figure 11 illustrates this effect.  
Copyright © 2011–2017, Texas Instruments Incorporated  
11  
TLV70018-Q1, TLV70012-Q1  
ZHCS844C NOVEMBER 2011REVISED JUNE 2017  
www.ti.com.cn  
Feature Description (continued)  
7.3.3 Undervoltage Lockout (UVLO)  
The TLV70018-Q1 and TLV70012-Q1 use an undervoltage lockout circuit to keep the output shut off until internal  
circuitry is operating properly.  
7.3.4 Thermal Shutdown  
Thermal protection disables the output when the junction temperature rises to approximately 165°C, allowing the  
device to cool. When the junction temperature cools to approximately 145°C, the output circuitry is again  
enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection  
circuit may cycle on and off. This cycling limits the dissipation of the regulator, protecting it from damage as a  
result of overheating.  
Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate  
heatsink. For reliable operation, junction temperature should be limited to 125°C maximum. To estimate the  
margin of safety in a complete design (including heatsink), increase the ambient temperature until the thermal  
protection is triggered; use worst-case loads and signal conditions. For good reliability, thermal protection should  
trigger at least 40°C above the maximum expected ambient condition of the particular application. This  
configuration produces a worst-case junction temperature of 125°C at the highest expected ambient temperature  
and worst-case load.  
The internal protection circuitry of the TLV70018-Q1 and TLV70012-Q1 has been designed to protect against  
overload conditions. It was not intended to replace proper heatsinking. Continuously running the TLV70018-Q1 or  
TLV70012-Q1 into thermal shutdown degrades device reliability.  
7.4 Device Functional Modes  
7.4.1 Shutdown  
The enable pin (EN) is active high. The device is enabled when voltage at EN pin goes above 0.9 V. This  
relatively lower value of voltage required to turn the LDO on can be exploited to power the LDO with a GPIO of  
recent processors whose GPIO Logic 1 voltage level is lower than traditional microcontrollers. The device is  
turned off when the EN pin is held at less than 0.4 V. When shutdown capability is not required, EN can be  
connected to the IN pin.  
7.4.2 Operation with VIN Less than 2 V  
The TLV70018-Q1 and TLV70012-Q1 devices operate with input voltages above 2 V. The typical UVLO voltage  
is 1.9 V and the device operates at an input voltage above 2 V. When input voltage falls below UVLO voltage,  
the device will shutdown.  
7.4.3 Operation with VIN Greater than 2 V  
When VIN is greater than 2 V, if input voltage is higher than desired output voltage plus dropout voltage, the  
output voltage is equal to the desired value. Otherwise, output voltage will be VIN minus dropout voltage.  
12  
Copyright © 2011–2017, Texas Instruments Incorporated  
TLV70018-Q1, TLV70012-Q1  
www.ti.com.cn  
ZHCS844C NOVEMBER 2011REVISED JUNE 2017  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV70018-Q1 and TLV70012-Q1 consume low quiescent current and deliver excellent line and load  
transient performance. These characteristics, combined with low noise and very good PSRR with little (VIN  
VOUT) headroom, make this family of devices ideal for portable RF applications. This family of regulators offers  
current limit and thermal protection, and is specified from –40°C to 125°C.  
8.2 Typical Application  
VIN  
VOUT  
IN  
OUT  
TLV700xx-Q1  
EN  
1 uF  
1 uF  
GND  
Figure 21. Simplified Schematic  
8.2.1 Design Requirements  
For this design example use, the parameters listed in Table 1 as the input parameters.  
Table 1. Design Parameters  
PARAMETER  
Input voltage range  
EXAMPLE VALUE  
2 V to 5.5 V  
1.2 V, 1.8 V  
300 mA  
Output voltage  
Output current rating  
Effective output capacitor range  
Maximum output capacitor ESR range  
>0.1 µF  
<200 mΩ  
Copyright © 2011–2017, Texas Instruments Incorporated  
13  
 
TLV70018-Q1, TLV70012-Q1  
ZHCS844C NOVEMBER 2011REVISED JUNE 2017  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Input and Output Capacitor Requirements  
1.0-μF X5R- and X7R-type ceramic capacitors are recommended because these capacitors have minimal  
variation in value and equivalent series resistance (ESR) over temperature.  
However, the TLV70018-Q1 and TLV70012-Q1 are designed to be stable with an effective capacitance of 0.1 μF  
or larger at the output. Thus, the device is stable with capacitors of other dielectric types as well, as long as the  
effective capacitance under operating bias voltage and temperature is greater than 0.1 μF. This effective  
capacitance refers to the capacitance that the LDO sees under operating bias voltage and temperature  
conditions; that is, the capacitance after taking both bias voltage and temperature derating into consideration. In  
addition to allowing the use of lower-cost dielectrics, this capability of being stable with 0.1-μF effective  
capacitance also enables the use of smaller-footprint capacitors that have higher derating in size- and space-  
constrained applications.  
NOTE  
Using a 0.1-μF rated capacitor at the output of the LDO does not ensure stability because  
the effective capacitance under the specified operating conditions would be less than  
0.1 μF. Maximum ESR should be less than 200 mΩ.  
Although an input capacitor is not required for stability, it is good analog design practice to connect a 0.1-μF to  
1.0-μF, low ESR capacitor across the IN pin and GND pin of the regulator. This capacitor counteracts reactive  
input sources and improves transient response, noise rejection, and ripple rejection. A higher-value capacitor  
may be necessary if large, fast rise-time load transients are anticipated, or if the device is not located close to the  
power source. If source impedance is more than 2 Ω, a 0.1-μF input capacitor may be necessary to ensure  
stability.  
8.2.2.2 Transient Response  
As with any regulator, increasing the size of the output capacitor reduces overshoot or undershoot magnitude but  
increases the duration of the transient response.  
8.2.3 Application Curve  
Figure 22. Power Up  
9 Power Supply Recommendations  
The device is designed to operate from an input-voltage supply range between 2 V and 5.5 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the device, TI recommends  
adding a capacitor with a value of 0.1 µF and a ceramic bypass capacitor at the input.  
14  
Copyright © 2011–2017, Texas Instruments Incorporated  
TLV70018-Q1, TLV70012-Q1  
www.ti.com.cn  
ZHCS844C NOVEMBER 2011REVISED JUNE 2017  
10 Layout  
10.1 Layout Guidelines  
Input and output capacitors should be placed as close to the device pins as possible. To improve ac performance  
such as PSRR, output noise, and transient response, the board is recommended to be designed with separate  
ground planes for VIN and VOUT, with the ground plane connected only at the GND pin of the device. In addition,  
the ground connection for the output capacitor should be connected directly to the GND pin of the device. High  
ESR capacitors may degrade PSRR performance.  
10.2 Layout Example  
IN  
OUT  
N/C  
1
2
3
5
4
GND  
EN  
Figure 23. TLV700xx Layout Example  
10.3 Thermal Considerations  
Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate  
heatsink. For reliable operation, junction temperature should be limited to 125°C maximum.  
To estimate the margin of safety in a complete design (including heatsink), increase the ambient temperature  
until the thermal protection is triggered; use worst-case loads and signal conditions.  
10.4 Power Dissipation  
The ability to remove heat from the die is different for each package type, presenting different considerations in  
the printed circuit board (PCB) layout. The PCB area around the device that is free of other components moves  
the heat from the device to the ambient air.  
Thermal performance data for TLV70018-Q1 and TLV70012-Q1 were gathered using the TLV700 evaluation  
module (EVM), a 2-layer board with two ounces of copper per side. Corresponding thermal performance data are  
given in Thermal Information. Note that this board has provision for soldering not only the SOT23-5 package on  
the bottom layer, but also the SC-70 package on the top layer. Using heavier copper increases the effectiveness  
in removing heat from the device. The addition of plated through-holes to heat-dissipating layers also improves  
heatsink effectiveness.  
Copyright © 2011–2017, Texas Instruments Incorporated  
15  
TLV70018-Q1, TLV70012-Q1  
ZHCS844C NOVEMBER 2011REVISED JUNE 2017  
www.ti.com.cn  
Power Dissipation (continued)  
10.4.1 Thermal Calculations  
Power dissipation depends on input voltage and load conditions. Power dissipation (PD) is equal to the product of  
the output current and the voltage drop across the output pass element, as shown in Equation 1.  
PD = IOUT ´(VIN - VOUT ) +IQ ´ VIN  
where  
PD is continuous power dissipation  
IOUT is output current  
VIN is input voltage  
VOUT is output voltage  
(1)  
Since IQ << IOUT, the term IQ × VIN is always ignored.  
For a device under operation at a given ambient air temperature (TA), use Equation 2 to calculate the junction  
temperature (TJ).  
TJ = TA + (RqJA ´ PD )  
where  
Z
θJA is the junction-to-ambient air temperature thermal impedance  
(2)  
(3)  
Use Equation 3 to calculate the rise in junction temperature due to power dissipation.  
DT = TJ - TA = (RqJA ´PD )  
For a given maximum junction temperature (TJ(MAX), use Equation 4 to calculate the maximum ambient air  
temperature (TA(MAX) at which the device can operate.  
TA max = TJmax - (RqJA ´ P )  
D
(4)  
16  
版权 © 2011–2017, Texas Instruments Incorporated  
 
 
 
 
TLV70018-Q1, TLV70012-Q1  
www.ti.com.cn  
ZHCS844C NOVEMBER 2011REVISED JUNE 2017  
11 器件和文档支持  
11.1 器件支持  
11.1.1 封装  
有关 TLV70018-Q1 焊盘尺寸建议,可访问德州仪器 (TI) 网站 www.ti.com.cn。  
11.2 文档支持  
11.2.1 相关文档  
相关文档如下:  
TLV700 评估模块  
11.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即购买的快速链接。  
2. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
TLV70018-Q1  
TLV70012-Q1  
11.4 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可收到任意产  
品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.6 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
版权 © 2011–2017, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV70012QDDCRQ1  
TLV70018QDDCRQ1  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
5
5
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
SDO  
DAL  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV70012QDDCRQ1  
TLV70018QDDCRQ1  
SOT-  
23-THIN  
DDC  
DDC  
5
5
3000  
3000  
179.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
SOT-  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
23-THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV70012QDDCRQ1  
TLV70018QDDCRQ1  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
5
5
3000  
3000  
213.0  
213.0  
191.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0005A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
5
1
NOTE 4  
(0.15)  
0.95  
3.05  
2.75  
1.9  
2
3
(0.2)  
4
0.1  
TYP  
0.0  
0.5  
0.3  
5X  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.12  
TYP  
0 -8 TYP  
C
SEATING PLANE  
0.6  
0.3  
TYP  
4220752/A 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0005A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
5X (1.1)  
5X (0.6)  
1
5
SYMM  
2
3
4X (0.95)  
4
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4220752/A 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0005A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
5X (1.1)  
5X (0.6)  
1
5
SYMM  
2
3
4X(0.95)  
4
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4220752/A 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV70019DDCR

200-mA, Low-IQ, Low-Dropout Regulator for Portable Devices
TI

TLV70019DDCT

200-mA, Low-IQ, Low-Dropout Regulator for Portable Devices
TI

TLV70022DDCR

200-mA, Low-IQ, Low-Dropout Regulator for Portable Devices
TI

TLV70022DDCT

200-mA, Low-IQ, Low-Dropout Regulator for Portable Devices
TI

TLV70025DCKR

200-mA, Low-IQ, Low-Dropout Regulator for Portable Devices
TI

TLV70025DCKT

200-mA, Low-IQ, Low-Dropout Regulator for Portable Devices
TI

TLV70025DDCR

200-mA Low-IQ Low-Dropout Regulator for Portable Devices
TI

TLV70025DDCT

200-mA Low-IQ Low-Dropout Regulator for Portable Devices
TI

TLV70025DSER

200-mA, Low-IQ, Low-Dropout Regulator for Portable Devices
TI

TLV70025DSET

200-mA, Low-IQ, Low-Dropout Regulator for Portable Devices
TI

TLV70025QDDCRQ1

200-mA LOW-IQ LOW-DROPOUT REGULATOR FOR PORTABLE DEVICES
TI

TLV70028DCKR

200-mA, Low-IQ, Low-Dropout Regulator for Portable Devices
TI