TLV7022 [TI]

微功耗小型比较器(双路、漏极开路输出);
TLV7022
型号: TLV7022
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

微功耗小型比较器(双路、漏极开路输出)

比较器
文件: 总44页 (文件大小:2376K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV7011, TLV7021, TLV7012, TLV7022  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
TLV701x and TLV702x Small-Size, Low-Power, Low-Voltage Comparators  
The TLV701x and TLV702x offer an excellent speed-  
to-power combination with a propagation delay of 260  
ns and a quiescent supply current of 5 μA. This  
combination of fast response time at micropower  
enables power conscious systems to monitor and  
respond quickly to fault conditions. With an operating  
voltage range of 1.6 V to 6.5 V, these comparators  
are compatible with 3-V and 5-V systems.  
1 Features  
Ultra-small packages: X2SON (0.8 × 0.8 mm2) ,  
1
WSON (2 × 2 mm2)  
Standard packages: SOT23, SC70, VSSOP  
Wide supply voltage range of 1.6 V to 6.5 V  
Quiescent supply current of 5 µA  
Low propagation delay of 260 ns  
These comparators also feature no output phase  
inversion with overdriven inputs and internal  
hysteresis. These features make this family of  
comparators well suited for precision voltage  
monitoring in harsh, noisy environments where slow-  
moving input signals must be converted into clean  
digital outputs.  
Rail-to-rail common-mode input voltage  
Internal hysteresis  
Push-pull and open-drain output options  
No phase reversal for over driven inputs  
–40°C to 125°C Operating ambient temperature  
The TLV701x have push-pull output stages capable  
of sinking and sourcing milliamps of current when  
controlling an LED or driving a capacitive load. The  
TLV702x have open-drain output stages that can be  
pulled beyond VCC, making it appropriate for level  
translators and bipolar to single-ended converters.  
2 Applications  
Mobile phones and tablets  
Portable and battery-powered devices  
IR receivers  
Level translators  
Device Information(1)  
Threshold detectors and discriminators  
Window comparators  
PART NUMBERS  
PACKAGE (PINS)  
X2SON (5)  
SC70 (5)  
BODY SIZE (NOM)  
0.80 mm × 0.80 mm  
2.00 mm × 1.25 mm  
2.90 mm × 1.60 mm  
3 mm × 3 mm  
Zero-crossing detectors  
TLV7011,  
TLV7021  
3 Description  
SOT-23 (5)  
VSSOP (8)  
SOT-23 (8)  
WSON (8)  
The  
TLV7011/7021  
(single-channel)  
and  
TLV7012,  
TLV7022  
TLV7012/7022 (dual-channel) are micro-power  
comparators that feature low-voltage operation with  
rail-to-rail input capability. These comparators are  
available in an ultra-small, leadless package  
measuring 0.8 mm × 0.8 mm and standard leaded  
packages, making them applicable for space-critical  
designs like smartphones and other portable or  
battery-powered applications.  
2.90 mm x 1.60 mm  
2 mm x 2 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
TLV70x1 Family of Low Power Comparators  
PART  
NUMBERS  
OUTPUT  
IQ  
tPD  
TLV701x / 2x Push-pull / Open-drain  
TLV703x / 4x Push-pull / Open-drain  
5 µA  
260 ns  
3 µs  
335 nA  
X2SON Package vs SC70 and US Dime  
US dime (18x18x1.35 mm3)  
Propagation Delay vs. Overdrive  
0.4  
Rising Edge  
Falling Edge  
5-Lead SC70  
0.35  
0.3  
5-Pin X2SON  
0.25  
0.2  
10  
20  
30  
40  
50  
60  
Input Overdrive (mV)  
70  
80  
90  
100  
TLV7  
TA = 25°C, VCC = 5 V, CL = 15 pF  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
 
 
 
 
TLV7011, TLV7021, TLV7012, TLV7022  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
www.ti.com  
Table of Contents  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Description................................................. 15  
7.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 17  
8.1 Application Information............................................ 17  
8.2 Typical Applications ................................................ 19  
Power Supply Recommendations...................... 24  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings (Single)......................... 5  
6.2 Absolute Maximum Ratings (Dual) ........................... 5  
6.3 ESD Ratings.............................................................. 5  
6.4 Recommended Operating Conditions (Single) ......... 5  
6.5 Recommended Operating Conditions (Dual)............ 6  
6.6 Thermal Information (Single) .................................... 6  
6.7 Thermal Information (Dual) ....................................... 6  
6.8 Electrical Characteristics (Single) ............................. 7  
6.9 Switching Characteristics (Single) ............................ 7  
6.10 Electrical Characteristics (Dual).............................. 8  
6.11 Switching Characteristics (Dual) ............................. 8  
6.12 Timing Diagrams..................................................... 8  
6.13 Typical Characteristics.......................................... 10  
Detailed Description ............................................ 15  
8
9
10 Layout................................................................... 24  
10.1 Layout Guidelines ................................................. 24  
10.2 Layout Example .................................................... 24  
11 Device and Documentation Support ................. 25  
11.1 Device Support...................................................... 25  
11.2 Related Links ........................................................ 25  
11.3 Receiving Notification of Documentation Updates 25  
11.4 Community Resources.......................................... 25  
11.5 Trademarks........................................................... 25  
11.6 Electrostatic Discharge Caution............................ 25  
11.7 Glossary................................................................ 25  
12 Mechanical, Packaging, and Orderable  
7
Information ........................................................... 25  
4 Revision History  
Changes from Revision E (October 2019) to Revision F  
Page  
Added SOT-23 (8) and WSON (8) for dual channel options.................................................................................................. 1  
Added SOT-23 (8) and WSON (8) Pin Functions and Package drawings for dual channel options ..................................... 4  
Added SOT-23 (8) and WSON (8) Thermal Tables for dual channel options........................................................................ 5  
Changes from Revision D (February 2019) to Revision E  
Page  
Added dual channel options ................................................................................................................................................... 1  
Changes from Revision C (March 2018) to Revision D  
Page  
Added leaded package option to features.............................................................................................................................. 1  
Deleted preview status of SOT23 package............................................................................................................................ 1  
Deleted preview status of SOT23 package............................................................................................................................ 3  
Changes from Revision B (November 2017) to Revision C  
Page  
Changed the preview SC70 package to production data....................................................................................................... 1  
Changes from Revision A (July 2017) to Revision B  
Page  
Changed propagation delay from: 200 ns to: 260 ns ............................................................................................................ 1  
Added preview SC70 and SOT-23 packages to the data sheet ........................................................................................... 1  
Added TLV70x1 Family of Micropower Comparators table per marketing request................................................................ 1  
Changed the key graphic title from: Propagation Delay vs. Overdrive (TLV7011) to: Propagation Delay vs. Overdrive ...... 1  
Removed (TLV7011 only) text from several Typical Characteristics graphs ....................................................................... 10  
2
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
 
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
Added Figure 7 .................................................................................................................................................................... 10  
Added Figure 10 ................................................................................................................................................................... 10  
Removed some Typical Characteristics graphs .................................................................................................................. 13  
Added content to the Inputs section..................................................................................................................................... 15  
Added the IR Receiver Analog Front End section................................................................................................................ 20  
Changes from Original (May 2017) to Revision A  
Page  
Changed device status from ADVANCED INFO to PRODUCTION DATA............................................................................ 1  
5 Pin Configuration and Functions  
DPW Package  
5-Pin X2SON  
Top View  
OUT  
1
5
IN+  
3
VEE  
VCC  
2
4
IN  
Not to scale  
DBV and DCK Package  
5-Pin SOT-23 and SC70  
Top View  
1
2
3
5
VCC  
OUT  
VEE  
IN+  
4
IN-  
Pin Functions  
PIN  
I/O/P(1)  
DESCRIPTION  
NAME  
OUT  
VCC  
X2SON  
SOT-23, SC70  
1
2
3
4
5
1
5
2
4
3
O
P
P
I
Output  
Positive (highest) power supply  
Negative (lowest) power supply  
Inverting input  
VEE  
IN–  
IN+  
I
Noninverting input  
(1) I = Input, O = Output, P = Power  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
TLV7011, TLV7021, TLV7012, TLV7022  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
www.ti.com  
TLV7012/22 DGK, DDF Packages  
8-Pin VSSOP, SOT-23  
Top View  
1
2
3
4
8
7
OUTA  
VCC  
OUTB  
INB-  
INB+  
INA-  
INA+  
VEE  
6
5
TLV7012/22 DSG Package  
8-Pin WSON With Exposed Thermal Pad  
Top View  
1
8
7
OUTA  
INA-  
INA+  
VEE  
VCC  
2
3
4
OUTB  
INB-  
INB+  
Thermal  
Pad  
6
5
(1) Connect thermal pad to V–.  
Pin Functions: TLV7012/22  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
2
INA–  
INA+  
INB–  
INB+  
OUTA  
OUTB  
VEE  
I
I
Inverting input, channel A  
3
Noninverting input, channel A  
Inverting input, channel B  
6
I
5
I
Noninverting input, channel B  
Output, channel A  
1
O
O
7
Output, channel B  
4
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
VCC  
8
4
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
6 Specifications  
6.1 Absolute Maximum Ratings (Single)  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Supply voltage (VS = VCC – VEE  
)
6
Input pins (IN+, IN–)(2)  
VEE – 0.3  
6
±10  
V
Current into Input pins (IN+, IN–)(2)  
Output (OUT)  
mA  
TLV7011/7012(3)  
TLV7021/7022  
VEE – 0.3  
VEE – 0.3  
VCC + 0.3  
6
V
Output short-circuit duration(4)  
Junction temperature, TJ  
Storage temperature, Tstg  
10  
s
150  
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to VEE. Input signals that can swing 0.3V below VEE must be current-limited to 10mA or less.  
(3) Output maximum is (VCC + 0.3V) or 6V, whichever is less.  
(4) Short-circuit to ground, one comparator per package.  
6.2 Absolute Maximum Ratings (Dual)  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
UNIT  
V
Supply voltage VS = VCC - VEE  
Input pins (IN+, IN-)(2)  
7
VEE – 0.3  
7
±10  
V
Current into Input pins (IN+, IN-)  
Output (OUT) (TLV7012)(3)  
Output (OUT) (TLV7022)  
Output short-circuit duration(4)  
Junction temperature, TJ  
mA  
V
VEE – 0.3  
VEE – 0.3  
VCC + 0.3  
7
V
10  
s
150  
°C  
°C  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to VEE. Input signals that can swing 0.3V below VEE must be current-limited to 10mA or less  
(3) Output maximum is (VCC + 0.3 V) or 7 V, whichever is less.  
(4) Short-circuit to ground, one comparator per package.  
6.3 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.4 Recommended Operating Conditions (Single)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.6  
NOM  
MAX  
5.5  
UNIT  
V
Supply voltage (VS = VCC – VEE  
)
Input Voltage Range  
VEE – 0.1  
–40  
VCC + 0.2  
125  
V
Ambient temperature, TA  
°C  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
TLV7011, TLV7021, TLV7012, TLV7022  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
www.ti.com  
6.5 Recommended Operating Conditions (Dual)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.6  
MAX  
6.5  
UNIT  
V
Supply voltage VS = VCC – VEE  
Input voltage range  
VCC – 0.1  
–40  
VEE + 0.2  
125  
V
Ambient temperature, TA  
°C  
6.6 Thermal Information (Single)  
TLV7011/TLV7021  
THERMAL METRIC(1)  
DPW (X2SON)  
5 PINS  
497.5  
DBV (SOT23)  
5 PINS  
306.3  
DCK (SC70)  
5 PINS  
278.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
275.5  
228.4  
188.6  
372.2  
166.5  
113.2  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
55.5  
138.5  
82.3  
ΨJB  
370.3  
165.3  
112.4  
RθJC(bot)  
165.1  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.7 Thermal Information (Dual)  
TLV7012/TLV7022  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
211.7  
DDF (SOT-23)  
8 PINS  
212.5  
DSG (WSON)  
8 PINS  
106.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
96.1  
127.3  
127.3  
133.5  
129.2  
72.5  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
28.3  
25.8  
16.8  
ΨJB  
131.7  
129.0  
72.2  
RθJC(bot)  
N/A  
N/A  
47.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
6.8 Electrical Characteristics (Single)  
VS = 1.8 V to 5 V, VCM = VS / 2; minimum and maximum values are at TA = –40°C to +125°C (unless otherwise noted).  
Typical values are at TA = 25°C.  
PARAMETER  
Input offset voltage  
Hysteresis  
TEST CONDITIONS  
VS = 1.8 V and 5 V, VCM = VS / 2  
VS = 1.8 V and 5 V, VCM = VS / 2  
VS = 2.5 V to 5 V  
MIN  
TYP  
±0.5  
4.2  
MAX  
UNIT  
VIO  
±8  
mV  
VHYS  
1.2  
VEE  
14  
mV  
VCC + 0.1  
VCC + 0.1  
VCM  
Common-mode voltage range  
V
VS = 1.8 V to 2.5 V  
VEE + 0.1  
IB  
Input bias current  
Input offset current  
5
1
pA  
pA  
IOS  
Output voltage high (for TLV7011  
only)  
VOH  
VOL  
ILKG  
VS = 5 V, IO = 3 mA  
VS = 5 V, IO = 3 mA  
4.7  
4.8  
120  
100  
V
Output voltage low  
220  
mV  
pA  
Open-drain output leakage current VS = 5 V, VID = +0.1 V (output high), VPULLUP  
(TLV7021 only)  
=
VCC  
CMRR  
PSRR  
Common-mode rejection ratio  
Power supply rejection ratio  
VEE < VCM < VCC, VS = 5 V  
VS = 1.8 V to 5 V, VCM = VS / 2  
VS = 5 V, sourcing  
VS = 5 V, sinking  
78  
78  
65  
44  
5
dB  
dB  
ISC  
ICC  
Short-circuit current  
Supply current  
mA  
µA  
VS = 1.8 V, no load, VID = –0.1 V (Output Low)  
10  
6.9 Switching Characteristics (Single)  
Typical values are at TA = 25°C, VCC = 5 V, VCM = 2.5 V; CL = 15 pF, input overdrive = 100 mV (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Propagation delay time, high-to-low Midpoint of input to midpoint of output, VOD  
(RP = 2.5 kΩ TLV7021 only) 100 mV  
=
=
tPHL  
tPLH  
260  
ns  
Propagation delay time, low-to-high Midpoint of input to midpoint of output, VOD  
310  
ns  
(RP = 2.5 kΩ TLV7021 only)  
Rise time (for TLV7011 only)  
Fall time  
100 mV  
tR  
20% to 80%  
80% to 20%  
5
5
ns  
ns  
µs  
tF  
(1)  
tON  
Power-up time  
20  
(1) During power on, VS must exceed 1.6 V for tON before the output tracks the input.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
TLV7011, TLV7021, TLV7012, TLV7022  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
www.ti.com  
6.10 Electrical Characteristics (Dual)  
VS = 1.8 V to 5 V, VCM = VS / 2; minimum and maximum values are at TA = –40°C to +125°C (unless otherwise noted).  
Typical values are at TA = 25°C.  
PARAMETER  
Input Offset Voltage  
Hysteresis  
TEST CONDITIONS  
VS = 1.8 V and 5 V, VCM = VS / 2  
VS = 1.8 V and 5 V, VCM = VS / 2  
MIN  
TYP  
±0.1  
7.2  
MAX  
UNIT  
mV  
mV  
V
VIO  
VHYS  
VCM  
IB  
±8  
2
15  
Common-mode voltage range  
Input bias current  
Input offset current  
VEE  
VCC + 0.1  
2
1
pA  
IOS  
pA  
Output voltage high (for TLV7012  
only)  
VOH  
VOL  
ILKG  
VS = 5 V, VEE = 0 V, IO = 3 mA  
VS = 5 V, VEE = 0 V, IO = 3 mA  
4.65  
4.8  
250  
100  
V
Output voltage low  
350  
mV  
pA  
Open-drain output leakage  
current (TLV7022 only)  
VS = 5 V, VID = +0.1 V (output high),  
VPULLUP = VCC  
CMRR  
PSRR  
Common-mode rejection ratio  
Power supply rejection ratio  
VEE < VCM < VCC, VS = 5 V  
73  
77  
dB  
dB  
VS = 1.8 V to 5 V, VCM = VS / 2  
VS = 5 V, sourcing (for TLV7012 only)  
VS = 5 V, sinking  
29  
ISC  
ICC  
Short-circuit current  
mA  
µA  
33  
Supply current / Channel  
VS = 1.8 V, no load, VID = –0.1 V (Output Low)  
4.7  
9
6.11 Switching Characteristics (Dual)  
Typical values are at TA = 25°C, VS = 5 V, VCM = VS / 2; CL = 15 pF, input overdrive = 100 mV (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Propagation delay time, high to-  
Midpoint of input to midpoint of output,  
VOD = 100 mV  
tPHL  
low (RP = 4.99 kΩ TLV7022  
310  
ns  
(1)  
only)  
Propagation delay time, low-to high  
Midpoint of input to midpoint of output,  
VOD = 100 mV  
tPLH  
(RP = 4.99 kΩ TLV7022  
260  
ns  
(1)  
only)  
tR  
tF  
Rise time (TLV7012 only)  
Fall time  
Measured from 20% to 80%  
Measured from 20% to 80%  
5
5
ns  
ns  
During power on, VCC must exceed 1.6V for  
20 µs before the output is in a correct state.  
tON  
Power-up time  
20  
µs  
(1) The lower limit for RP is 650  
6.12 Timing Diagrams  
tON  
VEE  
VEE + 1.6V  
VCC  
VOH/2  
VEE  
OUT  
Figure 1. Start-Up Time Timing Diagram (IN+ > IN–)  
8
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
Timing Diagrams (continued)  
V+  
Input  
Input  
+
Output  
VREF + 100 mV  
œ
Vœ  
+
VREF  
VREF Å 100 mV  
Vœ  
VREF  
œ
tpLH  
tpHL  
V+  
80%  
80%  
Output  
50%  
20%  
50%  
20%  
Vœ  
tR  
tF  
Figure 2. Propagation Delay Timing Diagram  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
TLV7011, TLV7021, TLV7012, TLV7022  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
www.ti.com  
6.13 Typical Characteristics  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
0.7  
4
3
VCM = VCC / 2  
VCM = VCC  
VCM = 0  
0.6  
0.5  
2
1
0.4  
0.3  
0.2  
0.1  
0
0
-1  
-2  
-3  
-4  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0.1  
0.3  
0.5  
0.7  
0.9  
VCM (V)  
1.1  
1.3  
1.5  
1.7  
Temperature (èC)  
TLV7  
TLV7  
VCC = 1.8 - 5.0V  
Figure 3. Input Offset vs. Temperature  
VCC = 1.8 V, 50 devices  
Figure 4. Input Offset Voltage vs. VCM  
4
4
3
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
0
1
2
3
0
0.5  
1
1.5  
2
2.5  
VCM (V)  
3
3.5  
4
4.5  
5
VCM (V)  
TLV7  
TLV7  
VCC = 3.3 V, 50 devices  
VCC = 5 V, 50 devices  
Figure 5. Input Offset Voltage vs. VCM  
Figure 6. Input Offset Voltage vs. VCM  
20  
15  
10  
5
16  
14  
12  
10  
8
6
4
VCM = VCC / 2  
VCM = VCC  
VCM = 0  
2
0
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-3  
-2  
-2  
-1  
0
1
Input Offset (mV)  
2
3
4
Temperature (èC)  
TLV7  
TLV7  
VCC = 1.8V - 5.0V  
Figure 8. TLV70x1 Hysteresis vs. Temperature  
Distribution Taken From 10,777 Comparators  
Figure 7. Input Offset Voltage Histogram  
10  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
Typical Characteristics (continued)  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
20  
40  
35  
30  
25  
20  
15  
10  
5
-40èC  
18  
25èC  
85èC  
125èC  
16  
14  
12  
10  
8
6
4
2
0
0
0
1
2
3
4
5
3
4
5
Hysteresis (mV)  
6
7
VCM (V)  
TLV7  
TLV7  
VCC = 5.0V  
Distribution Taken From 10,777 Comparators  
Figure 9. TLV70x1 Hysteresis vs. VCM  
Figure 10. TLV70x1 Hysteresis Histogram  
11.2  
10.4  
9.6  
8.8  
8
20  
18  
16  
14  
12  
10  
8
-40°C  
25°C  
85°C  
125°C  
7.2  
6.4  
5.6  
6
4
VCM = 0V  
VCM = VCC/2  
VCM = VCC  
2
4.8  
-50  
0
-25  
0
25  
50  
75  
Temperature (°C)  
100  
125  
150  
0
1
2
3
VCM (V)  
4
5
6
VCC = 1.8V - 5.0V  
Figure 11. TLV70x2 Hysteresis vs. Temperature  
VCC = 5.0V  
Figure 12. TLV70x2 Hysteresis vs. VCM  
10000  
1000  
100  
10  
1.8  
1.795  
1.79  
1.785  
1.78  
1.775  
1.77  
1
1.765  
1.76  
-40èC  
25èC  
85èC  
125èC  
0.1  
1.755  
1.75  
0.1  
0.01  
0.2  
IOUT (mA)  
0.3  
0.4  
0.5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
TLV7  
TLV7  
VCC = 1.8 V  
VCC = 3.3V  
Figure 14. TLV701x Output Voltage High vs. Output Source  
Current  
Figure 13. Input Bias Current vs. Temperature  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
TLV7011, TLV7021, TLV7012, TLV7022  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
www.ti.com  
Typical Characteristics (continued)  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
5
0.05  
0.04  
0.03  
0.02  
0.01  
0
-40èC  
25èC  
125èC  
4.95  
4.9  
4.85  
-4è0C  
4.8  
25èC  
85èC  
125èC  
4.75  
0.1  
1
5
0.1  
0.2  
IOUT (mA)  
0.3  
0.4  
0.5  
IOUT (mA)  
TLV7  
TLV7  
VCC = 5 V  
VCC = 1.8 V  
Figure 16. Output Voltage Low vs. Output Sink Current  
Figure 15. TLV701x Output Voltage High vs. Output Source  
Current  
60  
0.25  
-40èC  
25èC  
125èC  
50  
40  
30  
20  
10  
0
0.2  
0.15  
0.1  
0.05  
0
VCC = 3.5 V  
VCC = 5.5 V  
0.1  
0.2 0.3 0.40.5 0.7  
1
2
3
4
5
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
IOUT (mA)  
Temperature (èC)  
TLV7  
TLV7  
VCC = 5 V  
Figure 17. Output Voltage Low vs. Output Sink Current  
VCM = VCC/2  
Figure 18. Output Short-Circuit (Sink) Current vs.  
Temperature  
90  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
-40èC  
25èC  
85èC  
125èC  
VCC = 3.5 V  
VCC = 5.5 V  
1.8  
2.3  
2.8  
3.3  
3.8  
VCC (V)  
4.3  
4.8  
5.3  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
TLV7  
TLV7  
VCM = VCC/2  
Figure 20. Output Short Circuit (Sink) vs. VCC  
VCM = VCC/2  
Figure 19. TLV701x Output Short-Circuit (Source) Current  
vs. Temperature  
12  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
Typical Characteristics (continued)  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
90  
7
6.5  
6
80  
70  
60  
50  
40  
30  
5.5  
5
4.5  
4
3.5  
3
-40èC  
25èC  
85èC  
125èC  
20  
10  
0
VCC = 3.3 V  
VCC = 5 V  
2.5  
2
1.8  
2.3  
2.8  
3.3  
3.8  
VCC (V)  
4.3  
4.8  
5.3  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
TLV7  
TLV7  
VCM = VCC/2  
VCM = VCC/2  
Figure 21. TLV701x Output Short Circuit (Source) vs. VCC  
Figure 22. ICC vs. Temperature  
7
6.5  
6
7
6.5  
6
5.5  
5
5.5  
5
4.5  
4
4.5  
4
3.5  
3.5  
3
-40èC  
-40èC  
25èC  
85èC  
125èC  
3
25èC  
85èC  
125èC  
2.5  
2.5  
2
2
0
1
1.5  
2
2.5  
3
VCC (V)  
3.5  
4
4.5  
5
1
2
3
VCM (V)  
4
5
5.5  
TLV7  
TLV7  
VCM = VCC/2  
VCC = 5 V  
Figure 23. ICC vs. VCC  
Figure 24. ICC vs. VCM  
100000  
10000  
1000  
100  
10000  
1000  
100  
10  
10  
1
1
10  
100  
1000  
Load Capacitance (pF)  
10000  
100000  
10  
100  
1000  
Load Capacitance (pF)  
10000  
100000  
TLV7  
TLV7  
VOD = 100mV  
VOD = 100mV  
Figure 25. TLV701x Output Rise Time vs. Load Capacitance  
Figure 26. Output Fall Time vs. Load Capacitance  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
TLV7011, TLV7021, TLV7012, TLV7022  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
www.ti.com  
Typical Characteristics (continued)  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
0.5  
0.5  
0.4  
0.3  
0.2  
VCC = 3.3 V  
VCC = 5 V  
VCC = 3.3 V  
VCC = 5 V  
0.4  
0.3  
0.2  
0
20  
40  
60  
80 100 120 140 160 180 200  
Input Overdrive (mV)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Input Overdrive (mV)  
TLV7  
TLV7  
TA = 25°C,  
TA = 25°C  
Figure 28. Propagation Delay (H-L) vs. Input Overdrive  
Figure 27. TLV701x Propagation Delay (L-H) vs. Input  
Overdrive  
0.5  
0.5  
T = -40èC  
T = 25èC  
T = 85èC  
T = 125èC  
T = -40èC  
T = 25èC  
T = 85èC  
T = 125èC  
0.4  
0.3  
0.2  
0.4  
0.3  
0.2  
0
20  
40  
60  
80 100 120 140 160 180 200  
Input Overdrive (mV)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Input Overdrive (mV)  
TLV7  
TLV7  
VCC = 5 V  
VCC = 5 V  
Figure 29. TLV701x Propagation Delay (L-H) vs. Input  
Overdrive  
Figure 30. Propagation Delay (H-L) vs. Input Overdrive  
0.5  
0.4  
0.3  
0.2  
T = -40èC  
T = 25èC  
T = 85èC  
T = 125èC  
0
20  
40  
60  
80 100 120 140 160 180 200  
Input Overdrive (mV)  
TLV7  
Rpull-up = 2.5k  
Figure 31. TLV702x Propagation Delay (L-H) vs. Input Overdrive  
14  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
7 Detailed Description  
7.1 Overview  
The TLV701x and TLV702x devices are single-channel, micro-power comparators with push-pull and open-drain  
outputs. Operating down to 1.6 V and consuming only 5 µA, the TLV701x and TLV702x are ideally suited for  
portable and industrial applications. The comparators are available in leadless and leaded packages to offer  
significant board space saving in space-challenged designs.  
7.2 Functional Block Diagram  
VCC  
IN+  
IN-  
+
OUT  
œ
Bias  
Power-on-reset  
GND  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
The TLV701x (push-pull) and TLV702x (open-drain) devices are micro-power comparators that are capable of  
operating at low voltages. The TLV701x and TLV702x feature a rail-to-rail input stage capable of operating up to  
100 mV beyond the VCC power supply rail. The comparators also feature a push-pull and open-drain output  
stage with internal hysteresis.  
7.4 Device Functional Modes  
The TLV701x and TLV702x have a Power-on-Reset (POR) circuit. While the power supply (VS) is ramping up or  
ramping down, the POR circuitry will be activated.  
For the TLV701x, the POR circuit will hold the output low (at VEE) while activated.  
For the TLV702x, the POR circuit will keep the output high impedance (logical high) while activated.  
When the supply voltage is greater than, or equal to, the minimum supply voltage, the comparator output reflects  
the state of the differential input (VID).  
7.4.1 Inputs  
The TLV701x and TLV702x input common-mode extends from VEE to 100 mV above VCC. The differential input  
voltage (VID) can be any voltage within these limits. No phase-inversion of the comparator output will occur when  
the input pins exceed VCC and VEE  
.
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
TLV7011, TLV7021, TLV7012, TLV7022  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
www.ti.com  
Device Functional Modes (continued)  
While TI recommends operating the TLV701x and TLV702x within the specified common-mode range, the inputs  
are fault tolerant to voltages up to 5.5 V independent of the applied VCC value. Fault tolerant is defined as  
maintaining the same high input impedance when VCC is unpowered or within the recommended operating range.  
Because the inputs of the TLV701x and TLV702x are fault tolerant, the inputs to the comparator can be any  
value between 0 V and 5.5 V while VCC is ramping up. This feature allows any supply and input driven sequence  
as long as the input value and supply are within the specified ranges. In this case, no current limiting resistor is  
required. This is possible since the VCC is isolated from the inputs such that it maintains its value even when a  
higher voltage is applied to the input.  
The input bias current is typically 1 pA for input voltages between VCC and VEE. The comparator inputs are  
protected from undervoltage by internal diodes connected to VEE. As the input voltage goes under VEE, the  
protection diodes become forward biased and begin to conduct causing the input bias current to increase  
exponentially. Input bias current typically doubles for 10°C temperature increases.  
7.4.2 Internal Hysteresis  
The device hysteresis transfer curve is shown in Figure 32. This curve is a function of three components: VTH  
,
VOS, and VHYST  
:
VTH is the actual set voltage or threshold trip voltage.  
VOS is the internal offset voltage between VIN+ and VIN–. This voltage is added to VTH to form the actual trip  
point at which the comparator must respond to change output states.  
VHYST is the internal hysteresis (or trip window) that is designed to reduce comparator sensitivity to noise  
(4.2 mV for the TLV7011).  
VTH + VOS - (VHYST / 2)  
VTH + VOS  
VTH + VOS + (VHYST / 2)  
Figure 32. Hysteresis Transfer Curve  
7.4.3 Output  
The TLV701x feature a push-pull output stage eliminating the need for an external pull-up resistor. On the other  
hand, the TLV702x feature an open-drain output stage enabling the output logic levels to be pulled up to an  
external source independent of the supply voltage.  
16  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
 
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV701x and TLV702x are micro-power comparators with reasonable response time. The comparators have  
a rail-to-rail input stage that can monitor signals beyond the positive supply rail with integrated hysteresis. When  
higher levels of hysteresis are required, positive feedback can be externally added. The push-pull output stage of  
the TLV701x is optimal for reduced power budget applications and features no shoot-through current. When level  
shifting or wire-ORing of the comparator outputs is needed, the TLV702x with its open-drain output stage is well  
suited to meet the system needs. In either case, the wide operating voltage range, low quiescent current, and  
micro-package of the TLV701x and TLV702x make these comparators excellent candidates for battery-operated  
and portable, handheld designs.  
8.1.1 Inverting Comparator With Hysteresis for TLV701x  
The inverting comparator with hysteresis requires a three-resistor network that is referenced to the comparator  
supply voltage (VCC), as shown in Figure 33. When VIN at the inverting input is less than VA, the output voltage is  
high (for simplicity, assume VO switches as high as VCC). The three network resistors can be represented as R1  
|| R3 in series with R2. Equation 1 defines the high-to-low trip voltage (VA1).  
R2  
VA1 = VCC  
´
(R1 || R3) + R2  
(1)  
When VIN is greater than VA, the output voltage is low, very close to ground. In this case, the three network  
resistors can be presented as R2 || R3 in series with R1. Use Equation 2 to define the low to high trip voltage  
(VA2).  
R2 || R3  
VA2 = VCC  
´
R1 + (R2 || R3)  
(2)  
(3)  
Equation 3 defines the total hysteresis provided by the network.  
DVA = VA1 - VA2  
+VCC  
+5 V  
R1  
1 MW  
VIN  
5 V  
RLOAD  
VA  
VO  
100 kW  
VA2  
1.67 V  
VA1  
3.33 V  
0 V  
R3  
1 MW  
VIN  
R2  
1 MW  
VO High  
+VCC  
VO Low  
+VCC  
R1  
VA1  
R2  
R3  
R1  
VA2  
R2  
R3  
Copyright © 2016, Texas Instruments Incorporated  
Figure 33. TLV701x in an Inverting Configuration With Hysteresis  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
 
 
 
 
TLV7011, TLV7021, TLV7012, TLV7022  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
www.ti.com  
Application Information (continued)  
8.1.2 Noninverting Comparator With Hysteresis for TLV701x  
A noninverting comparator with hysteresis requires a two-resistor network, as shown in Figure 34, and a voltage  
reference (VREF) at the inverting input. When VIN is low, the output is also low. For the output to switch from low  
to high, VIN must rise to VIN1. Use Equation 4 to calculate VIN1  
VREF  
.
VIN1 = R1 ´  
+ VREF  
R2  
(4)  
When VIN is high, the output is also high. For the comparator to switch back to a low state, VIN must drop to VIN2  
such that VA is equal to VREF. Use Equation 5 to calculate VIN2  
VREF (R1 + R2) - VCC ´ R1  
.
VIN2  
=
R2  
(5)  
(6)  
The hysteresis of this circuit is the difference between VIN1 and VIN2, as shown in Equation 6.  
R1  
DVIN = VCC  
´
R2  
+VCC  
+5 V  
VREF  
VO  
+2.5 V  
VA  
VIN  
RLOAD  
R1  
330 kW  
R2  
1 MW  
VO High  
+VCC  
VO Low  
VIN1  
5 V  
0 V  
R2  
R1  
VA = VREF  
R2  
VO  
VA = VREF  
R1  
VIN2  
VIN1  
1.675 V 3.325 V  
VIN  
VIN2  
Copyright © 2016, Texas Instruments Incorporated  
Figure 34. TLV701x in a Noninverting Configuration With Hysteresis  
18  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
 
 
 
 
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
8.2 Typical Applications  
8.2.1 Window Comparator  
Window comparators are commonly used to detect undervoltage and overvoltage conditions. Figure 35 shows a  
simple window comparator circuit.  
3.3 V  
RPU  
R1  
UV_OV  
+
Micro-  
Controller  
œ
Sensor  
TLV7021  
R2  
+
œ
TLV7021  
R3  
Copyright © 2017, Texas Instruments Incorporated  
Figure 35. Window Comparator  
8.2.1.1 Design Requirements  
For this design, follow these design requirements:  
Alert (logic low output) when an input signal is less than 1.1 V  
Alert (logic low output) when an input signal is greater than 2.2 V  
Alert signal is active low  
Operate from a 3.3-V power supply  
8.2.1.2 Detailed Design Procedure  
Configure the circuit as shown in Figure 35. Connect VCC to a 3.3-V power supply and VEE to ground. Make R1,  
R2 and R3 each 10-MΩ resistors. These three resistors are used to create the positive and negative thresholds  
for the window comparator (VTH+ and VTH–). With each resistor being equal, VTH+ is 2.2 V and VTH- is 1.1 V. Large  
resistor values such as 10-MΩ are used to minimize power consumption. The sensor output voltage is applied to  
the inverting and noninverting inputs of the two TLV702x's. The TLV7021 is used for its open-drain output  
configuration. Using the TLV702x allows the two comparator outputs to be Wire-Ored together. The respective  
comparator outputs will be low when the sensor is less than 1.1 V or greater than 2.2 V. VOUT will be high when  
the sensor is in the range of 1.1 V to 2.2 V.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
 
TLV7011, TLV7021, TLV7012, TLV7022  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
www.ti.com  
Typical Applications (continued)  
8.2.1.3 Application Curve  
VIN  
VTH+ = 2.2 V  
VTHœ = 1.1 V  
Time (usec)  
VOUT  
Time (usec)  
50  
100  
150  
200  
Figure 36. Window Comparator Results  
8.2.2 IR Receiver Analog Front End  
A single TLV7011 device can be used to build a complete IR receiver analog front end (AFE). The nanoamp  
quiescent current and low input bias current make it possible to be powered with a coin cell battery, which could  
last for years.  
Vref  
470 k  
470 kꢀ  
10M ꢀ  
R4  
3 V  
IR LED  
R2  
R3  
U1  
+
Output to MCU  
(Also to wake-up MCU)  
œ
VOUT  
C1  
10M ꢀ  
TLV7011  
VIN  
R1  
0.01 F  
GND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 37. IR Receiver Analog Front End Using TLV7011  
20  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
Typical Applications (continued)  
8.2.2.1 Design Requirements  
For this design, follow these design requirements:  
Use a proper resistor (R1) value to generate an adequate signal amplitude applied to the inverting input of the  
comparator.  
The low input bias current IB (2 pA typical) ensures that a greater value of R1 to be used.  
The RC constant value (R2 and C1) must support the targeted data rate (that is, 9,600 bauds) to maintain a  
valid tripping threshold.  
The hysteresis introduced with R3 and R4 helps to avoid spurious output toggles.  
8.2.2.2 Detailed Design Procedure  
The IR receiver AFE design is highly streamlined and optimized. R1 converts the IR light energy induced current  
into voltage and applies to the inverting input of the comparator. Because a reverse biased IR LED is used as  
the IR receiver, a higher I/V transimpedance gain is required to boost the amplitude of reduced current. A 10M  
resistor is used as R1 to support a 1-V, 100-nA transimpedance gain. This is made possible with the picoamps  
Input bias current IB (5pA typical). The RC network of R2 and C1 establishes a reference voltage Vref which tracks  
the mean amplitude of the IR signal. The RC constant of R2 and C1 (about 4.7 ms) is chosen for Vref to track the  
received IR current fluctuation but not the actual data bit stream. The noninverting input is connected to Vref and  
the output over the R3 and R4 resistor network which provides additional hysteresis for improved guard against  
spurious toggles.  
To reduce the current drain from the coin cell battery, data transmission must be short and infrequent.  
8.2.2.3 Application Curve  
1.8 V  
VIN  
1.2 V  
4.0 V  
VOUT  
0.0 V  
1.61 V  
VREF  
1.58 V  
0.0  
200.0 u  
400.0 u  
Time  
600.0 u  
800.0 u  
Figure 38. IR Receiver AFE Waveforms  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
TLV7011, TLV7021, TLV7012, TLV7022  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
www.ti.com  
Typical Applications (continued)  
8.2.3 Square-Wave Oscillator  
Square-wave oscillator can be used as low cost timing reference or system supervisory clock source.  
Figure 39. Square-Wave Oscillator  
8.2.3.1 Design Requirements  
The square-wave period is determined by the RC time constant of the capacitor and resistor. The maximum  
frequency is limited by propagation delay of the device and the capacitance load at the output. The low input bias  
current allows a lower capacitor value and larger resistor value combination for a given oscillator frequency,  
which may help to reduce BOM cost and board space.  
8.2.3.2 Detailed Design Procedure  
The oscillation frequency is determined by the resistor and capacitor values. The following calculation provides  
details of the steps.  
Figure 40. Square-Wave Oscillator Timing Thresholds  
First consider the output of Figure Figure 39 is high which indicates the inverted input VC is lower than the  
noninverting input (VA). This causes the C1 to be charged through R4, and the voltage VC increases until it is  
equal to the noninverting input. The value of VA at the point is calculated by Equation 7.  
VCCìR2  
R2 + R1IIR3  
VA1  
=
(7)  
if R1 = R2= R3, then VA1 = 2 VCC/ 3  
22  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
 
 
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
Typical Applications (continued)  
At this time the comparator output trips pulling down the output to the negative rail. The value of VAat this point is  
calculated by Equation 8.  
VCC(R2IIR3 )  
VA2  
=
R1+R2IIR3  
(8)  
if R1 = R2 = R3, then VA2 = VCC/3  
The C1 now discharges though the R4, and the voltage VCC decreases until it reaches VA2. At this point, the  
output switches back to the starting state. The oscillation period equals to the time duration from for C1 from  
2VCC/3 to VCC / 3 then back to 2VCC/3, which is given by R4C1 × ln 2 fro each trip. Therefore, the total time  
duration is calculated as 2 R4C1 × ln 2. The oscillation frequency can be obtained by Equation 9:  
f = 1/ 2 R4ìC1ìIn2  
(
)
(9)  
8.2.3.3 Application Curve  
Figure 41 shows the simulated results of tan oscillator using the following component values:  
R1 = R2 = R3 = R4 = 100 kΩ  
C1 = 100 pF, CL = 20 pF  
V+ = 5 V, V– = GND  
Cstray (not shown) from VA TO GND = 10 pF  
Figure 41. Square-Wave Oscillator Output Waveform  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
 
 
 
TLV7011, TLV7021, TLV7012, TLV7022  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
www.ti.com  
9 Power Supply Recommendations  
The TLV701x and TLV702x have a recommended operating voltage range (VS) of 1.6 V to 5.5 / 6.5 V. VS is  
defined as VCC – VEE. Therefore, the supply voltages used to create VS can be single-ended or bipolar. For  
example, single-ended supply voltages of 5 V and 0 V and bipolar supply voltages of +2.5 V and –2.5 V create  
comparable operating voltages for VS. However, when bipolar supply voltages are used, it is important to realize  
that the logic low level of the comparator output is referenced to VEE  
.
Output capacitive loading and output toggle rate will cause the average supply current to rise over the quiescent  
current.  
10 Layout  
10.1 Layout Guidelines  
To reduce PCB fabrication cost and improve reliability, TI recommends using a 4-mil via at the center pad  
connected to the ground trace or plane on the bottom layer.  
A power-supply bypass capacitor of 100 nF is recommended when supply output impedance is high, supply  
traces are long, or when excessive noise is expected on the supply lines. Bypass capacitors are also  
recommended when the comparator output drives a long trace or is required to drive a capacitive load. Due to  
the fast rising and falling edge rates and high-output sink and source capability of the TLV7011 and TLV7021  
output stages, higher than normal quiescent current can be drawn from the power supply. Under this  
circumstance, the system would benefit from a bypass capacitor across the supply pins.  
10.2 Layout Example  
OUT  
IN+  
Top-Layer  
Trace  
Bottom-Layer  
Trace  
4 mil VIA  
VCC  
IN-  
8 mil VIA  
Package  
Body  
Outline  
Top-View  
0.1 uF  
Figure 42. Layout Example  
24  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
TLV7011, TLV7021, TLV7012, TLV7022  
www.ti.com  
SLVSDM5F SEPTEMBER 2017REVISED MARCH 2020  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 Evaluation Module  
An evaluation module (EVM) is available to assist in the initial circuit performance evaluation using the TLV70x1  
device family. The TLV7011 Micro-Power Comparator Dip Adaptor Evaluation Module can be requested at the  
Texas Instruments website through the product folder or purchased directly from the TI eStore.  
11.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
Table 1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TLV7011  
TLV7021  
TLV7012  
TLV7022  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.4 Community Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TLV7011 TLV7021 TLV7012 TLV7022  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Sep-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
3000  
3000  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV7011DBVR  
TLV7011DCKR  
TLV7011DCKT  
TLV7011DPWR  
TLV7012DDFR  
TLV7012DGKR  
TLV7021DBVR  
TLV7021DCKR  
TLV7021DCKT  
TLV7021DPWR  
TLV7022DDFR  
TLV7022DGKR  
ACTIVE  
SOT-23  
SC70  
DBV  
5
5
5
5
8
8
5
5
5
5
8
8
Green (RoHS  
& no Sb/Br)  
NIPDAUAG  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1IC2  
19N  
19N  
7N  
ACTIVE  
ACTIVE  
ACTIVE  
DCK  
DCK  
DPW  
DDF  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
SC70  
Green (RoHS  
& no Sb/Br)  
X2SON  
3000  
3000  
2500  
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
ACTIVE SOT-23-THIN  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
7012  
7012  
1ID2  
19O  
19O  
7P  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
SOT-23  
SC70  
DGK  
DBV  
Green (RoHS  
& no Sb/Br)  
NIPDAUAG  
NIPDAUAG  
NIPDAU  
Green (RoHS  
& no Sb/Br)  
DCK  
DCK  
DPW  
DDF  
Green (RoHS  
& no Sb/Br)  
SC70  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
X2SON  
3000  
3000  
2500  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
ACTIVE SOT-23-THIN  
ACTIVE VSSOP  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
7022  
7022  
DGK  
Green (RoHS  
& no Sb/Br)  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Sep-2020  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Sep-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV7011DBVR  
TLV7011DCKR  
TLV7011DCKT  
TLV7011DPWR  
TLV7012DDFR  
SOT-23  
SC70  
DBV  
DCK  
DCK  
DPW  
DDF  
5
5
5
5
8
3000  
3000  
250  
180.0  
178.0  
178.0  
178.0  
180.0  
8.4  
9.0  
9.0  
8.4  
8.4  
3.23  
2.4  
3.17  
2.5  
1.37  
1.2  
1.2  
0.5  
1.4  
4.0  
4.0  
4.0  
2.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q2  
Q3  
SC70  
2.4  
2.5  
X2SON  
3000  
3000  
0.91  
3.2  
0.91  
3.2  
SOT-  
23-THIN  
TLV7012DGKR  
TLV7021DBVR  
TLV7021DCKR  
TLV7021DCKT  
TLV7021DPWR  
TLV7022DDFR  
VSSOP  
SOT-23  
SC70  
DGK  
DBV  
DCK  
DCK  
DPW  
DDF  
8
5
5
5
5
8
2500  
3000  
3000  
250  
330.0  
180.0  
178.0  
178.0  
178.0  
180.0  
12.4  
8.4  
9.0  
9.0  
8.4  
8.4  
5.3  
3.23  
2.4  
3.4  
3.17  
2.5  
1.4  
1.37  
1.2  
1.2  
0.5  
1.4  
8.0  
4.0  
4.0  
4.0  
2.0  
4.0  
12.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q3  
Q3  
Q3  
Q2  
Q3  
SC70  
2.4  
2.5  
X2SON  
3000  
3000  
0.91  
3.2  
0.91  
3.2  
SOT-  
23-THIN  
TLV7022DGKR  
VSSOP  
DGK  
8
2500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Sep-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV7011DBVR  
TLV7011DCKR  
TLV7011DCKT  
TLV7011DPWR  
TLV7012DDFR  
TLV7012DGKR  
TLV7021DBVR  
TLV7021DCKR  
TLV7021DCKT  
TLV7021DPWR  
TLV7022DDFR  
TLV7022DGKR  
SOT-23  
SC70  
DBV  
DCK  
DCK  
DPW  
DDF  
DGK  
DBV  
DCK  
DCK  
DPW  
DDF  
DGK  
5
5
5
5
8
8
5
5
5
5
8
8
3000  
3000  
250  
183.0  
190.0  
190.0  
205.0  
210.0  
364.0  
183.0  
190.0  
190.0  
205.0  
210.0  
364.0  
183.0  
190.0  
190.0  
200.0  
185.0  
364.0  
183.0  
190.0  
190.0  
200.0  
185.0  
364.0  
20.0  
30.0  
30.0  
33.0  
35.0  
27.0  
20.0  
30.0  
30.0  
33.0  
35.0  
27.0  
SC70  
X2SON  
SOT-23-THIN  
VSSOP  
SOT-23  
SC70  
3000  
3000  
2500  
3000  
3000  
250  
SC70  
X2SON  
SOT-23-THIN  
VSSOP  
3000  
3000  
2500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
2X 0.95  
1.9  
3.05  
2.75  
1.9  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/E 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/E 09/2019  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/E 09/2019  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DPW0005A  
X2SON - 0.4 mm max height  
S
C
A
L
E
1
2
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
0.85  
0.75  
A
B
PIN 1 INDEX AREA  
0.85  
0.75  
0.4 MAX  
C
SEATING PLANE  
NOTE 3  
(0.1)  
0.05  
0.00  
(0.25)  
4X (0.05)  
0.25 0.1  
2
1
4
5
NOTE 3  
2X  
0.48  
3
2X (0.26)  
0.27  
0.17  
4X  
0.27  
0.17  
0.1 C A B  
0.05 C  
(0.06)  
3X  
0.32  
0.23  
4223102/B 09/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The size and shape of this feature may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DPW0005A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.78)  
(
0.1)  
SYMM  
4X (0.42)  
VIA  
0.05 MIN  
ALL AROUND  
TYP  
1
5
4X (0.22)  
SYMM  
4X (0.26)  
(0.48)  
3
2
4
(R0.05) TYP  
SOLDER MASK  
OPENING, TYP  
4X (0.06)  
(
0.25)  
(0.21) TYP  
EXPOSED METAL  
CLEARANCE  
METAL UNDER  
SOLDER MASK  
TYP  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE:60X  
4223102/B 09/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DPW0005A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
4X (0.42)  
4X (0.06)  
5
1
4X (0.22)  
SYMM  
(
0.24)  
4X (0.26)  
(0.21)  
(0.48)  
TYP  
SOLDER MASK  
EDGE  
3
2
4
(R0.05) TYP  
SYMM  
(0.78)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
92% PRINTED SOLDER COVERAGE BY AREA  
SCALE:100X  
4223102/B 09/2017  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.4  
0.2  
8X  
0.1  
C A  
B
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/B 11/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/B 11/2015  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/B 11/2015  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TLV70220PDBVR

300-mA, Low-IQ, Low-Dropout Regulator High PSRR: 68 dB at 1 kHz
TI

TLV70220PDBVT

300-mA, Low-IQ, Low-Dropout Regulator High PSRR: 68 dB at 1 kHz
TI

TLV70225DBVR

300-mA, Low-IQ, Low-Dropout Regulator High PSRR: 68 dB at 1 kHz
TI

TLV70225DBVT

300-mA, Low-IQ, Low-Dropout Regulator High PSRR: 68 dB at 1 kHz
TI

TLV70225DSER

300-mA, Low-IQ, Low-Dropout Regulator High PSRR: 68 dB at 1 kHz
TI

TLV70225DSET

300-mA, Low-IQ, Low-Dropout Regulator High PSRR: 68 dB at 1 kHz
TI

TLV70225QDSERQ1

TLV702-Q1 300-mA, Low-IQ, Low-Dropout Regulator
TI

TLV70227QDBVRQ1

具有使能功能的汽车类、300mA、高 PSRR、低 IQ、低压降稳压器 | DBV | 5 | -40 to 125
TI

TLV70227QDSERQ1

具有使能功能的汽车类、300mA、高 PSRR、低 IQ、低压降稳压器 | DSE | 6 | -40 to 125
TI

TLV70228DBVR

300-mA, Low-IQ, Low-Dropout Regulator High PSRR: 68 dB at 1 kHz
TI

TLV70228DBVT

300-mA, Low-IQ, Low-Dropout Regulator High PSRR: 68 dB at 1 kHz
TI

TLV70228DSER

300-mA, Low-IQ, Low-Dropout Regulator
TI