TLV7011DPWR [TI]

具有推挽开路输出的低功耗小型比较器 | DPW | 5 | -40 to 125;
TLV7011DPWR
型号: TLV7011DPWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有推挽开路输出的低功耗小型比较器 | DPW | 5 | -40 to 125

放大器 光电二极管 比较器
文件: 总51页 (文件大小:3207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV7011, TLV7021, TLV7012, TLV7022  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
TLV701x TLV702x 小尺寸、低功耗、低电压比较器  
1 特性  
TLV701x TLV702x 提供出色的速度功率综合性能,  
超小型封装:X2SON (0.8 x 0.8mm2)  
1
其传播延迟为 260ns,静态电源电流为 5μA。得益于  
这种微功率下快速响应时间的综合性能,功率敏感型系  
统能够监测故障状况并快速做出响应。这些比较器的工  
作电压范围为 1.6V 6.5V,因此可与 3V 5V 系统  
兼容。  
标准封装:SOT23SC70VSSOP  
1.6V 6.5V 的宽电源电压范围  
5µA 静态电源电流  
260ns 低传播延迟  
轨至轨共模输入电压  
此外,这些比较器在发生过驱动输入和内部迟滞时,不  
会产生输出相位反转。这些 特性 该系列的比较器非常  
适合在恶劣嘈杂环境中进行精密电压监测,其中缓慢输  
入信号必须转换为无噪声数字输出。  
内部迟滞  
推挽和开漏输出选项  
过驱动输入无相位反转  
–40°C +125°C 的工作环境温度范围  
TLV701x 具有推挽式输出级,能够灌/拉毫安级电流,  
同时可对 LED 进行控制或驱动容性负载。TLV702x 具  
有可上拉到 VCC 之上的漏极开路输出级,因此适用于  
电平转换器和双极至单端转换器。  
2 应用  
手机和平板电脑  
便携式电池供电器件  
红外接收器  
器件信息(1)  
电平转换器  
器件型号  
TLV7011、  
封装(引脚)  
X2SON (5)  
封装尺寸(标称值)  
0.80mm × 0.80mm  
2.00mm × 1.25mm  
2.90mm × 1.60mm  
阈值检测器与鉴别器  
窗口比较器  
SC70 (5)  
TLV7021  
过零检测器  
SOT-23 (5)  
TLV7012、  
TLV7022  
VSSOP (8)  
3mm x 3mm  
3 说明  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
TLV7011/7021(单通道)和 TLV7012/7022(双通  
道)是微功耗比较器,采用低工作电压,具有轨至轨输  
入功能。这些比较器采用 0.8mm × 0.8mm 超小型无引  
线封装和标准引线式封装,适用于空间紧凑型设计,例  
如智能手机和其他便携式或电池供电 应用。  
TLV70x1 系列低功耗比较器  
部件号  
输出  
IQ(典型值)  
t
PD(典型值)  
260ns  
260ns  
3µs  
TLV701x  
TLV702x  
TLV703x  
TLV704x  
推挽  
5µA  
漏极开路  
推挽  
5µA  
335nA  
335nA  
漏极开路  
3µs  
X2SON 封装与 SC70 和美元硬币对比  
US dime (18x18x1.35 mm3)  
传播延迟与过驱动  
0.4  
0.35  
0.3  
Rising Edge  
Falling Edge  
5-Lead SC70  
5-Pin X2SON  
0.25  
0.2  
10  
20  
30  
40  
50  
60  
Input Overdrive (mV)  
70  
80  
90  
100  
TLV7  
TA = 25°CVCC = 5VCL = 15pF  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDM5  
 
 
 
 
 
 
 
 
 
TLV7011, TLV7021, TLV7012, TLV7022  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
目录  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ....................................... 16  
7.3 Feature Description................................................. 16  
7.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 18  
8.1 Application Information............................................ 18  
8.2 Typical Applications ................................................ 20  
Power Supply Recommendations...................... 25  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings (Single)......................... 5  
6.2 Absolute Maximum Ratings (Dual) ........................... 5  
6.3 ESD Ratings.............................................................. 5  
6.4 Recommended Operating Conditions (Single) ......... 5  
6.5 Recommended Operating Conditions (Dual)............ 6  
6.6 Thermal Information (Single) .................................... 6  
6.7 Thermal Information (Dual) ....................................... 6  
6.8 Electrical Characteristics (Single) ............................. 7  
6.9 Switching Characteristics (Single) ............................ 7  
6.10 Electrical Characteristics (Dual).............................. 8  
6.11 Switching Characteristics (Dual) ............................. 8  
6.12 Timing Diagrams..................................................... 8  
6.13 Typical Characteristics.......................................... 10  
Detailed Description ............................................ 16  
8
9
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 25  
11 器件和文档支持 ..................................................... 26  
11.1 器件支持................................................................ 26  
11.2 相关链接................................................................ 26  
11.3 接收文档更新通知 ................................................. 26  
11.4 社区资源................................................................ 26  
11.5 ....................................................................... 26  
11.6 静电放电警告......................................................... 26  
11.7 Glossary................................................................ 26  
12 机械、封装和可订购信息....................................... 26  
7
4 修订历史记录  
Changes from Revision D (February 2019) to Revision E  
Page  
已添加 添加了双通道选项 ....................................................................................................................................................... 1  
Changes from Revision C (March 2018) to Revision D  
Page  
已添加 添加了引线式封装选项,目标位置: 特性 .................................................................................................................. 1  
已删除 SOT23 封装的预览状态 .............................................................................................................................................. 1  
Deleted preview status of SOT23 package............................................................................................................................ 3  
Changes from Revision B (November 2017) to Revision C  
Page  
将预览 SC70 封装更改为生产数据.......................................................................................................................................... 1  
Changes from Revision A (July 2017) to Revision B  
Page  
已将传播延迟从 200ns 更改为 260ns .................................................................................................................................... 1  
向数据表添加了预览 SC70 SOT-23 封装........................................................................................................................... 1  
应营销部门请求添加了 TLV70x1 系列微功耗比较器............................................................................................................... 1  
已将重要图形标题从传播延迟与过驱电压 (TLV7011) 间的关系更改为传播延迟与过驱电压间的关.................................... 1  
Removed (TLV7011 only) text from several Typical Characteristics graphs ....................................................................... 10  
Removed some Typical Characteristics graphs .................................................................................................................. 10  
Added 14.......................................................................................................................................................................... 10  
Added 21 ......................................................................................................................................................................... 12  
Added content to the Inputs section..................................................................................................................................... 16  
Added the IR Receiver Analog Front End section................................................................................................................ 21  
2
版权 © 2017–2019, Texas Instruments Incorporated  
 
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com.cn  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
Changes from Original (May 2017) to Revision A  
Page  
将器件状态从高级信息更改为生产数据.............................................................................................................................. 1  
5 Pin Configuration and Functions  
DPW Package  
5-Pin X2SON  
Top View  
OUT  
1
5
IN+  
3
VEE  
VCC  
2
4
IN  
Not to scale  
DBV and DCK Package  
5-Pin SOT-23 and SC70  
Top View  
1
2
3
5
VCC  
OUT  
VEE  
IN+  
4
IN-  
Pin Functions  
PIN  
I/O/P(1)  
DESCRIPTION  
NAME  
OUT  
VCC  
X2SON  
SOT-23, SC70  
1
2
3
4
5
1
5
2
4
3
O
P
P
I
Output  
Positive (highest) power supply  
Negative (lowest) power supply  
Inverting input  
VEE  
IN–  
IN+  
I
Noninverting input  
(1) I = Input, O = Output, P = Power  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
TLV7011, TLV7021, TLV7012, TLV7022  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
TLV7012/22 DGK Packages  
8-Pin VSSOP  
Top View  
1
2
3
4
8
7
OUTA  
VCC  
OUTB  
INB-  
INB+  
INA-  
INA+  
VEE  
6
5
Pin Functions: TLV7012/22  
PIN  
I/O  
DESCRIPTION  
NAME  
INA–  
INA+  
INB–  
INB+  
OUTA  
OUTB  
VEE  
NO.  
2
I
I
Inverting input, channel A  
3
Noninverting input, channel A  
Inverting input, channel B  
6
I
5
I
Noninverting input, channel B  
Output, channel A  
1
O
O
7
Output, channel B  
4
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
VCC  
8
4
Copyright © 2017–2019, Texas Instruments Incorporated  
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com.cn  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
6 Specifications  
6.1 Absolute Maximum Ratings (Single)  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Supply voltage (VS = VCC – VEE  
)
6
Input pins (IN+, IN–)(2)  
VEE – 0.3  
6
±10  
V
Current into Input pins (IN+, IN–)(2)  
Output (OUT)  
mA  
TLV7011/7012(3)  
TLV7021/7022  
VEE – 0.3  
VEE – 0.3  
VCC + 0.3  
6
V
Output short-circuit duration(4)  
Junction temperature, TJ  
Storage temperature, Tstg  
10  
s
150  
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to VEE. Input signals that can swing 0.3V below VEE must be current-limited to 10mA or less.  
(3) Output maximum is (VCC + 0.3V) or 6V, whichever is less.  
(4) Short-circuit to ground, one comparator per package.  
6.2 Absolute Maximum Ratings (Dual)  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
UNIT  
V
Supply voltage VS = VCC - VEE  
Input pins (IN+, IN-)(2)  
7
VEE – 0.3  
7
±10  
V
Current into Input pins (IN+, IN-)  
Output (OUT) (TLV7012)(3)  
Output (OUT) (TLV7022)  
Output short-circuit duration(4)  
Junction temperature, TJ  
mA  
V
VEE – 0.3  
VEE – 0.3  
VCC + 0.3  
7
V
10  
s
150  
°C  
°C  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to VEE. Input signals that can swing 0.3V below VEE must be current-limited to 10mA or less  
(3) Output maximum is (VCC + 0.3 V) or 7 V, whichever is less.  
(4) Short-circuit to ground, one comparator per package.  
6.3 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.4 Recommended Operating Conditions (Single)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.6  
NOM  
MAX  
5.5  
UNIT  
V
Supply voltage (VS = VCC – VEE  
)
Input Voltage Range  
VEE – 0.1  
–40  
VCC + 0.2  
125  
V
Ambient temperature, TA  
°C  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
TLV7011, TLV7021, TLV7012, TLV7022  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
6.5 Recommended Operating Conditions (Dual)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.6  
MAX  
6.5  
UNIT  
V
Supply voltage VS = VCC – VEE  
Input voltage range  
VCC – 0.1  
–40  
VEE + 0.2  
125  
V
Ambient temperature, TA  
°C  
6.6 Thermal Information (Single)  
TLV7011/TLV7021  
THERMAL METRIC(1)  
DPW (X2SON)  
5 PINS  
497.5  
DBV (SOT23)  
5 PINS  
306.3  
DCK (SC70)  
5 PINS  
278.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
275.5  
228.4  
188.6  
372.2  
166.5  
113.2  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
55.5  
138.5  
82.3  
ΨJB  
370.3  
165.3  
112.4  
RθJC(bot)  
165.1  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.7 Thermal Information (Dual)  
TLV7012/TLV7022  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
211.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
96.1  
133.5  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
28.3  
ΨJB  
131.7  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com.cn  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
6.8 Electrical Characteristics (Single)  
VS = 1.8 V to 5 V, VCM = VS / 2; minimum and maximum values are at TA = –40°C to +125°C (unless otherwise noted).  
Typical values are at TA = 25°C.  
PARAMETER  
Input offset voltage  
Hysteresis  
TEST CONDITIONS  
VS = 1.8 V and 5 V, VCM = VS / 2  
VS = 1.8 V and 5 V, VCM = VS / 2  
VS = 2.5 V to 5 V  
MIN  
TYP  
±0.5  
4.2  
MAX  
UNIT  
VIO  
±8  
mV  
VHYS  
1.2  
VEE  
14  
mV  
VCC + 0.1  
VCC + 0.1  
VCM  
Common-mode voltage range  
V
VS = 1.8 V to 2.5 V  
VEE + 0.1  
IB  
Input bias current  
Input offset current  
5
1
pA  
pA  
IOS  
Output voltage high (for TLV7011  
only)  
VOH  
VOL  
ILKG  
VS = 5 V, IO = 3 mA  
VS = 5 V, IO = 3 mA  
4.7  
4.8  
120  
100  
V
Output voltage low  
220  
mV  
pA  
Open-drain output leakage current VS = 5 V, VID = +0.1 V (output high), VPULLUP  
(TLV7021 only)  
=
VCC  
CMRR  
PSRR  
Common-mode rejection ratio  
Power supply rejection ratio  
VEE < VCM < VCC, VS = 5 V  
VS = 1.8 V to 5 V, VCM = VS / 2  
VS = 5 V, sourcing  
VS = 5 V, sinking  
78  
78  
65  
44  
5
dB  
dB  
ISC  
ICC  
Short-circuit current  
Supply current  
mA  
µA  
VS = 1.8 V, no load, VID = –0.1 V (Output Low)  
10  
6.9 Switching Characteristics (Single)  
Typical values are at TA = 25°C, VCC = 5 V, VCM = 2.5 V; CL = 15 pF, input overdrive = 100 mV (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Propagation delay time, high-to-low Midpoint of input to midpoint of output, VOD  
(RP = 2.5 kΩ TLV7021 only) 100 mV  
=
=
tPHL  
tPLH  
260  
ns  
Propagation delay time, low-to-high Midpoint of input to midpoint of output, VOD  
310  
ns  
(RP = 2.5 kΩ TLV7021 only)  
Rise time (for TLV7011 only)  
Fall time  
100 mV  
tR  
20% to 80%  
80% to 20%  
5
5
ns  
ns  
µs  
tF  
(1)  
tON  
Power-up time  
20  
(1) During power on, VS must exceed 1.6 V for tON before the output tracks the input.  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
TLV7011, TLV7021, TLV7012, TLV7022  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
6.10 Electrical Characteristics (Dual)  
VS = 1.8 V to 5 V, VCM = VS / 2; minimum and maximum values are at TA = –40°C to +125°C (unless otherwise noted).  
Typical values are at TA = 25°C.  
PARAMETER  
Input Offset Voltage  
Hysteresis  
TEST CONDITIONS  
VS = 1.8 V and 5 V, VCM = VS / 2  
VS = 1.8 V and 5 V, VCM = VS / 2  
MIN  
TYP  
±0.1  
9
MAX  
UNIT  
mV  
mV  
V
VIO  
VHYS  
VCM  
IB  
±8  
2
15  
Common-mode voltage range  
Input bias current  
Input offset current  
VEE  
VCC + 0.1  
2
1
pA  
IOS  
pA  
Output voltage high (for TLV7012  
only)  
VOH  
VOL  
ILKG  
VS = 5 V, VEE = 0 V, IO = 3 mA  
VS = 5 V, VEE = 0 V, IO = 3 mA  
4.65  
4.8  
250  
100  
V
Output voltage low  
350  
mV  
pA  
Open-drain output leakage  
current (TLV7022 only)  
VS = 5 V, VID = +0.1 V (output high),  
VPULLUP = VCC  
CMRR  
PSRR  
Common-mode rejection ratio  
Power supply rejection ratio  
VEE < VCM < VCC, VS = 5 V  
73  
77  
dB  
dB  
VS = 1.8 V to 5 V, VCM = VS / 2  
VS = 5 V, sourcing (for TLV7012 only)  
VS = 5 V, sinking  
29  
ISC  
ICC  
Short-circuit current  
mA  
µA  
33  
Supply current / Channel  
VS = 1.8 V, no load, VID = –0.1 V (Output Low)  
4.7  
9
6.11 Switching Characteristics (Dual)  
Typical values are at TA = 25°C, VS = 5 V, VCM = VS / 2; CL = 15 pF, input overdrive = 100 mV (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Propagation delay time, high to-  
Midpoint of input to midpoint of output,  
VOD = 100 mV  
tPHL  
low (RP = 4.99 kΩ TLV7022  
310  
ns  
(1)  
only)  
Propagation delay time, low-to high  
Midpoint of input to midpoint of output,  
VOD = 100 mV  
tPLH  
(RP = 4.99 kΩ TLV7022  
260  
ns  
(1)  
only)  
tR  
tF  
Rise time (TLV7012 only)  
Fall time  
Measured from 20% to 80%  
Measured from 20% to 80%  
5
5
ns  
ns  
During power on, VCC must exceed 1.6V for  
200 µs before the output is in correct state.  
tON  
Power-up time  
20  
µs  
(1) The lower limit for RP is 650  
6.12 Timing Diagrams  
tON  
VEE  
VEE + 1.6V  
VCC  
VOH/2  
VEE  
OUT  
1. Start-Up Time Timing Diagram (IN+ > IN–)  
8
版权 © 2017–2019, Texas Instruments Incorporated  
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com.cn  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
Timing Diagrams (接下页)  
V+  
Input  
Input  
+
Output  
VREF + 100 mV  
VREF  
œ
Vœ  
+
VREF  
œ
VREF Å 100 mV  
Vœ  
tpLH  
tpHL  
V+  
80%  
80%  
Output  
50%  
20%  
50%  
20%  
Vœ  
tR  
tF  
2. Propagation Delay Timing Diagram  
版权 © 2017–2019, Texas Instruments Incorporated  
9
TLV7011, TLV7021, TLV7012, TLV7022  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
6.13 Typical Characteristics  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
0.5  
0.5  
0.4  
0.3  
0.2  
VCC = 3.3 V  
VCC = 5 V  
VCC = 3.3 V  
VCC = 5 V  
0.4  
0.3  
0.2  
0
20  
40  
60  
80 100 120 140 160 180 200  
Input Overdrive (mV)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Input Overdrive (mV)  
TLV7  
TLV7  
TA = 25°C,  
TA = 25°C  
3. TLV7011 Propagation Delay (L-H) vs. Input Overdrive  
4. Propagation Delay (H-L) vs. Input Overdrive  
0.5  
0.5  
T = -40èC  
T = 25èC  
T = 85èC  
T = 125èC  
T = -40èC  
T = 25èC  
T = 85èC  
T = 125èC  
0.4  
0.3  
0.2  
0.4  
0.3  
0.2  
0
0
20  
40  
60  
80 100 120 140 160 180 200  
Input Overdrive (mV)  
20  
40  
60  
80 100 120 140 160 180 200  
Input Overdrive (mV)  
TLV7  
TLV7  
VCC = 5 V  
VCC = 5 V  
5. TLV7011 Propagation Delay (L-H) vs. Input Overdrive  
6. Propagation Delay (H-L) vs. Input Overdrive  
0.5  
16  
14  
12  
10  
8
T = -40èC  
T = 25èC  
T = 85èC  
T = 125èC  
0.4  
0.3  
0.2  
6
4
VCM = VCC / 2  
VCM = VCC  
VCM = 100 mV  
2
0
0
20  
40  
60  
80 100 120 140 160 180 200  
Input Overdrive (mV)  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
TLV7  
TLV7  
Rpull-up = 2.5k  
7. TLV7021 Propagation Delay (L-H) vs. Input Overdrive  
VCC = 1.8 V  
8. Hysteresis vs. Temperature  
10  
版权 © 2017–2019, Texas Instruments Incorporated  
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com.cn  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
Typical Characteristics (接下页)  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
16  
16  
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
VCM = VCC / 2  
VCM = VCC  
VCM = 0  
VCM = VCC / 2  
VCM = VCC  
VCM = 0  
2
0
2
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
TLV7  
TLV7  
VCC = 3.3 V  
VCC = 5 V  
9. Hysteresis vs. Temperature  
10. Hysteresis vs. Temperature  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
-40èC  
25èC  
85èC  
125èC  
-40èC  
25èC  
85èC  
125èC  
6
6
4
4
2
2
0
0.1  
0
0
0.3  
0.5  
0.7  
0.9  
VCM (V)  
1.1  
1.3  
1.5  
1.7  
0.5  
1
1.5  
VCM (V)  
2
2.5  
3
3.4  
TLV7  
TLV7  
VCC = 1.8 V  
VCC = 3.3 V  
11. Hysteresis vs. VCM  
12. Hysteresis vs. VCM  
40  
35  
30  
25  
20  
15  
10  
5
20  
18  
16  
14  
12  
10  
8
-40èC  
25èC  
85èC  
125èC  
6
4
2
0
0
0
3
1
2
3
4
5
4
5
Hysteresis (mV)  
6
7
VCM (V)  
TLV7  
TLV7  
VCC = 5 V  
Distribution Taken From 10,777 Comparators  
14. Hysteresis Histogram  
13. Hysteresis vs. VCM  
版权 © 2017–2019, Texas Instruments Incorporated  
11  
TLV7011, TLV7021, TLV7012, TLV7022  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
0.7  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VCM = VCC / 2  
VCM = VCC  
VCM = 0  
VCM = VCC / 2  
VCM = VCC  
VCM = 100 mV  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
TLV7  
TLV7  
VCC = 3.3 V  
VCC = 1.8 V  
16. Input Offset vs. Temperature  
15. Input Offset vs. Temperature  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
4
3
VCM = VCC / 2  
VCM = VCC  
VCM = 0  
2
1
0
-1  
-2  
-3  
0
-4  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0.1  
0.3  
0.5  
0.7  
0.9  
VCM (V)  
1.1  
1.3  
1.5  
1.7  
Temperature (èC)  
TLV7  
TLV7  
VCC = 5 V  
VCC = 1.8 V, 50 devices  
17. Input Offset vs. Temperature  
18. Input Offset Voltage vs. VCM  
4
3
4
3
2
2
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
-4  
-4  
0
1
2
3
0
0.5  
1
1.5  
2
2.5  
VCM (V)  
3
3.5  
4
4.5  
5
VCM (V)  
TLV7  
TLV7  
VCC = 3.3 V, 50 devices  
19. Input Offset Voltage vs. VCM  
VCC = 5 V, 50 devices  
20. Input Offset Voltage vs. VCM  
12  
版权 © 2017–2019, Texas Instruments Incorporated  
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com.cn  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
Typical Characteristics (接下页)  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
20  
1.8  
1.795  
1.79  
15  
10  
5
1.785  
1.78  
1.775  
1.77  
1.765  
1.76  
-40èC  
25èC  
85èC  
125èC  
1.755  
1.75  
0
0.1  
0.2  
IOUT (mA)  
0.3  
0.4  
0.5  
-3  
-2  
-2  
-1  
0
1
Input Offset (mV)  
2
3
4
TLV7  
TLV7  
VCC = 1.8 V  
Distribution Taken From 10,777 Comparators  
22. TLV7011 Output Voltage High vs. Output Source  
21. Input Offset Voltage Histogram  
Current  
5
4.95  
4.9  
0.05  
-40èC  
25èC  
125èC  
0.04  
0.03  
0.02  
0.01  
0
4.85  
4.8  
-4è0C  
25èC  
85èC  
125èC  
4.75  
0.1  
1
5
0.1  
0.2  
IOUT (mA)  
0.3  
0.4  
0.5  
IOUT (mA)  
TLV7  
TLV7  
VCC = 5 V  
VCC = 1.8 V  
23. TLV7011 Output Voltage High vs. Output Source  
24. Output Voltage Low vs. Output Sink Current  
Current  
60  
50  
40  
30  
20  
10  
0
0.25  
-40èC  
25èC  
125èC  
0.2  
0.15  
0.1  
0.05  
0
VCC = 3.5 V  
VCC = 5.5 V  
0.1  
0.2 0.3 0.40.5 0.7  
1
2
3
4
5
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
IOUT (mA)  
Temperature (èC)  
TLV7  
TLV7  
VCC = 5 V  
25. Output Voltage Low vs. Output Sink Current  
VCM = VCC/2  
26. Output Short-Circuit (Sink) Current vs. Temperature  
版权 © 2017–2019, Texas Instruments Incorporated  
13  
TLV7011, TLV7021, TLV7012, TLV7022  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
90  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
-40èC  
25èC  
85èC  
125èC  
VCC = 3.5 V  
VCC = 5.5 V  
10  
0
1.8  
2.3  
2.8  
3.3  
3.8  
VCC (V)  
4.3  
4.8  
5.3  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
TLV7  
TLV7  
VCM = VCC/2  
VCM = VCC/2  
28. Output Short Circuit (Sink) vs. VCC  
27. TLV7011 Output Short-Circuit (Source) Current vs.  
Temperature  
90  
80  
70  
60  
50  
40  
30  
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
-40èC  
25èC  
85èC  
125èC  
20  
10  
0
VCC = 3.3 V  
VCC = 5 V  
2.5  
2
1.8  
2.3  
2.8  
3.3  
3.8  
VCC (V)  
4.3  
4.8  
5.3  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
TLV7  
TLV7  
VCM = VCC/2  
29. TLV7011 Output Short Circuit (Source) vs. VCC  
VCM = VCC/2  
30. ICC vs. Temperature  
7
7
6.5  
6
6.5  
6
5.5  
5
5.5  
5
4.5  
4
4.5  
4
3.5  
3
3.5  
3
-40èC  
25èC  
85èC  
125èC  
-40èC  
25èC  
85èC  
125èC  
2.5  
2
2.5  
2
0
1
1.5  
2
2.5  
3
VCC (V)  
3.5  
4
4.5  
5
0.5  
1
1.5  
VCM (V)  
2
2.5  
3
TLV7  
TLV7  
VCM = VCC/2  
VCC = 3.3 V  
31. ICC vs. VCC  
32. ICC vs. VCM  
14  
版权 © 2017–2019, Texas Instruments Incorporated  
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com.cn  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
Typical Characteristics (接下页)  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
10000  
1000  
100  
10  
7
6.5  
6
5.5  
5
4.5  
4
1
3.5  
-40èC  
3
25èC  
0.1  
85èC  
125èC  
2.5  
2
0.01  
0
1
2
3
VCM (V)  
4
5
5.5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
TLV7  
TLV7  
VCC = 5 V  
VCC = 3.3V  
33. ICC vs. VCM  
34. Input Bias Current vs. Temperature  
100000  
10000  
1000  
100  
10000  
1000  
100  
10  
10  
1
1
10  
100  
1000  
Load Capacitance (pF)  
10000  
100000  
10  
100  
1000  
Load Capacitance (pF)  
10000  
100000  
TLV7  
TLV7  
VOD = 100mV  
35. TLV7011 Output Rise Time vs. Load Capacitance  
VOD = 100mV  
36. Output Fall Time vs. Load Capacitance  
版权 © 2017–2019, Texas Instruments Incorporated  
15  
TLV7011, TLV7021, TLV7012, TLV7022  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV701x and TLV702x devices are single-channel, micro-power comparators with push-pull and open-drain  
outputs. Operating down to 1.6 V and consuming only 5 µA, the TLV701x and TLV702x are ideally suited for  
portable and industrial applications. The comparators are available in leadless and leaded packages to offer  
significant board space saving in space-challenged designs.  
7.2 Functional Block Diagram  
VCC  
IN+  
IN-  
+
OUT  
œ
Bias  
Power-on-reset  
GND  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
The TLV701x (push-pull) and TLV702x (open-drain) devices are micro-power comparators that are capable of  
operating at low voltages. The TLV701x and TLV702x feature a rail-to-rail input stage capable of operating up to  
100 mV beyond the VCC power supply rail. The comparators also feature a push-pull and open-drain output  
stage with internal hysteresis.  
7.4 Device Functional Modes  
The TLV701x and TLV702x have a Power-on-Reset (POR) circuit. While the power supply (VS) is ramping up or  
ramping down, the POR circuitry will be activated.  
For the TLV701x, the POR circuit will hold the output low (at VEE) while activated.  
For the TLV702x, the POR circuit will keep the output high impedance (logical high) while activated.  
When the supply voltage is greater than, or equal to, the minimum supply voltage, the comparator output reflects  
the state of the differential input (VID).  
7.4.1 Inputs  
The TLV701x and TLV702x input common-mode extends from VEE to 100 mV above VCC. The differential input  
voltage (VID) can be any voltage within these limits. No phase-inversion of the comparator output will occur when  
the input pins exceed VCC and VEE  
.
16  
版权 © 2017–2019, Texas Instruments Incorporated  
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com.cn  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
Device Functional Modes (接下页)  
While TI recommends operating the TLV701x and TLV702x within the specified common-mode range, the inputs  
are fault tolerant to voltages up to 5.5 V independent of the applied VCC value. Fault tolerant is defined as  
maintaining the same high input impedance when VCC is unpowered or within the recommended operating range.  
Because the inputs of the TLV701x and TLV702x are fault tolerant, the inputs to the comparator can be any  
value between 0 V and 5.5 V while VCC is ramping up. This feature allows any supply and input driven sequence  
as long as the input value and supply are within the specified ranges. In this case, no current limiting resistor is  
required. This is possible since the VCC is isolated from the inputs such that it maintains its value even when a  
higher voltage is applied to the input.  
The input bias current is typically 1 pA for input voltages between VCC and VEE. The comparator inputs are  
protected from undervoltage by internal diodes connected to VEE. As the input voltage goes under VEE, the  
protection diodes become forward biased and begin to conduct causing the input bias current to increase  
exponentially. Input bias current typically doubles for 10°C temperature increases.  
7.4.2 Internal Hysteresis  
The device hysteresis transfer curve is shown in 37. This curve is a function of three components: VTH, VOS  
,
and VHYST  
:
VTH is the actual set voltage or threshold trip voltage.  
VOS is the internal offset voltage between VIN+ and VIN–. This voltage is added to VTH to form the actual trip  
point at which the comparator must respond to change output states.  
VHYST is the internal hysteresis (or trip window) that is designed to reduce comparator sensitivity to noise  
(4.2 mV for the TLV7011).  
VTH + VOS - (VHYST / 2)  
VTH + VOS  
VTH + VOS + (VHYST / 2)  
37. Hysteresis Transfer Curve  
7.4.3 Output  
The TLV701x feature a push-pull output stage eliminating the need for an external pull-up resistor. On the other  
hand, the TLV702x feature an open-drain output stage enabling the output logic levels to be pulled up to an  
external source independent of the supply voltage.  
版权 © 2017–2019, Texas Instruments Incorporated  
17  
 
TLV7011, TLV7021, TLV7012, TLV7022  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV701x and TLV702x are micro-power comparators with reasonable response time. The comparators have  
a rail-to-rail input stage that can monitor signals beyond the positive supply rail with integrated hysteresis. When  
higher levels of hysteresis are required, positive feedback can be externally added. The push-pull output stage of  
the TLV701x is optimal for reduced power budget applications and features no shoot-through current. When level  
shifting or wire-ORing of the comparator outputs is needed, the TLV702x with its open-drain output stage is well  
suited to meet the system needs. In either case, the wide operating voltage range, low quiescent current, and  
micro-package of the TLV701x and TLV702x make these comparators excellent candidates for battery-operated  
and portable, handheld designs.  
8.1.1 Inverting Comparator With Hysteresis for TLV701x  
The inverting comparator with hysteresis requires a three-resistor network that is referenced to the comparator  
supply voltage (VCC), as shown in 38. When VIN at the inverting input is less than VA, the output voltage is  
high (for simplicity, assume VO switches as high as VCC). The three network resistors can be represented as R1  
|| R3 in series with R2. 公式 1 defines the high-to-low trip voltage (VA1).  
R2  
VA1 = VCC  
´
(R1 || R3) + R2  
(1)  
When VIN is greater than VA, the output voltage is low, very close to ground. In this case, the three network  
resistors can be presented as R2 || R3 in series with R1. Use 公式 2 to define the low to high trip voltage (VA2).  
R2 || R3  
VA2 = VCC ´  
R1 + (R2 || R3)  
(2)  
(3)  
公式 3 defines the total hysteresis provided by the network.  
DVA = VA1 - VA2  
+VCC  
+5 V  
R1  
1 MW  
VIN  
5 V  
0 V  
RLOAD  
VA  
VO  
100 kW  
VA2  
1.67 V  
VA1  
3.33 V  
R3  
1 MW  
VIN  
R2  
1 MW  
VO High  
+VCC  
VO Low  
+VCC  
R1  
VA1  
R2  
R3  
R1  
VA2  
R2  
R3  
Copyright © 2016, Texas Instruments Incorporated  
38. TLV701x in an Inverting Configuration With Hysteresis  
18  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
 
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com.cn  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
Application Information (接下页)  
8.1.2 Noninverting Comparator With Hysteresis for TLV701x  
A noninverting comparator with hysteresis requires a two-resistor network, as shown in 39, and a voltage  
reference (VREF) at the inverting input. When VIN is low, the output is also low. For the output to switch from low  
to high, VIN must rise to VIN1. Use 公式 4 to calculate VIN1  
VREF  
.
VIN1 = R1 ´  
+ VREF  
R2  
(4)  
When VIN is high, the output is also high. For the comparator to switch back to a low state, VIN must drop to VIN2  
such that VA is equal to VREF. Use 公式 5 to calculate VIN2  
VREF (R1 + R2) - VCC ´ R1  
.
VIN2  
=
R2  
(5)  
(6)  
The hysteresis of this circuit is the difference between VIN1 and VIN2, as shown in 公式 6.  
R1  
DVIN = VCC  
´
R2  
+VCC  
+5 V  
VREF  
VO  
+2.5 V  
VA  
VIN  
RLOAD  
R1  
330 kW  
R2  
1 MW  
VO High  
+VCC  
VO Low  
VIN1  
5 V  
0 V  
R2  
R1  
VA = VREF  
R2  
VO  
VA = VREF  
R1  
VIN2  
VIN1  
1.675 V 3.325 V  
VIN  
VIN2  
Copyright © 2016, Texas Instruments Incorporated  
39. TLV701x in a Noninverting Configuration With Hysteresis  
版权 © 2017–2019, Texas Instruments Incorporated  
19  
 
 
 
 
TLV7011, TLV7021, TLV7012, TLV7022  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
8.2 Typical Applications  
8.2.1 Window Comparator  
Window comparators are commonly used to detect undervoltage and overvoltage conditions. 40 shows a  
simple window comparator circuit.  
3.3 V  
RPU  
R1  
UV_OV  
+
Micro-  
Controller  
œ
Sensor  
TLV7021  
R2  
+
œ
TLV7021  
R3  
Copyright © 2017, Texas Instruments Incorporated  
40. Window Comparator  
8.2.1.1 Design Requirements  
For this design, follow these design requirements:  
Alert (logic low output) when an input signal is less than 1.1 V  
Alert (logic low output) when an input signal is greater than 2.2 V  
Alert signal is active low  
Operate from a 3.3-V power supply  
8.2.1.2 Detailed Design Procedure  
Configure the circuit as shown in 40. Connect VCC to a 3.3-V power supply and VEE to ground. Make R1, R2  
and R3 each 10-MΩ resistors. These three resistors are used to create the positive and negative thresholds for  
the window comparator (VTH+ and VTH–). With each resistor being equal, VTH+ is 2.2 V and VTH- is 1.1 V. Large  
resistor values such as 10-MΩ are used to minimize power consumption. The sensor output voltage is applied to  
the inverting and noninverting inputs of the two TLV702x's. The TLV7021 is used for its open-drain output  
configuration. Using the TLV702x allows the two comparator outputs to be Wire-Ored together. The respective  
comparator outputs will be low when the sensor is less than 1.1 V or greater than 2.2 V. VOUT will be high when  
the sensor is in the range of 1.1 V to 2.2 V.  
20  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com.cn  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
Typical Applications (接下页)  
8.2.1.3 Application Curve  
VIN  
VTH+ = 2.2 V  
VTHœ = 1.1 V  
Time (usec)  
VOUT  
Time (usec)  
200  
50  
100  
150  
41. Window Comparator Results  
8.2.2 IR Receiver Analog Front End  
A single TLV7011 device can be used to build a complete IR receiver analog front end (AFE). The nanoamp  
quiescent current and low input bias current make it possible to be powered with a coin cell battery, which could  
last for years.  
Vref  
470 k  
470 kꢀ  
10M ꢀ  
R4  
3 V  
IR LED  
R2  
R3  
U1  
+
Output to MCU  
(Also to wake-up MCU)  
œ
VOUT  
C1  
10M ꢀ  
TLV7011  
VIN  
R1  
0.01 F  
GND  
Copyright © 2017, Texas Instruments Incorporated  
42. IR Receiver Analog Front End Using TLV7011  
8.2.2.1 Design Requirements  
For this design, follow these design requirements:  
Use a proper resistor (R1) value to generate an adequate signal amplitude applied to the inverting input of the  
comparator.  
The low input bias current IB (2 pA typical) ensures that a greater value of R1 to be used.  
版权 © 2017–2019, Texas Instruments Incorporated  
21  
TLV7011, TLV7021, TLV7012, TLV7022  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Applications (接下页)  
The RC constant value (R2 and C1) must support the targeted data rate (that is, 9,600 bauds) to maintain a  
valid tripping threshold.  
The hysteresis introduced with R3 and R4 helps to avoid spurious output toggles.  
8.2.2.2 Detailed Design Procedure  
The IR receiver AFE design is highly streamlined and optimized. R1 converts the IR light energy induced current  
into voltage and applies to the inverting input of the comparator. Because a reverse biased IR LED is used as  
the IR receiver, a higher I/V transimpedance gain is required to boost the amplitude of reduced current. A 10M  
resistor is used as R1 to support a 1-V, 100-nA transimpedance gain. This is made possible with the picoamps  
Input bias current IB (5pA typical). The RC network of R2 and C1 establishes a reference voltage Vref which tracks  
the mean amplitude of the IR signal. The RC constant of R2 and C1 (about 4.7 ms) is chosen for Vref to track the  
received IR current fluctuation but not the actual data bit stream. The noninverting input is connected to Vref and  
the output over the R3 and R4 resistor network which provides additional hysteresis for improved guard against  
spurious toggles.  
To reduce the current drain from the coin cell battery, data transmission must be short and infrequent.  
8.2.2.3 Application Curve  
1.8 V  
VIN  
1.2 V  
4.0 V  
VOUT  
0.0 V  
1.61 V  
VREF  
1.58 V  
0.0  
200.0 u  
400.0 u  
Time  
600.0 u  
800.0 u  
43. IR Receiver AFE Waveforms  
22  
版权 © 2017–2019, Texas Instruments Incorporated  
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com.cn  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
Typical Applications (接下页)  
8.2.3 Square-Wave Oscillator  
Square-wave oscillator can be used as low cost timing reference or system supervisory clock source.  
44. Square-Wave Oscillator  
8.2.3.1 Design Requirements  
The square-wave period is determined by the RC time constant of the capacitor and resistor. The maximum  
frequency is limited by propagation delay of the device and the capacitance load at the output. The low input bias  
current allows a lower capacitor value and larger resistor value combination for a given oscillator frequency,  
which may help to reduce BOM cost and board space.  
8.2.3.2 Detailed Design Procedure  
The oscillation frequency is determined by the resistor and capacitor values. The following calculation provides  
details of the steps.  
45. Square-Wave Oscillator Timing Thresholds  
First consider the output of Figure 44 is high which indicates the inverted input VC is lower than the  
noninverting input (VA). This causes the C1 to be charged through R4, and the voltage VC increases until it is  
equal to the noninverting input. The value of VA at the point is calculated by 公式 7.  
VCCìR2  
R2 + R1IIR3  
VA1  
=
(7)  
if R1 = R2= R3, then VA1 = 2 VCC/ 3  
版权 © 2017–2019, Texas Instruments Incorporated  
23  
 
 
TLV7011, TLV7021, TLV7012, TLV7022  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Applications (接下页)  
At this time the comparator output trips pulling down the output to the negative rail. The value of VAat this point is  
calculated by 公式 8.  
VCC(R2IIR3 )  
VA2  
=
R1+R2IIR3  
(8)  
if R1 = R2 = R3, then VA2 = VCC/3  
The C1 now discharges though the R4, and the voltage VCC decreases until it reaches VA2. At this point, the  
output switches back to the starting state. The oscillation period equals to the time duration from for C1 from  
2VCC/3 to VCC / 3 then back to 2VCC/3, which is given by R4C1 × ln 2 fro each trip. Therefore, the total time  
duration is calculated as 2 R4C1 × ln 2. The oscillation frequency can be obtained by 公式 9:  
f = 1/ 2 R4ìC1ìIn2  
(
)
(9)  
8.2.3.3 Application Curve  
46 shows the simulated results of tan oscillator using the following component values:  
R1 = R2 = R3 = R4 = 100 kΩ  
C1 = 100 pF, CL = 20 pF  
V+ = 5 V, V– = GND  
Cstray (not shown) from VA TO GND = 10 pF  
46. Square-Wave Oscillator Output Waveform  
24  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com.cn  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
9 Power Supply Recommendations  
The TLV701x and TLV702x have a recommended operating voltage range (VS) of 1.6 V to 5.5 / 6.5 V. VS is  
defined as VCC – VEE. Therefore, the supply voltages used to create VS can be single-ended or bipolar. For  
example, single-ended supply voltages of 5 V and 0 V and bipolar supply voltages of +2.5 V and –2.5 V create  
comparable operating voltages for VS. However, when bipolar supply voltages are used, it is important to realize  
that the logic low level of the comparator output is referenced to VEE  
.
Output capacitive loading and output toggle rate will cause the average supply current to rise over the quiescent  
current.  
10 Layout  
10.1 Layout Guidelines  
To reduce PCB fabrication cost and improve reliability, TI recommends using a 4-mil via at the center pad  
connected to the ground trace or plane on the bottom layer.  
A power-supply bypass capacitor of 100 nF is recommended when supply output impedance is high, supply  
traces are long, or when excessive noise is expected on the supply lines. Bypass capacitors are also  
recommended when the comparator output drives a long trace or is required to drive a capacitive load. Due to  
the fast rising and falling edge rates and high-output sink and source capability of the TLV7011 and TLV7021  
output stages, higher than normal quiescent current can be drawn from the power supply. Under this  
circumstance, the system would benefit from a bypass capacitor across the supply pins.  
10.2 Layout Example  
OUT  
IN+  
Top-Layer  
Trace  
Bottom-Layer  
Trace  
4 mil VIA  
VCC  
IN-  
8 mil VIA  
Package  
Body  
Outline  
Top-View  
0.1 uF  
47. Layout Example  
版权 © 2017–2019, Texas Instruments Incorporated  
25  
TLV7011, TLV7021, TLV7012, TLV7022  
ZHCSGK4E SEPTEMBER 2017REVISED NOVEMBER 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 评估模块  
我们为您提供了评估模块 (EVM),可以借此来对使用 TLV70x1 器件系列的电路性能进行初始评估。TLV7011 微功  
耗比较器 DIP 适配器评估模块 可在德州仪器 (TI) 网站上的产品文件夹下申请,也可以直接从 TI 网上商店购买。  
11.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
1. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
TLV7011  
TLV7021  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2017–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV7011DBVR  
TLV7011DCKR  
TLV7011DCKT  
TLV7011DPWR  
TLV7012DDFR  
TLV7012DGKR  
TLV7012DSGR  
TLV7021DBVR  
TLV7021DCKR  
TLV7021DCKT  
TLV7021DPWR  
TLV7022DDFR  
TLV7022DGKR  
TLV7022DSGR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SC70  
DBV  
DCK  
DCK  
DPW  
DDF  
DGK  
DSG  
DBV  
DCK  
DCK  
DPW  
DDF  
DGK  
DSG  
5
5
5
5
8
8
8
5
5
5
5
8
8
8
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1IC2  
19N  
19N  
7N  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
SC70  
250  
RoHS & Green  
X2SON  
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
ACTIVE SOT-23-THIN  
NIPDAU  
7012  
7012  
7012  
1ID2  
19O  
19O  
7P  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
WSON  
SOT-23  
SC70  
NIPDAUAG | SN  
NIPDAU  
NIPDAUAG  
NIPDAU  
SC70  
250  
RoHS & Green  
NIPDAU  
X2SON  
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
ACTIVE SOT-23-THIN  
NIPDAU  
7022  
7022  
7022  
ACTIVE  
ACTIVE  
VSSOP  
WSON  
NIPDAUAG | SN  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Oct-2022  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV7011DBVR  
TLV7011DCKR  
TLV7011DCKT  
TLV7011DPWR  
TLV7012DDFR  
SOT-23  
SC70  
DBV  
DCK  
DCK  
DPW  
DDF  
5
5
5
5
8
3000  
3000  
250  
180.0  
178.0  
178.0  
178.0  
180.0  
8.4  
9.0  
9.0  
8.4  
8.4  
3.23  
2.4  
3.17  
2.5  
1.37  
1.2  
1.2  
0.5  
1.4  
4.0  
4.0  
4.0  
2.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q2  
Q3  
SC70  
2.4  
2.5  
X2SON  
3000  
3000  
0.91  
3.2  
0.91  
3.2  
SOT-23-  
THIN  
TLV7012DGKR  
TLV7012DGKR  
TLV7012DSGR  
TLV7021DBVR  
TLV7021DCKR  
TLV7021DCKT  
TLV7021DPWR  
TLV7022DDFR  
VSSOP  
VSSOP  
WSON  
SOT-23  
SC70  
DGK  
DGK  
DSG  
DBV  
DCK  
DCK  
DPW  
DDF  
8
8
8
5
5
5
5
8
2500  
2500  
3000  
3000  
3000  
250  
330.0  
330.0  
180.0  
180.0  
178.0  
178.0  
178.0  
180.0  
12.4  
12.4  
8.4  
8.4  
9.0  
9.0  
8.4  
8.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
4.0  
4.0  
4.0  
4.0  
2.0  
4.0  
12.0  
12.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q2  
Q3  
Q3  
Q3  
Q2  
Q3  
2.3  
2.3  
1.15  
1.37  
1.2  
3.23  
2.4  
3.17  
2.5  
SC70  
2.4  
2.5  
1.2  
X2SON  
3000  
3000  
0.91  
3.2  
0.91  
3.2  
0.5  
SOT-23-  
THIN  
1.4  
TLV7022DGKR  
TLV7022DGKR  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV7022DSGR  
WSON  
DSG  
8
3000  
180.0  
8.4  
2.3  
2.3  
1.15  
4.0  
8.0  
Q2  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV7011DBVR  
TLV7011DCKR  
TLV7011DCKT  
TLV7011DPWR  
TLV7012DDFR  
TLV7012DGKR  
TLV7012DGKR  
TLV7012DSGR  
TLV7021DBVR  
TLV7021DCKR  
TLV7021DCKT  
TLV7021DPWR  
TLV7022DDFR  
TLV7022DGKR  
TLV7022DGKR  
TLV7022DSGR  
SOT-23  
SC70  
DBV  
DCK  
DCK  
DPW  
DDF  
DGK  
DGK  
DSG  
DBV  
DCK  
DCK  
DPW  
DDF  
DGK  
DGK  
DSG  
5
5
5
5
8
8
8
8
5
5
5
5
8
8
8
8
3000  
3000  
250  
183.0  
190.0  
190.0  
205.0  
210.0  
364.0  
366.0  
210.0  
183.0  
190.0  
190.0  
205.0  
210.0  
366.0  
364.0  
210.0  
183.0  
190.0  
190.0  
200.0  
185.0  
364.0  
364.0  
185.0  
183.0  
190.0  
190.0  
200.0  
185.0  
364.0  
364.0  
185.0  
20.0  
30.0  
30.0  
33.0  
35.0  
27.0  
50.0  
35.0  
20.0  
30.0  
30.0  
33.0  
35.0  
50.0  
27.0  
35.0  
SC70  
X2SON  
SOT-23-THIN  
VSSOP  
VSSOP  
WSON  
3000  
3000  
2500  
2500  
3000  
3000  
3000  
250  
SOT-23  
SC70  
SC70  
X2SON  
SOT-23-THIN  
VSSOP  
VSSOP  
WSON  
3000  
3000  
2500  
2500  
3000  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.38  
0.22  
8X  
0.1  
C A B  
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/C 10/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/C 10/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/C 10/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DPW0005A  
X2SON - 0.4 mm max height  
S
C
A
L
E
1
2
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
0.85  
0.75  
A
B
PIN 1 INDEX AREA  
0.85  
0.75  
0.4 MAX  
C
SEATING PLANE  
NOTE 3  
(0.1)  
0.05  
0.00  
(0.324)  
4X (0.05)  
0.25 0.1  
2
1
4
5
NOTE 3  
2X  
3
2X (0.26)  
0.48  
0.27  
0.17  
4X  
0.239  
0.139  
0.1  
C A B  
C
0.288  
0.188  
3X  
0.05  
4223102/D 03/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The size and shape of this feature may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DPW0005A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.78)  
(
0.1)  
SYMM  
4X (0.42)  
VIA  
0.05 MIN  
ALL AROUND  
TYP  
1
5
4X (0.22)  
SYMM  
4X (0.26)  
(0.48)  
3
2
4
(R0.05) TYP  
SOLDER MASK  
OPENING, TYP  
4X (0.06)  
(
0.25)  
(0.21) TYP  
EXPOSED METAL  
CLEARANCE  
METAL UNDER  
SOLDER MASK  
TYP  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE:60X  
4223102/D 03/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DPW0005A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
4X (0.42)  
4X (0.06)  
5
1
4X (0.22)  
SYMM  
(
0.24)  
4X (0.26)  
(0.21)  
(0.48)  
TYP  
SOLDER MASK  
EDGE  
3
2
4
(R0.05) TYP  
SYMM  
(0.78)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 3  
92% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:100X  
4223102/D 03/2022  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV7011_V03

TLV701x and TLV702x Small-Size, Low-Power, Low-Voltage Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV7011_V04

TLV701x and TLV702x Small-Size, Low-Power, Low-Voltage Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV7012

微功耗小型比较器(双路、推挽输出)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV7012DDFR

TLV701x and TLV702x Small-Size, Low-Power, Low-Voltage Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV7012DGKR

微功耗小型比较器(双路、推挽输出) | DGK | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV7012DSGR

TLV701x and TLV702x Small-Size, Low-Power, Low-Voltage Comparators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV70130DBVR

用于提供 3V 和 3.3V 输出的 150mA、24V、超低 IQ、低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV70130DBVT

用于提供 3V 和 3.3V 输出的 150mA、24V、超低 IQ、低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV70133DBVR

24-V Input Voltage, 150-mA, Ultralow IQ Low-Dropout Regulators

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV70133DBVRM3

用于提供 3V 和 3.3V 输出的 150mA、24V、超低 IQ、低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV70133DBVT

用于提供 3V 和 3.3V 输出的 150mA、24V、超低 IQ、低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV70133DSER

200-mA, Low-IQ, Low-Dropout Regulator for Portable Devices

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI