TLV75201PDSQR [TI]

1A、低 IQ、高 PSRR、可调节、双通道低压降 (LDO) 稳压器 | DSQ | 10 | -40 to 125;
TLV75201PDSQR
型号: TLV75201PDSQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1A、低 IQ、高 PSRR、可调节、双通道低压降 (LDO) 稳压器 | DSQ | 10 | -40 to 125

光电二极管 输出元件 稳压器 调节器
文件: 总31页 (文件大小:2837K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV752  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
采用小尺寸封装的 TLV752 双通道 1A 高精度可调节 LDO  
1 特性  
3 说明  
1
输入电压范围:1.5V 6.0V  
可调节输出电压:  
0.55V 5.5V  
极低压降:  
TLV752 是一款双通道、可调节的 1A 低压降 (LDO) 稳  
压器。该器件采用小型 10 引脚 2mm × 2mm WSON  
封装,具有 25µA 的静态电流,同时提供快速的线路和  
负载瞬态响应。该 TLV752 具有 225mV 的低压降,有  
助于提高总功效。  
1A 电流时为 225mV(最大值)(3.3VOUT)  
高输出精度:  
TLV752 具有宽输入和输出电压范围以及出色的输出电  
流能力,当用于小型印刷电路板 (PCB) 上时,可帮助  
支持各类 应用 ,如传感器电源、辅助电源轨和具有更  
低内核电压的现代微控制器。  
过温条件下的最大值为 1.5%  
IQ25µA(典型值)  
内置软启动功能,具有单调 VOUT 上升  
封装:  
TLV752 可与小型陶瓷输出电容器搭配使用,从而减小  
整体解决方案尺寸。精密带隙和误差放大器在整个温度  
范围内具有高精度,最大值为 1.5%。该器件包括集成  
的热关断、电流限制、有源输出放电和欠压锁定  
(UVLO) 功能。TLV752 的内部过流保护限制功能可在  
发生短路事件时减少热耗散。  
2mm × 2mm 10 引脚 WSON (DSQ)  
有源输出放电  
2 应用  
微服务器和塔式服务器  
门窗传感器  
便携式销售终端 (EPOS)  
可穿戴健身和活动监测仪  
扫描仪  
器件信息(1)  
器件型号  
TLV752  
封装  
封装尺寸(标称值)  
WSON (10)  
2.00mm × 2.00mm  
Wi-Fi 接入点  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
通信模块  
典型应用  
VIN  
VOUT  
INx  
OUTx  
½
CIN  
R1  
R2  
COUT  
TLV752P  
GND  
FBx  
VEN  
ENx  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBVS383  
 
 
 
TLV752  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information ................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 13  
7.3 Feature Description................................................. 13  
7.4 Device Functional Modes........................................ 15  
8
9
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Application ................................................. 20  
Power Supply Recommendations...................... 22  
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 22  
11 器件和文档支持 ..................................................... 23  
11.1 器件支持................................................................ 23  
11.2 文档支持................................................................ 23  
11.3 接收文档更新通知 ................................................. 23  
11.4 社区资源................................................................ 23  
11.5 ....................................................................... 23  
11.6 静电放电警告......................................................... 23  
11.7 Glossary................................................................ 23  
12 机械、封装和可订购信息....................................... 23  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (December 2019) to Revision A  
Page  
Changed pins 5, 6, 8, 9, and 10 in Pin Configuration and Functions section ........................................................................ 3  
2
Copyright © 2019–2020, Texas Instruments Incorporated  
 
TLV752  
www.ti.com.cn  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
5 Pin Configuration and Functions  
DSQ Package  
10-Pin Adjustable WSON  
Top View  
FB1  
GND  
EN1  
GND  
EN2  
1
2
3
4
5
10  
9
OUT1  
IN1  
Thermal  
Pad  
8
OUT2  
FB2  
7
6
IN2  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Enable pin. Drive EN1 greater than VEN1(HI) to turn on the regulator.  
Drive EN1 less than VEN1(LO) to put the low-dropout (LDO) regulator into shutdown mode.  
EN1  
3
Input  
Input  
Enable pin. Drive EN2 greater than VEN1(HI) to turn on the regulator.  
Drive EN2 less than VEN2(LO) to put the LDO into shutdown mode.  
EN2  
FB1  
5
1
This pin is used as an input to the control loop error amplifier and is used to set the  
output voltage of the LDO.  
This pin is used as an input to the control loop error amplifier and is used to set the  
output voltage of the LDO.  
FB2  
7
GND  
2, 4  
Ground pin  
Input pin. For best transient response and to minimize input impedance, use the  
recommended value or larger ceramic capacitor from IN to ground; see the  
Recommended Operating Conditions table and the Input and Output Capacitor Selection  
section. Place the input capacitor as close to the output of the device as possible.  
IN1  
IN2  
9
6
Input  
Input  
Input pin. For best transient response and to minimize input impedance, use the  
recommended value or larger ceramic capacitor from IN to ground; see the  
Recommended Operating Conditions table and the Input and Output Capacitor Selection  
section. Place the input capacitor as close to the output of the device as possible.  
Regulated output voltage pin. A capacitor is required from OUT to ground for stability.  
For best transient response, use the nominal recommended value or larger ceramic  
capacitor from OUT to ground; see the Recommended Operating Conditions table and  
the Input and Output Capacitor Selection section. Place the output capacitor as close to  
output of the device as possible.  
OUT1  
10  
Output  
Regulated output voltage pin. A capacitor is required from OUT to ground for stability.  
For best transient response, use the nominal recommended value or larger ceramic  
capacitor from OUT to ground; see the Recommended Operating Conditions table and  
the Input and Output Capacitor Selection section. Place the output capacitor as close to  
output of the device as possible.  
OUT2  
8
Output  
Thermal pad  
Pad  
Connect the thermal pad to a large area GND plane for improved thermal performance.  
Copyright © 2019–2020, Texas Instruments Incorporated  
3
TLV752  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
6.5  
UNIT  
V
Supply voltage, VIN  
Enable voltage, VEN;  
6.5  
V
Feedback Voltage, VFB  
Output voltage, VOUT  
2.0  
VIN + 0.3(2)  
V
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The absolute maximum rating is VIN + 0.3 V or 6.0 V, whichever is smaller  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.5  
0.55  
0
NOM  
MAX  
6.0  
5.5  
1
UNIT  
V
VIN  
Input voltage  
VOUT  
IOUT  
CIN  
Output voltage  
V
Output current  
A
Input capacitor  
Output capacitor(1)  
1
μF  
μF  
V
COUT  
VEN  
fEN  
1
220  
6.0  
10  
Enable voltage  
0
Enable toggle frequency  
Junction temperature  
kHz  
°C  
TJ  
–40  
125  
(1) Minimun derated capacitance of 0.47 μF is required for stability  
6.4 Thermal Information  
TLV752  
THERMAL METRIC(1)  
DSQ (WSON)  
10 PINS  
74.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
90.5  
39.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.8  
ψJB  
39.7  
RθJC(bot)  
17  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019–2020, Texas Instruments Incorporated  
TLV752  
www.ti.com.cn  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
6.5 Electrical Characteristics  
at operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(NOM) + 0.5 V or 1.5 V (whichever is greater), IOUT = 1 mA,  
VEN = VIN, and CIN = COUT = 1 μF, unless otherwise noted. All typical values at TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VFBx  
Feedback voltage  
TJ = 25°C  
TJ = 25°C  
0.55  
V
–0.5%  
–1.5%  
0.5%  
1.5%  
Output accuracy(1)  
–40°C TJ +125°C; VOUT(NOM) + 0.5 V(2) VIN 6.0 V  
VOUT(NOM) + 0.5 V(2) VIN 6.0 V  
0.1 mA IOUT 1 A, VIN = VOUT + 0.5 V(3)  
Line regulation  
Load regulation  
2
0.03  
25  
mV  
V/A  
TJ = 25°C  
10  
31  
35  
1
IGND  
Ground current  
IOUT = 0 mA  
EN 0.3 V, 1.5 V VIN 6.0 V  
µA  
–40°C TJ +125°C  
ISHDN  
IFB  
Shutdown current  
V
0.1  
µA  
µA  
Feedback pin current  
0.01  
0.1  
VOUT = VOUT(NOM)  
0.2 V, VOUT < 1.5 V  
-
1.22  
1.22  
1.54  
1.54  
670  
1.83  
1.83  
850  
VIN = 2.0 V for VOUT < 1.0 V,  
otherwise VIN = VOUT(NOM) + 1.0 V  
ICL  
Output current limit  
A
VOUT = 0.9 x VOUT(NOM),  
VOUT 1.5 V  
VIN = 2.0 V for VOUT < 1.0 V,  
otherwise VIN = VOUT(NOM) + 1.0 V  
ISC  
Short-circuit current limit  
VOUT = 0 V  
mA  
0.65 V VOUT < 0.8 V  
0.8 V VOUT < 0.9 V  
0.9 V VOUT < 1.0 V  
1.0 V VOUT < 1.2 V  
1.2 V VOUT < 1.5 V  
1.5 V VOUT < 1.8 V  
1.8 V VOUT < 2.5 V  
2.5 V VOUT < 3.3 V  
3.3 V VOUT 5.5 V  
f = 1 kHz  
896  
765  
700  
600  
464  
332  
264  
193  
161  
50  
1050  
920  
850  
750  
585  
440  
360  
270  
225  
IOUT = 1 A,  
–40°C TJ +125°C,  
VOUT = 0.95 × VOUT(NOM)  
VDO  
Dropout voltage  
mV  
VIN = VOUT(NOM) + 1 V,  
IOUT = 50 mA  
PSRR  
Power-supply rejection ratio  
f = 100 kHz  
45  
dB  
f = 1 MHz  
30  
Vn  
Output noise voltage  
Undervoltage lockout  
BW = 10 Hz to 100 kHz, VOUT = 0.9 V  
53  
µVRMS  
V
VIN rising  
VIN falling  
1.21  
1.17  
1.33  
1.29  
1.47  
1.42  
VUVLO  
Undervoltage lockout  
hysteresis  
VUVLO, HYST  
VIN hysteresis  
45  
mV  
tSTR  
Startup time  
From EN low-to-high transition to VOUT = VOUT(NOM) x 95%  
500  
700  
0.3  
µs  
V
VENx(HI)  
VENx(LO)  
IENx  
EN pin high voltage  
EN pin low voltage  
Enable pin current  
Pulldown resistance  
1.0  
V
VIN = VEN = 6.0 V  
10  
95  
nA  
Ω
RPULLDOWN  
VIN = 6.0 V  
Shutdown, temperature increasing  
Reset, temperature decreasing  
170  
155  
TSD  
Thermal shutdown  
°C  
(1) When the device is connected to external feedback resistors at the FB pin, external resistor tolerances are not included.  
(2) VIN = 1.5 V for VOUT < 1.0 V.  
(3) VIN = 2 V for VOUT < 1.5 V.  
版权 © 2019–2020, Texas Instruments Incorporated  
5
TLV752  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
6.6 Typical Characteristics  
at operating temperature range TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.5 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and  
CIN = COUT = 1 μF (unless otherwise noted)  
0.6  
0.45  
0.3  
0.6  
0.45  
0.3  
0.15  
0
0.15  
0
-0.15  
-0.3  
-0.45  
-0.6  
-0.15  
-0.3  
-0.45  
-0.6  
TJ  
œ20èC  
0èC  
TJ  
œ20èC  
0èC  
œ50èC  
œ40èC  
25èC  
85èC  
125èC  
150èC  
œ50èC  
œ40èC  
25èC  
85èC  
125èC  
150èC  
3.8  
4
4.2 4.4 4.6 4.8  
5
Input Voltage (V)  
5.2 5.4 5.6 5.8  
6
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Input Voltage (V)  
VOUT = 0.55 V, IOUT = 1 mA  
VOUT = 3.3 V, IOUT = 1 mA  
1. 3.3-V Line Regulation vs VIN  
2. 0.55-V Line Regulation vs VIN  
320  
280  
240  
200  
160  
120  
80  
0.3  
0.2  
0.1  
0
TJ  
œ20èC  
0èC  
œ50èC  
œ40èC  
25èC  
85èC  
125èC  
150èC  
-0.1  
-0.2  
-0.3  
TJ  
œ20èC  
0èC  
40  
œ50èC  
œ40èC  
25èC  
85èC  
125èC  
150èC  
0
5.5  
5.6  
5.7  
5.8  
5.9  
6
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
Input Voltage (V)  
VOUT = 5.5 V, IOUT = 1 mA  
3. 5.5-V Line Regulation vs VIN  
4. 3.3-V Dropout Voltage vs IOUT  
320  
280  
240  
200  
160  
120  
80  
1,280  
1,200  
1,120  
1,040  
960  
TJ  
œ20èC  
0èC  
TJ  
œ20èC  
0èC  
œ50èC  
œ40èC  
25èC  
85èC  
125èC  
150èC  
œ50èC  
œ40èC  
25èC  
85èC  
125èC  
150èC  
880  
800  
720  
40  
640  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
5. 0.55-V Dropout Voltage vs IOUT  
6. 5.5-V Dropout Voltage vs IOUT  
6
版权 © 2019–2020, Texas Instruments Incorporated  
TLV752  
www.ti.com.cn  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
Typical Characteristics (接下页)  
at operating temperature range TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.5 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and  
CIN = COUT = 1 μF (unless otherwise noted)  
1,100  
1,000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1,200  
1,050  
900  
750  
600  
450  
300  
150  
0
TJ  
œ20èC  
0èC  
œ50èC  
œ40èC  
25èC  
85èC  
125èC  
150èC  
TJ  
œ20èC  
0èC  
œ50èC  
œ40èC  
25èC  
85èC  
125èC  
150èC  
0.5  
1
1.5  
2
2.5  
3
Output Voltage (V)  
3.5  
4
4.5  
5
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
IOUT = 1 A  
7. VDO vs VOUT  
8. IGND vs IOUT  
2,100  
1,800  
1,500  
1,200  
900  
560  
480  
400  
320  
240  
160  
80  
TJ  
œ20èC  
0èC  
TJ  
œ20èC  
0èC  
œ50èC  
œ40èC  
25èC  
85èC  
125èC  
150èC  
œ50èC  
œ40èC  
25èC  
85èC  
125èC  
150èC  
600  
300  
0
0
-300  
-80  
0
0.6 1.2 1.8 2.4  
3
Input Voltage (V)  
3.6 4.2 4.8 5.4  
6
0
0.6 1.2 1.8 2.4  
3
Input Voltage (V)  
3.6 4.2 4.8 5.4  
6
VEN = 0 V  
VOUT = 3.3 V, IOUT = 0 mA  
9. ISHDN vs VIN  
10. IGND vs VIN  
1.6  
1.2  
0.8  
0.4  
0
0.8  
0.6  
0.4  
0.2  
0
TJ  
œ20èC  
0èC  
TJ  
œ20èC  
0èC  
œ50èC  
œ40èC  
25èC  
85èC  
125èC  
150èC  
œ50èC  
œ40èC  
25èC  
85èC  
125èC  
150èC  
-0.4  
-0.8  
-1.2  
-1.6  
-0.2  
-0.4  
-0.6  
-0.8  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
VIN = 3.8 V, VOUT = 3.3 V  
VIN = 2 V, VOUT = 0.55 V  
11. 3.3-V Load Regulation vs IOUT  
12. 0.55-V Load Regulation vs IOUT  
版权 © 2019–2020, Texas Instruments Incorporated  
7
TLV752  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at operating temperature range TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.5 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and  
CIN = COUT = 1 μF (unless otherwise noted)  
1.2  
0.9  
0.6  
0.3  
0
640  
560  
480  
400  
320  
240  
160  
80  
TJ  
œ20èC  
0èC  
TJ  
œ20èC  
0èC  
œ50èC  
œ40èC  
25èC  
85èC  
125èC  
150èC  
œ50èC  
œ40èC  
25èC  
85èC  
125èC  
150èC  
-0.3  
-0.6  
-0.9  
-1.2  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.5  
1
1.5  
2
2.5  
3
Pulldown Current (mA)  
3.5  
4
4.5  
5
VIN = 6 V, VOUT = 5.5 V  
13. 5-V Load Regulation vs IOUT  
14. VOUT vs IOUT Pulldown Resistor  
840  
800  
760  
720  
680  
640  
600  
560  
520  
480  
440  
300  
250  
200  
150  
100  
50  
VEN(LO)  
VEN(HI)  
TJ  
œ20èC  
0èC  
œ50èC  
œ40èC  
125èC  
85èC  
125èC  
150èC  
0
-50  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Input Voltage (V)  
4
4.5  
5
5.5  
Temperature (èC)  
VEN = 5.5 V  
15. VEN(HI) and VEN(LO) vs Temperature  
16. IEN vs VIN  
5
14  
13  
12  
11  
10  
9
25  
TJ  
-20èC  
0èC  
Vin  
Vout  
20  
15  
10  
5
4.5  
4
-50èC  
-40èC  
25èC  
85èC  
125èC  
3.5  
3
0
8
-5  
2.5  
2
7
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
6
5
1.5  
1
4
3
2
0.5  
0
1
0
0
0.2 0.4 0.6 0.8  
1
Output Current (A)  
1.2 1.4 1.6 1.8  
2
0
0.5  
1
Time (ms)  
1.5  
2
VOUT = 0.55 V, IOUT = 1 mA, VIN slew rate = 1 V/µs  
18. 0.55-V Line Transient  
17. 3.3-V Foldback Current Limit vs IOUT  
8
版权 © 2019–2020, Texas Instruments Incorporated  
TLV752  
www.ti.com.cn  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
Typical Characteristics (接下页)  
at operating temperature range TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.5 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and  
CIN = COUT = 1 μF (unless otherwise noted)  
10  
9.5  
9
120  
100  
80  
4.5  
4
200  
150  
100  
50  
Iout  
Vout  
Vin  
Vout  
3.5  
3
8.5  
8
60  
40  
7.5  
7
20  
2.5  
2
0
0
-50  
6.5  
6
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
1.5  
1
-100  
-150  
-200  
-250  
-300  
5.5  
5
4.5  
4
0.5  
0
3.5  
3
-0.5  
0
50 100 150 200 250 300 350 400 450 500  
Time (us)  
0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8  
Time (ms)  
2
VOUT = 0.55 V, VIN = 2 V, IOUT slew rate = 1 A/µs  
VOUT = 3.3 V, IOUT = 1 mA, VIN slew rate = 1 V/µs  
20. 1-mA to 1-A Load Transient (0.55 V)  
19. 3.3-V Line Transient  
4.5  
4
240  
160  
80  
4.5  
4
240  
Iout  
Vout  
Iout  
Vout  
160  
80  
3.5  
3
3.5  
3
0
0
2.5  
2
-80  
2.5  
2
-80  
-160  
-240  
-320  
-400  
-480  
-560  
-160  
-240  
-320  
-400  
-480  
-560  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-0.5  
0
50 100 150 200 250 300 350 400 450 500  
Time (us)  
0
60 120 180 240 300 360 420 480 540 600  
Time (us)  
VOUT = 5 V, VIN = 5.5 V, IOUT slew rate = 1 A/µs  
VOUT = 3.3 V, VIN = 3.8 V, IOUT slew rate = 1 A/µs  
21. 1-mA to 1-A Load Transient (5 V)  
22. 1-mA to 1-A Load Transient (3.3 V)  
5
5
4.5  
4
4
3
3.5  
3
2.5  
2
2
1.5  
1
1
0.5  
0
Vout  
Venable  
Vin  
0
Vout  
Vin  
-0.5  
-1  
-1  
0
200  
400  
600  
800  
1,000  
0
200  
400  
600  
800  
1,000  
Time (us)  
Time (us)  
VIN = 3.8 V, VOUT = 3.3 V, IOUT = 1 mA  
VIN = 3.8 V, VOUT = 3.3 V, IOUT = 1 mA  
23. VIN Power-Up  
24. Startup With EN  
版权 © 2019–2020, Texas Instruments Incorporated  
9
TLV752  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at operating temperature range TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.5 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and  
CIN = COUT = 1 μF (unless otherwise noted)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.5 V  
VIN = 3.6 V  
VIN = 3.7 V  
VIN = 3.8 V  
VIN = 3.9 V  
VIN = 4.0 V  
VIN = 4.1 V  
VIN = 4.2 V  
VIN = 4.3 V  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
D001  
VOUT = 3.3 V, IOUT = 500 mA, COUT = 2.2 µF  
VOUT = 3.3 V, IOUT = 500 mA, COUT = 2.2 µF  
26. PSRR vs Frequency and VIN  
25. PSRR vs Frequency and VIN  
90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.5 V  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.6 V  
VIN = 3.7 V  
VIN = 3.8 V  
VIN = 3.9 V  
VIN = 4.0 V  
VIN = 4.1 V  
VIN = 4.2 V  
VIN = 4.3 V  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
VOUT = 3.3 V, IOUT = 250 mA, COUT = 2.2 µF  
VOUT = 3.3 V, IOUT = 250 mA, COUT = 2.2 µF  
27. PSRR vs Frequency and VIN  
28. PSRR vs Frequency and VIN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 1.9 V, VOUT = 0.9 V  
VIN = 2.8 V, VOUT = 1.8 V  
VIN = 4.3 V, VOUT = 3.3 V  
VIN = 2.3 V, VOUT = 1.8 V  
VIN = 2.8 V, VOUT = 1.8 V  
VIN = 3.8 V, VOUT = 3.3 V  
VIN = 4.3 V, VOUT = 3.3 V  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
IOUT = 500 mA, COUT = 2.2 µF  
IOUT = 1 A, COUT = 2.2 µF  
29. PSRR vs Frequency  
30. PSRR vs Frequency  
10  
版权 © 2019–2020, Texas Instruments Incorporated  
TLV752  
www.ti.com.cn  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
Typical Characteristics (接下页)  
at operating temperature range TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.5 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and  
CIN = COUT = 1 μF (unless otherwise noted)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
COUT = 1 mF  
CFF = 0 nF  
CFF = 1 nF  
CFF = 10 nF  
CFF = 100 nF  
COUT = 2.2 mF  
COUT = 4.7 mF  
COUT = 47 mF  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
VIN = 3.8 V, VOUT = 3.3 V, IOUT = 500 mA  
VIN = 3.8 V, VOUT = 3.3 V, IOUT = 500 mA  
31. PSRR vs Frequency and COUT  
32. PSRR vs Frequency and CFF  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
IOUT= 100mA, 170mVRMS  
IOUT= 500mA, 169mVRMS  
IOUT= 1A, 160mVRMS  
10  
5
2
1
0.5  
0.2  
0.1  
ILOAD = 10 mA  
ILOAD = 100 mA  
ILOAD = 250 mA  
ILOAD = 500 mA  
ILOAD = 1 A  
0.05  
0.02  
0.01  
-10  
0.005  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
VIN = 3.8 V, VOUT = 3.3 V, COUT = 2.2 µF  
VIN = 3.8 V, VOUT = 3.3 V, COUT = 4.7 µF,  
VRMS BW = 10 Hz to 100 kHz  
34. Output Spectral Noise Density vs Frequency  
33. PSRR vs Frequency and ILOAD  
20  
20  
10  
5
IOUT= 10mA, 159mVRMS  
IOUT= 100mA, 160mVRMS  
IOUT= 500mA, 160mVRMS  
CFF = 0 nF, 160 mVRMS  
CFF = 1 nF, 108 mVRMS  
CFF = 10 nF, 74 mVRMS  
CFF = 100 nF, 44 mVRMS  
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
VIN = 3.8 V, VOUT = 3.3 V, COUT = 2.2 µF,  
VRMS BW = 10 Hz to 100 kHz  
VIN = 3.8 V, VOUT = 3.3 V, IOUT = 500 mA, COUT = 2.2 µF,  
VRMS BW = 10 Hz to 100 kHz  
35. Output Spectral Noise Density vs Frequency  
36. Output Spectral Noise Density vs  
Frequency and CFF  
版权 © 2019–2020, Texas Instruments Incorporated  
11  
TLV752  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at operating temperature range TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.5 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and  
CIN = COUT = 1 μF (unless otherwise noted)  
20  
10  
5
20  
10  
5
COUT = 2.2mF, 160 mVRMS  
COUT = 4.7mF, 170 mVRMS  
COUT = 47mF, 138 mVRMS  
VIN=1.9V, VOUT=0.9V, 53mVRMS  
VIN=2.8V, VOUT=1.8V, 96mVRMS  
VIN=3.8V, VOUT=3.3V, 160mVRMS  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
VIN = 3.8 V, VOUT = 3.3 V, IOUT = 100 mA, CFF = 0 µF,  
VRMS BW = 10 Hz to 100 kHz  
IOUT = 500 mA, COUT = 2.2 µF, VRMS BW = 10 Hz to 100 kHz  
37. Output Spectral Noise Density vs  
38. Output Spectral Noise Density vs Frequency  
Frequency and COUT  
12  
版权 © 2019–2020, Texas Instruments Incorporated  
TLV752  
www.ti.com.cn  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
7 Detailed Description  
7.1 Overview  
The TLV752 is a low-dropout regulator (LDO) that consumes low quiescent current and delivers excellent line  
and load transient performance. These characteristics, combined with low noise and good PSRR with low  
dropout voltage, make this device ideal for portable consumer applications.  
This regulator offers foldback current limit, shutdown, and thermal protection. The operating junction temperature  
for this device is –40°C to +125°C.  
7.2 Functional Block Diagram  
IN  
OUT  
Current  
Limit  
Thermal  
Shutdown  
95  
+
FB  
UVLO  
EN  
Band Gap  
GND  
Logic  
7.3 Feature Description  
7.3.1 Undervoltage Lockout (UVLO)  
The TLV752 uses an undervoltage lockout (UVLO) circuit that disables the output until the input voltage is  
greater than the rising UVLO voltage (VUVLO). This circuit ensures that the device does not exhibit any  
unpredictable behavior when the supply voltage is lower than the operational range of the internal circuitry. When  
VIN is less than VUVLO, the output is connected to ground with a pulldown resistor (RPULLDOWN).  
7.3.2 Shutdown  
The enable pin (EN) is active high. Enable the device by forcing the EN pin to exceed VEN(HI). Turn off the device  
by forcing the EN pin to drop below VEN(LO). If shutdown capability is not required, connect EN to IN.  
The TLV752 has an internal pulldown MOSFET that connects an RPULLDOWN resistor to ground when the device  
is disabled. The discharge time after disabling depends on the output capacitance (COUT) and the load resistance  
(RL) in parallel with the pulldown resistor (RPULLDOWN). 公式 1 calculates the time constant:  
τ = ( RPULLDOWN × RL) / (RPULLDOWN + RL)  
(1)  
7.3.3 Foldback Current Limit  
The device has an internal current limit circuit that protects the regulator during transient high-load current faults  
or shorting events. The current limit is a hybrid brickwall-foldback scheme. The current limit transitions from a  
brickwall scheme to a foldback scheme at the foldback voltage (VFOLDBACK). In a high-load current fault with the  
output voltage above VFOLDBACK, the brickwall scheme limits the output current to the current limit (ICL). When the  
voltage drops below VFOLDBACK, a foldback current limit activates that scales back the current as the output  
voltage approaches GND. When the output is shorted, the device supplies a typical current called the short-  
circuit current limit (ISC). ICL and ISC are listed in the Electrical Characteristics table.  
Copyright © 2019–2020, Texas Instruments Incorporated  
13  
 
TLV752  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
Feature Description (continued)  
For this device, VFOLDBACK = 0.4 V × VOUT(NOM)  
.
The output voltage is not regulated when the device is in current limit. When a current limit event occurs, the  
device begins to heat up because of the increase in power dissipation. When the device is in brickwall current  
limit, the pass transistor dissipates power [(VIN – VOUT) × ICL]. When the device output is shorted and the output  
is below VFOLDBACK, the pass transistor dissipates power [(VIN – VOUT) × ISC]. If thermal shutdown is triggered, the  
device turns off. After the device cools down, the internal thermal shutdown circuit turns the device back on. If  
the output current fault condition continues, the device cycles between current limit and thermal shutdown. For  
more information on current limits, see the Know Your Limits application report.  
Figure 39 shows a diagram of the foldback current limit.  
VOUT  
Brickwall  
VOUT(NOM)  
VFOLDBACK  
Foldback  
0 V  
IOUT  
IRATED  
0 mA  
ISC  
ICL  
Figure 39. Foldback Current Limit  
7.3.4 Thermal Shutdown  
Thermal shutdown protection disables the output when the junction temperature rises to approximately 170°C.  
Disabling the device eliminates the power dissipated by the device, allowing the device to cool. When the  
junction temperature cools to approximately 155°C, the output circuitry is again enabled. Depending on power  
dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off.  
This cycling limits regulator dissipation, protecting the LDO from damage as a result of overheating.  
Activating the thermal shutdown feature usually indicates excessive power dissipation as a result of the product  
of the (VIN – VOUT) voltage and the load current. For reliable operation, limit junction temperature to 125°C  
maximum. To estimate the margin of safety in a complete design, increase the ambient temperature until the  
thermal protection is triggered; use worst-case loads and signal conditions.  
The TLV752 internal protection circuitry protects against overload conditions but is not intended to be activated in  
normal operation. Continuously running the TLV752 into thermal shutdown degrades device reliability.  
14  
版权 © 2019–2020, Texas Instruments Incorporated  
 
TLV752  
www.ti.com.cn  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
7.4 Device Functional Modes  
7.4.1 Device Functional Mode Comparison  
The Device Functional Mode Comparison table shows the conditions that lead to the different modes of  
operation. See the Electrical Characteristics table for parameter values.  
Table 1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VEN  
IOUT  
TJ  
Normal operation  
Dropout operation  
VIN > VOUT(nom) + VDO and VIN > VIN(min)  
VIN(min) < VIN < VOUT(nom) + VDO  
VEN > VEN(HI)  
VEN > VEN(HI)  
IOUT < IOUT(max)  
IOUT < IOUT(max)  
TJ < TSD(shutdown)  
TJ < TSD(shutdown)  
Disabled  
(any true condition  
disables the device)  
VIN < VUVLO  
VEN < VEN(LOW)  
Not applicable  
TJ > TSD(shutdown)  
7.4.2 Normal Operation  
The device regulates to the nominal output voltage when the following conditions are met:  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(nom) + VDO  
The output current is less than the current limit (IOUT < ICL  
The device junction temperature is less than the thermal shutdown temperature (TJ < TSD  
The enable voltage has previously exceeded the enable rising threshold voltage and has not yet decreased to  
less than the enable falling threshold  
)
)
)
7.4.3 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. In this mode, the output voltage  
tracks the input voltage. During this mode, the transient performance of the device becomes significantly  
degraded because the pass transistor is in the ohmic or triode region, and acts as a switch. Line or load  
transients in dropout can result in large output-voltage deviations.  
When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO  
,
directly after being in a normal regulation state, but not during startup), the pass transistor is driven into the  
ohmic or triode region. When the input voltage returns to a value greater than or equal to the nominal output  
voltage plus the dropout voltage (VOUT(NOM) + VDO), the output voltage can overshoot for a short period of time  
while the device pulls the pass transistor back into the linear region.  
7.4.4 Disabled  
The output of the device can be shutdown by forcing the voltage of the enable pin to less than the maximum EN  
pin low-level input voltage (see the Electrical Characteristics table). When disabled, the pass transistor is turned  
off, internal circuits are shutdown, and the output voltage is actively discharged to ground by an internal  
discharge circuit from the output to ground.  
版权 © 2019–2020, Texas Instruments Incorporated  
15  
TLV752  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Adjustable Device Feedback Resistors  
40 shows that the output voltage of the TLV752 can be adjusted from 0.55 V to 5.5 V by using a resistor  
divider network.  
VOUT  
IN  
OUT  
FB  
½
CIN  
R1  
R2  
COUT  
TLV752  
GND  
VEN  
EN  
DNC  
40. Adjustable Operation  
The adjustable-version device requires external feedback divider resistors to set the output voltage. VOUT is set  
using the feedback divider resistors, R1 and R2, according to the following equation:  
VOUT = VFB × (1 + R1 / R2)  
(2)  
For this device, VFB = 0.55 V.  
To ignore the FB pin current error term in the VOUT equation, set the feedback divider current to 100x the FB pin  
current listed in the Electrical Characteristics table. This setting provides the maximum feedback divider series  
resistance, as shown in the following equation:  
R1 + R2 VOUT / (IFB × 100)  
(3)  
For this device, IFB = 10 nA.  
8.1.2 Input and Output Capacitor Selection  
The TLV752 requires an output capacitance of 0.47 μF or larger for stability. Use X5R- and X7R-type ceramic  
capacitors because these capacitors have minimal variation in value and equivalent series resistance (ESR) over  
temperature. When choosing a capacitor for a specific application, pay attention to the dc bias characteristics for  
the capacitor. Higher output voltages cause a significant derating of the capacitor. For best performance, the  
maximum recommended output capacitance is 220 µF.  
Although an input capacitor is not required for stability, good analog design practice is to connect a capacitor  
from IN to GND. Some input supplies have a high impedance, thus placing the input capacitor on the input  
supply helps reduce the input impedance. This capacitor counteracts reactive input sources and improves  
transient response, input ripple, and PSRR. If the input supply has a high impedance over a large range of  
frequencies, several input capacitors can be used in parallel to lower the impedance over frequency. Use a  
higher-value capacitor if large, fast, rise-time load transients are anticipated, or if the device is located several  
inches from the input power source.  
16  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
TLV752  
www.ti.com.cn  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
Application Information (接下页)  
8.1.3 Dropout Voltage  
The TLV752 uses a PMOS pass transistor to achieve low dropout. When (VIN – VOUT) is less than the dropout  
voltage (VDO), the PMOS pass device is in the linear region of operation and the input-to-output resistance is the  
RDS(ON) of the PMOS pass element. VDO scales approximately with output current because the PMOS device  
behaves like a resistor in dropout mode. As with any linear regulator, PSRR and transient response degrade as  
(VIN – VOUT) approaches dropout operation.  
8.1.4 Exiting Dropout  
Some applications have transients that place the LDO into dropout, such as slower ramps on VIN during start-up.  
As with other LDOs, the output may overshoot on recovery from these conditions. A ramping input supply causes  
an LDO to overshoot on start-up, as shown in 41, when the slew rate and voltage levels are in the correct  
range. Use an enable signal to avoid this condition.  
Input Voltage  
Response time for  
LDO to get back into  
regulation.  
Load current discharges  
output voltage.  
VIN = VOUT(nom) + VDO  
Output Voltage  
Dropout  
VOUT = VIN - VDO  
Output Voltage in  
normal regulation.  
Time  
41. Startup Into Dropout  
Line transients out of dropout can also cause overshoot on the output of the regulator. These overshoots are  
caused by the error amplifier having to drive the gate capacitance of the pass element and bring the gate back to  
the correct voltage for proper regulation. 42 illustrates what is happening internally with the gate voltage and  
how overshoot can be caused during operation. When the LDO is placed in dropout, the gate voltage (VGS) is  
pulled all the way down to ground to give the pass device the lowest on-resistance as possible. However, if a line  
transient occurs when the device is in dropout, the loop is not in regulation and can cause the output to  
overshoot until the loop responds and the output current pulls the output voltage back down into regulation. If  
these transients are not acceptable, then continue to add input capacitance in the system until the transient is  
slow enough to reduce the overshoot.  
版权 © 2019–2020, Texas Instruments Incorporated  
17  
 
TLV752  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
Application Information (接下页)  
Transient response  
time of the LDO  
Input Voltage  
Load current  
discharges  
output  
voltage  
Output Voltage  
VDO  
Output Voltage in  
normal regulation  
Dropout  
VOUT = VIN - VDO  
VGS voltage  
(pass device  
fully off)  
Input Voltage  
VGS voltage for  
normal operation  
VGS voltage for  
normal operation  
Gate Voltage  
VGS voltage in  
dropout (pass device  
fully on)  
Time  
42. Line Transients From Dropout  
8.1.5 Reverse Current  
As with most LDOs, excessive reverse current can damage this device.  
Reverse current flows through the body diode on the pass element instead of the normal conducting channel. At  
high magnitudes, this current flow degrades the long-term reliability of the device, as a result of one of the  
following conditions:  
Degradation caused by electromigration  
Excessive heat dissipation  
Potential for a latch-up condition  
Conditions where reverse current can occur are outlined in this section, all of which can exceed the absolute  
maximum rating of VOUT > VIN + 0.3 V:  
If the device has a large COUT and the input supply collapses with little or no load current  
The output is biased when the input supply is not established  
The output is biased above the input supply  
18  
版权 © 2019–2020, Texas Instruments Incorporated  
TLV752  
www.ti.com.cn  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
Application Information (接下页)  
If reverse current flow is expected in the application, external protection must be used to protect the device. 图  
43 shows one approach of protecting the device.  
Schottky Diode  
Internal Body Diode  
IN  
OUT  
Device  
COUT  
CIN  
GND  
43. Example Circuit for Reverse Current Protection Using a Schottky Diode  
8.1.6 Power Dissipation (PD)  
Circuit reliability requires consideration of the device power dissipation, location of the circuit on the printed circuit  
board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must have few or no  
other heat-generating devices that cause added thermal stress.  
To first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference  
and load conditions. Equation 4 calculates power dissipation (PD).  
PD = (VIN – VOUT) × IOUT  
(4)  
NOTE  
Power dissipation can be minimized, and therefore greater efficiency can be achieved, by  
correct selection of the system voltage rails. For the lowest power dissipation use the  
minimum input voltage required for correct output regulation.  
For devices with a thermal pad, the primary heat conduction path for the device package is through the thermal  
pad to the PCB. Solder the thermal pad to a copper pad area under the device. This pad area must contain an  
array of plated vias that conduct heat to additional copper planes for increased heat dissipation.  
The maximum power dissipation determines the maximum allowable ambient temperature (TA) for the device.  
According to Equation 5, power dissipation and junction temperature are most often related by the junction-to-  
ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of the ambient  
air (TA).  
TJ = TA + (RθJA × PD)  
(5)  
Thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the particular PCB  
design, and therefore varies according to the total copper area, copper weight, and location of the planes. The  
junction-to-ambient thermal resistance listed in the Thermal Information table is determined by the JEDEC  
standard PCB and copper-spreading area, and is used as a relative measure of package thermal performance.  
8.1.7 Feed-Forward Capacitor (CFF)  
For the adjustable-voltage version device, a feed-forward capacitor (CFF) can be connected from the OUT pin to  
the FB pin. CFF improves transient, noise, and PSRR performance, but is not required for regulator stability.  
Recommended CFF values are listed in the Recommended Operating Conditions table. A higher capacitance CFF  
can be used; however, the startup time increases. For a detailed description of CFF tradeoffs, see the Pros and  
Cons of Using a Feedforward Capacitor with a Low-Dropout Regulator application report.  
版权 © 2019–2020, Texas Instruments Incorporated  
19  
 
 
 
TLV752  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
8.2 Typical Application  
44 shows the typical application circuit for the TLV752. Input and output capacitances must be at least 1 µF.  
VOUT  
IN  
OUT  
FB  
½
CIN  
R1  
R2  
COUT  
TLV752  
GND  
VEN  
EN  
DNC  
44. TLV752 Typical Application  
8.2.1 Design Requirements  
Use the parameters listed in 2 for typical linear regulator applications.  
2. Design Parameters  
PARAMETER  
Input voltage  
DESIGN REQUIREMENT  
3.8 V  
Output voltage  
3.3 V, ±1%  
1 A (maximum)  
1-A dc  
Input current  
Output load  
Maximum ambient temperature  
70°C  
8.2.2 Detailed Design Procedure  
Input and output capacitors are required to achieve the output voltage transient requirements. Capacitance  
values of 2.2 µF are selected to give the maximum output capacitance in a small, low-cost package; see the  
Input and Output Capacitor Selection section for details.  
40 illustrates the output voltage of the TLV752. Set the output voltage using the resistor divider.  
8.2.2.1 Input Current  
During normal operation, the input current to the LDO is approximately equal to the output current of the LDO.  
During startup, the input current is higher as a result of the inrush current charging the output capacitor. Use 公式  
6 to calculate the current through the input.  
C
OUT ´ dVOUT(t)  
VOUT(t)  
RLOAD  
IOUT(t)  
=
+
dt  
where:  
VOUT(t) is the instantaneous output voltage of the turn-on ramp  
dVOUT(t) / dt is the slope of the VOUT ramp  
RLOAD is the resistive load impedance  
(6)  
8.2.2.2 Thermal Dissipation  
The junction temperature can be determined using the junction-to-ambient thermal resistance (RθJA) and the total  
power dissipation (PD). Use 公式 7 to calculate the power dissipation. Multiply PD by RθJA as 公式 8 shows and  
add the ambient temperature (TA) to calculate the junction temperature (TJ).  
PD = (IGND+ IOUT) × (VIN – VOUT  
)
(7)  
(8)  
TJ = RθJA × PD + TA  
20  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
 
 
 
TLV752  
www.ti.com.cn  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
Calculate the maximum ambient temperature as 公式 9 shows if the (TJ(MAX)) value does not exceed 125°C. 公式  
10 calculates the maximum ambient temperature with a value of 84.85°C.  
TA(MAX) = TJ(MAX) – RθJA × PD  
(9)  
TA(MAX) = 125°C – 80.3°C/W × (3.8 V – 3.3 V) × (1 A) = 84.85°C  
(10)  
8.2.3 Application Curve  
90  
80  
70  
60  
50  
40  
30  
ILOAD = 10 mA  
20  
ILOAD = 100 mA  
10  
0
ILOAD = 250 mA  
ILOAD = 500 mA  
ILOAD = 1 A  
-10  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
VIN = 3.8 V, VOUT = 3.3 V, COUT = 2.2 µF  
45. PSRR vs Frequency and ILOAD  
版权 © 2019–2020, Texas Instruments Incorporated  
21  
 
 
TLV752  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
www.ti.com.cn  
9 Power Supply Recommendations  
Connect a low output impedance power supply directly to the IN pin of the TLV752.  
10 Layout  
10.1 Layout Guidelines  
Place input and output capacitors as close to the device as possible.  
Use copper planes for device connections in order to optimize thermal performance.  
Place thermal vias around the device to distribute heat.  
Do not place a thermal via directly beneath the thermal pad of the DSQ package. A via can wick solder or  
solder paste away from the thermal pad joint during the soldering process, leading to a compromised solder  
joint on the thermal pad.  
10.2 Layout Example  
Cff1  
R1  
C2  
R2  
OUT1  
IN1  
FB1  
C1  
GND  
EN1  
GND  
EN2  
C4  
OUT2  
R3  
CFF2  
FB2  
IN2  
R4  
C3  
GND  
46. Layout Example for the DSQ Package  
22  
版权 © 2019–2020, Texas Instruments Incorporated  
TLV752  
www.ti.com.cn  
ZHCSKJ0A DECEMBER 2019REVISED MARCH 2020  
11 器件和文档支持  
11.1 器件支持  
11.1.1 器件命名规则  
3. 器件命名规则(1)(2)  
产品  
VOUT  
P 表示有源输出放电功能。TPS746 系列的所有产品在器件处于禁用状态时都可以对输出进行主动放电。  
yyy 为封装标识符。  
TLV75201Pyyyz  
z 为封装数量。R 表示卷(3000 片),T 表示带(250 片)。  
(1) 要获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问器件产品文件夹(www.ti.com.cn)。  
(2) 可提供 0.6V 5.0V 范围内的输出电压(以 50mV 为单位增量)。有关器件的详细信息和供货情况,请联系制造商。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《使用前馈电容器和低压降稳压器的优缺点》应用报告  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019–2020, Texas Instruments Incorporated  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV75201PDSQR  
TLV75201PDSQT  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSQ  
DSQ  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
1XVH  
1XVH  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Feb-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV75201PDSQR  
TLV75201PDSQT  
WSON  
WSON  
DSQ  
DSQ  
10  
10  
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
4.0  
4.0  
8.0  
8.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Feb-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV75201PDSQR  
TLV75201PDSQT  
WSON  
WSON  
DSQ  
DSQ  
10  
10  
3000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DSQ0010A  
WSON - 0.8 mm max height  
S
C
A
L
E
5
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
0.9 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
5
6
SYMM  
1.5 0.1  
11  
2X 1.6  
8X 0.4  
1
PIN 1 ID  
10  
0.25  
0.15  
10X  
0.4  
0.2  
10X  
0.1  
C A B  
0.05  
4218906/A 04/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSQ0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
SEE SOLDER MASK  
DETAIL  
10X (0.5)  
10X (0.2)  
SYMM  
10  
1
(1.5)  
8X (0.4)  
11  
SYMM  
(0.5)  
(R0.05) TYP  
5
6
(
0.2) TYP  
VIA  
(1.9)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218906/A 04/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSQ0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (0.5)  
10X (0.2)  
(0.85)  
10  
1
8X (0.4)  
11  
SYMM  
(1.38)  
(R0.05) TYP  
5
6
SYMM  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 11  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4218906/A 04/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TLV75201PDSQT

1A、低 IQ、高 PSRR、可调节、双通道低压降 (LDO) 稳压器 | DSQ | 10 | -40 to 125
TI

TLV752600FBBNKXXHC-PF

TCXO/VC‐TCXO 7.0 x 5.0mm LVDS outpu
ACT

TLV752600FBBNKXXHE-PF

TCXO/VC‐TCXO 7.0 x 5.0mm LVDS outpu
ACT

TLV752600FBBNKXXHL-PF

TCXO/VC‐TCXO 7.0 x 5.0mm LVDS outpu
ACT

TLV752600FBDNKXXHC-PF

TCXO/VC‐TCXO 7.0 x 5.0mm LVDS outpu
ACT

TLV752600FBDNKXXHE-PF

TCXO/VC‐TCXO 7.0 x 5.0mm LVDS outpu
ACT

TLV752600FBDNKXXHL-PF

TCXO/VC‐TCXO 7.0 x 5.0mm LVDS outpu
ACT

TLV752600FBFNKXXHC-PF

TCXO/VC‐TCXO 7.0 x 5.0mm LVDS outpu
ACT

TLV752600FBFNKXXHE-PF

TCXO/VC‐TCXO 7.0 x 5.0mm LVDS outpu
ACT

TLV752600FBFNKXXHL-PF

TCXO/VC‐TCXO 7.0 x 5.0mm LVDS outpu
ACT

TLV752600FBKNKXXHC-PF

TCXO/VC‐TCXO 7.0 x 5.0mm LVDS outpu
ACT

TLV752600FBKNKXXHE-PF

TCXO/VC‐TCXO 7.0 x 5.0mm LVDS outpu
ACT