TLV75709PDRVR [TI]

具有使能功能的 1A、低 IQ、高精度、低压降稳压器 | DRV | 6 | -40 to 125;
TLV75709PDRVR
型号: TLV75709PDRVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的 1A、低 IQ、高精度、低压降稳压器 | DRV | 6 | -40 to 125

光电二极管 输出元件 稳压器 调节器
文件: 总36页 (文件大小:2346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV757P  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
TLV757P 1-A、低 IQ、小尺寸、低压降稳压器  
1 特性  
3 说明  
1
输入电压范围:1.45V 5.5V  
可用固定输出电压范围:  
0.6V 5V(阶跃为 50mV)  
TLV757P 低压降稳压器 (LDO) 是一款超小型低静态电  
LDO,可提供 1A 拉电流,具有良好的线路和负载  
瞬态性能。经优化的 TLV757P 可支持 1.45V 5.5V  
的 输入电压范围 从而适用于各种应用。为最大程度地  
降低成本和解决方案尺寸,该器件在 0.6V 5V 范围  
内以固定输出电压的形式提供,以支持现代 MCU 更低  
的内核电压。此外,TLV757P 具备带有使能功能的低  
IQ,从而可将待机功耗降至最低。该器件 具有 内部软  
启动功能,旨在降低浪涌电流,该电流将为负载提供受  
控电压并在启动过程中最大程度地降低输入电压压降。  
关断时,该器件可主动下拉输出以快速释放输出并确保  
已知的启动状态。  
IQ25µA(典型值)  
低压降:  
1A 电流时为 425mV(最大值)(3.3VOUT)  
输出精度:1%(最大值)  
内置软启动功能,具有单调 VOUT上升  
折返电流限制  
有源输出放电  
PSRR100kHz 时为 45dB  
1µF 陶瓷输出电容器搭配使用时可保持稳定  
封装:  
TLV757P 在与支持小尺寸总体解决方案的小型陶瓷输  
出电容器搭配使用时,可保持稳定。高精度带隙与误差  
放大器支持 1% 的典型精度。所有器件版本均具有集  
成的热关断保护、电流限制和低压锁定 (UVLO) 功能。  
TLV757P 包含一个内部过流保护限制,有助于在短路  
事件中减少热耗散。  
SOT-23-5(预览)  
2mm × 2mm (WSON-6)  
2 应用  
机顶盒、电视和游戏机  
便携式和电池供电类设备  
台式机、笔记本和超级本  
平板电脑和遥控器  
器件信息(1)  
器件型号  
TLV757P  
封装  
SON (6)  
封装尺寸(标称值)  
2.00mm × 2.00mm  
白色家电和电器  
SOT-23 (5)(预览) 2.90mm x 1.60mm  
电网基础设施和保护继电器  
摄像头模块和图像传感器  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
典型应用  
启动波形  
7
6
5
4
3
2
1
0
175  
150  
125  
100  
75  
VOUT  
VIN  
VEN  
IOUT  
IN  
OUT  
TLV757P  
COUT  
CIN  
EN  
GND  
ON  
OFF  
Copyright © 2017, Texas Instruments Incorporated  
50  
25  
0
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Time (ms)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
English Data Sheet: SBVS322  
 
 
 
 
TLV757P  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 15  
8.1 Application Information............................................ 15  
8.2 Typical Application ................................................. 19  
Power Supply Recommendations...................... 20  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 12  
8
9
10 Layout................................................................... 21  
10.1 Layout Guidelines ................................................. 21  
10.2 Layout Examples................................................... 21  
11 器件和文档支持 ..................................................... 22  
11.1 器件支持................................................................ 22  
11.2 接收文档更新通知 ................................................. 22  
11.3 社区资源................................................................ 22  
11.4 ....................................................................... 22  
11.5 静电放电警告......................................................... 22  
11.6 Glossary................................................................ 22  
12 机械、封装和可订购信息....................................... 22  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (October 2017) to Revision A  
Page  
DRV 封装状态发布为生产 .................................................................................................................................................. 1  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TLV757P  
www.ti.com.cn  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
5 Pin Configuration and Functions  
DBV Package (Preview)  
5-Pin SOT-23  
DRV Package  
6-Pin SON With Exposed Thermal Pad  
Top View  
Top View  
IN  
GND  
EN  
1
2
3
5
OUT  
NC  
OUT  
NC  
1
2
3
6
5
4
IN  
Thermal  
Pad  
NC  
EN  
GND  
4
Not to scale  
Not to scale  
NC- no internal connection  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
EN  
DBV  
DRV  
Enable pin. Drive EN greater than VHI to turn on the regulator. Drive EN less  
than VLO to place the LDO into shutdown mode.  
3
2
4
3
I
GND  
Ground pin  
Input pin. A capacitor with a value of 1 µF or larger is required from this pin to  
ground(1). See the Input and Output Capacitor Selection section for more  
information.  
IN  
1
4
5
6
2, 5  
1
I
NC  
OUT  
O
No internal connection  
Regulated output voltage pin. A capacitor with a value of 1 µF or larger is  
required from this pin to ground(1). See the Input and Output Capacitor Selection  
section for more information.  
Connect the thermal pad to a large-area ground plane. The thermal pad is  
internally connected to GND.  
Thermal pad  
Pad  
(1) The nominal input and output capacitance must be greater than 0.47 µF; throughout this document the nominal derating on these  
capacitors is 50%. Take care to ensure that the effective capacitance at the pin is greater than 0.47 µF.  
Copyright © 2017, Texas Instruments Incorporated  
3
TLV757P  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–40  
MAX  
UNIT  
V
Supply voltage, VIN  
6
6
Enable voltage, VEN  
V
(2)  
Output voltage, VOUT  
VIN + 0.3  
150  
V
Operating junction temperature range, TJ  
Storage temperature, Tstg  
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The absolute maximum rating is VIN + 0.3 V or 6 V, whichever is smaller  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.45  
0.6  
0
NOM  
MAX  
5.5  
5
UNIT  
V
VIN  
Input voltage  
VOUT  
VEN  
IOUT  
CIN  
Output voltage  
V
Enable voltage  
5.5  
1
V
Output current  
0
A
Input capacitor  
1
µF  
µF  
kHz  
°C  
COUT  
fEN  
Output capacitor  
Enable toggle frequency  
Junction temperature  
1
200  
10  
TJ  
–40  
125  
6.4 Thermal Information  
TLV757  
THERMAL METRIC(1)  
DBV (SOT-23)  
5 PINS  
231.1  
DRV (SON)  
UNIT  
6 PINS  
100.2  
108.5  
64.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
118.4  
64.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
28.4  
10.4  
ψJB  
63.8  
64.8  
RθJC(bot)  
N/A  
34.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017, Texas Instruments Incorporated  
TLV757P  
www.ti.com.cn  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
6.5 Electrical Characteristics  
over operating free-air temperature range (TJ = –40°C to +125°C), VIN = VOUT + 0.5 V or 1.45 V (whichever is greater), IOUT  
1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted); all typical values are at TJ = 25°C.  
=
PARAMETER  
Input voltage  
Output voltage  
TEST CONDITIONS  
MIN  
1.45  
0.6  
TYP  
MAX  
5.5  
5
UNIT  
VIN  
V
V
VOUT  
–40°C TJ 85°C, VOUT 1 V  
–40°C TJ 85°C, 0.6 V VOUT < 1 V  
OUT 1 V  
–1%  
–10  
1%  
10  
mV  
Output accuracy  
V
–1.5%  
–15  
1.5%  
15  
0.6 V VOUT < 1 V  
VOUT + 0.5 V(1) VIN 5.5 V  
mV  
mV  
(ΔVOUT ΔVIN  
)
Line regulation  
Load regulation  
2
0.044  
0.060  
25  
DRV package  
DBV package  
ΔVOUT/ΔIOU  
T
0.1 mA IOUT 1 A, VIN 2.4  
V
V/A  
TJ = 25°C  
31  
33  
40  
IGND  
Ground current  
–40°C TJ +85°C  
–40°C TJ +125°C  
µA  
µA  
VEN 0.4 V, 1.45 V VIN 5.5 V,  
ISHDN  
Shutdown current  
0.1  
1.55  
755  
1
–40°C TJ +125°C  
VOUT = VOUT - 0.2 V,  
V
OUT 1.5 V  
ICL  
Output current limit  
VIN = VOUT + VDO(MAX) + 0.25 V  
1.2  
1.78  
A
VOUT = 0.9 x VOUT, 1.5  
V < VOUT 4.5 V  
Short circuit current  
limit  
ISC  
VOUT = 0 V, VIN = VOUT + VDO(MAX) + 0.25 V  
0.6 V VOUT < 0.8 V  
mA  
1350  
1200  
1100  
1000  
700  
1400  
1300  
1150  
1050  
800  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
0.8 V VOUT < 1 V  
1 V VOUT < 1.2 V  
1.2 V VOUT < 1.5 V  
1.5 V VOUT < 1.8 V  
1.8 V VOUT < 2.5 V  
2.5 V VOUT < 3.3 V  
3.3 V VOUT < 5.0 V  
0.6 V VOUT < 0.8 V  
0.8 V VOUT < 1 V  
1 V VOUT < 1.2 V  
1.2 V VOUT < 1.5 V  
1.5 V VOUT < 1.8 V  
1.8 V VOUT < 2.5 V  
2.5 V VOUT < 3.3 V  
3.3 V VOUT < 5.0 V  
IOUT = 1 A,  
–40°C TJ +85°C  
650  
750  
500  
600  
300  
425  
VDO  
Dropout voltage  
1450  
1350  
1200  
1100  
850  
IOUT = 1 A,  
–40°C TJ +125°C  
800  
650  
475  
f = 1 kHz, VIN = VOUT + 1 V, IOUT = 50 mA  
f = 100 kHz, , VIN = VOUT + 1 V, IOUT = 50 mA  
f = 1 MHz, , VIN = VOUT + 1 V, IOUT = 50 mA  
BW = 10 Hz to 100 kHz, VOUT = 1.2 V, IOUT = 1 A  
VIN rising  
52  
46  
Power supply rejection  
ratio  
PSRR  
dB  
52  
Vn  
Output noise voltage  
Undervoltage lockout  
71.5  
1.3  
µVRMS  
V
VUVLO  
1.21  
1.44  
Undervoltage lockout  
hysteresis  
VUVLO, HYST  
tSTR  
VIN falling  
40  
mV  
µs  
V
Startup time  
550  
EN pin high voltage  
(enabled)  
VHI  
1
(1) VIN = 1.45V for VOUT < 0.9 V  
Copyright © 2017, Texas Instruments Incorporated  
5
TLV757P  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (TJ = –40°C to +125°C), VIN = VOUT + 0.5 V or 1.45 V (whichever is greater), IOUT  
1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted); all typical values are at TJ = 25°C.  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EN pin low voltage  
(enabled)  
VLO  
IEN  
0.3  
V
Enable pin current  
VIN = 5.5 V, EN = 5.5 V  
10  
95  
nA  
Ω
RPULLDOWN Pulldown resistance  
VIN = 3.3 V (P version only)  
Shutdown, temperature increasing  
Reset, temperature decreasing  
165  
155  
°C  
°C  
TSD Thermal shutdown  
6
版权 © 2017, Texas Instruments Incorporated  
TLV757P  
www.ti.com.cn  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
6.6 Typical Characteristics  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN  
= COUT = 1 µF (unless otherwise noted)  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.8 V  
VIN = 4 V  
VIN = 4.3 V  
VIN = 5 V  
IOUT  
100 mA  
500 mA  
10 mA  
50 mA  
1 A  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VIN = 4.3 V, VOUT = 3.3 V, COUT = 1 µF  
VOUT = 3.3 V, COUT = 1 µF, IOUT = 1 A  
1. PSRR vs IOUT  
2. PSRR Vs VIN  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
5
2
1
0.5  
0.2  
0.1  
COUT  
0.05  
COUT  
1 mF  
10 mF  
22 mF  
100 mF  
4.7 mF, 151 mVRMS  
10 mF, 150 mVRMS  
22 mF, 151 mVRMS  
47 mF, 150 mVRMS  
100 mF, 148 mVRMS  
0.02  
0.01  
0.005  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VIN = 4.3 V, VOUT = 3.3 V, COUT = 1 µF  
VOUT = 3.3 V, IOUT = 1 A, VRMS BW = 10 Hz to 100 kHz  
3. PSRR Vs COUT  
4. Output Spectral Noise Density  
10  
10  
5
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
IOUT  
0.02  
0.05  
10 mA, 158 mVRMS  
50 mA, 159 mVRMS  
100 mA, 159 mVRMS  
500 mA, 153 mVRMS  
1 A, 151 mVRMS  
VOUT  
0.9 V, 53.8 mVRMS  
1.2 V, 71.47 mVRMS  
3.3 V, 151 mVRMS  
5 V, 217 mVRMS  
0.01  
0.02  
0.01  
0.005  
0.002  
0.001  
0.005  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
IOUT = 1 A, COUT = 1 µF, VRMS BW = 10 Hz to 100 kHz  
VOUT = 3.3 V, COUT = 1 µF, VRMS BW = 10 Hz to 100 kHz  
5. Output Spectral Noise Density  
6. Output Noise vs Frequency and VOUT  
版权 © 2017, Texas Instruments Incorporated  
7
TLV757P  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN  
= COUT = 1 µF (unless otherwise noted)  
220  
200  
180  
160  
140  
120  
100  
80  
6
5
4
3
2
1
0
3.328  
VIN  
VOUT  
3.32  
3.312  
3.304  
3.296  
3.288  
3.28  
60  
40  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
20  
Time (ms)  
40  
50  
Output Voltage (V)  
IOUT = 1 A, COUT = 1 µF, VRMS BW = 10 Hz to 100 kHz  
VOUT = 3.3 V, COUT = 1 µF, VIN slew rate = 1 V/µs  
7. Output Noise Voltage vs VOUT  
8. Line Transient  
200  
2.2  
2
6
5
4
3
2
1
0
VOUT  
IOUT  
VIN  
VOUT  
150  
100  
50  
1.8  
1.6  
1.4  
1.2  
1
0
-50  
-100  
-150  
-200  
-250  
-300  
-350  
0.8  
0.6  
0.4  
0.2  
0
0
20  
40  
60  
80 100 120 140 160 180 200  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Time (ms)  
Time (ms)  
VIN = 5 V, VOUT = 3.3 V, COUT = 1 µF, IOUT slew rate = 1 A/µs  
9. 3.3-V, 1-mA to 1-A Load Transient  
10. VIN = VEN Power-Up  
6
7
175  
150  
125  
100  
75  
VIN  
VOUT  
VOUT  
VIN  
VEN  
IOUT  
6
5
4
3
2
1
0
5
4
3
2
1
0
50  
25  
0
0
1
2
3
4
5
6
7
8
9
10  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Time (ms)  
Time (ms)  
VIN = 5 V, IOUT = 100 mA, VEN slew rate = 1 V/µs, VOUT = 3.3 V  
11. VIN = VEN Shutdown  
12. EN Startup  
8
版权 © 2017, Texas Instruments Incorporated  
TLV757P  
www.ti.com.cn  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
Typical Characteristics (接下页)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN  
= COUT = 1 µF (unless otherwise noted)  
400  
350  
300  
250  
200  
150  
100  
50  
15  
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
0
-15  
-30  
-45  
-60  
0
0
100 200 300 400 500 600 700 800 900 1000  
Output Current (mA)  
0
100 200 300 400 500 600 700 800 900 1000  
Output Current (mA)  
13. Load Regulation vs IOUT  
14. 3.3-V Dropout Voltage vs IOUT  
400  
350  
300  
250  
200  
150  
100  
50  
1
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
0.75  
0.5  
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
0
0
100 200 300 400 500 600 700 800 900 1000  
Output Current (mA)  
3.5  
3.75  
4
4.25  
Input Voltage (V)  
4.5  
4.75  
5
5.25  
5.5  
VOUT = 3.3 V, IOUT = 1 mA  
15. 5.0-V Dropout Voltage vs IOUT  
16. 3.3 V Regulation vs VIN (Line Regulation)  
1
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-40èC  
0èC  
25èC  
85èC  
125èC  
0.75  
0.5  
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-40èC  
0èC  
25èC  
85èC  
125èC  
5
5.1  
5.2  
5.3  
5.4  
5.5  
0
100 200 300 400 500 600 700 800 900 1000  
Output Current (mA)  
Input Voltage (V)  
IOUT = 1 mA, VOUT = 5 V  
17. 5.0-V Accuracy vs VIN (Line Regulation)  
18. IGND vs IOUT  
版权 © 2017, Texas Instruments Incorporated  
9
 
 
TLV757P  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN  
= COUT = 1 µF (unless otherwise noted)  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
0
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Input Voltage (V)  
Input Voltage (V)  
VOUT = 3.3 V, IOUT = 1 mA  
VOUT = 3.3 V, IOUT = 0 mA  
19. IGND vs VIN  
20. IGND vs VIN  
350  
180  
160  
140  
120  
100  
80  
-40èC  
0èC  
25èC  
85èC  
125èC  
300  
250  
200  
150  
100  
50  
60  
40  
20  
0
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
1
2
3
4
5
6
Temperature (èC)  
Input Voltage (V)  
22. ISHDN vs Temperature  
21. ISHDN vs VIN  
250  
200  
150  
100  
50  
800  
750  
700  
650  
600  
550  
500  
-40èC  
0èC  
25èC  
85èC  
125èC  
EN Negative  
EN Positive  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0
1
2
3
4
5
6
Temperature (èC)  
Input Voltage (V)  
VEN = 5.5 V  
23. Enable Threshold vs Temperature  
24. IEN vs VIN  
10  
版权 © 2017, Texas Instruments Incorporated  
 
TLV757P  
www.ti.com.cn  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
Typical Characteristics (接下页)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN  
= COUT = 1 µF (unless otherwise noted)  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1.4  
1.36  
1.32  
1.28  
1.24  
1.2  
-40èC  
0èC  
85èC  
125èC  
25èC  
UVLO Negative  
-25  
UVLO Positive  
0
-50  
0
25  
50  
75  
100  
125  
0
1
2
3
4
5
Temperature (èC)  
Output Current (mA)  
25. UVLO Threshold vs Temperature  
26. IOUT vs VOUT Pulldown Resistor  
4
3.2  
2.4  
1.6  
0.8  
0
-40èC  
0èC  
25èC  
85èC  
125èC  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Output Current (mA)  
27. 3.3-V Foldback Current Limit vs IOUT  
版权 © 2017, Texas Instruments Incorporated  
11  
 
TLV757P  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV757P belongs to a family of next-generation, low-dropout regulators (LDOs). This device consumes low  
quiescent current and delivers excellent line and load transient performance. The TLV757P is optimized for wide  
variety of applications by supporting an input voltage range from 1.4 V to 5.5 V. To minimize cost and solution  
size, the device is offered in fixed output voltages ranging from 0.6 V to 5 V to support the lower core voltages of  
modern microcontrollers (MCUs).  
This regulator offers foldback current limit, shutdown, and thermal protection. The operating junction temperature  
is –40°C to +125°C.  
7.2 Functional Block Diagram  
IN  
OUT  
Current  
Limit  
R1  
Thermal  
Shutdown  
œ
+
UVLO  
120 Ω  
R2  
EN  
Bandgap  
GND  
Logic  
(1) R2 = 550 kΩ, R1 = adjustable.  
7.3 Feature Description  
7.3.1 Undervoltage Lockout (UVLO)  
An undervoltage lockout (UVLO) circuit disables the output until the input voltage is greater than the rising UVLO  
voltage (VUVLO). This circuit ensures that the device does not exhibit any unpredictable behavior when the supply  
voltage is lower than the operational range of the internal circuitry. When VIN is less than VUVLO, the output is  
connected to ground with a 120-Ω pulldown resistor.  
7.3.2 Enable (EN)  
The enable pin (EN) is active high. Enable the device by forcing the EN pin to exceed VHI. Turn off the device by  
forcing the EN pin below VLO. If shutdown capability is not required, connect EN to IN.  
The device has an internal pull-down that connects a 120-Ω resistor to ground when the device is disabled. The  
discharge time after disabling depends on the output capacitance (COUT) and the load resistance (RL) in parallel  
with the 120-Ω pulldown resistor. 公式 1 calculates the time constant τ:  
120 · RL  
t =  
· COUT  
120 + RL  
(1)  
12  
版权 © 2017, Texas Instruments Incorporated  
 
TLV757P  
www.ti.com.cn  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
Feature Description (接下页)  
The EN pin is independent of the input pin, but if the EN pin is driven to a higher voltage than VIN, the current  
into the EN pin increases. This effect is illustrated in 24. When the EN voltage is higher than the input voltage  
there is an increased current flow into the EN pin. If this increased flow causes problems in the application,  
sequence the EN pin after VIN is high, or to tie EN to VIN to prevent this flow increase from happening. If EN is  
driven to a higher voltage than VIN, limit the frequency on EN to below 10 kHz.  
7.3.3 Internal Foldback Current Limit  
The TLV757P has an internal current limit that protects the regulator during fault conditions. The current limit is a  
hybrid scheme with brick wall until the output voltage is less than 0.4 × VOUT(NOM). When the voltage drops below  
0.4 × VOUT(NOM), a foldback current limit is implemented which scales back the current as the output voltage  
approaches GND. When the output shorts, the LDO supplies a typical current of ISC. The output voltage is not  
regulated when the device is in current limit. In this condition, the output voltage is the product of the regulated  
current and the load resistance. When the device output is shorts, the PMOS pass transistor dissipates power  
[(VIN – VOUT) × ISC] until thermal shutdown is triggered and the device turns off. After the device cools down, the  
internal thermal shutdown circuit turns the device back on. If the fault condition continues, the device cycles  
between current limit and thermal shutdown.  
The foldback current-limit circuit limits the current that is allowed through the device to current levels lower than  
the minimum current limit at nominal VOUT current limit (ICL) during start up. See 27 for typical current limit  
values. If the output is loaded by a constant-current load during start up, or if the output voltage is negative when  
the device is enabled, then the load current demanded by the load may exceed the foldback current limit and the  
device may not rise to the full output voltage. For constant-current loads, disable the output load until the output  
has risen to the nominal voltage.  
Excess inductance can cause the current limit to oscillate. Minimize the inductance to keep the current limit from  
oscillating during a fault condition.  
7.3.4 Thermal Shutdown  
Thermal shutdown protection disables the output when the junction temperature rises to approximately 165°C.  
Disabling the device eliminates the power dissipated by the device, allowing the device to cool. When the  
junction temperature cools to approximately 155°C, the output circuitry is enabled again. Depending on power  
dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off.  
This cycling limits regulator dissipation which protects the circuit from damage as a result of overheating.  
Activating the thermal shutdown feature usually indicates excessive power dissipation as a result of the product  
of the (VIN – VOUT) voltage and the load current. For reliable operation, limit junction temperature to a maximum  
of 125°C. To estimate the margin of safety in a complete design, increase the ambient temperature until the  
thermal protection is triggered; use worst-case loads and signal conditions.  
The internal protection circuitry protects against overload conditions but is not intended to be activated in normal  
operation. Continuously running the device into thermal shutdown degrades device reliability.  
版权 © 2017, Texas Instruments Incorporated  
13  
TLV757P  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
7.4 Device Functional Modes  
1 lists a comparison between the normal, dropout, and disabled modes of operation.  
1. Device Functional Modes Comparison  
PARAMETER  
OPERATING MODE  
VIN  
EN  
IOUT  
IOUT < ICL  
TJ  
TJ < TSD  
Normal(1)  
Dropout(1)  
Disabled(2)  
VIN > VOUT(NOM) + VDO  
VIN < VOUT(NOM) + VDO  
VIN < VUVLO  
VEN > VHI  
VEN > VHI  
VEN < VLO  
TJ < TSD  
TJ > TSD  
(1) All table conditions must be met.  
(2) The device is disabled when any condition is met.  
7.4.1 Normal Operation  
The device regulates to the nominal output voltage when all of the following conditions are met.  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(NOM) + VDO)  
The enable voltage has previously exceeded the enable rising threshold voltage and has not decreased  
below the enable falling threshold  
The output current is less than the current limit (IOUT < ICL  
The device junction temperature is less than the thermal shutdown temperature (TJ < TSD  
)
)
7.4.2 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout. In this mode, the output voltage tracks  
the input voltage. During this mode, the transient performance of the device degrades because the pass device  
is in a triode state and no longer controls the output voltage of the LDO. Line or load transients in dropout can  
result in large output-voltage deviations.  
When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO  
,
right after being in a normal regulation state, but not during startup), the pass-FET is driven as hard as possible  
when the control loop is out of balance. During the normal time required for the device to regain regulation, VIN  
VOUT(NOM) + VDO, VOUT can overshoot VOUT(NOM) during fast transients.  
7.4.3 Disabled  
The output is shut down by forcing the enable pin below VLO. When disabled, the pass device is turned off,  
internal circuits are shut down, and the output voltage is actively discharged to ground by an internal switch from  
the output to ground. The active pulldown is on when sufficient input voltage is provided.  
14  
版权 © 2017, Texas Instruments Incorporated  
 
TLV757P  
www.ti.com.cn  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Input and Output Capacitor Selection  
The TLV757P requires an output capacitance of 0.47 μF or larger for stability. Use X5R- and X7R-type ceramic  
capacitors because these capacitors have minimal variation in capacitance value and equivalent series  
resistance (ESR) over temperature. When selecting a capacitor for a specific application, consider the DC bias  
characteristics for the capacitor. Higher output voltages cause a significant derating of the capacitor. As a  
general rule, ceramic capacitors must be derated by 50%. For best performance, TI recommends a maximum  
output capacitance value of 200 µF.  
Place a 1 µF or greater capacitor on the input pin of the LDO. Some input supplies have a high impedance.  
Placing a capacitor on the input supply reduces the input impedance. The input capacitor counteracts reactive  
input sources and improves transient response and PSRR. If the input supply has a high impedance over a large  
range of frequencies, several input capacitors are used in parallel to lower the impedance over frequency. Use a  
higher-value capacitor if large, fast, rise-time load transients are expected, or if the device is located several  
inches from the input power source.  
8.1.2 Dropout Voltage  
The TLV757P uses a PMOS pass transistor to achieve low dropout. When (VIN – VOUT) is less than the dropout  
voltage (VDO), the PMOS pass device is in the linear region of operation and the input-to-output resistance is the  
RDS(ON) of the PMOS pass element. VDO scales linearly with the output current because the PMOS device  
functions like a resistor in dropout mode. As with any linear regulator, PSRR and transient response degrade as  
(VIN – VOUT) approaches dropout operation. See 14 and 15 for typical dropout values.  
8.1.3 Exiting Dropout  
Some applications have transients that place the LDO into dropout, such as slower ramps on VIN during start-up.  
As with other LDOs, the output may overshoot on recovery from these conditions. A ramping input supply causes  
an LDO to overshoot on start-up when the slew rate and voltage levels are in the correct range; see 28. Use  
an enable signal to avoid this condition.  
版权 © 2017, Texas Instruments Incorporated  
15  
TLV757P  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
Application Information (接下页)  
Input Voltage  
Response time for  
LDO to get back into  
regulation.  
Load current discharges  
output voltage.  
VIN = VOUT(nom) + VDO  
Output Voltage  
Dropout  
VOUT = VIN - VDO  
Output Voltage in  
normal regulation.  
Time  
28. Startup into Dropout  
Line transients out of dropout can also cause overshoot on the output of the regulator. These overshoots are  
caused by the error amplifier having to drive the gate capacitance of the pass element and bring the gate back to  
the correct voltage for proper regulation. 29 illustrates what is happening internally with the gate voltage and  
how overshoot can be caused during operation. When the LDO is placed in dropout, the gate voltage (VGS) is  
pulled all the way down to give the pass device the lowest on-resistance as possible. However, if a line transient  
occurs while the device is in dropout, the loop is not in regulation which can cause the output to overshoot until  
the loop responds and the output current pulls the output voltage back down into regulation. If these transients  
are not acceptable, then continue to add input capacitance in the system until the transient is slow enough to  
reduce the overshoot.  
16  
版权 © 2017, Texas Instruments Incorporated  
TLV757P  
www.ti.com.cn  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
Application Information (接下页)  
Transient response  
time of the LDO  
Input Voltage  
Load current  
discharges  
output  
voltage  
Output Voltage  
VDO  
Output Voltage in  
normal regulation  
Dropout  
VOUT = VIN - VDO  
VGS voltage  
(pass device  
fully off)  
Input Voltage  
VGS voltage for  
normal operation  
VGS voltage for  
normal operation  
Gate Voltage  
VGS voltage in  
dropout (pass device  
fully on)  
Time  
29. Line Transients From Dropout  
8.1.4 Reverse Current  
As with most LDOs, excessive reverse current can damage this device.  
Reverse current flows through the body diode on the pass element instead of the normal conducting channel. At  
high magnitudes, this current flow degrades the long-term reliability of the device, as a result of one of the  
following conditions:  
Degradation caused by electromigration  
Excessive heat dissipation  
Potential for a latch-up condition  
Conditions where reverse current can occur are outlined in this section, all of which can exceed the absolute  
maximum rating of VOUT > VIN + 0.3 V:  
If the device has a large COUT and the input supply collapses with little or no load current  
The output is biased when the input supply is not established  
The output is biased above the input supply  
版权 © 2017, Texas Instruments Incorporated  
17  
TLV757P  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
Application Information (接下页)  
If reverse current flow is expected in the application, external protection must be used to protect the device. 图  
30 shows one approach of protecting the device.  
Schottky Diode  
Internal Body Diode  
IN  
OUT  
Device  
COUT  
CIN  
GND  
30. Example Circuit for Reverse Current Protection Using a Schottky Diode  
8.1.5 Power Dissipation (PD)  
Circuit reliability demands that proper consideration is given to device power dissipation, location of the circuit on  
the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must  
be as free of other heat-generating devices as possible that cause added thermal stresses.  
As a first-order approximation, power dissipation in the regulator depends on the input-to-output voltage  
difference and load conditions. Use 公式 2 to approximate PD:  
PD = (VIN – VOUT) × IOUT  
(2)  
It is important to minimize power dissipation to achieve greater efficiency. This minimizing process is achieved by  
selecting the correct system voltage rails. Proper selection helps obtain the minimum input-to-output voltage  
differential . The low dropout of the device allows for maximum efficiency across a wide range of output voltages.  
The main heat conduction path for the device is through the thermal pad on the package. As such, the thermal  
pad must be soldered to a copper pad area under the device. This pad area should contain an array of plated  
vias that conduct heat to inner plane areas or to a bottom-side copper plane.  
The maximum allowable junction temperature (TJ) determines the maximum power dissipation for the device.  
Power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance  
(θJA) of the combined PCB, device package, and the temperature of the ambient air (TA), according to 公式 3.  
TJ = TA + θJA × PD  
(3)  
Unfortunately, this thermal resistance (θJA) is dependent on the heat-spreading capability built into the particular  
PCB design, and therefore varies according to the total copper area, copper weight, and location of the planes.  
The θJA value is only used as a relative measure of package thermal performance. θJA is the sum of the VQFN  
package junction-to-case (bottom) thermal resistance (θJCbot) plus the thermal resistance contribution by the PCB  
copper.  
18  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
TLV757P  
www.ti.com.cn  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
Application Information (接下页)  
8.1.5.1 Estimating Junction Temperature  
The JEDEC standard recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures of  
the LDO when in-circuit on a typical PCB board application. These metrics are not thermal resistances, but offer  
practical and relative means of estimating junction temperatures. These psi metrics are independent of the  
copper-spreading area. The key thermal metrics (ΨJT and ΨJB) are shown in the table and are used in  
accordance with 公式 4.  
YJT: TJ = TT + YJT ´ PD  
YJB: TJ = TB + YJB ´ PD  
where:  
PD is the power dissipated as shown in 公式 2  
TT is the temperature at the center-top of the device package, and  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
(4)  
8.2 Typical Application  
IN  
OUT  
GND  
1 F  
DC-DC  
Converter  
1 F  
TLV757P  
Load  
EN  
ON  
Copyright © 2017, Texas Instruments Incorporated  
OFF  
31. TLV757P Typical Application  
8.2.1 Design Requirements  
2 lists the design requirements for this application.  
2. Design Parameters  
PARAMETER  
Input voltage  
DESIGN REQUIREMENT  
2.5 V  
1.8 V  
Output voltage  
Input current  
700 mA (maximum)  
600-mA DC  
70°C  
Output load  
Maximum ambient temperature  
版权 © 2017, Texas Instruments Incorporated  
19  
 
 
TLV757P  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Input Current  
During normal operation, the input current to the LDO is approximately equal to the output current of the LDO.  
During startup, the input current is higher as a result of the inrush current charging the output capacitor. Use 公式  
5 to calculate the current through the input.  
C
OUT ´ dVOUT(t)  
VOUT(t)  
RLOAD  
IOUT(t)  
=
+
dt  
where:  
VOUT(t) is the instantaneous output voltage of the turn-on ramp  
dVOUT(t) / dt is the slope of the VOUT ramp  
RLOAD is the resistive load impedance  
(5)  
8.2.2.2 Thermal Dissipation  
The junction temperature can be determined using the junction-to-ambient thermal resistance (RθJA) and the total  
power dissipation (PD). Use 公式 6 to calculate the power dissipation. Multiply PD by RθJA and add the ambient  
temperature (TA) to calculate the junction temperature (TJ) as 公式 7 shows.  
PD = (IGND+ IOUT) × (VIN – VOUT  
)
(6)  
(7)  
TJ = RθJA × PD + TA  
If the (TJ(MAX)) value does not exceed 125°C calculate the maximum ambient temperature as 公式 8 shows. 公式  
9 calculates the maximum ambient temperature with a value of 82.916°C.  
TA(MAX) = TJ(MAX) – RθJA × PD  
(8)  
(9)  
TA(MAX) = 125°C – 100.2 × (2.5 V –1.8 V) × (0.6 A) = 82.916°C  
8.2.3 Application Curves  
3
2.5  
2
1.2  
1
100  
80  
60  
40  
20  
0
0.8  
0.6  
0.4  
0.2  
0
1.5  
1
VIN  
VOUT  
EN  
IIN  
0.5  
0
IOUT = 600 mA  
100 1k  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
10  
10k  
100k  
1M  
10M  
Time (ms)  
Frequency (Hz)  
VIN = 2.5 V, VOUT = 1.8 V, IOUT = 600 mA  
32. Startup With a 600-mA Load  
33. PSRR (2.5 V to 1.8 V at 600 mA)  
9 Power Supply Recommendations  
Connect a low output impedance power supply directly to the IN pin of the TLV757P. If the input source is  
reactive, consider using multiple input capacitors in parallel with the 1-µF input capacitor to lower the input supply  
impedance over frequency.  
20  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
 
 
TLV757P  
www.ti.com.cn  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
10 Layout  
10.1 Layout Guidelines  
Place input and output capacitors as close as possible to the device.  
Use copper planes for device connections to optimize thermal performance.  
Place thermal vias around the device to distribute the heat.  
10.2 Layout Examples  
VOUT  
VIN  
5
1
/
Lb  
/
hÜÇ  
2
3
4
9b  
GND PLANE  
Represents via used for  
application specific connections  
34. Layout Example: DBV Package  
VIN  
VOUT  
1
6
5
/
/
Lb  
hÜÇ  
2
3
4
9b  
GND PLANE  
Represents via used for  
application specific connections  
35. Layout Example: DRV Package  
版权 © 2017, Texas Instruments Incorporated  
21  
TLV757P  
ZHCSH76A OCTOBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 器件命名规则  
3. 器件命名规则(1)(2)  
产品  
VOUT  
xx(x) 为标称输出电压。对于分辨率为 50mV 的输出电压,订货编号中使用两位数字;否则,使用三位数  
字(例如,28 = 2.8V125 = 1.25 V)。  
TLV757xx(x)Pyyyz  
P 表示有源输出放电功能。TLV757P 系列的所有产品在器件处于禁用状态时都可以对输出进行主动放电。  
yyy 为封装标识符。  
z 为封装数量。R 表示卷(3000 片),T 表示带(250 片)。  
(1) 要获得最新的封装和订货信息,请参见本文档末尾的封装选项附录,或者访问器件产品文件夹(www.ti.com.cn)。  
(2) 可提供 0.6V 5V 范围内的输出电压(以 50mV 为单位增加)。有关器件的详细信息和供货情况,请联系制造商。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
22  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV75709PDBVR  
TLV75709PDRVR  
TLV75710PDBVR  
TLV75710PDRVR  
TLV75712PDBVR  
TLV75712PDRVR  
TLV75715PDBVR  
TLV75715PDRVR  
TLV75718PDBVR  
TLV75718PDRVR  
TLV75719PDBVR  
TLV75719PDRVR  
TLV75725PDBVR  
TLV75725PDRVR  
TLV75728PDBVR  
TLV75728PDRVR  
TLV75729PDBVR  
TLV75730PDBVR  
TLV75730PDRVR  
TLV75733PDBVR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
SOT-23  
WSON  
SOT-23  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DBV  
DRV  
DBV  
5
6
5
6
5
6
5
6
5
6
5
6
5
6
5
6
5
5
6
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1H8F  
1HGH  
1FEF  
1HHH  
1FFF  
1HIH  
1FGF  
1HJH  
1FHF  
1HKH  
1H7F  
1HLH  
1FIF  
NIPDAU  
NIPDAU | SN  
NIPDAU  
NIPDAU | SN  
NIPDAU  
NIPDAU | SN  
NIPDAU  
NIPDAU | SN  
NIPDAU  
NIPDAU | SN  
NIPDAU  
NIPDAU | SN  
NIPDAU  
1HMH  
1FJF  
NIPDAU | SN  
NIPDAU  
1HNH  
1H9F  
1GHF  
1HOH  
1FKF  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU  
NIPDAU | SN  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV75733PDRVR  
TLV75740PDRVR  
ACTIVE  
ACTIVE  
WSON  
WSON  
DRV  
DRV  
6
6
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
1HPH  
1HQH  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV75709PDBVR  
TLV75709PDRVR  
TLV75710PDBVR  
TLV75710PDBVR  
TLV75710PDRVR  
TLV75712PDBVR  
TLV75712PDRVR  
TLV75715PDBVR  
TLV75715PDBVR  
TLV75715PDRVR  
TLV75718PDBVR  
TLV75718PDRVR  
TLV75719PDBVR  
TLV75719PDBVR  
TLV75719PDRVR  
TLV75725PDBVR  
SOT-23  
WSON  
SOT-23  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
SOT-23  
WSON  
SOT-23  
DBV  
DRV  
DBV  
DBV  
DRV  
DBV  
DRV  
DBV  
DBV  
DRV  
DBV  
DRV  
DBV  
DBV  
DRV  
DBV  
5
6
5
5
6
5
6
5
5
6
5
6
5
5
6
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
2.3  
3.2  
3.2  
2.3  
3.2  
2.3  
3.2  
3.2  
2.3  
3.2  
2.3  
3.2  
3.2  
2.3  
3.2  
3.2  
2.3  
3.2  
3.2  
2.3  
3.2  
2.3  
3.2  
3.2  
2.3  
3.2  
2.3  
3.2  
3.2  
2.3  
3.2  
1.4  
1.15  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q2  
Q3  
Q3  
Q2  
Q3  
Q2  
Q3  
Q3  
Q2  
Q3  
Q2  
Q3  
Q3  
Q2  
Q3  
1.4  
1.15  
1.4  
1.15  
1.4  
1.4  
1.15  
1.4  
1.15  
1.4  
1.4  
1.15  
1.4  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV75725PDBVR  
TLV75725PDRVR  
TLV75728PDBVR  
TLV75728PDBVR  
TLV75728PDRVR  
TLV75729PDBVR  
TLV75729PDBVR  
TLV75730PDBVR  
TLV75730PDRVR  
TLV75733PDBVR  
TLV75733PDRVR  
TLV75740PDRVR  
SOT-23  
WSON  
SOT-23  
SOT-23  
WSON  
SOT-23  
SOT-23  
SOT-23  
WSON  
SOT-23  
WSON  
WSON  
DBV  
DRV  
DBV  
DBV  
DRV  
DBV  
DBV  
DBV  
DRV  
DBV  
DRV  
DRV  
5
6
5
5
6
5
5
5
6
5
6
6
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
2.3  
3.2  
3.2  
2.3  
3.2  
3.2  
3.2  
2.3  
3.2  
2.3  
2.3  
3.2  
2.3  
3.2  
3.2  
2.3  
3.2  
3.2  
3.2  
2.3  
3.2  
2.3  
2.3  
1.4  
1.15  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q2  
Q3  
Q3  
Q2  
Q3  
Q3  
Q3  
Q2  
Q3  
Q2  
Q2  
1.4  
1.15  
1.4  
1.4  
1.4  
1.15  
1.4  
1.15  
1.15  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV75709PDBVR  
TLV75709PDRVR  
TLV75710PDBVR  
TLV75710PDBVR  
TLV75710PDRVR  
TLV75712PDBVR  
TLV75712PDRVR  
TLV75715PDBVR  
TLV75715PDBVR  
TLV75715PDRVR  
TLV75718PDBVR  
TLV75718PDRVR  
TLV75719PDBVR  
TLV75719PDBVR  
TLV75719PDRVR  
TLV75725PDBVR  
TLV75725PDBVR  
TLV75725PDRVR  
SOT-23  
WSON  
SOT-23  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
SOT-23  
WSON  
SOT-23  
SOT-23  
WSON  
DBV  
DRV  
DBV  
DBV  
DRV  
DBV  
DRV  
DBV  
DBV  
DRV  
DBV  
DRV  
DBV  
DBV  
DRV  
DBV  
DBV  
DRV  
5
6
5
5
6
5
6
5
5
6
5
6
5
5
6
5
5
6
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2023  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV75728PDBVR  
TLV75728PDBVR  
TLV75728PDRVR  
TLV75729PDBVR  
TLV75729PDBVR  
TLV75730PDBVR  
TLV75730PDRVR  
TLV75733PDBVR  
TLV75733PDRVR  
TLV75740PDRVR  
SOT-23  
SOT-23  
WSON  
SOT-23  
SOT-23  
SOT-23  
WSON  
SOT-23  
WSON  
WSON  
DBV  
DBV  
DRV  
DBV  
DBV  
DBV  
DRV  
DBV  
DRV  
DRV  
5
5
6
5
5
5
6
5
6
6
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 4  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A  
C
B
0.05  
4222173/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222173/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222173/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV75710PDBVR

具有使能功能的 1A、低 IQ、高精度、低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV75710PDRVR

具有使能功能的 1A、低 IQ、高精度、低压降稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV75712PDBVR

具有使能功能的 1A、低 IQ、高精度、低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV75712PDRVR

具有使能功能的 1A、低 IQ、高精度、低压降稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV75715PDBVR

具有使能功能的 1A、低 IQ、高精度、低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV75715PDRVR

具有使能功能的 1A、低 IQ、高精度、低压降稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV75718PDBVR

具有使能功能的 1A、低 IQ、高精度、低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV75718PDRVR

具有使能功能的 1A、低 IQ、高精度、低压降稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV75719PDBVR

具有使能功能的 1A、低 IQ、高精度、低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV75719PDRVR

具有使能功能的 1A、低 IQ、高精度、低压降稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV75725PDBVR

具有使能功能的 1A、低 IQ、高精度、低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV75725PDRVR

具有使能功能的 1A、低 IQ、高精度、低压降稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI