TLV73312PDQNR [TI]

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DQN | 4 | -40 to 125;
TLV73312PDQNR
型号: TLV73312PDQNR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DQN | 4 | -40 to 125

稳压器
文件: 总38页 (文件大小:1201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV733P  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
采用 1mm × 1mm X2SON 封装的 TLV733P 无电容器、300mA、低压降  
稳压器  
1 特性  
3 说明  
1
输入电压范围:1.4V 5.5V  
TLV733 系列低压降线性稳压器 (LDO) 尺寸超小且静  
态电流较低,可提供 300mA 的拉电流,并且线路和负  
载瞬态性能出色。此系列器件可提供典型值为 1% 的  
精度。  
有无电容器均可实现稳定运行  
折返过流保护  
封装:  
1.0mm × 1.0mm X2SON (4)  
SOT-23 (5)  
TLV733 系列采用现代无电容架构设计,无需使用输入  
或输出电容即可确保运行稳定。移除输出电容有助于减  
小解决方案的尺寸,并且可以消除启动时的浪涌电流。  
不过,TLV733 系列在使用陶瓷输出电容时也可以稳定  
运行。使用输出电容时,TLV733 还可以在器件上电和  
使能期间提供折返电流控制。此功能对于电池供电类器  
件尤为重要。  
超低压降:300mA (3.3 VOUT) 时为 125mV  
精度:典型值 1%,最大值 1.4%  
IQ34µA  
可提供固定输出电压:  
1.0V 3.3V  
高电源抑制比 (PSRR)1kHz 频率时为 50dB  
TLV733 提供了有源下拉电路,当被禁用时可以使输出  
负载快速放电。  
有源输出放电  
2 应用  
TLV733 系列采用标准的 DBV (SOT-23) DQN  
(X2SON) 封装。  
平板电脑  
智能手机  
器件信息(1)  
笔记本和台式计算机  
便携式工业和消费类产品  
无线局域网 (WLAN) 和其他 PC 附加卡  
摄像机模块  
器件型号  
TLV733P  
封装  
SOT-23 (5)  
X2SON (4)  
封装尺寸(标称值)  
2.90mm × 1.60mm  
1.00mm x 1.00mm  
(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。  
典型应用电路  
压降电压与输出电流间的关系  
180  
VOUT = 3.3 V  
VOUT = 1.8 V  
IN  
OUT  
GND  
160  
140  
120  
100  
80  
TLV733  
COUT  
CIN  
EN  
Optional  
Optional  
ON  
OFF  
60  
40  
20  
0
0
30  
60  
90 120 150 180 210 240 270 300  
IOUT (mA)  
D020  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBVS235  
 
 
 
 
 
 
TLV733P  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 13  
7.3 Feature Description................................................. 14  
7.4 Device Functional Modes........................................ 15  
8
9
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Applications ............................................... 18  
Power Supply Recommendations...................... 20  
10 Layout................................................................... 20  
10.1 Layout Guidelines ................................................. 20  
10.2 Layout Examples................................................... 20  
11 器件和文档支持 ..................................................... 21  
11.1 器件支持 ............................................................... 21  
11.2 文档支持................................................................ 21  
11.3 接收文档更新通知 ................................................. 21  
11.4 社区资源................................................................ 21  
11.5 ....................................................................... 21  
11.6 静电放电警告......................................................... 21  
11.7 Glossary................................................................ 22  
12 机械、封装和可订购信息....................................... 23  
7
4 修订历史记录  
Changes from Revision B (November 2015) to Revision C  
Page  
Changed description of EN pin from 0.9 V to VEN(HI) and from 0.35 V to VEN(LO) .................................................................. 4  
Deleted typical specifications from VEN(HI) and VEN(LO) parameters ....................................................................................... 6  
Added maximum specification to ILIM parameter ................................................................................................................... 6  
Changed Shutdown and Output Enable title from Shutdown and changed first paragraph................................................. 14  
Added DBV package to last paragraph of Power Dissipation section.................................................................................. 17  
已添加 向器件命名规则 表中添加了 (3) ................................................................................................................................ 21  
Changes from Revision A (December 2014) to Revision B  
Page  
已将低压降特性要点的值从 122mV 改为 125mV,以匹配电气特性中的............................................................................ 1  
已更改首页曲线图中的 VOUT ........................................................................................................................................... 1  
Changed min junction temperature value from –55 to –40 in Absolute Maximum Ratings table .......................................... 5  
Changed max junction temperature value from 160 to 150 in Absolute Maximum Ratings table ........................................ 5  
Changed max storage temperature value from 150 to 160 in Absolute Maximum Ratings table.......................................... 5  
Added test condition to line regulation parameter in Electrical Characteristics table............................................................. 6  
Changed unit for line regulation parameter from mV/V to mV ............................................................................................... 6  
Added test condition to load regulation parameter in Electrical Characteristics table .......................................................... 6  
Changes from Original (October 2014) to Revision A  
Page  
已更改数据表首页的标题信息,以反映器件系列而非各个器件............................................................................................... 1  
已将输入电压范围 特性 更改为列表中的第一个要点............................................................................................................... 1  
已更改 首页的典型应用电路;修正了可选电容标识中的错误 ................................................................................................. 1  
Changed format of I/O column contents and order of packages in Pin Functions table ....................................................... 4  
Moved storage temperature range specification to Absolute Maximum Ratings table ......................................................... 5  
Changed Handling Ratings table title to ESD Ratings, updated table format ........................................................................ 5  
Added new first row to the VDO parameter in the Electrical Characteristics table.................................................................. 6  
2
Copyright © 2014–2019, Texas Instruments Incorporated  
 
TLV733P  
www.ti.com.cn  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
Changed condition text for Figure 34 .................................................................................................................................. 17  
已添加 评估模块小节 ............................................................................................................................................................ 21  
已删除 相关链接部分 ............................................................................................................................................................ 21  
Copyright © 2014–2019, Texas Instruments Incorporated  
3
TLV733P  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
www.ti.com.cn  
5 Pin Configuration and Functions  
DBV Package  
5-Pin SOT-23  
Top View  
DQN Package  
4-Pin 1-mm × 1-mm X2SON  
Top View  
IN  
4
EN  
3
IN  
GND  
EN  
1
2
3
5
4
OUT  
NC  
1
2
OUT  
GND  
Pin Functions  
PIN  
NO.  
NAME  
EN  
DQN  
3
DBV  
I/O  
DESCRIPTION  
Enable pin. Drive EN greater than VEN(HI) to turn on the regulator.  
Drive EN less than VEN(LO) to put the LDO into shutdown mode.  
3
2
1
4
I
GND  
IN  
2
I
Ground pin  
Input pin. A small capacitor is recommended from this pin to ground.  
See the Input and Output Capacitor Selection section for more details.  
4
NC  
N/A  
No internal connection  
Regulated output voltage pin. For best transient response, use a small 1-μF  
ceramic capacitor from this pin to ground.  
OUT  
1
5
O
See the Input and Output Capacitor Selection section for more details.  
The thermal pad is electrically connected to the GND node.  
Connect to the GND plane for improved thermal performance.  
Thermal pad  
4
Copyright © 2014–2019, Texas Instruments Incorporated  
TLV733P  
www.ti.com.cn  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted); all voltages are with respect to GND(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
VIN  
6.0  
Voltage  
VEN  
VOUT  
IOUT  
VIN + 0.3  
3.6  
Current  
Internally limited  
A
Output short-circuit duration  
Indefinite  
150  
Operating junction, TJ  
Storage, Tstg  
–40  
–65  
Temperature  
°C  
160  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
1.4  
1.0  
0
NOM  
MAX  
5.5  
UNIT  
Input range, VIN  
V
V
Output range, VOUT  
Output current, IOUT  
Enable range, VEN  
Junction temperature, TJ  
3.3  
300  
VIN  
mA  
V
0
–40  
125  
°C  
6.4 Thermal Information  
TLV733P  
THERMAL METRIC(1)  
DQN (X2SON)  
4 PINS  
218.6  
DBV (SOT-23)  
UNIT  
5 PINS  
228.4  
151.5  
55.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
164.8  
164.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
5.6  
31.4  
ψJB  
163.9  
54.8  
RθJC(bot)  
131.4  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2014–2019, Texas Instruments Incorporated  
5
 
TLV733P  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
www.ti.com.cn  
6.5 Electrical Characteristics  
At operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted). All typical values at TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
1.4  
TYP  
MAX  
5.5  
UNIT  
VIN  
Input voltage  
V
TJ = 25°C  
–1%  
1%  
DC output accuracy  
Undervoltage lockout  
–40°C TJ +125°C  
VIN rising  
–1.4%  
1.4%  
1.4  
1.3  
1.25  
1
UVLO  
V
VIN falling  
ΔVO(ΔVI) Line regulation  
ΔVO(ΔIO) Load regulation  
ΔVI = VIN(nom) to VIN(nom) + 1  
mV  
mV  
DQN package  
16  
ΔIO = 1 mA to  
300 mA  
DBV package  
25  
VOUT = 1.1 V, –40°C TJ 85°C  
1.2 V VOUT < 1.5 V, –40°C TJ 85°C  
1.5 V VOUT < 1.8 V, –40°C TJ 85°C  
1.8 V VOUT < 2.5 V, –40°C TJ 85°C  
2.5 V VOUT < 3.3 V, –40°C TJ 85°C  
VOUT = 3.3 V, –40°C TJ 85°C  
1.2 V VOUT < 1.5 V, –40°C TJ 125°C  
1.5 V VOUT < 1.8 V, –40°C TJ 125°C  
1.8 V VOUT < 2.5 V, –40°C TJ 125°C  
2.5 V VOUT < 3.3 V, –40°C TJ 125°C  
VOUT = 3.3 V, –40°C TJ 125°C  
460  
420  
370  
270  
260  
220  
450  
400  
300  
290  
270  
60  
VOUT = 0.98 ×  
VOUT(nom),  
IOUT = 300 mA  
VDO  
Dropout voltage(1)  
125  
mV  
125  
34  
IGND  
Ground pin current  
Shutdown current  
IOUT = 0 mA  
µA  
µA  
ISHDN  
V
EN 0.35 V, 2.0 V VIN 5.5 V, TJ = 25°C  
0.1  
68  
1
f = 100 Hz  
f = 10 kHz  
f = 100 kHz  
Power-supply  
rejection ratio  
VOUT = 1.8 V,  
IOUT = 300 mA  
PSRR  
35  
dB  
28  
Vn  
Output noise voltage  
BW = 10 Hz to 100 kHz, VOUT = 1.8 V, IOUT = 10 mA  
120  
µVRMS  
V
EN pin high voltage  
(enabled)  
VEN(HI)  
0.9  
EN pin low voltage  
(disabled)  
VEN(LO)  
IEN  
0.35  
V
EN pin current  
VEN = 5.5 V  
0.01  
250  
µA  
Time from EN assertion to 98% × VOUT(nom), VOUT = 1.0  
V, IOUT = 0 mA  
tSTR  
Startup time  
µs  
Time from EN assertion to 98% × VOUT(nom), VOUT = 3.3  
V, IOUT = 0 mA  
800  
120  
Pull-down resistor  
Output current limit  
VIN = 2.3 V  
Ω
ILIM  
IOS  
360  
700  
mA  
VOUT shorted to GND, VOUT = 1.0 V  
VOUT shorted to GND, VOUT = 3.3 V  
Shutdown, temperature increasing  
Reset, temperature decreasing  
150  
170  
160  
140  
Short-circuit current  
limit  
mA  
°C  
Tsd  
Thermal shutdown  
(1) Dropout voltage for the TLV73310P is not valid at room temperature. The device engages undervoltage lockout (VIN < UVLOFALL) before  
the dropout condition is met.  
6
Copyright © 2014–2019, Texas Instruments Incorporated  
TLV733P  
www.ti.com.cn  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
6.6 Typical Characteristics  
at operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted)  
1.03  
1.02  
1.01  
1
1.004  
1
TJ = -40 èC  
TJ = 0 èC  
TJ = 25 èC  
TJ = 85 èC  
TJ = 125 èC  
TJ = -40 èC  
TJ = 0 èC  
TJ = 25 èC  
TJ = 85 èC  
TJ = 125 èC  
0.996  
0.992  
0.988  
0.984  
0.98  
0.99  
0.98  
0.97  
0.96  
0.976  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Current (mA)  
Current (mA)  
D001  
D005  
TLV73310PDBV  
TLV73310PDQN  
Figure 1. 1.0-V Load Regulation vs IOUT and Temperature  
Figure 2. 1.0-V Load Regulation vs IOUT and Temperature  
1.816  
1.8  
TJ = -40 èC  
TJ = 0 èC  
TJ = 25 èC  
TJ = 85 èC  
TJ = 125 èC  
TJ = -40 èC  
TJ = 0 èC  
TJ = 25 èC  
TJ = 85 èC  
TJ = 125 èC  
1.808  
1.8  
1.797  
1.794  
1.791  
1.788  
1.785  
1.782  
1.779  
1.792  
1.784  
1.776  
1.768  
1.76  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Current (mA)  
Current (mA)  
D002  
D006  
TLV73318PDBV  
TLV73318PDQN  
Figure 3. 1.8-V Load Regulation vs IO and Temperature  
Figure 4. 1.8-V Load Regulation vs IOUT and Temperature  
3.345  
3.32  
TJ = -40 èC  
TJ = 0 èC  
TJ = 25 èC  
TJ = 85 èC  
TJ = 125 èC  
TJ = -40 èC  
TJ = 0 èC  
3.33  
3.315  
3.3  
3.312  
TJ = 25 èC  
TJ = 85 èC  
TJ = 125 èC  
3.304  
3.296  
3.288  
3.28  
3.285  
3.27  
3.255  
3.24  
3.272  
3.264  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Current (mA)  
Current (mA)  
D003  
D007  
TLV73333PDBV  
TLV73333PDQN  
Figure 6. 3.3-V Load Regulation vs IOUT and Temperature  
Figure 5. 3.3-V Load Regulation vs IOUT and Temperature  
Copyright © 2014–2019, Texas Instruments Incorporated  
7
TLV733P  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
at operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted)  
400  
350  
300  
250  
200  
150  
100  
50  
390  
360  
330  
300  
270  
240  
210  
180  
150  
120  
90  
TJ = -40 èC  
TJ = 0 èC  
TJ = 25 èC  
TJ = 85 èC  
TJ = 125 èC  
TJ = -40 èC  
TJ = 0 èC  
TJ = 25 èC  
TJ = 85 èC  
TJ = 125 èC  
60  
0
30  
60  
90 120 150 180 210 240 270 300  
0
30  
60  
90 120 150 180 210 240 270 300  
Current (mA)  
Current (mA)  
D024  
D025  
TLV73312PDBV  
TLV73312PDQN  
Figure 7. 1.2-V Dropout Voltage vs IOUT and Temperature  
Figure 8. 1.2-V Dropout Voltage vs IOUT and Temperature  
275  
300  
TJ = -40 èC  
TJ = -40 èC  
TJ = 0 èC  
250  
TJ = 0 èC  
250  
TJ = 25 èC  
TJ = 85 èC  
TJ = 125 èC  
TJ = 25 èC  
225  
200  
175  
150  
125  
100  
75  
TJ = 85 èC  
TJ = 125 èC  
200  
150  
100  
50  
50  
25  
0
0
0
30  
60  
90 120 150 180 210 240 270 300  
0
30  
60  
90 120 150 180 210 240 270 300  
Current (mA)  
Current (mA)  
D008  
D010  
TLV73318PDBV  
TLV73318PDQN  
Figure 9. 1.8-V Dropout Voltage vs IOUT and Temperature  
Figure 10. 1.8-V Dropout Voltage vs IOUT and Temperature  
300  
300  
TJ = -40 èC  
TJ = 0 èC  
TJ = -40 èC  
TJ = 0 èC  
250  
250  
TJ = 25 èC  
TJ = 25 èC  
TJ = 85 èC  
TJ = 125 èC  
TJ = 85 èC  
TJ = 125 èC  
200  
200  
150  
100  
50  
150  
100  
50  
0
0
0
30  
60  
90 120 150 180 210 240 270 300  
Current (mA)  
0
30  
60  
90 120 150 180 210 240 270 300  
Current (mA)  
D009  
D011  
TLV73333PDBV  
Figure 11. 3.3-V Dropout Voltage vs IOUT and Temperature  
TLV73333PDQN  
Figure 12. 3.3-V Dropout Voltage vs IOUT and Temperature  
8
Copyright © 2014–2019, Texas Instruments Incorporated  
 
 
TLV733P  
www.ti.com.cn  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
Typical Characteristics (continued)  
at operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted)  
1.816  
1.814  
1.812  
1.81  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
TJ = -40èC  
TJ = 0èC  
TJ = 25èC  
TJ = 85èC  
TJ = 125èC  
TJ = -40èC  
TJ = 0èC  
TJ = 25èC  
TJ = 85èC  
TJ = 125èC  
1.808  
1.806  
1.804  
1.802  
1.8  
1.798  
1.796  
2
2.5  
3
3.5  
VIN (V)  
4
4.5  
5
5.5  
0
30  
60  
90 120 150 180 210 240 270 300  
IOUT (mA)  
D019  
D012  
TLV73318PDBV  
Figure 13. 1.8-V Regulation vs VIN (Line Regulation) and  
Temperature  
Figure 14. Ground Pin Current vs IOUT and Temperature  
40  
100  
TJ = 25èC  
TJ = -40èC  
TJ = 0èC  
35  
TJ = 25èC  
TJ = 85èC  
TJ = 125èC  
30  
25  
20  
15  
10  
5
10  
1
0.1  
0.01  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
1
2
3
4
5
6
VIN (V)  
VIN (V)  
D013  
D015  
IOUT = 0 mA  
Figure 15. Ground Pin Current vs VIN  
Figure 16. Shutdown Current vs VIN and Temperature  
1
0.675  
VEN(LO)  
VEN(HI)  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.65  
0.625  
0.6  
0.575  
0.55  
0.525  
0.5  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
0.475  
0.45  
0.425  
150 200 250 300 350 400 450 500 550 600 650 700  
Output Current (mA)  
-40  
-20  
0
20  
40  
TJ (èC)  
60  
80  
100 120 140  
D023  
D014  
TLV73310PDBV  
Figure 17. Enable Threshold vs Temperature  
Figure 18. 1.0-V Foldback Current Limit vs  
IOUT and Temperature  
Copyright © 2014–2019, Texas Instruments Incorporated  
9
 
TLV733P  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
at operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted)  
2
1.75  
1.5  
1.25  
1
3.5  
3
2.5  
2
1.5  
1
0.75  
0.5  
0.25  
0
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
0.5  
0
150  
200  
250  
300 350  
Output Current (mA)  
400  
450  
500  
150  
200  
250  
300 350  
Output Current (mA)  
400  
450  
500  
D021  
D022  
TLV73318PDBV  
TLV73333PDBV  
Figure 19. 1.8-V Foldback Current Limit vs  
IOUT and Temperature  
Figure 20. 3.3-V Foldback Current Limit vs  
IOUT and Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
1
No Output Capacitor  
1-mF Output Capacitor  
VOUT = 1 V  
VOUT = 1.8 V  
VOUT = 3.3 V  
0.1  
0.01  
0.005  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
D017  
D016  
TLV73318PDQN, IOUT = 300 mA  
IOUT = 300 mA  
Figure 21. Power-Supply Rejection Ratio vs Frequency  
Figure 22. Output Spectral Noise Density  
VIN (2 V/div)  
VIN (2 V/div)  
VOUT (1 V/div,  
AC Coupled)  
VOUT (1 V/div,  
AC Coupled)  
Time (20 µs/div)  
Time (20 µs/div)  
TLV73318PDBV, IOUT = 10 mA, 1-µF output capacitor  
TLV73318PDBV, IOUT = 300 mA, 1-µF output capacitor  
Figure 23. Line Transient  
Figure 24. Line Transient  
10  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
TLV733P  
www.ti.com.cn  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
Typical Characteristics (continued)  
at operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted)  
VOUT (200 mV/div,  
AC Coupled)  
VOUT (200 mV/div,  
AC Coupled)  
ILOAD (100 mA/div)  
ILOAD (100 mA/div)  
Time (20 µs/div)  
Time (20 µs/div)  
TLV73310PDBV, VIN = 2.0 V, 1-µF output capacitor, output  
current slew rate = 0.25 A/µs  
TLV73310PDBV, VIN = 2.0 V, no output capacitor, output current  
slew rate = 0.25 A/µs  
Figure 25. 1.0-V, 50-mA to 300-mA Load Transient  
Figure 26. 1.0 V, 50-mA to 300-mA Load Transient  
VOUT (100 mV/div,  
AC Coupled)  
VOUT (100 mV/div,  
AC coupled)  
ILOAD (100 mA/div)  
ILOAD (200 mA/div)  
Time (50 µs/div)  
Time (20 µs/div)  
TLV73333PDBV, VIN = 3.8 V,1-µF output capacitor, output current  
slew rate = 0.25 A/µs  
TLV73333PDBV, VIN = 3.8 V, no output capacitor, output current  
slew rate = 0.25 A/µs  
Figure 27. 3.3 V, 50-mA to 300-mA Load Transient  
Figure 28. 3.3 V, 50-mA to 300-mA Load Transient  
VEN (500 mV/div)  
VIN (1 V/div)  
VOUT (1 V/div)  
ILOAD (200 mA/div)  
VOUT (500 mV/div)  
Time (100 µs/div)  
Time (100 µs/div)  
TLV73318PDBV, RL = 6.2 Ω, 1-µF output capacitor  
TLV73318PDBV, RL = 6.2 Ω, VEN = VIN, 1-µF output capacitor  
Figure 30. Startup with EN  
Figure 29. VIN Power-Up and Power-Down  
Copyright © 2014–2019, Texas Instruments Incorporated  
11  
TLV733P  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
at operating temperature range (TJ = –40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted)  
VOUT (500 mV/div)  
VEN (500 mV/div)  
VOUT (500 mV/div)  
ILOAD (200 mA/div)  
Time (100 µs/div)  
Time (100 µs/div)  
TLV73318PDBV, 1-µF output capacitor  
TLV73318PDBV, IOUT = 300 mA, 1-µF output capacitor  
Figure 32. Foldback Current Limit Response  
Figure 31. Shutdown Response with Enable  
12  
Copyright © 2014–2019, Texas Instruments Incorporated  
TLV733P  
www.ti.com.cn  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
7 Detailed Description  
7.1 Overview  
The TLV733 belongs to a new family of next-generation, low-dropout regulators (LDOs). These devices consume  
low quiescent current and deliver excellent line and load transient performance. These characteristics, combined  
with low noise, good PSRR with low dropout voltage, make this family of devices ideal for portable consumer  
applications.  
This family of regulators offers foldback current limit, shutdown, and thermal protection. The operating junction  
temperature for this family of devices is –40°C to 125°C.  
7.2 Functional Block Diagram  
IN  
OUT  
Current  
Limit  
Thermal  
Shutdown  
UVLO  
120 W  
Bandgap  
EN  
Logic  
TLV733  
GND  
Copyright © 2014–2019, Texas Instruments Incorporated  
13  
TLV733P  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Undervoltage Lockout (UVLO)  
The TLV733 uses an undervoltage lockout (UVLO) circuit that disables the output until the input voltage is  
greater than the rising UVLO voltage, UVLORISE. This circuit ensures that the device does not exhibit any  
unpredictable behavior when the supply voltage is lower than the operational range of the internal circuitry.  
During UVLO disable, the output is connected to ground with a 120-Ω pulldown resistor.  
7.3.2 Shutdown and Output Enable  
The enable pin (EN) is active high. Enable the device by forcing the EN pin to exceed VEN(HI). Turn off the device  
by forcing the EN pin to drop below VEN(LO). If shutdown capability is not required, connect EN to IN. There is no  
internal pulldown resistor connected to the EN pin.  
The TLV733 has an internal pulldown MOSFET that connects a 120-Ω resistor to ground when the device is  
disabled. The discharge time after disabling depends on the output capacitance (COUT) and the load resistance  
(RL) in parallel with the 120-Ω pulldown resistor. The time constant is calculated in Equation 1:  
120 · RL  
t =  
· COUT  
120 + RL  
(1)  
7.3.3 Internal Foldback Current Limit  
The TLV733 has an internal foldback current limit that protects the regulator during fault conditions. The current  
allowed through the device is reduced as the output voltage falls. When the output is shorted, the LDO supplies a  
typical current of 150 mA. The output voltage is not regulated when the device is in current limit. In this condition,  
the output voltage is the product of the regulated current and the load resistance. When the device output is  
shorted, the PMOS pass transistor dissipates power [(VIN – VOUT) × IOS] until thermal shutdown is triggered and  
the device turns off. After the device cools down, the internal thermal shutdown circuit turns the device back on.  
If the fault condition continues, the device cycles between current limit and thermal shutdown. See the Thermal  
Information table for more details.  
The foldback current-limit circuit limits the current allowed through the device to current levels lower than the  
minimum current limit at nominal VOUT current limit (ILIM) during startup. See Figure 18 to Figure 20 for typical  
foldback current limit values. If the output is loaded by a constant-current load during startup, or if the output  
voltage is negative when the device is enabled, then the load current demanded by the load may exceed the  
foldback current limit and the device may not rise to the full output voltage. For constant-current loads, disable  
the output load until the TLV733 has fully risen to its nominal output voltage.  
The TLV733 PMOS pass element has an intrinsic body diode that conducts current when the voltage at the OUT  
pin exceeds the voltage at the IN pin. Do not force the output voltage to exceed the input voltage because  
excessively high current may flow through the body diode.  
7.3.4 Thermal Shutdown  
Thermal shutdown protection disables the output when the junction temperature rises to approximately 160°C.  
Disabling the device eliminates the power dissipated by the device, allowing the device to cool. When the  
junction temperature cools to approximately 140°C, the output circuitry is again enabled. Depending on power  
dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off.  
This cycling limits regulator dissipation, protecting it from damage as a result of overheating.  
Activating the thermal shutdown feature usually indicates excessive power dissipation as a result of the product  
of the (VIN –VOUT) voltage and the load current. For reliable operation, limit junction temperature to 125°C  
maximum. To estimate the margin of safety in a complete design, increase the ambient temperature until the  
thermal protection is triggered; use worst-case loads and signal conditions.  
The TLV733 internal protection circuitry protects against overload conditions but is not intended to be activated in  
normal operation. Continuously running the TLV733 into thermal shutdown degrades device reliability.  
14  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
TLV733P  
www.ti.com.cn  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
The device regulates to the nominal output voltage under the following conditions:  
The input voltage has previously exceeded the UVLO rising voltage and has not decreased below the UVLO  
falling threshold.  
The input voltage is greater than the nominal output voltage added to the dropout voltage.  
The enable voltage has previously exceeded the enable rising threshold voltage and not decreased below the  
enable falling threshold.  
The output current is less than the current limit.  
The device junction temperature is less than the thermal shutdown temperature.  
7.4.2 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. In this condition, the output  
voltage is the same the input voltage minus the dropout voltage. The transient performance of the device is  
significantly degraded because the pass device is in a triode state and no longer controls the current through the  
LDO. Line or load transients in dropout may result in large output voltage deviations.  
7.4.3 Disabled  
The device is disabled under the following conditions:  
The input voltage is less than the UVLO falling voltage, or has not yet exceeded the UVLO rising threshold.  
The enable voltage is less than the enable falling threshold voltage or has not yet exceeded the enable rising  
threshold.  
The device junction temperature is greater than the thermal shutdown temperature.  
When the device is disabled, the active pulldown resistor discharges the output.  
Table 1 shows the conditions that lead to the different modes of operation.  
Table 1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VEN  
IOUT  
TJ  
VIN > VOUT(nom) + VDO  
and VIN > UVLORISE  
Normal mode  
Dropout mode  
VEN > VEN(HI)  
VEN > VEN(HI)  
IOUT < ILIM  
IOUT < ILIM  
TJ < 160°C  
TJ < 160°C  
UVLORISE < VIN < VOUT(nom) + VDO  
Disabled mode  
(any true condition  
disables the device)  
VIN < UVLOFALL  
VEN < VEN(LO)  
TJ > 160°C  
Copyright © 2014–2019, Texas Instruments Incorporated  
15  
 
TLV733P  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Input and Output Capacitor Selection  
The TLV733 uses an advanced internal control loop to obtain stable operation both with and without the use of  
input or output capacitors. Dynamic performance is improved with the use of an output capacitor, and may be  
improved with an input capacitor. An output capacitance of 0.1 μF or larger generally provides good dynamic  
response. Use X5R- and X7R-type ceramic capacitors because these capacitors have minimal variation in value  
and equivalent series resistance (ESR) over temperature.  
Although an input capacitor is not required for stability, increased output impedance from the input supply may  
compromise the performance of the TLV733. Good analog design practice is to connect a 0.1-µF to 1-µF  
capacitor from IN to GND. This capacitor counteracts reactive input sources and improves transient response,  
input ripple, and PSRR. Use an input capacitor if the source impedance is greater than 0.5 Ω. Use a higher-value  
capacitor if large, fast, rise-time load transients are anticipated, or if the device is located several inches from the  
input power source.  
Figure 33 shows the transient performance improvements with an external 1-µF capacitor on the output versus  
no output capacitor. The data in this figure are taken with an increasing load step from 50 mA to 300 mA, and the  
peak output voltage deviation (load transient response) is measured. For low output current slew rates,  
(< 0.1 A/µs), the transient performance of the device is similar with or without an output capacitor. As the current  
slew rate is increased, the peak voltage deviation is significantly increased. For loads that exhibit fast current  
slew rates above 0.1 A/µs, use an output capacitor. For best performance, the maximum recommended output  
capacitance is 100 µF.  
35  
1-mF COUT  
COUT Removed  
30  
25  
20  
15  
10  
5
0
0.01  
0.1  
1
Output Load Transient Slew Rate (A/ms)  
D027  
TLV73333PDBV, output current stepped from 50 mA to 300 mA, output voltage change measured at positive dI/dt  
Figure 33. Output Voltage Deviation vs Load Step Slew Rate  
Some applications benefit from the removal of the output capacitor. In addition to space and cost savings, the  
removal of the output capacitor lowers inrush current as a result of eliminating the required current flow into the  
output capacitor upon startup. In these cases, take care to ensure that the load is tolerant of the additional output  
voltage deviations.  
16  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
TLV733P  
www.ti.com.cn  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
Application Information (continued)  
8.1.2 Dropout Voltage  
The TLV733 uses a PMOS pass transistor to achieve low dropout. When (VIN – VOUT) is less than the dropout  
voltage (VDO), the PMOS pass device is in the linear region of operation and the input-to-output resistance is the  
RDS(ON) of the PMOS pass element. VDO scales approximately with output current because the PMOS device  
behaves like a resistor in dropout mode. As with any linear regulator, PSRR and transient response degrade as  
(VIN – VOUT) approaches dropout operation. See Figure 7 to Figure 12 for typical dropout values.  
8.1.3 Power Dissipation  
The ability to remove heat from the die is different for each package type, presenting different considerations in  
the printed circuit board (PCB) layout. The PCB area around the device that is free of other components moves  
the heat from the device to ambient air. Performance data for JEDEC high-K boards are given in the Thermal  
Information table. Using heavier copper increases the effectiveness in removing heat from the device. The  
addition of plated through-holes to heat-dissipating layers also improves heatsink effectiveness.  
Power dissipation (PD) depends on input voltage and load conditions. PD is equal to the product of the output  
current and voltage drop across the output pass element, as shown in Equation 2.  
PD = (VIN – VOUT) × IOUT  
(2)  
Figure 34 shows the maximum ambient temperature versus the power dissipation of the TLV733 in the DQN and  
DBV packages. This figure assumes the device is soldered on JEDEC standard high-K layout with no airflow  
over the board. Actual board thermal impedances vary widely. If the application requires high power dissipation,  
having a thorough understanding of the board temperature and thermal impedances is helpful to make sure the  
TLV733 does not operate continuously above a junction temperature of 125°C.  
125  
TLV733 DQN, High-K Layout  
TLV733 DBV, High-K Layout  
120  
115  
110  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
0
0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3  
Power Dissipation (W)  
D028  
TLV733, high-K layout  
Figure 34. Maximum Ambient Temperature vs Device Power Dissipation  
Copyright © 2014–2019, Texas Instruments Incorporated  
17  
 
 
TLV733P  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
www.ti.com.cn  
8.2 Typical Applications  
8.2.1 DC-DC Converter Post Regulation  
VOUT  
VOUT  
1.8 V  
1.5 V  
IN  
OUT  
GND  
CIN  
1 µF  
COUT  
1 µF  
DC-DC  
Converter  
TLV733  
Load  
EN  
ON  
OFF  
Figure 35. DC-DC Converter Post Regulation  
8.2.1.1 Design Requirements  
Table 2. Design Parameters  
PARAMETER  
Input voltage  
Output voltage  
Output current  
DESIGN REQUIREMENT  
1.8 V, ±5%  
1.5 V, ±1%  
200-mA dc, 300-mA peak  
Output voltage transient deviation  
Maximum ambient temperature  
< 10%, 1-A/µs load step from 50 mA to 200 mA  
85°C  
8.2.1.2 Design Considerations  
Input and output capacitors are required to achieve the output voltage transient requirements. Capacitance  
values of 1 µF are selected to give the maximum output capacitance in a small, low-cost package.  
Figure 7 shows the 1.2-V option dropout voltage. Given that dropout voltages are higher for lower output-voltage  
options, and given that the 1.2-V option dropout voltage is typically less than 300 mV at 125°C, then the 1.5-V  
option dropout voltage is typically less than 300 mV at 125°C.  
Verify that the maximum junction temperature is not exceeded by referring to Figure 34.  
8.2.1.3 Application Curve  
VIN (500 mV/div)  
VOUT (500 mV/div)  
IOUT (100 mA/div)  
Time (50 µs/div)  
Figure 36. 1.8-V to 1.5-V Regulation at 300 mA  
18  
Copyright © 2014–2019, Texas Instruments Incorporated  
TLV733P  
www.ti.com.cn  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
8.2.2 Capacitor-Free Operation from Battery Input Supply  
IN  
OUT  
GND  
TLV733  
VBAT  
Load  
EN  
Figure 37. Capacitor-Free Operation from Battery Input Supply  
8.2.2.1 Design Requirements  
Table 3. Design Parameters  
PARAMETER  
Input voltage  
DESIGN REQUIREMENT  
3.0 V to 1.8 V (two 1.5-V batteries)  
1.0 V, ±1%  
Output voltage  
Input current  
200 mA, maximum  
100-mA dc  
Output load  
Maximum ambient temperature  
70°C  
8.2.2.2 Design Considerations  
An input capacitor is not required for this design because of the low impedance connection directly to the battery.  
No output capacitor allows for the minimal possible inrush current during startup, ensuring the 200-mA maximum  
input current is not exceeded.  
Verify that the maximum junction temperature is not exceeded by referring to Figure 34.  
8.2.2.3 Application Curve  
VIN (1 V/div)  
VOUT (500 mV/div)  
IIN (100 mA/div)  
Time (50 µs/div)  
Figure 38. No Inrush Startup, 3.0-V to 1.0-V Regulation  
Copyright © 2014–2019, Texas Instruments Incorporated  
19  
TLV733P  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
Connect a low output impedance power supply directly to the IN pin of the TLV733. Inductive impedances  
between the input supply and the IN pin can create significant voltage excursions at the IN pin during startup or  
load transient events. If inductive impedances are unavoidable, use an input capacitor.  
10 Layout  
10.1 Layout Guidelines  
Place input and output capacitors as close to the device as possible.  
Use copper planes for device connections, in order to optimize thermal performance.  
Place thermal vias around the device to distribute the heat.  
Do not place a thermal via directly beneath the thermal pad of the DQN package. A via can wick solder or  
solder paste away from the thermal pad joint during the soldering process, leading to a compromised solder  
joint on the thermal pad.  
10.2 Layout Examples  
VOUT  
VIN  
TLV733  
1
4
3
COUT  
*
CIN*  
2
GND PLANE  
Represents via used for  
application specific connections  
*not required  
Figure 39. Layout Example for the DQN Package  
VOUT  
VIN  
5
1
CIN*  
COUT  
*
2
3
4
GND PLANE  
Represents via used for  
application specific connections  
*not required  
Figure 40. Layout Example for the DBV Package  
20  
版权 © 2014–2019, Texas Instruments Incorporated  
TLV733P  
www.ti.com.cn  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 评估模块  
评估模块 (EVM) 可与 TLV733 配套使用,帮助评估初始电路性能。TLV73312PEVM-643 评估模块(和相关的用户  
指南)可在德州仪器 (TI) 网站上的产品文件夹中获取,也可直接从 TI 网上商店购买。  
11.1.2 器件命名规则  
4. 器件命名规则(1)(2)  
产品  
VOUT  
xx(x) 为标称输出电压。对于分辨率为 100mV 的输出电压,订货编号中使用两位数字;否则,使用三位数  
字(例如,28 = 2.8V125 = 1.25V)。  
P 表示有源输出放电功能。TLV733 系列的所有成员在被禁用时都可以使输出进行有源放电。  
yyy 为封装标识符。  
TLV733xx(x)Pyyyz(3)  
z 为封装数量。R 表示卷(3000 片),T 表示带(250 片)。  
(3) 表示替代卷带方向。3 表示引脚 1 位于第 3 象限中。请参阅封装材料信息附录,获取更多信息。  
(1) 要获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问器件产品文件夹(www.ti.com.cn)。  
(2) 可提供 1.0V 3.3V 范围内的输出电压(以 50mV 为单位增量)。更多详细信息及可用性,请联系制造商。  
11.2 文档支持  
11.2.1 相关文档ꢀ  
德州仪器 (TI)TLV73312PDQN-643 评估模块》 用户指南  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
版权 © 2014–2019, Texas Instruments Incorporated  
21  
TLV733P  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
www.ti.com.cn  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
22  
版权 © 2014–2019, Texas Instruments Incorporated  
TLV733P  
www.ti.com.cn  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2019, Texas Instruments Incorporated  
23  
TLV733P  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
www.ti.com.cn  
PACKAGE OUTLINE  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
4215302/D 06/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
4. Features may not exist. Recommend use of pin 1 marking on top of package for orientation purposes.  
24  
版权 © 2014–2019, Texas Instruments Incorporated  
TLV733P  
www.ti.com.cn  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
EXAMPLE BOARD LAYOUT  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
4215302/D 06/2016  
NOTES: (continued)  
5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271) .  
6. If any vias are implemented, it is recommended that vias under paste be filled, plugged or tented.  
版权 © 2014–2019, Texas Instruments Incorporated  
25  
TLV733P  
ZHCSD13C OCTOBER 2014REVISED JULY 2019  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
4215302/D 06/2016  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
26  
版权 © 2014–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV73310PDBVR  
TLV73310PDBVT  
TLV73310PDQNR  
TLV73310PDQNT  
TLV73311PDBVR  
TLV73311PDBVT  
TLV73311PDQNR  
TLV73311PDQNT  
TLV73312PDBVR  
TLV73312PDBVT  
TLV73312PDQNR  
TLV73312PDQNR3  
TLV73312PDQNT  
TLV73315PDBVR  
TLV73315PDBVT  
TLV73315PDQNR  
TLV73315PDQNR3  
TLV73315PDQNT  
TLV73318PDBVR  
TLV73318PDBVT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
X2SON  
SOT-23  
SOT-23  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DQN  
DBV  
DBV  
5
5
4
4
5
5
4
4
5
5
4
4
4
5
5
4
4
4
5
5
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
VCCQ  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU | SN  
NIPDAU  
VCCQ  
FG  
NIPDAU  
FG  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU  
ZBLW  
ZBLW  
GR  
NIPDAU  
GR  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU  
VCDQ  
VCDQ  
FI  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
FI  
250  
3000 RoHS & Green  
250 RoHS & Green  
RoHS & Green  
NIPDAU  
FI  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU  
VCFQ  
VCFQ  
FJ  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
FJ  
250  
RoHS & Green  
NIPDAU  
FJ  
3000 RoHS & Green  
NIPDAU | SN  
NIPDAU | SN  
VCGQ  
VCGQ  
250  
RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jan-2023  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV73318PDQNR  
TLV73318PDQNR3  
TLV73318PDQNT  
TLV73325PDBVR  
TLV73325PDBVT  
TLV73325PDQNR  
TLV73325PDQNT  
TLV733285PDBVR  
TLV733285PDBVT  
TLV733285PDQNR  
TLV733285PDQNT  
TLV73328PDBVR  
TLV73328PDBVT  
TLV73328PDQNR  
TLV73328PDQNR3  
TLV73328PDQNT  
TLV73330PDBVR  
TLV73330PDBVT  
TLV73330PDQNR  
TLV73330PDQNT  
TLV73333PDBVR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
X2SON  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
DQN  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DBV  
4
4
4
5
5
4
4
5
5
4
4
5
5
4
4
4
5
5
4
4
5
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
FK  
FK  
FK  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
250  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
RoHS & Green  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU  
VCHQ  
VCHQ  
FL  
NIPDAU  
FL  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU  
ZDRW  
ZDRW  
GZ  
NIPDAU  
GZ  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU  
ZDQW  
ZDQW  
GY  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
GY  
250  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
RoHS & Green  
NIPDAU  
GY  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU  
ZDMW  
ZDMW  
GW  
NIPDAU  
GW  
NIPDAU | SN  
VCIQ  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jan-2023  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV73333PDBVT  
TLV73333PDQNR  
TLV73333PDQNT  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
X2SON  
X2SON  
DBV  
DQN  
DQN  
5
4
4
250  
RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
VCIQ  
FM  
Samples  
Samples  
Samples  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
NIPDAU  
FM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jan-2023  
OTHER QUALIFIED VERSIONS OF TLV733P :  
Automotive : TLV733P-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV73310PDBVR  
TLV73310PDBVT  
TLV73310PDQNR  
TLV73310PDQNT  
TLV73311PDBVR  
TLV73311PDBVT  
TLV73311PDQNR  
TLV73311PDQNT  
TLV73312PDBVR  
TLV73312PDBVT  
TLV73312PDQNR  
TLV73312PDQNR3  
TLV73312PDQNT  
TLV73315PDBVR  
TLV73315PDBVT  
TLV73315PDQNR  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DQN  
DBV  
DBV  
DQN  
5
5
4
4
5
5
4
4
5
5
4
4
4
5
5
4
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
9.5  
9.5  
8.4  
8.4  
9.5  
9.5  
8.4  
8.4  
8.4  
9.5  
9.5  
8.4  
8.4  
9.5  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
0.5  
0.5  
1.4  
1.4  
0.5  
0.5  
1.4  
1.4  
0.5  
0.5  
0.5  
1.4  
1.4  
0.5  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q2  
Q2  
Q3  
Q3  
Q2  
Q2  
Q3  
Q3  
Q2  
Q3  
Q2  
Q3  
Q3  
Q2  
3000  
250  
1.16  
1.16  
3.2  
1.16  
1.16  
3.2  
3000  
250  
3.2  
3.2  
3000  
250  
1.16  
1.16  
3.2  
1.16  
1.16  
3.2  
3000  
250  
3.2  
3.2  
3000  
3000  
250  
1.16  
1.16  
1.16  
3.2  
1.16  
1.16  
1.16  
3.2  
3000  
250  
3.2  
3.2  
3000  
1.16  
1.16  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV73315PDQNR3  
TLV73315PDQNT  
TLV73318PDBVR  
TLV73318PDBVT  
TLV73318PDQNR  
TLV73318PDQNR3  
TLV73318PDQNT  
TLV73325PDBVR  
TLV73325PDBVT  
TLV73325PDQNR  
TLV73325PDQNT  
TLV733285PDBVR  
TLV733285PDBVT  
TLV733285PDQNR  
TLV733285PDQNT  
TLV73328PDBVR  
TLV73328PDBVT  
TLV73328PDQNR  
TLV73328PDQNR3  
TLV73328PDQNT  
TLV73330PDBVR  
TLV73330PDBVT  
TLV73330PDQNR  
TLV73330PDQNT  
TLV73333PDBVR  
TLV73333PDBVT  
TLV73333PDQNR  
TLV73333PDQNT  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
4
4
5
5
4
4
4
5
5
4
4
5
5
4
4
5
5
4
4
4
5
5
4
4
5
5
4
4
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
9.5  
9.5  
8.4  
8.4  
9.5  
9.5  
9.5  
8.4  
8.4  
9.5  
9.5  
8.4  
8.4  
9.5  
9.5  
8.4  
8.4  
9.5  
9.5  
9.5  
8.4  
8.4  
9.5  
9.5  
8.4  
8.4  
9.5  
9.5  
1.16  
1.16  
3.2  
1.16  
1.16  
3.2  
0.5  
0.5  
1.4  
1.4  
0.5  
0.5  
0.5  
1.4  
1.4  
0.5  
0.5  
1.4  
1.4  
0.5  
0.5  
1.4  
1.4  
0.5  
0.5  
0.5  
1.4  
1.4  
0.5  
0.5  
1.4  
1.4  
0.5  
0.5  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q2  
Q3  
Q3  
Q2  
Q3  
Q2  
Q3  
Q3  
Q2  
Q2  
Q3  
Q3  
Q2  
Q2  
Q3  
Q3  
Q2  
Q3  
Q2  
Q3  
Q3  
Q2  
Q2  
Q3  
Q3  
Q2  
Q2  
3000  
250  
3.2  
3.2  
3000  
3000  
250  
1.16  
1.16  
1.16  
3.2  
1.16  
1.16  
1.16  
3.2  
3000  
250  
3.2  
3.2  
3000  
250  
1.16  
1.16  
3.2  
1.16  
1.16  
3.2  
3000  
250  
3.2  
3.2  
3000  
250  
1.16  
1.16  
3.2  
1.16  
1.16  
3.2  
3000  
250  
3.2  
3.2  
3000  
3000  
250  
1.16  
1.16  
1.16  
3.2  
1.16  
1.16  
1.16  
3.2  
3000  
250  
3.2  
3.2  
3000  
250  
1.16  
1.16  
3.2  
1.16  
1.16  
3.2  
3000  
250  
3.2  
3.2  
3000  
250  
1.16  
1.16  
1.16  
1.16  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV73310PDBVR  
TLV73310PDBVT  
TLV73310PDQNR  
TLV73310PDQNT  
TLV73311PDBVR  
TLV73311PDBVT  
TLV73311PDQNR  
TLV73311PDQNT  
TLV73312PDBVR  
TLV73312PDBVT  
TLV73312PDQNR  
TLV73312PDQNR3  
TLV73312PDQNT  
TLV73315PDBVR  
TLV73315PDBVT  
TLV73315PDQNR  
TLV73315PDQNR3  
TLV73315PDQNT  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
X2SON  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DQN  
5
5
4
4
5
5
4
4
5
5
4
4
4
5
5
4
4
4
3000  
250  
210.0  
210.0  
184.0  
184.0  
210.0  
210.0  
184.0  
184.0  
210.0  
210.0  
210.0  
184.0  
184.0  
210.0  
210.0  
184.0  
184.0  
184.0  
185.0  
185.0  
184.0  
184.0  
185.0  
185.0  
184.0  
184.0  
185.0  
185.0  
185.0  
184.0  
184.0  
185.0  
185.0  
184.0  
184.0  
184.0  
35.0  
35.0  
19.0  
19.0  
35.0  
35.0  
19.0  
19.0  
35.0  
35.0  
35.0  
19.0  
19.0  
35.0  
35.0  
19.0  
19.0  
19.0  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
3000  
250  
3000  
250  
3000  
3000  
250  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2023  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV73318PDBVR  
TLV73318PDBVT  
TLV73318PDQNR  
TLV73318PDQNR3  
TLV73318PDQNT  
TLV73325PDBVR  
TLV73325PDBVT  
TLV73325PDQNR  
TLV73325PDQNT  
TLV733285PDBVR  
TLV733285PDBVT  
TLV733285PDQNR  
TLV733285PDQNT  
TLV73328PDBVR  
TLV73328PDBVT  
TLV73328PDQNR  
TLV73328PDQNR3  
TLV73328PDQNT  
TLV73330PDBVR  
TLV73330PDBVT  
TLV73330PDQNR  
TLV73330PDQNT  
TLV73333PDBVR  
TLV73333PDBVT  
TLV73333PDQNR  
TLV73333PDQNT  
SOT-23  
SOT-23  
X2SON  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
SOT-23  
X2SON  
X2SON  
DBV  
DBV  
DQN  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
DBV  
DBV  
DQN  
DQN  
5
5
4
4
4
5
5
4
4
5
5
4
4
5
5
4
4
4
5
5
4
4
5
5
4
4
3000  
250  
210.0  
210.0  
184.0  
184.0  
184.0  
210.0  
210.0  
184.0  
184.0  
210.0  
210.0  
184.0  
184.0  
210.0  
210.0  
184.0  
184.0  
184.0  
210.0  
210.0  
184.0  
184.0  
210.0  
210.0  
184.0  
184.0  
185.0  
185.0  
184.0  
184.0  
184.0  
185.0  
185.0  
184.0  
184.0  
185.0  
185.0  
184.0  
184.0  
185.0  
185.0  
184.0  
184.0  
184.0  
185.0  
185.0  
184.0  
184.0  
185.0  
185.0  
184.0  
184.0  
35.0  
35.0  
19.0  
19.0  
19.0  
35.0  
35.0  
19.0  
19.0  
35.0  
35.0  
19.0  
19.0  
35.0  
35.0  
19.0  
19.0  
19.0  
35.0  
35.0  
19.0  
19.0  
35.0  
35.0  
19.0  
19.0  
3000  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 4  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV73312PDQNR3

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73312PDQNT

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73312PQDBVRQ1

具有使能功能的汽车类 300mA、低 IQ、低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73312PQDRVRQ1

具有使能功能的汽车类 300mA、低 IQ、低压降稳压器 | DRV | 6 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73315PDBVR

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73315PDBVT

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73315PDQNR

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73315PDQNR3

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73315PDQNT

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73315PQDBVRQ1

具有使能功能的汽车类 300mA、低 IQ、低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73315PQDRVRQ1

具有使能功能的汽车类 300mA、低 IQ、低压降稳压器 | DRV | 6 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73318PDBVR

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI