TLV7031-Q1_V02 [TI]

TLV703x-Q1 and TLV704x-Q1 Rail-to-Rail, Low-Power Comparators;
TLV7031-Q1_V02
型号: TLV7031-Q1_V02
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TLV703x-Q1 and TLV704x-Q1 Rail-to-Rail, Low-Power Comparators

文件: 总42页 (文件大小:2261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
TLV703x-Q1 and TLV704x-Q1 Rail-to-Rail, Low-Power Comparators  
1 Features  
3 Description  
Qualified for automotive applications  
AEC-Q100 qualified with the following results:  
– Device temperature grade 1: –40°C to 125°C  
ambient operating temperature range  
– Device HBM ESD classification level 2  
– Device CDM ESD classification level C5  
Wide supply voltage range of 1.6 V to 6.5 V  
Quiescent supply current of 315 nA  
Low propagation delay of 3 µs  
The TLV703x-Q1/TLV704x-Q1 are low-voltage,  
nanopower comparators with rail-to-rail inputs. These  
comparators are applicable for space-critical and  
power conscious designs like infotainment, telematics,  
and head unit applications.  
The TLV703x-Q1 and TLV704x-Q1 offer an excellent  
combination of power and speed. The benefit of  
fast response time at nanopower enables power-  
conscious systems to monitor and respond quickly to  
fault conditions. With an operating voltage range of  
1.6 V to 6.5 V, these comparators are compatible with  
1.8 V, 3 V, and 5 V systems.  
Internal hysteresis of 6.5 mV  
Rail-to-rail common-mode input voltage  
Internal Power-On-Reset provides a known startup  
condition  
The TLV703x-Q1 and TLV704x-Q1 also ensure no  
output phase inversion with overdriven inputs and  
internal hysteresis, so engineers can use this family of  
comparators for precision voltage monitoring in harsh,  
noisy environments where slow-moving input signals  
must be converted into clean digital outputs.  
No phase reversal for overdriven inputs  
Push-pull output (TLV703x-Q1)  
Open-drain output (TLV704x-Q1)  
–40°C to 125°C Operating temperature  
Functional Safety Capable  
Documentation available to aid functional safety  
system design (TLV70x1-Q1)  
The TLV703x-Q1 have a push-pull output stage  
capable of sinking and sourcing milliamps of current.  
The TLV704x-Q1 have an open-drain output stage  
Documentation available to aid functional safety  
system design (TLV70x2-Q1)  
that can be pulled beyond VCC  
.
2 Applications  
Device Information  
Telematics eCall  
Automotive head unit  
Instrument cluster  
Audio amplifier  
On-board (OBC) & wireless chargers  
PART NUMBERS PACKAGE (PINS) (1) BODY SIZE (NOM)  
SC70 (5)  
2.00 mm × 1.25 mm  
2.90 mm × 1.60 mm  
3.00 mm x 3.00 mm  
TLV7031-Q1,  
TLV7041-Q1  
SOT-23 (5)  
VSSOP (8)  
TLV7032-Q1,  
TLV7042-Q1  
SOT-23 (8)  
(Preview)  
2.90 mm x 1.60 mm  
4.40 mm x 5.00 mm  
TLV7034-Q1,  
TLV7044-Q1  
TSSOP (14)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
900  
7
Temp = -40°C  
Temp = 25°C  
Temp = 125°C  
Temp -40°C  
Temp 25°C  
Temp 85°C  
800  
6
5
4
3
2
1
Temp 125°C  
700  
600  
500  
400  
300  
200  
1
1.5  
2
2.5  
3
3.5  
VCC (V)  
4
4.5  
5
5.5  
6
Iq_v  
0
100  
200  
VOD (mV)  
300  
400  
500  
tlv7  
ICC vs. VCC  
Propagation Delay vs. Input Overdrive  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions: TLV7032/42...............................................4  
5.1 Pin Functions: TLV7034/44.........................................5  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings ....................................... 6  
6.2 ESD Ratings .............................................................. 6  
6.3 Recommended Operating Conditions ........................6  
6.4 Thermal Information (Single) ..................................... 6  
6.5 Thermal Information (Dual) ........................................7  
6.6 Thermal Information (Quad) .......................................7  
6.7 Electrical Characteristics ............................................8  
6.8 Switching Characteristics ...........................................8  
6.9 Electrical Characteristics (Dual) .................................9  
6.10 Switching Characteristics (Dual) ..............................9  
6.11 Electrical Characteristics (Quad) ............................10  
6.12 Switching Characteristics (Quad) ...........................10  
6.13 Timing Diagrams..................................................... 11  
6.14 Typical Characteristics............................................12  
7 Detailed Description......................................................16  
7.1 Overview...................................................................16  
7.2 Functional Block Diagram.........................................16  
7.3 Feature Description...................................................16  
7.4 Device Functional Modes..........................................16  
8 Application and Implementation..................................18  
8.1 Application Information............................................. 18  
8.2 Typical Applications.................................................. 21  
9 Power Supply Recommendations................................26  
10 Layout...........................................................................27  
10.1 Layout Guidelines................................................... 27  
10.2 Layout Example...................................................... 27  
11 Device and Documentation Support..........................28  
11.1 Device Support........................................................28  
11.2 Receiving Notification of Documentation Updates..28  
11.3 Support Resources................................................. 28  
11.4 Trademarks............................................................. 28  
11.5 Electrostatic Discharge Caution..............................28  
11.6 Glossary..................................................................28  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 28  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (February 2021) to Revision C (October 2021)  
Page  
Added link for new FIT Rate Report to the Features section..............................................................................1  
Changes from Revision A (October 2020) to Revision B (February 2021)  
Page  
Added Dual and Quad package options throughout ..........................................................................................1  
Changes from Revision * (May 2020) to Revision A (October 2020)  
Page  
Updated the numbering format for tables, figures, and cross-references throughout the document..................1  
APL to RTM release............................................................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
www.ti.com  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
5 Pin Configuration and Functions  
OUT  
VEE  
IN+  
1
2
3
5
4
VCC  
IN-  
Figure 5-1. DBV, DCK Packages  
5-Pin SOT-23, SC70  
Top View  
Table 5-1. Pin Functions  
PIN  
I/O (1)  
DESCRIPTION  
SOT-23, SC70  
NAME  
OUT  
VCC  
1
5
2
4
3
O
P
P
I
Output  
Positive (highest) power supply  
Negative (lowest) power supply  
Inverting input  
VEE  
IN–  
IN+  
I
Noninverting input  
(1) I = Input, O = Output, P = Power  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
www.ti.com  
Pin Functions: TLV7032/42  
1
2
3
4
8
7
OUTA  
INA-  
INA+  
VEE  
VCC  
OUTB  
INB-  
INB+  
6
5
Figure 5-2. TLV7032/42 DGK, DDF Packages  
8-Pin VSSOP, SOT-23  
Top View  
Table 5-2. Pin Functions: TLV7032/42  
PIN  
I/O  
DESCRIPTION  
NAME  
INA–  
INA+  
INB–  
INB+  
OUTA  
OUTB  
VEE  
NO.  
2
I
I
Inverting input, channel A  
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Output, channel A  
3
6
I
5
I
1
O
O
7
Output, channel B  
4
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
VCC  
8
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
www.ti.com  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
5.1 Pin Functions: TLV7034/44  
OUT A  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
œIN D  
+IN D  
VEE  
œIN A  
+IN A  
VCC  
+IN B  
œIN B  
OUT B  
+IN C  
œIN C  
OUT C  
8
Not to scale  
Figure 5-3. TLV7034/44 PW Packages  
14-Pin TSSOP  
Top View  
Table 5-3. Pin Functions: TLV7034/44  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN1 A  
TSSOP  
2
3
I
I
Inverting input, channel A  
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Inverting input, channel C  
Noninverting input, channel C  
Inverting input, channel D  
Noninverting input, channel D  
No internal connection  
+IN A  
–IN B  
+IN B  
–IN C  
+IN C  
–IN D  
+IN D  
NC  
6
I
5
I
9
I
10  
13  
12  
1
I
I
I
O
O
O
O
OUT A  
OUT B  
OUT C  
OUT D  
VEE  
Output, channel A  
7
Output, channel B  
8
Output, channel C  
14  
11  
4
Output, channel D  
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
VCC  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
UNIT  
V
Supply voltage VS = VCC – VEE  
Input pins (IN+, IN–) (2)  
7
VEE – 0.3  
VEE – 0.3  
VEE – 0.3  
7
V
Output (OUT) (push-pull)(3)  
Output (OUT) (open-drain)  
Output short-circuit duration(4)  
Junction temperature, TJ  
Storage temperature, Tstg  
VCC + 0.3  
V
7
10  
V
s
150  
150  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Input terminals are diode-clamped to VEE. Input signals that can swing 0.3V below VEE must be current-limited to 10mA or less  
(3) Output maximum is (VCC + 0.3 V) or 7 V, whichever is less.  
(4) Short-circuit to ground, one comparator per package.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.6  
MAX  
6.5  
UNIT  
V
Supply voltage VS = VCC – VEE  
Input voltage range  
VEE – 0.1  
–40  
VCC + 0.1  
125  
V
Ambient temperature, TA  
°C  
6.4 Thermal Information (Single)  
TLV7031/TLV7041  
THERMAL METRIC (1)  
DBV (SOT-23)  
DCK (SC70)  
UNIT  
5 PINS  
297.2  
224.7  
200.1  
141.2  
198.9  
N/A  
5 PINS  
278.8  
186.6  
113.2  
82.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJB  
112.4  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
 
 
 
 
 
 
 
 
 
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
www.ti.com  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
6.5 Thermal Information (Dual)  
TLV7032/TLV7042  
THERMAL METRIC (1)  
DGK (VSSOP)  
8 PINS  
211.7  
DDF (SOT-23)  
8 PINS  
212.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
96.1  
127.3  
133.5  
129.2  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
28.3  
25.8  
ΨJB  
131.7  
129.0  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information (Quad)  
TLV7034/44  
THERMAL METRIC (1)  
RTE (QFN)  
16 PINS  
65.4  
PW (TSSOP)  
14 PINS  
131.0  
60.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
70.2  
40.5  
74.1  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
5.6  
12.6  
ΨJB  
40.5  
73.5  
RθJC(bot)  
24.1  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
 
 
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
www.ti.com  
6.7 Electrical Characteristics  
VS = 1.8 V to 5 V, VCM = VS / 2; minimum and maximum values are at TA = –40°C to +125°C (unless otherwise noted).  
Typical values are at TA = 25°C.  
PARAMETER  
Input Offset Voltage  
Hysteresis  
TEST CONDITIONS  
VS = 1.8 V and 5 V, VCM = VS / 2  
MIN  
TYP  
±0.1  
6.5  
MAX  
±8  
UNIT  
mV  
mV  
V
VIO  
VHYS  
VCM  
IB  
VS = 1.8 V and 5 V, VCM = VS / 2, TA = 25  
2
17  
Common-mode voltage range  
Input bias current  
Input offset current  
VEE  
VCC + 0.1  
2
1
pA  
IOS  
pA  
Output voltage high (push-pull  
only)  
VOH  
VOL  
ILKG  
VS = 5 V, VEE = 0 V, IO = 3 mA  
VS = 5 V, VEE = 0 V, IO = 3 mA  
4.65  
4.8  
250  
100  
V
Output voltage low  
350  
mV  
pA  
Output leakage  
current (open-drain only)  
VS = 5 V, VID = +0.1 V (Output High),  
VPULLUP = VCC  
CMRR  
PSRR  
Common-mode rejection ratio  
Power supply rejection ratio  
VEE < VCM < VCC, VS = 5 V  
73  
77  
dB  
dB  
VS = 1.8 V to 5 V, VCM = VS / 2  
VS = 5 V, sourcing (push-pull only)  
VS = 5 V, sinking  
35  
ISC  
ICC  
Short-circuit current  
mA  
nA  
40  
Supply current / Channel  
VS = 1.8 V, no load, VID = –0.1 V (Output Low)  
390  
900  
6.8 Switching Characteristics  
Typical values are at TA = 25°C, VS = 5 V, VCM = VS / 2; CL = 15 pF, input overdrive = 100 mV (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Propagation delay time, high to-  
low (RP = 4.99 kΩ open-drain  
only)  
Midpoint of input to midpoint of output,  
VOD = 100 mV  
tPHL  
3
µs  
Propagation delay time, low-to high  
(RP = 4.99 kΩ open-drain  
only)  
Midpoint of input to midpoint of output,  
VOD = 100 mV  
tPLH  
3
µs  
tR  
tF  
Rise time (push-pull only)  
Fall time  
Measured from 20% to 80%  
Measured from 20% to 80%  
4.5  
4.5  
ns  
ns  
During power on, VCC must exceed 1.6V for  
200 µs before the output will reflect the input..  
tON  
Power-up time  
200  
µs  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
www.ti.com  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
6.9 Electrical Characteristics (Dual)  
VS = 1.8 V to 5 V, VCM = VS / 2; minimum and maximum values are at TA = –40°C to +125°C (unless otherwise noted).  
Typical values are at TA = 25°C.  
PARAMETER  
Input Offset Voltage  
Hysteresis  
TEST CONDITIONS  
VS = 1.8 V and 5 V, VCM = VS / 2  
VS = 1.8 V and 5 V, VCM = VS / 2  
MIN  
TYP  
±0.1  
10  
MAX  
±8  
UNIT  
mV  
mV  
V
VIO  
VHYS  
VCM  
IB  
3
25  
Common-mode voltage range  
Input bias current  
Input offset current  
VEE  
VCC + 0.1  
2
1
pA  
IOS  
pA  
Output voltage high (push-pull  
only)  
VOH  
VOL  
ILKG  
VS = 5 V, VEE = 0 V, IO = 3 mA  
VS = 5 V, VEE = 0 V, IO = 3 mA  
4.65  
4.8  
250  
100  
V
Output voltage low  
350  
mV  
pA  
Output leakage  
current (open-drain only)  
VS = 5 V, VID = +0.1 V (output high),  
VPULLUP = VCC  
CMRR  
PSRR  
Common-mode rejection ratio  
Power supply rejection ratio  
VEE < VCM < VCC, VS = 5 V  
73  
77  
dB  
dB  
VS = 1.8 V to 5 V, VCM = VS / 2  
VS = 5 V, sourcing (push-pull only)  
VS = 5 V, sinking  
29  
ISC  
ICC  
Short-circuit current  
mA  
nA  
33  
Supply current / Channel  
VS = 1.8 V, no load, VID = –0.1 V (Output Low)  
315  
750  
6.10 Switching Characteristics (Dual)  
Typical values are at TA = 25°C, VS = 5 V, VCM = VS / 2; CL = 15 pF, input overdrive = 100 mV (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Propagation delay time, high to-  
low (RP = 4.99 kΩ open-drain  
only) (1)  
Midpoint of input to midpoint of output,  
VOD = 100 mV  
tPHL  
3
µs  
Propagation delay time, low-to high  
(RP = 4.99 kΩ open-drain  
only) (1)  
Midpoint of input to midpoint of output,  
VOD = 100 mV  
tPLH  
3
µs  
tR  
tF  
Rise time (push-pull only)  
Fall time  
Measured from 20% to 80%  
Measured from 20% to 80%  
4.5  
4.5  
ns  
ns  
During power on, VCC must exceed 1.6V for  
200 µs before the output will reflect the input..  
tON  
Power-up time  
200  
µs  
(1) The lower limit for RP is 650 Ω  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
 
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
www.ti.com  
6.11 Electrical Characteristics (Quad)  
VS = 1.8 V to 5 V, VCM = VS / 2; minimum and maximum values are at TA = –40°C to +125°C (unless otherwise noted).  
Typical values are at TA = 25°C.  
PARAMETER  
Input Offset Voltage  
Hysteresis  
TEST CONDITIONS  
VS = 1.8 V and 5 V, VCM = VS / 2  
VS = 1.8 V and 5 V, VCM = VS / 2  
MIN  
TYP  
±0.1  
10  
MAX  
±8  
UNIT  
mV  
mV  
V
VIO  
VHYS  
VCM  
IB  
3
25  
Common-mode voltage range  
Input bias current  
Input offset current  
VEE  
VCC + 0.1  
2
1
pA  
IOS  
pA  
Output voltage high (push-pull  
only)  
VOH  
VOL  
ILKG  
VS = 5 V, VEE = 0 V, IO = 3 mA  
VS = 5 V, VEE = 0 V, IO = 3 mA  
4.65  
4.8  
250  
100  
V
Output voltage low  
350  
mV  
pA  
Output leakage  
current (open-drain only)  
VS = 5 V, VID = +0.1 V (output high),  
VPULLUP = VCC  
CMRR  
PSRR  
Common-mode rejection ratio  
Power supply rejection ratio  
VEE < VCM < VCC, VS = 5 V  
73  
77  
dB  
dB  
VS = 1.8 V to 5 V, VCM = VS / 2  
VS = 5 V, sourcing (push-pull only)  
VS = 5 V, sinking  
29  
ISC  
ICC  
Short-circuit current  
mA  
nA  
33  
Supply current / Channel  
VS = 1.8 V, no load, VID = –0.1 V (Output Low)  
315  
750  
6.12 Switching Characteristics (Quad)  
Typical values are at TA = 25°C, VS = 5 V, VCM = VS / 2; CL = 15 pF, input overdrive = 100 mV (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Propagation delay time, high to-  
low (RP = 4.99 kΩ open-drain  
only) (1)  
Midpoint of input to midpoint of output,  
VOD = 100 mV  
tPHL  
3
µs  
Propagation delay time, low-to high  
(RP = 4.99 kΩ open-drain  
only) (1)  
Midpoint of input to midpoint of output,  
VOD = 100 mV  
tPLH  
3
µs  
tR  
tF  
Rise time (push-pull only)  
Fall time  
Measured from 20% to 80%  
Measured from 20% to 80%  
4.5  
4.5  
ns  
ns  
During power on, VCC must exceed 1.6V for tON  
before the output will reflect the input..  
tON  
Power-up time  
400  
µs  
(1) The lower limit for RP is 650 Ω  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
 
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
www.ti.com  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
6.13 Timing Diagrams  
tON  
VEE  
VEE + 1.6V  
VCC  
VOH/2  
VEE  
OUT  
Figure 6-1. Start-Up Time Timing Diagram (IN+ > IN–)  
Figure 6-2. Propagation Delay Timing Diagram  
Note  
The propagation delays tpLH and tpHL include the contribution of input offset and hysteresis.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
www.ti.com  
6.14 Typical Characteristics  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VCM = VCC /2  
VCM = VCC  
VCM = 0  
VCM = VCC /2  
VCM = VCC  
VCM = 0  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
vio_  
vio_  
VCC = 1.8 V  
VCC = 3.3 V  
Figure 6-4. Input Offset vs Temperature  
Figure 6-3. Input Offset vs Temperature  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Temp -40°C  
Temp 25°C  
Temp 125°C  
VCM = VCC /2  
VCM = VCC  
VCM = 0  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
0
0.2 0.4 0.6 0.8  
1
VCM (V)  
1.2 1.4 1.6 1.8  
2
vio_  
vio_  
VCC = 5 V  
Figure 6-5. Input Offset vs Temperature  
VCC = 1.8 V  
Figure 6-6. Input Offset Voltage vs VCM  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Temp -40°C  
Temp 25°C  
Temp 125°C  
Temp -40°C  
Temp 25°C  
Temp 125°C  
0
0.5  
1
1.5  
VCM (V)  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
VCM (V)  
3
3.5  
4
4.5  
5
vio_  
vio_  
VCC = 3.3 V  
Figure 6-7. Input Offset Voltage vs VCM  
VCC = 5 V  
Figure 6-8. Input Offset Voltage vs VCM  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
www.ti.com  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
6.14 Typical Characteristics (continued)  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
10  
9
10  
9
8
7
6
5
4
3
2
1
8
7
6
5
4
3
VCM = VCC /2  
VCM = VCC  
VCM = 0  
Temp -40°C  
Temp 25°C  
Temp 125°C  
2
1
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
0
0.5  
1
VCM (V)  
1.5  
2
hyst  
hyst  
VCC = 1.8 V to 5 V  
Figure 6-9. Hysteresis vs Temperature  
TLV70x1  
VCC = 1.8 V  
TLV70x1  
Figure 6-10. Hysteresis vs VCM  
10  
9
8
7
6
5
4
3
2
1
10  
9
8
7
6
5
4
3
Temp -40°C  
Temp 25°C  
Temp 125°C  
Temp -40°C  
Temp 25°C  
Temp 125°C  
2
1
0
0
1
2
VCM (V)  
3
4
1
2
3
4
5
VCM (V)  
hyst  
hyst  
VCC = 3.3 V  
TLV70x1  
VCC = 5 V  
TLV70x1  
Figure 6-11. Hysteresis vs VCM  
Figure 6-12. Hysteresis vs VCM  
1.795  
1.79  
1000  
100  
10  
1.785  
1.78  
1.775  
1.77  
1
1.765  
1.76  
Temp -40°C  
Temp 25°C  
Temp 85°C  
Temp 125°C  
0.1  
0.01  
1.755  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
0.1  
0.15  
0.2  
0.25  
Output Source Current (mA)  
0.3  
0.35  
0.4  
0.45  
0.5  
voh_  
tlv7  
A.  
VCC = 5 V  
VCC = 1.8 V  
TLV703x  
Figure 6-13. Input Bias Current vs Temperature  
Figure 6-14. Output Voltage High vs Output Source Current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
www.ti.com  
6.14 Typical Characteristics (continued)  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
5
4.98  
4.96  
4.94  
4.92  
4.9  
0.1  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
4.88  
4.86  
4.84  
4.82  
4.8  
0.02  
Temp -40°C  
Temp 25°C  
Temp 85°C  
Temp 125°C  
Temp -40°C  
Temp 25°C  
Temp 125°C  
4.78  
0.01  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Output Source Current (mA)  
4
4.5  
5
0.1  
0.2 0.3  
Output Sink Current (mA)  
0.4  
0.5  
voh_  
vol_  
VCC = 5 V  
TLV703x  
VCC = 1.8 V  
Figure 6-15. Output Voltage High vs Output Source Current  
Figure 6-16. Output Voltage Low vs Output Sink Current  
0.5  
50  
VCC=3.5V  
VCC=5.5V  
0.3  
0.2  
40  
30  
20  
10  
0.1  
0.07  
0.05  
0.03  
0.02  
Temp -40°C  
Temp 25°C  
Temp 125°C  
0.01  
0.007  
0.005  
0.1  
0.2 0.3 0.40.5 0.7 1  
Output Sink Current (mA)  
2
3
4 5  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
vol_  
nisc  
VCC = 5 V  
VCM = VCC / 2  
Figure 6-17. Output Voltage Low vs Output Sink Current  
Figure 6-18. Output Short-Circuit (Sink) Current vs Temperature  
50  
50  
Vcc=3.5V  
Vcc=5.5V  
40  
30  
20  
40  
30  
20  
10  
10  
Temp -40°C  
Temp 25°C  
Temp 125°C  
0
-40  
-20  
0
20  
40  
Temperature ( °C)  
60  
80  
100 120 140  
1
1.5  
2
2.5  
3
3.5 4  
VCC(V)  
4.5  
5
5.5 6 6.5  
pisc  
nisc  
VCM = VCC / 2  
Figure 6-20. Output Short Circuit (Sink) vs VCC  
VCM = VCC / 2  
TLV703x  
Figure 6-19. Output Short-Circuit (Source) Current vs  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
www.ti.com  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
6.14 Typical Characteristics (continued)  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
50  
45  
40  
35  
30  
25  
20  
15  
800  
700  
600  
500  
400  
300  
200  
10  
Temp -40C  
Temp 25C  
Temp 125C  
VCC = 1.8V  
VCC = 3.3V  
VCC = 5.0V  
5
0
1
1.5  
2
2.5  
3
3.5 4  
Vcc (V)  
4.5  
5
5.5  
6
6.5  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
Iq_v  
pisc  
VCM = VCC / 2  
TLV70x2  
VCM = VCC / 2  
Figure 6-21. Output Short Circuit (Source) vs VCC  
900  
TLV703x  
Figure 6-22. ICC vs Temperature  
20000  
10000  
5000  
Fall Time  
Rise Time  
Temp = -40°C  
Temp = 25°C  
Temp = 125°C  
800  
700  
600  
500  
400  
300  
200  
2000  
1000  
500  
200  
100  
50  
20  
10  
5
2
10 2030 50 100 200 5001000  
Load Capacitance (pF)  
10000  
100000  
1
1.5  
2
2.5  
3
3.5  
VCC (V)  
4
4.5  
5
5.5  
6
Iq_v  
tlv7  
VOD = 100 mV  
TLV703x Rise only  
VCM = VCC / 2  
TLV70x2  
Figure 6-24. Rise/Fall Time vs Load Capacitance  
Figure 6-23. ICC vs VCC  
7
6
5
4
3
2
1
7
6
5
4
3
2
1
Temp -40°C  
Temp 25°C  
Temp 85°C  
Temp 125°C  
Temp -40°C  
Temp 25°C  
Temp 85°C  
Temp 125°C  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
VOD (mV)  
VOD (mV)  
tlv7  
tlv7  
VCC = 3.3 V to 5 V  
TLV703x  
VCC = 3.3 V to 5 V  
Figure 6-25. Propagation Delay (L-H) vs Input Overdrive  
Figure 6-26. Propagation Delay (H-L) vs Input Overdrive  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TLV703x-Q1 and TLV704x-Q1 devices are single-channel, nano-power comparators with push-pull and  
open-drain outputs. Operating from 1.6 V to 6.5 V and consuming only 315 nA, the TLV703x-Q1 and TLV704x-  
Q1 are designed for portable and industrial applications.  
7.2 Functional Block Diagram  
VCC  
IN+  
+
OUT  
-
IN-  
Power-on-reset  
Bias  
VEE  
7.3 Feature Description  
The TLV703x-Q1 and TLV704x-Q1 comparators are nanopower comparators that are capable of operating at  
low voltages. The TLV703x-Q1 and TLV704x-Q1 feature a rail-to-rail input stage capable of operating up to 100  
mV beyond the VCC power supply rail. The TLV703x-Q1 (push-pull) and TLV704x-Q1 (open-drain) also feature  
internal hysteresis.  
7.4 Device Functional Modes  
The TLV703x-Q1 and TLV704x-Q1 have a power-on-reset (POR) circuit. While the power supply (VS) is less  
than the minimum supply voltage, either upon ramp-up or ramp-down, the POR circuitry is activated.  
For the TLV703x-Q1, the POR circuit holds the output low (at VEE) while activated.  
For the TLV704x-Q1, the POR circuit keeps the output high impedance (logical high) while activated.  
When the supply voltage is greater than, or equal to, the minimum supply voltage, the comparator output reflects  
the state of the differential input (VID).  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
 
 
 
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
www.ti.com  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
7.4.1 Inputs  
The TLV703x-Q1 and TLV704x-Q1 input common-mode extends from VEE to 100 mV above VCC. The differential  
input voltage (VID) can be any voltage within these limits. No phase inversion of the comparator output occurs  
when the input pins exceed VCC and VEE  
.
The input of TLV703x-Q1 and TLV704x-Q1 is fault tolerant. It maintains the same high input impedance when  
VCC is unpowered or ramping up. The input can be safely driven up to the specified maximum voltage (7 V) with  
VCC = 0 V or any value up to the maximum specified. The VCC is isolated from the input such that it maintains its  
value even when a higher voltage is applied to the input.  
The input bias current is typically 1 pA for input voltages between VCC and VEE. The comparator inputs are  
protected from voltages below VEE by internal diodes connected to VEE. As the input voltage goes under VEE  
,
the protection diodes become forward biased and begin to conduct causing the input bias current to increase  
exponentially. Input bias current typically doubles every 10°C temperature increases.  
7.4.2 Internal Hysteresis  
The device hysteresis transfer curve is shown in Figure 7-1. This curve is a function of three components: VTH  
,
VOS, and VHYST  
:
VTH is the actual set voltage or threshold trip voltage.  
VOS is the internal offset voltage between VIN+ and VIN–. This voltage is added to VTH to form the actual trip  
point at which the comparator must respond to change output states.  
VHYST is the internal hysteresis (or trip window) that is designed to reduce comparator sensitivity to noise  
(7 mV for both TLV703x-Q1 and TLV704x-Q1).  
VTH + VOS - (VHYST / 2)  
VTH + VOS  
VTH + VOS + (VHYST / 2)  
Figure 7-1. Hysteresis Transfer Curve  
7.4.3 Output  
The TLV703x-Q1 features a push-pull output stage eliminating the need for an external pullup resistor. On the  
other hand, the TLV704x-Q1 features an open-drain output stage enabling the output logic levels to be pulled up  
to an external source up to 6.5 V independent of the supply voltage.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TLV703x-Q1 and TLV704x-Q1 are nano-power comparators with reasonable response time. The  
comparators have a rail-to-rail input stage that can monitor signals beyond the positive supply rail with integrated  
hysteresis. When higher levels of hysteresis are required, positive feedback can be externally added. The push-  
pull output stage of the TLV703x-Q1 is optimal for reduced power budget applications and features no shoot-  
through current. When level shifting or wire-ORing of the comparator outputs is needed, the TLV704x-Q1 with  
its open-drain output stage is well suited to meet the system needs. In either case, the wide operating voltage  
range, low quiescent current, and small size of the TLV703x-Q1 and TLV704x-Q1 make these comparators  
excellent candidates for battery-operated and portable, handheld designs.  
8.1.1 Inverting Comparator With Hysteresis for TLV703x-Q1  
The inverting comparator with hysteresis requires a three-resistor network that is referenced to the comparator  
supply voltage (VCC), as shown in Figure 8-1. When VIN at the inverting input is less than VA, the output voltage  
is high (for simplicity, assume VO switches as high as VCC). The three network resistors can be represented as  
R1 || R3 in series with R2. Equation 1 defines the high-to-low trip voltage (VA1).  
R2  
VA1 = VCC  
´
(R1 || R3) + R2  
(1)  
When VIN is greater than VA, the output voltage is low, very close to ground. In this case, the three network  
resistors can be presented as R2 || R3 in series with R1. Use Equation 2 to define the low to high trip voltage  
(VA2).  
R2 || R3  
VA2 = VCC  
´
R1 + (R2 || R3)  
(2)  
(3)  
Equation 3 defines the total hysteresis provided by the network.  
DVA = VA1 - VA2  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
 
 
 
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
www.ti.com  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
+VCC  
+5 V  
R1  
1 MW  
VIN  
5 V  
RLOAD  
VA  
VO  
100 kW  
VA2  
1.67 V  
VA1  
3.33 V  
0 V  
R3  
1 MW  
VIN  
R2  
1 MW  
VO High  
+VCC  
VO Low  
+VCC  
R1  
VA1  
R2  
R3  
R1  
VA2  
R2  
R3  
Copyright © 2016, Texas Instruments Incorporated  
Figure 8-1. TLV703x-Q1 in an Inverting Configuration With Hysteresis  
8.1.2 Noninverting Comparator With Hysteresis for TLV703x-Q1  
A noninverting comparator with hysteresis requires a two-resistor network, as shown in Figure 8-2, and a voltage  
reference (VREF) at the inverting input. When VIN is low, the output is also low. For the output to switch from low  
to high, VIN must rise to VIN1. Use Equation 4 to calculate VIN1  
.
VREF  
VIN1 = R1 ´  
+ VREF  
R2  
(4)  
When VIN is high, the output is also high. For the comparator to switch back to a low state, VIN must drop to VIN2  
such that VA is equal to VREF. Use Equation 5 to calculate VIN2  
.
VREF (R1 + R2) - VCC ´ R1  
VIN2  
=
R2  
(5)  
(6)  
The hysteresis of this circuit is the difference between VIN1 and VIN2, as shown in Equation 6.  
R1  
DVIN = VCC  
´
R2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
 
 
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
www.ti.com  
+VCC  
+5 V  
VREF  
VO  
+2.5 V  
VA  
VIN  
RLOAD  
R1  
330 kW  
R2  
1 MW  
VO High  
+VCC  
VO Low  
VIN1  
5 V  
0 V  
R2  
R1  
VA = VREF  
R2  
VO  
VA = VREF  
R1  
VIN2  
VIN1  
1.675 V 3.325 V  
VIN  
VIN2  
Copyright © 2016, Texas Instruments Incorporated  
Figure 8-2. TLV703x-Q1 in a Noninverting Configuration With Hysteresis  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
www.ti.com  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
8.2 Typical Applications  
8.2.1 Window Comparator  
Window comparators are commonly used to detect undervoltage and overvoltage conditions. Figure 8-3 shows a  
simple window comparator circuit.  
3.3V  
RPU  
R1  
UV_OV  
+
Micro-  
Controller  
Sensor  
R2  
+
R3  
Figure 8-3. TLV704x-Q1-Based Window Comparator  
8.2.1.1 Design Requirements  
For this design, follow these design requirements:  
Alert (logic low output) when an input signal is less than 1.1 V  
Alert (logic low output) when an input signal is greater than 2.2 V  
Alert signal is active low  
Operate from a 3.3-V power supply  
8.2.1.2 Detailed Design Procedure  
Configure the circuit as shown in Figure 8-3. Connect VCC to a 3.3-V power supply and VEE to ground. Make R1,  
R2, and R3 each 10-MΩ resistors. These three resistors are used to create the positive and negative thresholds  
for the window comparator (VTH+ and VTH–). With each resistor being equal, VTH+ is 2.2 V and VTH- is 1.1 V.  
Large resistor values such as 10 MΩ are used to minimize power consumption. The sensor output voltage is  
applied to the inverting and noninverting inputs of the two TLV704x-Q1 devices. The TLV704x-Q1 is used for  
its open-drain output configuration. Using the TLV704x-Q1 allows the two comparator outputs to be wire-ored  
together. The respective comparator outputs are low when the sensor is less than 1.1 V or greater than 2.2 V.  
VOUT is high when the sensor is in the range of 1.1 V to 2.2 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
www.ti.com  
8.2.1.3 Application Curve  
VIN  
VTH+ = 2.2 V  
VTHœ = 1.1 V  
Time (usec)  
VOUT  
Time (usec)  
50  
100  
150  
200  
Figure 8-4. Window Comparator Results  
8.2.2 IR Receiver Analog Front End  
A single TLV703x-Q1 device can be used to build a complete IR receiver analog front end (AFE). The nanoamp  
quiescent current and low input bias current make it possible to be powered with a coin cell battery, which could  
last for years.  
Vref  
470 k  
470 kꢀ  
10M ꢀ  
R4  
3 V  
IR LED  
R2  
R3  
U1  
+
Output to MCU  
(Also to wake-up MCU)  
œ
VOUT  
C1  
10M ꢀ  
TLV7031  
VIN  
R1  
0.01 F  
GND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-5. IR Receiver Analog Front End Using TLV703x-Q1  
8.2.2.1 Design Requirements  
For this design, follow these design requirements:  
Use a proper resistor (R1) value to generate an adequate signal amplitude applied to the inverting input of the  
comparator.  
The low input bias current IB (2 pA typical) ensures that a greater value of R1 to be used.  
The RC constant value (R2 and C1) must support the targeted data rate (that is, 9,600 bauds) in order to  
maintain a valid tripping threshold.  
The hysteresis introduced with R3 and R4 helps to avoid spurious output toggles.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
www.ti.com  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
8.2.2.2 Detailed Design Procedure  
The IR receiver AFE design is highly streamlined and optimized. R1 converts the IR light energy induced current  
into voltage and applies to the inverting input of the comparator. The RC network of R2 and C1 establishes  
a reference voltage Vref, which tracks the mean amplitude of the IR signal. The noninverting input is directly  
connected to Vref through R3. R3 and R4 are used to produce a hysteresis to keep transitions free of spurious  
toggles. To reduce the current drain from the coin cell battery, data transmission must be short and infrequent.  
More technical details are provided in the TI TechNote Low Power Comparator for Signal Processing and  
Wake-Up Circuit in Smart Meters (SNVA808).  
8.2.2.3 Application Curve  
1.8 V  
VIN  
1.2 V  
4.0 V  
VOUT  
0.0 V  
1.61 V  
VREF  
1.58 V  
0.0  
200.0 u  
400.0 u  
Time  
600.0 u  
800.0 u  
Figure 8-6. IR Receiver AFE Waveforms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
www.ti.com  
8.2.3 Square-Wave Oscillator  
A square-wave oscillator can be used as low-cost timing reference or system supervisory clock source.  
Figure 8-7. Square-Wave Oscillator  
8.2.3.1 Design Requirements  
The square-wave period is determined by the RC time constant of the capacitor and resistor. The maximum  
frequency is limited by the propagation delay of the device and the capacitance load at the output. The low input  
bias current allows a lower capacitor value and larger resistor value combination for a given oscillator frequency,  
which may help reduce BOM cost and board space.  
8.2.3.2 Detailed Design Procedure  
The oscillation frequency is determined by the resistor and capacitor values. The following section provides  
details to calculate these component values.  
Figure 8-8. Square-Wave Oscillator Timing Thresholds  
First consider the output of figure Figure 8-7 is high, which indicates the inverted input VC is lower than the  
noninverting input (VA). This causes the C1 to be charged through R4, and the voltage VC increases until it is  
equal to the noninverting input. The value of VA at the point is calculated by Equation 7.  
VCCìR2  
R2 + R1IIR3  
VA1  
=
(7)  
If R1 = R2= R3, then VA1 = 2 VCC/ 3  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
www.ti.com  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
At this time the comparator output trips pulling down the output to the negative rail. The value of VA at this point  
is calculated by Equation 8.  
VCC(R2IIR3 )  
VA2  
=
R1+R2IIR3  
(8)  
If R1 = R2 = R3, then VA2 = VCC/3  
The C1 now discharges though the R4, and the voltage VCC decreases until it reaches VA2. At this point, the  
output switches back to the starting state. The oscillation period equals the time duration from 2 VCC / 3 to  
VCC / 3 then back to 2 VCC / 3, which is given by R4C1 × ln2 for each trip. Therefore, the total time duration is  
calculated as 2 R4C1 × ln2. The oscillation frequency can be obtained by Equation 9:  
f = 1/ 2 R4ìC1ìIn2  
(
)
(9)  
8.2.3.3 Application Curve  
Figure 8-9 shows the simulated results of an oscillator using the following component values:  
R1 = R2 = R3 = R4 = 100 kΩ  
C1 = 100 pF, CL = 20 pF  
V+ = 5 V, V– = GND  
Cstray (not shown) from VA to GND = 10 pF  
Figure 8-9. Square-Wave Oscillator Output Waveform  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
 
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
www.ti.com  
9 Power Supply Recommendations  
The TLV703x-Q1 and TLV704x-Q1 have a recommended operating voltage range (VS) of 1.6 V to 6.5 V. VS is  
defined as VCC – VEE. Therefore, the supply voltages used to create VS can be single-ended or bipolar. For  
example, single-ended supply voltages of 5 V and 0 V and bipolar supply voltages of +2.5 V and –2.5 V create  
comparable operating voltages for VS. However, when bipolar supply voltages are used, it is important to realize  
that the logic low level of the comparator output is referenced to VEE  
.
Output capacitive loading and output toggle rate will cause the average supply current to rise over the quiescent  
current.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
www.ti.com  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
10 Layout  
10.1 Layout Guidelines  
Figure 10-1 shows the typical connections for the TLV7031-Q1. To minimize supply noise, power supplies  
must be capacitively decoupled by a 0.1-µF ceramic capacitor in parallel with a 10-µF electrolytic capacitor.  
Comparators are very sensitive to input noise. Proper grounding (the use of a ground plane) helps to maintain  
the specified performance of the TLV70x1-Q1 family.  
For best results, maintain the following layout guidelines:  
1. Use a printed-circuit board (PCB) with a good, unbroken low-inductance ground plane.  
2. Place a decoupling capacitor (0.1-µF ceramic, surface-mount capacitor) as close as possible to VCC  
.
3. On the inputs and the output, keep lead lengths as short as possible to avoid unwanted parasitic feedback  
around the comparator. Keep inputs away from the output.  
4. Solder the device directly to the PCB rather than using a socket.  
5. For slow-moving input signals, take care to prevent parasitic feedback. A small capacitor (1000 pF or less)  
placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes  
some degradation to propagation delay when the impedance is low. The top-side ground plane runs between  
the output and inputs.  
6. The ground pin ground trace runs under the device up to the bypass capacitor, shielding the inputs from the  
outputs.  
10.2 Layout Example  
VEE  
VOUT  
VEE  
IN+  
VCC  
IN-  
Figure 10-1. TLV7031-Q1 Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
 
 
 
TLV7031-Q1, TLV7041-Q1, TLV7032-Q1, TLV7042-Q1, TLV7034-Q1, TLV7044-Q1  
SNOSDA5C – MAY 2020 – REVISED OCTOBER 2021  
www.ti.com  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 Evaluation Module  
An evaluation module (EVM) is available to assist in the initial circuit performance evaluation using the TLV703x-  
Q1, TLV704x-Q1 device family. The DIP Adapter EVM can be requested at the Texas Instruments website  
through the product folder or purchased directly from the TI eStore.  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLV7031-Q1 TLV7041-Q1 TLV7032-Q1 TLV7042-Q1 TLV7034-Q1 TLV7044-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Nov-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV7031QDBVRQ1  
TLV7031QDCKRQ1  
TLV7032QDGKRQ1  
TLV7034QPWRQ1  
TLV7041QDBVRQ1  
TLV7041QDCKRQ1  
TLV7042QDGKRQ1  
TLV7044QPWRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SC70  
DBV  
DCK  
DGK  
PW  
5
5
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
2000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
7031  
1GP  
7032  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
VSSOP  
TSSOP  
SOT-23  
SC70  
8
14  
5
7034Q  
7041  
DBV  
DCK  
DGK  
PW  
5
1GQ  
VSSOP  
TSSOP  
8
7042  
14  
7044Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Nov-2021  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV7031-Q1, TLV7032-Q1, TLV7034-Q1, TLV7041-Q1, TLV7042-Q1, TLV7044-Q1 :  
Catalog : TLV7031, TLV7032, TLV7034, TLV7041, TLV7042, TLV7044  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Nov-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV7031QDBVRQ1  
TLV7031QDCKRQ1  
TLV7032QDGKRQ1  
TLV7034QPWRQ1  
TLV7041QDBVRQ1  
TLV7041QDCKRQ1  
TLV7042QDGKRQ1  
TLV7044QPWRQ1  
SOT-23  
SC70  
DBV  
DCK  
DGK  
PW  
5
5
3000  
3000  
2500  
2000  
3000  
3000  
2500  
2000  
178.0  
178.0  
330.0  
330.0  
178.0  
178.0  
330.0  
330.0  
9.0  
9.0  
3.3  
2.4  
5.3  
6.9  
3.3  
2.4  
5.3  
6.9  
3.2  
2.5  
3.4  
5.6  
3.2  
2.5  
3.4  
5.6  
1.4  
1.2  
1.4  
1.6  
1.4  
1.2  
1.4  
1.6  
4.0  
4.0  
8.0  
8.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q1  
Q3  
Q3  
Q1  
Q1  
VSSOP  
TSSOP  
SOT-23  
SC70  
8
12.4  
12.4  
9.0  
12.0  
12.0  
8.0  
14  
5
DBV  
DCK  
DGK  
PW  
5
9.0  
8.0  
VSSOP  
TSSOP  
8
12.4  
12.4  
12.0  
12.0  
14  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Nov-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV7031QDBVRQ1  
TLV7031QDCKRQ1  
TLV7032QDGKRQ1  
TLV7034QPWRQ1  
TLV7041QDBVRQ1  
TLV7041QDCKRQ1  
TLV7042QDGKRQ1  
TLV7044QPWRQ1  
SOT-23  
SC70  
DBV  
DCK  
DGK  
PW  
5
5
3000  
3000  
2500  
2000  
3000  
3000  
2500  
2000  
180.0  
190.0  
366.0  
853.0  
180.0  
190.0  
366.0  
853.0  
180.0  
190.0  
364.0  
449.0  
180.0  
190.0  
364.0  
449.0  
18.0  
30.0  
50.0  
35.0  
18.0  
30.0  
50.0  
35.0  
VSSOP  
TSSOP  
SOT-23  
SC70  
8
14  
5
DBV  
DCK  
DGK  
PW  
5
VSSOP  
TSSOP  
8
14  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
2X 0.95  
1.9  
3.05  
2.75  
1.9  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/F 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/F 06/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/F 06/2021  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TLV70310DBVR

300mA、高 PSRR、低 IQ、低压降稳压器 | DBV | 5 | -40 to 125
TI

TLV70311DBVR

300mA、高 PSRR、低 IQ、低压降稳压器 | DBV | 5 | -40 to 125
TI

TLV70312DBVR

300mA、高 PSRR、低 IQ、低压降稳压器 | DBV | 5 | -40 to 125
TI

TLV70313DBVR

300mA、高 PSRR、低 IQ、低压降稳压器 | DBV | 5 | -40 to 125
TI

TLV70315DBVR

300mA、高 PSRR、低 IQ、低压降稳压器 | DBV | 5 | -40 to 125
TI

TLV70318DBVR

300mA、高 PSRR、低 IQ、低压降稳压器 | DBV | 5 | -40 to 125
TI

TLV7031DBVR

TLV703x and TLV704x Small-Size, Nanopower, Low-Voltage Comparators
TI

TLV7031DCKR

具有推挽开路输出的毫微功耗、小型比较器 | DCK | 5 | -40 to 125
TI

TLV7031DCKT

具有推挽开路输出的毫微功耗、小型比较器 | DCK | 5 | -40 to 125
TI

TLV7031DPWR

具有推挽开路输出的毫微功耗、小型比较器 | DPW | 5 | -40 to 125
TI

TLV7031QDBVRQ1

TLV703x-Q1 and TLV704x-Q1 Rail-to-Rail, Low-Power Comparators
TI

TLV7031QDCKRQ1

TLV703x-Q1 and TLV704x-Q1 Rail-to-Rail, Low-Power Comparators
TI