TLV74212PDQNR [TI]

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125;
TLV74212PDQNR
型号: TLV74212PDQNR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125

稳压器
文件: 总31页 (文件大小:1233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV742P  
ZHCSGP8 SEPTEMBER 2017  
TLV742P 200mA 小尺寸低压降线性稳压器  
1 特性  
3 说明  
1
输入电压范围:2V 5.5V  
TLV742P 系列低压降线性稳压器 (LDO) 经过优化,能  
够通过支持宽输出电压范围提供出色的性能。这些  
LDO 可将单节锂离子电池的输入至输出电压直接调节  
为低至 0.85V。如果此器件用于对直流/直流转换器输  
出进行后期调节,则其在 1MHz 下的 55dB PSRR  
可抑制纹波,从而提供低噪声且良好调节的稳定  
可提供 0.85V 5V 范围(以 50mV 为增量)内的  
固定输出电压组合(1)  
典型精度为 0.5%  
PSRR:  
1MHz 时为 55dB  
启用时的 IQ25µA  
禁用时的 IQ1µA  
有源输出放电  
VOUT  
TLV742P 具备有源输出放电特性,有助于在系统处于  
禁用状态、待机模式或睡眠模式时确保输出保持低电  
平。此外,该器件的过流保护功能可在输出短路的情况  
下保护器件,并且其热关断功能可防止过热。  
热关断保护和过流保护  
封装:  
1mm × 1mm DQN (X2SON)  
TLV742P 系列稳压器采用 1mm × 1mm X2SON 封  
装,因此可最大限度减少 PCB 面积。  
2 应用  
销售终端  
器件信息(1)  
摄像头和机器视觉模块  
游戏和玩具  
器件型号  
TLV742P  
封装  
X2SON (4)  
封装尺寸(标称值)  
1.00mm x 1.00mm  
楼宇自动化和视频监控  
电视和机顶盒  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
典型应用电路  
VIN  
VOUT  
IN  
OUT  
1 µF  
Ceramic  
CIN  
COUT  
TLV742P  
GND  
On  
EN  
Off  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBVS323  
 
 
 
TLV742P  
ZHCSGP8 SEPTEMBER 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
Application and Implementation ........................ 15  
8.1 Application Information............................................ 15  
8.2 Typical Application .................................................. 15  
8.3 Do's and Don'ts....................................................... 18  
Power Supply Recommendations...................... 19  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagrams ..................................... 13  
7.3 Feature Description................................................. 13  
7.4 Device Functional Modes........................................ 14  
10 Layout................................................................... 19  
10.1 Layout Guidelines ................................................. 19  
10.2 Layout Example .................................................... 20  
10.3 Thermal Considerations........................................ 20  
10.4 Power Dissipation ................................................. 20  
11 器件和文档支持 ..................................................... 21  
11.1 器件支持 ............................................................... 21  
11.2 接收文档更新通知 ................................................. 21  
11.3 社区资源................................................................ 21  
11.4 ....................................................................... 21  
11.5 静电放电警告......................................................... 21  
11.6 Glossary................................................................ 21  
12 机械、封装和可订购信息....................................... 22  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2017 9 月  
*
初始发行版。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TLV742P  
www.ti.com.cn  
ZHCSGP8 SEPTEMBER 2017  
5 Pin Configuration and Functions  
DQN Package  
4-Pin X2SON With Exposed Thermal Pad  
Top View  
IN  
4
EN  
3
Thermal  
Pad  
1
2
OUT  
GND  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Enable pin. Driving EN over 0.9 V turns on the regulator. Driving EN below 0.4 V puts the  
regulator into shutdown mode.  
For TLV742P, output voltage is discharged through an internal 120-Ω resistor when device is  
shut down.  
EN  
3
I
GND  
IN  
2
4
I
Ground pin  
Input pin. For good transient performance, place a small 1-µF ceramic capacitor from this pin to  
ground. See Input and Output Capacitor Requirements for more details.  
Regulated output voltage pin. A small 1-μF ceramic capacitor is required from this pin to ground  
to ensure stability. See Input and Output Capacitor Requirements for more details.  
OUT  
1
O
Thermal  
pad  
The thermal pad is electrically connected to the GND node. Connect to the GND plane for  
improved thermal performance.  
Copyright © 2017, Texas Instruments Incorporated  
3
TLV742P  
ZHCSGP8 SEPTEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
IN  
6
6
6
V
V
V
Voltage(2)  
EN  
OUT  
OUT  
Current (source)  
Internally limited  
Indefinite  
Output short-circuit duration  
Operating junction, TJ  
Storage, Tstg  
–55  
–55  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.  
(2) All voltages are with respect to GND pin.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM) QSS 009-105 (JESD22-A114A)(1)  
Charged device model (CDM) QSS 009-147 (JESD22-C101B.01)(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
2
NOM  
MAX  
UNIT  
VIN  
IOUT  
TJ  
Input voltage  
5.5  
200  
125  
V
Output current  
0
mA  
°C  
Operating junction temperature range  
–40  
6.4 Thermal Information  
TLV742P  
THERMAL METRIC(1)  
DQN (X2SON)  
4 PINS  
180.4  
152  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
117.2  
5.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
117  
RθJC(bot)  
99.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017, Texas Instruments Incorporated  
 
 
TLV742P  
www.ti.com.cn  
ZHCSGP8 SEPTEMBER 2017  
6.5 Electrical Characteristics  
at VIN = VOUT(NOM) + 0.5 V or 2 V (whichever is greater); IOUT = 1 mA, VEN = VIN, COUT = 0.47 μF, and TJ = –40°C to +85°C.  
Typical values are at TJ = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input voltage  
range  
VIN  
2
5.5  
V
Output voltage  
range  
0.85  
5
V
VOUT  
0.5%  
DC output  
accuracy  
V
OUT 0.85 V  
–1.5%  
1.5%  
5
ΔVO(ΔVI)  
ΔVO(ΔIO)  
Line regulation  
Load regulation  
1
10  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
0 mA IOUT 150 mA  
20  
IOUT = 30 mA  
IOUT = 150 mA  
IOUT = 30 mA  
IOUT = 150 mA  
IOUT = 30 mA  
IOUT = 150 mA  
IOUT = 30 mA  
IOUT = 150 mA  
65  
2 V < VOUT 2.4 V  
2.4 V < VOUT 2.8 V  
2.8 V < VOUT 3.3 V  
3.3 V < VOUT 5 V  
325  
50  
360  
300  
270  
250  
45  
V(DO)  
Dropout voltage  
VIN = 0.98 × VOUT(NOM)  
220  
40  
200  
250  
450  
Output current  
limit  
ICL  
VOUT = 0.9 × VOUT(NOM)  
240  
300  
mA  
Ground pin  
current  
I(GND)  
IOUT = 0 mA  
VEN = 5.5 V  
25  
0.01  
1
50  
µA  
µA  
µA  
I(EN)  
EN pin current  
VEN 0.4 V  
2 V VIN 4.5 V  
ISHUTDOWN  
Shutdown current  
EN pin low-level  
input voltage  
(disable device)  
VIL(EN)  
0
0.4  
VIN  
V
V
EN pin high-level  
input voltage  
VIH(EN)  
0.9  
(enable device)  
f = 100 Hz  
f = 10 kHz  
f = 1 MHz  
70  
55  
55  
VIN = 3.3 V  
VOUT = 2.8 V  
IOUT = 30 mA  
Power-supply  
rejection ratio  
PSRR  
dB  
BW = 100 Hz to 100 kHz,  
VIN = 2.3 V  
VOUT = 1.8 V  
Output noise  
voltage  
Vn  
45  
µVRMS  
IOUT = 10 mA  
COUT = 1 µF  
IOUT = 150 mA  
tSTR  
Startup time(1)  
Pulldown  
100  
120  
µs  
RPULLDOWN resistance  
(TLV742P only)  
Ω
Operating  
junction  
TJ  
–40  
125  
°C  
temperature  
(1) Start-up time = time from EN assertion to 0.98 × VOUT  
.
版权 © 2017, Texas Instruments Incorporated  
5
TLV742P  
ZHCSGP8 SEPTEMBER 2017  
www.ti.com.cn  
6.6 Typical Characteristics  
at TJ = –40°C to +85°C, VIN = VOUT(NOM) + 0.5 V or 2 V (whichever is greater), IOUT = 10 mA, VEN = VIN, and COUT = 1 µF  
Typical values are at TJ = 25°C, (unless otherwise noted)  
1.3  
1.28  
1.26  
1.24  
1.22  
1.2  
2.9  
2.88  
2.86  
2.84  
2.82  
2.8  
1.18  
1.16  
1.14  
1.12  
1.1  
2.78  
2.76  
2.74  
2.72  
2.7  
85°C  
25°C  
-40°C  
85°C  
25°C  
-40°C  
0
2
2
20  
40  
60  
80 100 120 140 160 180 200  
Output Current (mA)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Output Current (mA)  
VOUT = 1.2 V  
VOUT = 2.8 V  
1. Load Regulation  
2. Load Regulation  
1.3  
1.28  
1.26  
1.24  
1.22  
1.2  
2.9  
2.88  
2.86  
2.84  
2.82  
2.8  
1.18  
1.16  
1.14  
1.12  
1.1  
2.78  
2.76  
2.74  
2.72  
2.7  
85°C  
25°C  
-40°C  
85°C  
25°C  
-40°C  
2.5  
3
3.5  
4
4.5  
5
5.5  
3.1  
3.7  
4.3  
4.9  
5.5  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 1.2 V, IOUT = 10 mA  
VOUT = 2.8 V, IOUT = 10 mA  
3. Line Regulation  
4. Line Regulation  
1.3  
1.28  
1.26  
1.24  
1.22  
1.2  
2.9  
2.88  
2.86  
2.84  
2.82  
2.8  
1.18  
1.16  
1.14  
1.12  
1.1  
2.78  
2.76  
2.74  
2.72  
2.7  
85°C  
25°C  
-40°C  
85°C  
25°C  
-40°C  
2.5  
3
3.5  
4
4.5  
5
5.5  
3.1  
3.7  
4.3  
4.9  
5.5  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 1.2 V, IOUT = 150 mA  
VOUT = 2.8 V, IOUT = 150 mA  
5. Line Regulation  
6. Line Regulation  
6
版权 © 2017, Texas Instruments Incorporated  
TLV742P  
www.ti.com.cn  
ZHCSGP8 SEPTEMBER 2017  
Typical Characteristics (接下页)  
at TJ = –40°C to +85°C, VIN = VOUT(NOM) + 0.5 V or 2 V (whichever is greater), IOUT = 10 mA, VEN = VIN, and COUT = 1 µF  
Typical values are at TJ = 25°C, (unless otherwise noted)  
1.3  
1.28  
1.26  
1.24  
1.22  
1.2  
2.9  
2.88  
2.86  
2.84  
2.82  
2.8  
1.18  
1.16  
1.14  
1.12  
1.1  
2.78  
2.76  
2.74  
2.72  
2.7  
IOUT = 10 mA  
IOUT = 150 mA  
IOUT = 10 mA  
IOUT = 150 mA  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
VOUT = 1.2 V  
VOUT = 2.8 V  
7. Output Voltage vs Temperature  
8. Output Voltage vs Temperature  
400  
350  
300  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
85°C  
25°C  
-40°C  
85°C  
25°C  
-40°C  
0
2
2.5  
3
3.5  
4
4.5  
5
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
IOUT = 150 mA  
9. Dropout Voltage vs Input Voltage  
IOUT = 200 mA  
10. Dropout Voltage vs Input Voltage  
35  
30  
25  
20  
15  
10  
5
350  
300  
250  
200  
150  
100  
50  
85°C  
85°C  
25°C  
-40°C  
25°C  
-40°C  
0
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
20  
40  
60  
80 100 120 140 160 180 200  
Output Current (mA)  
Input Voltage (V)  
VOUT = 1.2 V, IOUT = 0 mA  
12. Ground Pin Current vs Input Voltage  
VOUT = 2.8 V  
11. Dropout Voltage vs Output Current  
版权 © 2017, Texas Instruments Incorporated  
7
TLV742P  
ZHCSGP8 SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = –40°C to +85°C, VIN = VOUT(NOM) + 0.5 V or 2 V (whichever is greater), IOUT = 10 mA, VEN = VIN, and COUT = 1 µF  
Typical values are at TJ = 25°C, (unless otherwise noted)  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
85°C  
25°C  
-40°C  
0
0
3.1  
-40  
0
3.7  
4.3  
4.9  
5.5  
-40  
-15  
10  
35  
60  
85  
Input Voltage (V)  
Temperature (°C)  
VOUT = 2.8 V, IOUT = 0 mA  
13. Ground Pin Current vs Input Voltage  
VOUT = 1.2 V, IOUT = 0 mA  
14. Ground Pin Current vs Temperature  
40  
35  
30  
25  
20  
15  
10  
5
1200  
1000  
800  
600  
400  
200  
0
85°C  
25°C  
-40°C  
0
-15  
10  
35  
60  
85  
0
20  
40  
60  
80 100 120 140 160 180 200  
Output Current (mA)  
Temperature (°C)  
VOUT = 2.8 V, IOUT = 0 mA  
15. Ground Pin Current vs Temperature  
VOUT = 1.2 V  
16. Ground Pin Current vs Output Current  
1200  
1000  
800  
600  
400  
200  
0
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
85°C  
85°C  
25°C  
-40°C  
25°C  
-40°C  
20  
40  
60  
80 100 120 140 160 180 200  
Output Current (mA)  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
VOUT = 2.8 V  
17. Ground Pin Current vs Output Current  
VOUT = 1.2 V  
18. Shutdown Current vs Input Voltage  
8
版权 © 2017, Texas Instruments Incorporated  
TLV742P  
www.ti.com.cn  
ZHCSGP8 SEPTEMBER 2017  
Typical Characteristics (接下页)  
at TJ = –40°C to +85°C, VIN = VOUT(NOM) + 0.5 V or 2 V (whichever is greater), IOUT = 10 mA, VEN = VIN, and COUT = 1 µF  
Typical values are at TJ = 25°C, (unless otherwise noted)  
450  
425  
400  
375  
350  
325  
300  
275  
250  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
85°C  
25°C  
-40°C  
25°C  
-40°C  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 1.2 V  
VOUT = 2.8 V  
20. Current Limit vs Input Voltage  
19. Shutdown Current vs Input Voltage  
450  
425  
400  
375  
350  
325  
300  
275  
250  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
25°C  
-40°C  
IOUT = 30 mA  
IOUT = 150 mA  
3.1  
3.7  
4.3  
4.9  
5.5  
10  
100  
1k  
10k  
100k  
1M  
10M  
Input Voltage (V)  
Frequency (Hz)  
VOUT = 2.8 V  
VOUT = 1.2 V  
22. Power-Supply Ripple Rejection vs Frequency  
21. Current Limit vs Input Voltage  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 30 mA  
IOUT = 150 mA  
1 kHz  
1 MHz  
10  
100  
1k  
10k  
100k  
1M  
10M  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
Frequency (Hz)  
Input Voltage (V)  
VOUT = 2.8 V  
23. Power-Supply Ripple Rejection vs Frequency  
VOUT = 2.8 V, IOUT = 30 mA  
24. Power-Supply Ripple Rejection vs Input Voltage  
版权 © 2017, Texas Instruments Incorporated  
9
TLV742P  
ZHCSGP8 SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = –40°C to +85°C, VIN = VOUT(NOM) + 0.5 V or 2 V (whichever is greater), IOUT = 10 mA, VEN = VIN, and COUT = 1 µF  
Typical values are at TJ = 25°C, (unless otherwise noted)  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
1 kHz  
1 kHz  
1 MHz  
1 MHz  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.6  
3.7  
3.8  
3.9  
4
4.1  
4.2  
4.3  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 2.8 V, IOUT = 150 mA  
VOUT = 3.3 V, IOUT = 30 mA  
25. Power-Supply Ripple Rejection vs Input Voltage  
26. Power-Supply Ripple Rejection vs Input Voltage  
70  
100  
5 V  
2.8 V  
60  
50  
40  
30  
20  
10  
1
1.2 V  
0.1  
0.01  
0.001  
10  
0
1 kHz  
1 MHz  
3.6  
3.7  
3.8  
3.9  
4
4.1  
4.2  
4.3  
10  
100  
1k  
10k  
100k  
1M  
10M  
Input Voltage (V)  
Frequency (Hz)  
VOUT = 3.3 V, IOUT = 150 mA  
27. Power-Supply Ripple Rejection vs Input Voltage  
28. Output Spectral Noise Density vs Frequency  
150 mA  
150 mA  
IOUT  
IOUT  
50 mA  
1 mA  
VOUT  
VOUT  
Time (100 ms/div)  
Time (100 ms/div)  
VOUT = 1.2 V  
VOUT = 1.2 V  
30. Load Transient Response  
29. Load Transient Response  
10  
版权 © 2017, Texas Instruments Incorporated  
TLV742P  
www.ti.com.cn  
ZHCSGP8 SEPTEMBER 2017  
Typical Characteristics (接下页)  
at TJ = –40°C to +85°C, VIN = VOUT(NOM) + 0.5 V or 2 V (whichever is greater), IOUT = 10 mA, VEN = VIN, and COUT = 1 µF  
Typical values are at TJ = 25°C, (unless otherwise noted)  
100 mA  
150 mA  
IOUT  
50 mA  
IOUT  
1 mA  
VOUT  
VOUT  
Time (100 ms/div)  
Time (100 ms/div)  
VOUT = 2.8 V  
VOUT = 2.8 V  
31. Load Transient Response  
32. Load Transient Response  
VIN  
VIN  
VOUT  
VOUT  
Time (100 ms/div)  
Time (100 ms/div)  
VOUT = 1.2 V, IOUT = 150 mA  
VOUT = 1.2 V, IOUT = 200 mA  
33. Line Transient Response  
34. Line Transient Response  
VIN  
VIN  
VOUT  
VOUT  
Time (100 ms/div)  
Time (100 ms/div)  
VOUT = 1.2 V, IOUT = 150 mA  
VOUT = 1.2 V, IOUT = 200 mA  
35. Line Transient Response  
36. Line Transient Response  
版权 © 2017, Texas Instruments Incorporated  
11  
 
TLV742P  
ZHCSGP8 SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = –40°C to +85°C, VIN = VOUT(NOM) + 0.5 V or 2 V (whichever is greater), IOUT = 10 mA, VEN = VIN, and COUT = 1 µF  
Typical values are at TJ = 25°C, (unless otherwise noted)  
VIN  
VIN  
VOUT  
VOUT  
Time (100 ms/div)  
Time (100 ms/div)  
VOUT = 2.8 V, IOUT = 150 mA  
VOUT = 2.8 V, IOUT = 200 mA  
37. Line Transient Response  
38. Line Transient Response  
VIN  
VI  
VOUT  
VO  
Time (100 ms/div)  
Time (100 ms/div)  
VOUT = 2.8 V, IOUT = 200 mA  
VOUT = 2.8 V, IOUT = 200 mA  
39. Line Transient Response  
40. Line Transient Response  
VIN  
VIN  
VOUT  
VOUT  
Time (100 ms/div)  
Time (100 ms/div)  
VOUT = 1.2 V, IOUT = 30 mA  
VOUT = 2.8 V, IOUT = 30 mA  
41. VIN Ramp Up, Ramp Down Response  
42. VIN Ramp Up, Ramp Down Response  
12  
版权 © 2017, Texas Instruments Incorporated  
 
TLV742P  
www.ti.com.cn  
ZHCSGP8 SEPTEMBER 2017  
7 Detailed Description  
7.1 Overview  
The TLV742P device belongs to a family of LDOs. This device consumes low quiescent current and delivers  
excellent line and load transient performance. These characteristics [combined with low noise and very good  
PSRR with little (VIN – VOUT) headroom] make this device ideal for portable RF applications.  
7.2 Functional Block Diagrams  
IN  
OUT  
Current  
Limit  
Thermal  
Shutdown  
120 W  
Band Gap  
EN  
LOGIC  
TLV742P  
GND  
Copyright © 2017, Texas Instruments Incorporated  
43. TLV742P Block Diagram  
7.3 Feature Description  
This LDO regulator offers current limit and thermal protection. The operating junction temperature of this device  
is –40°C to +125°C.  
7.3.1 Internal Current Limit  
The internal current limit helps to protect the regulator during fault conditions. During current limit, the output  
sources a fixed amount of current that is largely independent of the output voltage. In such a case, the output  
voltage is not regulated, and is VOUT = ICL × RL. The PMOS pass transistor dissipates (VIN – VOUT) × ILIMIT until  
thermal shutdown is triggered and the device turns off. When the device cools, the internal thermal shutdown  
circuit turns the device back on. If the fault condition continues, the device cycles between current limit and  
thermal shutdown; see Thermal Information for more details.  
The PMOS pass element has a built-in body diode that conducts current when the voltage at OUT exceeds the  
voltage at IN. This current is not limited, so if extended reverse voltage operation is anticipated, external limiting  
to 5% of the rated output current is recommended.  
版权 © 2017, Texas Instruments Incorporated  
13  
TLV742P  
ZHCSGP8 SEPTEMBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 Shutdown  
The enable pin (EN) is active high. The device is enabled when voltage at the EN pin goes above 0.9 V. The  
device is turned off when the EN pin is held at less than 0.4 V. When shutdown capability is not required, EN can  
be connected to the IN pin.  
The TLV742P version has internal active pulldown circuitry that discharges the output with a time constant as  
given by 公式 1:  
(120 · RL)  
t =  
· COUT  
(120 + RL)  
where:  
RL = Load resistance  
COUT = Output capacitor  
(1)  
7.4 Device Functional Modes  
The TLV742P series is specified over the recommended operating conditions (see Recommended Operating  
Conditions). The specifications may not be met when exposed to conditions outside of the recommended  
operating range.  
To turn on the regulator, the EN pin must be driven over 0.9 V. Driving the EN pin below 0.4 V causes the  
regulator to enter shutdown mode.  
In shutdown, the current consumption of the device typically reduces to 1 µA.  
14  
版权 © 2017, Texas Instruments Incorporated  
 
TLV742P  
www.ti.com.cn  
ZHCSGP8 SEPTEMBER 2017  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV742P is a LDO with low quiescent current that delivers excellent line and load transient performance.  
This LDO regulator offers current limit and thermal protection. The operating junction temperature of this device  
series is –40°C to +125°C.  
8.2 Typical Application  
VIN  
VOUT  
IN  
OUT  
1 µF  
Ceramic  
CIN  
COUT  
TLV742P  
GND  
On  
EN  
Off  
Copyright © 2017, Texas Instruments Incorporated  
44. Typical Application Circuit  
8.2.1 Design Requirements  
Provide an input supply with adequate headroom to meet minimum VIN requirements (as listed in 1),  
compensate for the GND pin current, and to power the load.  
1. Design Parameters  
PARAMETER  
Input voltage  
Output voltage  
Output current  
DESIGN REQUIREMENT  
1.8 V to 3.6 V  
1.2 V  
100 mA  
版权 © 2017, Texas Instruments Incorporated  
15  
 
TLV742P  
ZHCSGP8 SEPTEMBER 2017  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Input and Output Capacitor Requirements  
Generally, 1-µF X5R- and X7R-type ceramic capacitors are recommended because these capacitors have  
minimal variation in value and equivalent series resistance (ESR) over temperature.  
However, the TLV742P is designed to be stable with an effective capacitance of 0.1 µF or larger at the output.  
As a result, the device is stable with capacitors of other dielectric types if the effective capacitance under  
operating bias voltage and temperature is greater than 0.1 µF. This effective capacitance refers to the  
capacitance that the LDO detects under operating bias voltage and temperature conditions; that is, the  
capacitance after taking bias voltage and temperature derating into consideration. In addition to using less  
expensive dielectrics, this stability with 0.1-µF effective capacitance enables the use of smaller footprint  
capacitors that have higher derating in size- and space-constrained applications.  
Using a 0.1-µF rated capacitor at the output of the LDO does not ensure stability because the effective  
capacitance under the specified operating conditions is less than 0.1 µF. Maximum ESR must be less than  
200 mΩ.  
Although an input capacitor is not required for stability, good analog design practice is to connect a 0.1-µF to  
1-µF, low ESR capacitor across the IN pin and GND pin of the regulator. This capacitor counteracts reactive  
input sources and improves transient response, noise rejection, and ripple rejection. A higher-value capacitor  
may be required if large, fast rise-time load transients are anticipated, or if the device is not located close to the  
power source. If source impedance is more than 2-Ω, a 0.1-µF input capacitor may be required to ensure  
stability.  
8.2.2.2 Dropout Voltage  
The TLV742P series of LDOs use a PMOS pass transistor to achieve low dropout. When (VIN – VOUT) is less  
than the dropout voltage (VDO), the PMOS pass device is in the linear region of operation and the input-to-output  
resistance is the RDS(ON) of the PMOS pass element. VDO scales approximately with output current because the  
PMOS device functions similar to a resistor in dropout.  
PSRR and transient response degrade when (VIN – VOUT) approaches dropout.  
8.2.2.3 Transient Response  
Increasing the size of the output capacitor reduces overshoot and undershoot magnitude but increases the  
duration of the transient response.  
16  
版权 © 2017, Texas Instruments Incorporated  
TLV742P  
www.ti.com.cn  
ZHCSGP8 SEPTEMBER 2017  
8.2.3 Application Curves  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
10  
5 V  
2.8 V  
1.2 V  
1
0.1  
0.01  
0.001  
IOUT = 30 mA  
IOUT = 150 mA  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VOUT = 1.2 V  
45. Power-Supply Ripple Rejection vs Frequency  
46. Output Spectral Noise Density vs Frequency  
150 mA  
IOUT  
1 mA  
VIN  
VOUT  
VOUT  
Time (100 ms/div)  
Time (100 ms/div)  
VOUT = 1.2 V  
VOUT = 1.2 V, IOUT = 150 mA  
47. Load Transient Response  
48. Line Transient Response  
VIN  
VIN  
VOUT  
VOUT  
Time (100 ms/div)  
Time (100 ms/div)  
VOUT = 1.2 V, IOUT = 200 mA  
VOUT = 1.2 V, IOUT = 150 mA  
49. Line Transient Response  
50. Line Transient Response  
版权 © 2017, Texas Instruments Incorporated  
17  
TLV742P  
ZHCSGP8 SEPTEMBER 2017  
www.ti.com.cn  
VIN  
VIN  
VOUT  
VOUT  
Time (100 ms/div)  
Time (100 ms/div)  
VOUT = 1.2 V, IOUT = 200 mA  
VOUT = 1.2 V, IOUT = 30 mA  
52. VIN Ramp Up, Ramp Down Response  
51. Line Transient Response  
8.3 Do's and Don'ts  
Place at least one 1-µF ceramic capacitor as close as possible to the OUT pin of the regulator.  
Do not place the output capacitor more than 10 mm away from the regulator.  
Connect a 1-µF low equivalent series resistance (ESR) capacitor across the IN pin and GND input of the  
regulator for improved transient performance.  
Do not exceed the absolute maximum ratings.  
18  
版权 © 2017, Texas Instruments Incorporated  
TLV742P  
www.ti.com.cn  
ZHCSGP8 SEPTEMBER 2017  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2 V and 5.5 V. The input voltage  
range provides adequate headroom for the device to have a regulated output. This input supply must be well-  
regulated (see 33 through 40). If the input supply is noisy, additional input capacitors with low ESR help  
improve the output noise performance.  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Board Layout Recommendations to Improve PSRR and Noise Performance  
Place input and output capacitors as close to the device pins as possible. To improve ac performance (such as  
PSRR, output noise, and transient response), TI recommends that the board be designed with separate ground  
planes for VIN and VOUT, with the ground plane connected only at the GND pin of the device, as shown in 53.  
Connect the ground connection for the output capacitor directly to the GND pin of the device. High ESR  
capacitors can degrade PSRR performance.  
10.1.2 Package Mounting  
Solder pad footprint recommendations are available from the TI website at www.ti.com. The recommended land  
pattern for the DQN (X2SON-4) package is provided in the 机械、封装和可订购信息 section.  
版权 © 2017, Texas Instruments Incorporated  
19  
TLV742P  
ZHCSGP8 SEPTEMBER 2017  
www.ti.com.cn  
10.2 Layout Example  
VOUT  
VIN  
1
4
3
COUT  
CIN  
2
GND PLANE  
Represents via used for  
application specific connections  
Copyright © 2017, Texas Instruments Incorporated  
53. Recommended Layout Example  
10.3 Thermal Considerations  
Thermal protection disables the output when the junction temperature rises to approximately 160°C, allowing the  
device to cool. When the junction temperature cools to approximately 140°C, the output circuitry is enables  
again. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection  
circuit may cycle on and off. This cycling limits the dissipation of the regulator, which protects the regulator from  
damage as a result of overheating.  
Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate  
heat sink. For reliable operation, limit junction temperature to 125°C (maximum). To estimate the margin of safety  
in a complete design (including heat sink), increase the ambient temperature until the thermal protection is  
triggered; use worst-case loads and signal conditions.  
For good reliability, thermal protection triggers at least 35°C above the maximum expected ambient condition of  
the particular application. This configuration produces a worst-case junction temperature of 125°C at the highest  
expected ambient temperature and worst-case load.  
The internal protection circuitry of the LDO is designed to protect against overload conditions. This circuitry is not  
intended to replace proper heat sinking. Continuously running the LDO into thermal shutdown degrades device  
reliability.  
10.4 Power Dissipation  
The ability to remove heat from the die is different for each package type, presenting different considerations in  
the printed-circuit-board (PCB) layout. The PCB area around the device that is free of other components moves  
the heat from the device to the ambient air.  
Performance data for JEDEC low- and high-K boards are shown in Thermal Information. Using heavier copper  
increases the effectiveness in removing heat from the device. The addition of plated through-holes to heat-  
dissipating layers improves heat sink effectiveness.  
Power dissipation depends on input voltage and load conditions. Power dissipation (PD) is equal to the product of  
the output current and the voltage drop across the output pass element, as shown in 公式 2.  
PD = (VIN - VOUT) ´ IOUT  
(2)  
20  
版权 © 2017, Texas Instruments Incorporated  
 
TLV742P  
www.ti.com.cn  
ZHCSGP8 SEPTEMBER 2017  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 评估模块  
我们提供了一款评估模块 (EVM),可与 TLV742P 配套使用,帮助评估初始电路性能。 TLV70728EVM-612 详细介  
绍了 TLV70728EVM-612 的设计套件和评估模块。  
可通过德州仪器 (TI) 网站上的 TLV742P 产品文件夹申请获取该 EVM,也可以直接从 TI 网上商店购买。  
11.1.2 器件命名规则  
订购信息(1)  
(2)  
产品  
VOUT  
XX(X) 是标称输出电压。对于分辨率为 100mV 的输出电压,订货编号中使用两位数字;否则,使用三位数字  
(例如,18 = 1.8V285 = 2.85V)。  
TLV742xx(x)Pyyyz  
P 为可选项;P 表示器件具有一个带有源输出放电功能的 LDO 稳压器。  
YYY 为封装标识符。  
Z 为封装数量。R 表示卷(3000 片),T 表示带(250 片)。  
(1) 要获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问器件产品文件夹,此文件夹位于www.ti.com.cn内。  
(2) 可提供 0.85V 5V 范围内的输出电压(以 50mV 为单位增量)。请与厂方联系以了解详细信息和可用性。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2017, Texas Instruments Incorporated  
21  
TLV742P  
ZHCSGP8 SEPTEMBER 2017  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
22  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV74211PDQNR  
TLV74212PDQNR  
TLV74215PDQNR  
TLV74218PDQNR  
TLV74225PDQNR  
TLV74227PDQNR  
TLV74228PDQNR  
TLV74229PDQNR  
TLV74230PDQNR  
TLV74233PDQNR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
4
4
4
4
4
4
4
4
4
4
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
8H  
8G  
8F  
8E  
CS  
8D  
8C  
8B  
CT  
7Z  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV74211PDQNR  
TLV74212PDQNR  
TLV74215PDQNR  
TLV74218PDQNR  
TLV74225PDQNR  
TLV74227PDQNR  
TLV74228PDQNR  
TLV74229PDQNR  
TLV74230PDQNR  
TLV74233PDQNR  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
4
4
4
4
4
4
4
4
4
4
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV74211PDQNR  
TLV74212PDQNR  
TLV74215PDQNR  
TLV74218PDQNR  
TLV74225PDQNR  
TLV74227PDQNR  
TLV74228PDQNR  
TLV74229PDQNR  
TLV74230PDQNR  
TLV74233PDQNR  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
4
4
4
4
4
4
4
4
4
4
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
1.05  
0.95  
A
B
1
1.05  
0.95  
PIN 1  
INDEX AREA  
C
0.4 MAX  
SEATING PLANE  
0.08  
NOTE 6  
+0.12  
-0.1  
0.05  
0.00  
0.48  
(0.05) TYP  
NOTE 6  
2
1
3
EXPOSED  
THERMAL PAD  
5
2X 0.65  
(0.07) TYP  
NOTE 5  
4
0.28  
PIN 1 ID  
(OPTIONAL)  
NOTE 4  
4X  
0.15  
(0.11)  
0.3  
0.2  
0.1  
C A B  
0.05  
C
0.30  
0.15  
3X  
4215302/E 12/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
4. Features may not exist. Recommend use of pin 1 marking on top of package for orientation purposes.  
5. Shape of exposed side leads may differ.  
6. Number and location of exposed tie bars may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.86)  
SYMM  
SEE DETAIL  
4X  
4X (0.36)  
(0.03)  
4
4X (0.21)  
1
5
SYMM  
(0.65)  
4X (0.18)  
2
3
(
0.48)  
(0.22) TYP  
EXPOSED METAL  
CLEARANCE  
LAND PATTERN EXAMPLE  
SCALE: 40X  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAIL  
4215302/E 12/2016  
NOTES: (continued)  
7. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
8. If any vias are implemented, it is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
SYMM  
4X (0.4)  
4X (0.03)  
4
1
4X (0.21)  
5
SYMM  
(0.65)  
SOLDER MASK  
EDGE  
4X (0.22)  
2
3
(
0.45)  
4X (0.235)  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 - 0.1mm THICK STENCIL  
EXPOSED PAD  
88% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 60X  
4215302/E 12/2016  
NOTES: (continued)  
9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV74215PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV74218PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV74225PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV74227PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV74228PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV74229PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV74230PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV74233PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV742P

200mA、低 IQ、低压降稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV743105PDBVR

TLV743P 300-mA, Low-Dropout Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI