TLV809EA46DPWR [TI]

TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage Supervisors;
TLV809EA46DPWR
型号: TLV809EA46DPWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage Supervisors

文件: 总44页 (文件大小:2122K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV803E, TLV809E, TLV810E  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage  
Supervisors  
1 Features  
3 Description  
The TLV803E, TLV809E, and TLV810E are  
enhanced alternatives to the TLV803, TLV853,  
TLV809, LM809, TPS3809 and TLV810. TLV803E,  
TLV809E and TLV810E offer lower supply current for  
battery-powered applications, higher accuracy, wider  
1
Ensured RESET/RESET for VDD = 0.7 V to 6 V  
Fixed time delay: 40 µs, 10 ms, 50 ms, 100 ms,  
200 ms, 400 ms  
Supply current (IDD): 250 nA (typical)  
temperature range, and lower power-on-reset (VPOR  
for increased system reliability.  
)
1 µA (maximum for VDD = 3.3 V)  
Output topology:  
The TLV803E, TLV809E, and TLV810E family are  
low IQ (250 nA typical, 1 µA max), voltage supervisory  
circuits (reset IC) that monitor VDD voltage level.  
These devices initiate a reset signal whenever supply  
voltage VDD drops below the factory programmed  
falling threshold voltage, VIT–. The reset output  
remains low for a fixed reset time delay tD after the  
VDD voltage rises above the rising voltage threshold  
(VIT+) which is equivalent to the falling threshold  
voltage (VIT-) plus hysteresis (VHYS).  
TLV809E: push-pull, active-low  
TLV803E: open-drain, active-low  
TLV810E: push-pull, active-high  
Under voltage detection:  
High accuracy: ±0.5% (typical)  
Nominal voltage monitor: 3 V, 3.3 V, 5 V  
(VIT–): 1.7 V, 1.8 V, 1.9 V, 2.4 V, 2.64 V,  
2.93 V, 3.08 V, 4.38 V, 4.63 V  
Package:  
These devices have integrated glitch immunity to  
ignore fast transients on the VDD pin. The low current  
consumption and high accuracy (±0.5% typical)  
makes these voltage supervisors ideal for use in low-  
power and portable applications. The TLV80xE and  
TLV81xE devices are specified to have the defined  
SOT23-3 (DBZ) (with pin 1 = GND)  
SOT23-3 (DBZ) (with pin 1 = RESET/RESET)  
SC-70 (DCK)  
X2SON-5 (DPW)  
output logic state for supply voltages down to VPOR  
=
Temperature range: –40°C to +125°C  
0.7 V. The TLV80xE and TLV81xE devices are  
available in industry standard 3-pin SOT23 (DBZ)  
package, 3-pin SC70 (DCK) package, and very  
compact X2SON (DPW) package.  
Pin-to-pin compatible with MAX803/809/810,  
APX803/809/810  
2 Applications  
Device Information(1)  
Applications using DSPs, microcontrollers, or  
microprocessors  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
2.90 mm × 1.30 mm  
2.00 mm × 1.25 mm  
0.8 mm x 0.8 mm  
SOT-23 (3)  
Electricity meters  
TLV803E, TLV809E,  
TLV810E  
SC-70 (3)  
Portable, battery-powered equipment  
Set-top boxes and TVs  
X2SON (5)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Building automation  
Notebook/desktop computers, servers  
Typical Application  
LDO  
IN  
OUT  
VDD  
*Rpull-up  
FPGA, ASIC, DSP  
VDD  
RESET  
TLV803E  
RESET  
GND  
GND  
*Pull-up resistor not required for TLV809E, TLV810E  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
 
 
 
 
TLV803E, TLV809E, TLV810E  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
www.ti.com  
Table of Contents  
8.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 18  
9.1 Application Information............................................ 18  
9.2 Typical Application ................................................. 18  
9.3 Typical Application .................................................. 20  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison ............................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements................................................ 7  
7.7 Timing Diagram......................................................... 8  
7.8 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 14  
8.3 Feature Description................................................. 14  
9
10 Power Supply Recommendations ..................... 21  
11 Layout................................................................... 21  
11.1 Layout Guidelines ................................................. 21  
11.2 Layout Example .................................................... 21  
12 Device and Documentation Support ................. 22  
12.1 Device Support .................................................... 22  
12.2 Documentation Support ....................................... 23  
12.3 Related Links ........................................................ 23  
12.4 Receiving Notification of Documentation Updates 23  
12.5 Support Resources ............................................... 23  
12.6 Trademarks........................................................... 23  
12.7 Electrostatic Discharge Caution............................ 23  
12.8 Glossary................................................................ 23  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 23  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision E (April 2020) to Revision F  
Page  
Changed DPW package from Advanced Information to Production Data.............................................................................. 1  
Changed DPW package Information ..................................................................................................................................... 4  
Changes from Revision D (February 2020) to Revision E  
Page  
Added X2SON (DPW) package option .................................................................................................................................. 3  
Changes from Revision C (November 2019) to Revision D  
Page  
Added device nomenclature figure ........................................................................................................................................ 3  
Added timing diagram for TLV810E ...................................................................................................................................... 8  
Added Figure 6, Figure 23, Figure 24 ................................................................................................................................... 9  
Changed block diagram and description to include TLV810E.............................................................................................. 14  
Added typical application for TLV810E ............................................................................................................................... 20  
Changes from Revision B (July 2019) to Revision C  
Page  
Changed device status from Advance Information to Production Data.................................................................................. 1  
2
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TLV803E TLV809E TLV810E  
 
TLV803E, TLV809E, TLV810E  
www.ti.com  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
5 Device Comparison  
Figure 1 shows the device naming nomenclature to compare the difference device variants. See for a more  
detailed explanation.  
TLV XXXX X XX X XXX  
Package  
DBZ: SOT23  
DCK: SC70  
DPW: X2SON  
Reverse Pinout Indicator  
R: Pin 1 = RESET, Pin 2 = GND  
Threshold Voltage  
17: 1.7 V  
...  
Output Type  
Delay Option  
A: 200 ms  
B: 40 µs  
803E: Open-Drain Active-Low  
809E: Push-Pull Active-Low  
810E: Push-Pull Active-High  
46: 4.63 V  
C: 10 ms  
D: 50 ms  
E: 100 ms  
F: 400 ms  
Figure 1. Device Naming Nomenclature  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TLV803E TLV809E TLV810E  
 
 
TLV803E, TLV809E, TLV810E  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
www.ti.com  
6 Pin Configuration and Functions  
DBZ Package (Pin 1 = GND)  
3-Pin SOT-23  
DBZ Package (Pin 1 = RESET, reverse pinout)  
3-Pin SOT-23  
Top View  
Top View  
GND  
1
RESET  
GND  
1
VDD  
3
VDD  
3
RESET  
2
2
RESET  
(TLV810E)  
DPW Package  
4-Pin X2SON  
Top View  
DCK Package  
3-Pin SC-70  
Top View  
RESET  
VDD  
GND  
4
1
GND  
1
RESET  
(TLV810E)  
VDD  
3
PAD  
RESET  
2
MR  
2
3
Top View  
Pin Functions  
PIN  
DBZ  
(REVERSE  
PINOUT)  
I/O  
DESCRIPTION  
NAME  
DCK, DBZ  
DPW  
GND  
1
2
3
O
Ground  
Active-low output reset signal: This pin is driven low logic  
when VDD voltage falls below the negative voltage threshold  
(VIT–). RESET remains low (asserted) for the delay time period  
(tD) after VDD voltage rise above VIT+.  
RESET  
2
1
1
Active-High output reset signal (TLV810E only): This pin is  
driven high logic when VDD voltage falls below the negative  
voltage threshold (VIT–). RESET remains high (asserted) for the  
delay time period (tD) after VDD voltage rise above VIT+.  
RESET  
VDD  
2
3
1
3
1
4
O
I
Input supply voltage. TLV803E, TLV809E, TLV810E monitor  
VDD voltage.  
Active-low manual reset input. Pull this pin to a logic low  
(VMR_L) to assert a reset signal in the output pin. After the MR  
pin is left floating or pulled to VMR_H the output goes to the  
nominal state after the reset delay time (tD) expires. MR can be  
left floating when not in use.  
MR  
N/A  
N/A  
N/A  
N/A  
2
I
No Connection. Thermal pad helps with thermal dissipation.  
Connection not required.  
PAD  
PAD  
4
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
www.ti.com  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range, unless otherwise noted(1)  
MIN  
MAX  
UNIT  
V
VDD pin  
–0.3  
6.5  
(2)  
Voltage  
RESET (TLV809E), RESET (TLV810E)  
RESET (TLV803E)  
–0.3 VDD + 0.3  
V
–0.3  
–0.3  
-20  
6.5  
VDD + 0.3(2)  
V
Voltage  
Current  
MR  
V
Output sink and source current  
Operating ambient, TA  
Storage, Tstg  
20  
125  
150  
mA  
–40  
–65  
Temperature(3)  
°C  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions (above the Recommended Operating Conditions) for extended  
periods may affect device reliability.  
(2) The absolute maximum rating is (VDD + 0.3) V or 6.5 V, whichever is smaller.  
(3) As a result of the low dissipated power in this device, the junction temperature is assumed to be equal to the ambient temperature.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-  
001(1)  
± 2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101(2)  
± 500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.7  
0
NOM  
MAX  
6
UNIT  
V
VDD  
Input supply voltage  
VRESET, VRESET  
RESET pin and RESET pin voltage  
RESET pin and RESET pin current  
Junction temperature (free air temperature)  
Manual reset pin voltage  
6
V
IRESET, IRESET  
0
±5  
mA  
°C  
V
TJ  
–40  
0
125  
VDD  
VMR  
7.4 Thermal Information  
TLV803E, TLV809E, TLV810E  
THERMAL METRIC(1)  
DPW (X2SON)  
5 PINS  
457.1  
DCK (SC70-3)  
3 PINS  
300.5  
DBZ (SOT23-3)  
3 PINS  
254.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
201.6  
178.2  
150.5  
320.4  
166.5  
140.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
22.8  
70  
48.1  
ψJB  
318.8  
165.2  
139.1  
RθJC(bot)  
N/A  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
www.ti.com  
7.5 Electrical Characteristics  
over operating range (TA = –40to 125), 1.7 V VDD 6 V, RUP = 10 kΩ to 6 V, 10 pF load at RESET pin, unless  
otherwise noted. Typical values are at 25, VDD = 3.3V and VIT– = 2.93 V.  
PARAMETER  
COMMON PARAMETERS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VDD  
VIT–  
VHYS  
Input supply voltage  
1.7  
–2  
6
2
V
%
Input threshold voltage accuracy  
Hysteresis voltage  
TA= –40to 125℃  
0.5  
1.2  
Hysteresis from VIT–  
VDD = 3.3 V; VDD > VIT+  
VDD = 6 V  
0.9  
1.5  
1
%
(1)  
0.25  
0.4  
µA  
µA  
IDD  
Supply current into VDD pin  
1.2  
Manual reset pin internal pull-up  
resistance  
RMR  
100  
kΩ  
X2SON (DPW) package only  
VMR_L  
VMR_H  
Manual reset pin logic low input  
Manual reset pin logic high input  
0.4  
V
V
0.8VDD  
TLV809E (Push-Pull Active-Low)  
(2)  
VPOR  
Power on reset voltage  
VOL 300 mV, IOUT(Sink) = 15 µA  
700  
300  
300  
mV  
mV  
mV  
V
VDD = 1.7 V, VDD < VIT–, IOUT(Sink) = 500 µA  
VDD = 3.3 V, VDD < VIT–, IOUT(Sink) = 2 mA  
VDD = 6 V, VDD > VIT+, IOUT(Source) = 4 mA  
VDD = 3.3 V, VDD > VIT+, IOUT(Source) = 2 mA  
Low level output voltage  
High level output voltage  
VOL  
0.8VDD  
0.8VDD  
VOH  
V
TLV803E (Open-Drain Active-Low)  
(2)  
VPOR  
Power on reset voltage  
Low level output voltage  
V
OL 300 mV, IOUT(Sink) = 15 µA  
700  
300  
300  
350  
mV  
mV  
mV  
nA  
VDD = 1.7 V, VDD < VIT–, IOUT(Sink) = 500 µA  
VDD = 3.3 V, VDD < VIT–, IOUT(Sink) = 2 mA  
VDD = VPULLUP = 6 V, VDD > VIT+  
VOL  
Ilkg(OD)  
Open drain output leakage current  
100  
TLV810E (Push-Pull Active-High)  
VDD = 3.3 V, VDD < VIT–, IOUT(Source) = 2 mA  
VDD = 1.7 V, VDD < VIT–, IOUT(Source) = 500 µA  
VOH 720 mV, IOUT(Source) = 15 µA  
0.8VDD  
0.8VDD  
V
High level output voltage  
VOH  
V
VPOR  
VOL  
Power on Reset Voltage  
Low level output voltage  
900  
300  
300  
mV  
mV  
mV  
VDD = 6 V, VDD > VIT+, IOUT(Sink) = 2 mA  
VDD = 3.3 V, VDD > VIT+, IOUT(Sink) = 500 µA  
(1) VIT+ = VIT– + VHYS  
(2) Minimum VDD voltage for a controlled output state. Below VPOR, the output cannot be determined.  
6
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
www.ti.com  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
7.6 Timing Requirements  
over operating range (TA = –40to 125), 1.7 V VDD 6 V, RUP = 10 kΩ to 6 V (Open Drain only), 10 pF load at RESET  
pin, Overdrive = 10%, unless otherwise noted. Typical values are at 25, VDD = 3.3 V and VIT– = 2.93 V.  
PARAMETER  
Glitch immunity  
TEST CONDITIONS  
5 % Overdrive(1)  
MIN  
TYP  
MAX  
UNIT  
tGI  
10  
µs  
Propagation delay from VDD falling below  
VIT– to RESET  
VDD = (VIT+ + 30%) to (VIT–  
10%)  
tPD_HL  
30  
50  
µs  
(2)  
Reset time delay variant A  
130  
200  
270  
ms  
(2)  
Reset time delay variant B  
;
RUP = 100 k, CL = 100 pF, 30%  
Overdrive  
45  
90  
µs  
(3)  
tD  
Release time or reset timeout period  
(2)  
Reset time delay variant B  
40  
10  
80  
µs  
(2)  
Reset time delay variant C  
6.5  
13.5  
ms  
MR pin pulse duration to initiate RESET,  
RESET  
tMR_PW  
tMR_RES  
tMR_tD  
500  
700  
ns  
ns  
Propagation delay from MR low to RESET,  
RESET  
VDD = 4.5 V, VMR : VMR_H to  
VMR_L  
Delay from release MR to deasert RESET,  
RESET  
VDD = 4.5 V, VMR : VMR_L to  
VMR_H  
tD_MIN  
tD_TYP  
tD_MAX  
ms  
(1) Overdrive = [(VDD/ VIT–) - 1] × 100%. Refer to Section 8.3.3 on VDD glitch immunity.  
(2) Refer to device nomenclature table in Section 12.1.1. VDD: (VIT--10%) to (VIT+ + 10%)  
(3) Specified by design  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TLV803E TLV809E TLV810E  
 
TLV803E, TLV809E, TLV810E  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
www.ti.com  
7.7 Timing Diagram  
VIT+  
VIT-  
VHYS  
VDD(MIN)  
VPOR  
VDD  
tPD_HL  
tPD_HL  
tD  
RESET  
Undefined output VDD < VPOR  
Diagram not to scale  
Figure 2. TLV803E, TLV809E Timing Diagram  
VIT+  
VIT-  
VHYS  
VDD(MIN)  
VPOR  
VDD  
tPD_HL  
tPD_HL  
tD  
tD  
RESET  
Undefined output VDD < VPOR  
Diagram not to scale  
Figure 3. TLV810E Timing Diagram  
8
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
www.ti.com  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
7.8 Typical Characteristics  
Typical characteristics show the typical performance of the TLV803E, TLV809E, and TLV810E devices. Test conditions are  
TA = 25°C, VDD = 3.3 V, VIT- = 2.93 V, Rpull-up = 10 kto 6 V, CLoad = 50 pF, unless otherwise noted.  
0.45  
0.4  
0.5  
0.45  
0.4  
25°C  
-40°C  
125°C  
25°C  
-40°C  
125°C  
0.35  
0.3  
0.35  
0.3  
0.25  
0.2  
0.25  
0.2  
0.15  
0.1  
0.15  
0.1  
1.5  
2
2.5  
3
3.5 4  
VDD (V)  
4.5  
5
5.5  
6
1.5  
2
2.5  
3
3.5 4  
VDD (V)  
4.5  
5
5.5  
6
IDD_  
IDD_  
Figure 4. Supply Current Versus Supply Voltage for  
TLV803EA29  
Figure 5. Supply Current Versus Supply Voltage for  
TLV809EA29  
0.45  
0.32  
0.31  
0.3  
25°C  
-40°C  
125°C  
TLV803EA29  
0.4  
0.35  
0.3  
0.29  
0.28  
0.27  
0.26  
0.25  
0.24  
0.23  
0.22  
0.21  
0.2  
0.25  
0.2  
0.15  
0.1  
0.05  
0
1.5  
2
2.5  
3
3.5 4  
VDD (V)  
4.5  
5
5.5  
6
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
IDDv  
IDD_  
Figure 6. Supply Current Versus Supply Voltage for  
TLV810EA29  
Figure 7. Supply Current Over Temperature for  
TLV803EA29, VDD = 3.3 V  
0.32  
0.31  
0.3  
30  
27  
24  
21  
18  
15  
12  
9
TLV809EA29  
TLV803EA29  
0.29  
0.28  
0.27  
0.26  
0.25  
0.24  
0.23  
0.22  
0.21  
0.2  
6
3
0
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
IDD_  
ILKG  
Figure 9. Leakage Current Over Temperature for  
TLV803EA29  
Figure 8. Supply Current Over Temperature for  
TLV809EA29, VDD = 3.3 V  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
www.ti.com  
Typical Characteristics (continued)  
Typical characteristics show the typical performance of the TLV803E, TLV809E, and TLV810E devices. Test conditions are  
TA = 25°C, VDD = 3.3 V, VIT- = 2.93 V, Rpull-up = 10 kto 6 V, CLoad = 50 pF, unless otherwise noted.  
1
0.92  
0.84  
0.76  
0.68  
0.6  
1.3  
1.2  
1.1  
1
TLV803EA29  
TLV809EA29  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.52  
0.44  
0.36  
0.28  
0.2  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
VIT-  
VIT-  
Figure 10. Voltage Threshold Accuracy Over Temperature  
for TLV803EA29  
Figure 11. Voltage Threshold Accuracy Over Temperature  
for TLV809EA29  
0.8  
0.55  
-40°C  
-20°C  
-40°C  
-20°C  
0.5  
0.72  
85°C  
105°C  
125°C  
85°C  
105°C  
125°C  
0.45  
0.4  
0.64  
0.56  
0.48  
0.4  
0.35  
0.3  
0.25  
0.2  
0.32  
0.24  
0.16  
0.08  
0
0.15  
0.1  
0.05  
0
0
0.002  
0.004  
0.006  
0.008  
0.01  
0
0.002  
0.004  
0.006  
0.008  
0.01  
IRESET (A)  
IRESET (A)  
VOLx  
VOLx  
Figure 12. Low Voltage Output Versus Output Current for  
TLV803EA29, VDD = 1.7 V  
Figure 13. Low Voltage Output Versus Output Current for  
TLV809EA29, VDD = 1.7 V  
25  
TLV803EA29  
24.5  
25  
TLV809EA29  
24.5  
24  
23.5  
23  
24  
23.5  
23  
22.5  
22  
22.5  
22  
21.5  
21  
21.5  
21  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
VOLx  
VOLx  
Figure 14. Low Voltage Output Over Temperature for  
TLV803EA29, VDD = 1.7 V  
Figure 15. Low Voltage Output Over Temperature for  
TLV809EA29, VDD = 1.7 V  
10  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
www.ti.com  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
Typical Characteristics (continued)  
Typical characteristics show the typical performance of the TLV803E, TLV809E, and TLV810E devices. Test conditions are  
TA = 25°C, VDD = 3.3 V, VIT- = 2.93 V, Rpull-up = 10 kto 6 V, CLoad = 50 pF, unless otherwise noted.  
6
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5
3.12  
3.115  
3.11  
-40°C  
-20°C  
25°C  
85°C  
105°C  
125°C  
TLV809EA29  
3.105  
3.1  
3.095  
3.09  
3.085  
3.08  
3.075  
3.07  
3.065  
0
0.002  
0.004  
0.006  
0.008  
0.01  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
IRESET (A)  
Temperature (èC)  
VOHx  
VOHx  
Figure 16. High Voltage Output Versus Output Current for  
TLV809EA29, VDD = 6 V  
Figure 17. High Voltage Output Over Temperature for  
TLV809EA29, VDD = 3.3 V  
6
0.12  
TLV803EA29  
25°C  
5.5  
5
4.5  
4
0.1  
0.08  
0.06  
0.04  
0.02  
0
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
VDD (V)  
3.5  
4
4.5  
5
5.5  
6
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
VDD (V)  
1
VCC_  
Vpor  
Figure 18. Reset Voltage Output Versus Voltage Input for  
Figure 19. Reset Voltage Output Versus Voltage Input for  
TLV803EA29, Vpull-up = VDD, Rpull-up = 10 k  
TLV803EA29, Rpull-up = 10 kΩ  
173  
2
TLV803EA29  
VDD  
RESET  
172  
171  
170  
169  
168  
167  
1.6  
1.2  
0.8  
0.4  
0
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
0
6
12  
18  
24  
30  
Time (µs)  
Rese  
VRES  
Figure 21. Reset Delay Time Over Temperature for  
TLV803EA29  
Figure 20. Transient Power-on-Reset Voltage for  
TLV809EA30, IRESET = 15 µA  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
www.ti.com  
Typical Characteristics (continued)  
Typical characteristics show the typical performance of the TLV803E, TLV809E, and TLV810E devices. Test conditions are  
TA = 25°C, VDD = 3.3 V, VIT- = 2.93 V, Rpull-up = 10 kto 6 V, CLoad = 50 pF, unless otherwise noted.  
16.25  
171.5  
TLV803EB29  
TLV809EA29  
16.2  
16.15  
16.1  
171  
170.5  
170  
16.05  
16  
169.5  
169  
15.95  
15.9  
168.5  
168  
15.85  
15.8  
167.5  
167  
15.75  
15.7  
166.5  
15.65  
15.6  
166  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
tD__  
Rese  
Figure 22. Reset Delay Time Over Temperature for  
TLV809EA29  
Figure 23. Reset Delay Time Over Temperature for  
TLV803EB29  
9
8.8  
8.6  
8.4  
8.2  
8
25  
TLV803EC29  
TLV803EA29  
24.75  
24.5  
24.25  
24  
23.75  
23.5  
23.25  
23  
22.75  
22.5  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
tPHL  
Rese  
Figure 25. High-to-Low Propagation Delay Over  
Temperature for TLV803EA29  
Figure 24. Reset Delay Time Over Temperature for  
TLV803EC29  
26  
25.5  
25  
13  
12  
11  
10  
9
TLV809EA29  
25°C  
-40°C  
125°C  
24.5  
24  
8
7
23.5  
23  
6
5
22.5  
22  
4
3
5
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
10  
15  
20  
25 30  
Overdrive (%)  
35  
40  
45  
50  
tPHL  
tGI_  
Figure 26. High-to-Low Propagation Delay Over  
Temperature for TLV809EA29  
Figure 27. Glitch Immunity Versus Overdrive for  
TLV803EA29  
12  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
www.ti.com  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
Typical Characteristics (continued)  
Typical characteristics show the typical performance of the TLV803E, TLV809E, and TLV810E devices. Test conditions are  
TA = 25°C, VDD = 3.3 V, VIT- = 2.93 V, Rpull-up = 10 kto 6 V, CLoad = 50 pF, unless otherwise noted.  
13  
25°C  
-40°C  
125°C  
12  
11  
10  
9
8
7
6
5
4
3
5
10  
15  
20  
25 30  
Overdrive (%)  
35  
40  
45  
50  
tGI_  
Figure 28. Glitch Immunity Versus Overdrive for TLV809EA29  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The TLV803E, TLV809E, TLV810E is a family of easy to implement low power, small size voltage supervisors  
(Reset ICs) with fixed threshold voltage and fixed reset delay. The TLV803E has open-drain active-low output  
topology which requires a pull-up resistor, TLV809E has push-pull active-low output topology and TLV810E has  
push-pull active-high output topology. This family of devices features include integrated resistor divider threshold  
with hysteresis and a glitch immunity filter.  
These devices are available in SOT-23 (3) and SC70 (3) industry standard package and pinout as well as a very  
small X2SON (5) package.  
8.2 Functional Block Diagram  
VDD  
RMR  
MR  
Push-pull TLV809E,  
DPW package only  
TLV810E variants  
VDD  
+
VDD  
RESET  
LOGIC  
TIMER  
RESET  
RESET (TLV810E)  
(TLV803E, TLV809E)  
œ
Reference  
Voltage  
GND  
GND  
8.3 Feature Description  
8.3.1 Input Voltage (VDD)  
VDD pin is monitored by the internal comparator with integrated reference to indicate when VDD falls below the  
fixed threshold voltage. VDD also functions as the supply for the following:  
Internal bandgap (reference voltage)  
Internal regulator  
State machine  
Buffers  
Other control logic blocks  
Good design practice involves placing a 0.1-µF to 1-µF bypass capacitor at VDD input for noisy applications and  
to ensure enough charge is available for the device to power up correctly. The reset output is undefined when  
VDD is below VPOR  
.
8.3.2 VDD Hysteresis  
The internal comparator has built-in hysteresis to avoid erroneous output reset release. If the voltage at the VDD  
pin falls below the falling voltage threshold VIT–, the output reset is asserted. When the voltage at the VDD pin  
rises above the rising voltage threshold (VIT+) equivalent to VIT– plus hysteresis (VHYS), the output reset is  
deasserted after tD reset time delay.  
14  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
www.ti.com  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
Feature Description (continued)  
8.3.3 VDD Glitch Immunity  
These devices are immune to quick voltage transient or excursion on VDD. Sensitivity to transients depends on  
both transient duration and transient overdrive. Overdrive is defined by how much VDD exceeds the specified  
threshold. Threshold overdrive is calculated as a percent of the threshold in question, as shown in Equation 1.  
Overdrive = | (VDD / VIT– – 1) × 100% |  
where  
VIT– is the threshold voltage  
VDD is the input voltage crossing VIT–  
(1)  
VDD  
VIT+  
VIT-  
Overdrive  
Pulse  
Duration  
Figure 29. Overdrive Versus Pulse Duration  
TLV803E, TLV809E, and TLV810E devices have built-in glitch immunity (tGI) of 10 µs typical as shown in Timing  
Requirements. Figure 30 shows that VDD must fall below VIT- for tGI, otherwise the faling transistion is ignored.  
When VDD falls below VIT- for tGI, RESET transitions low to indicate a fault condition after the propagation delay  
high-to-low (tPDHL). When VDD rises above VIT+, RESET only deasserts to logic high indicating there is no more  
fault condition only if VDD remains above VIT+ for longer than the reset delay (tD).  
VDD remains above VIT+ for only 199 ms  
VDD  
VIT+  
VIT-  
VDD drops below VIT- so  
RESET transitions low after  
Propagation Delay (tPDHL  
)
RESET  
VDD transition to above VIT+ ignored when less than  
Reset Delay (tD) so RESET remains unchanged  
Figure 30. Glitch Immunity when VDD Rises Above VIT+ for Less than RESET Delay (TLV803EA29)  
8.3.4 Manual Reset (MR) Input for X2SON (DPW) Package Only  
The manual reset (MR) input allows a processor GPIO or other logic circuits to initiate a reset. A logic low on MR  
with pulse duration longer than tMR_RES will cause reset output to assert. After MR returns to a logic high (VMR_H  
)
and VDD is above VIT+, reset is deasserted after the user programmed reset time delay (tD) expires.  
If MR is not controlled externally, then MR can be left disconnected. If the logic signal controlling MR is less than  
VDD, then additional current flows from VDD into MR internally. For minimum current consumption, drive MR to  
either VDD or GND. VMR should not be higher than VDD voltage.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TLV803E TLV809E TLV810E  
 
 
TLV803E, TLV809E, TLV810E  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
www.ti.com  
Feature Description (continued)  
VDD  
VIT+  
VHYS  
VIT-  
VIT+  
VHYS  
VIT-  
RESET  
tP_HL  
tD  
tMR_tD  
tMR_RES  
MR  
VMR_H  
VMR_L  
Reset not asserted  
Pulse width less than tMR_PW  
tMR_PW  
Figure 31. Timing Diagram MR and RESET for X2SON (DPW) Package  
8.3.5 Output Logic  
8.3.5.1 RESET Output, Active-Low  
RESET remains high (deasserted) as long as VDD is above the negative threshold (VIT–). If VDD falls below the  
negative threshold (VIT–), then reset is asserted and RESET transistions to logic low (VOL).  
When VDD rises above VIT+, the delay circuit holds RESET active and logic low for the specified reset delay  
period (tD). When the reset delay has elapsed, the RESET pin transistions to high voltage (VOH).  
The open-drain version requires a pull-up resistor to hold the RESET pin high because the internal MOSFET  
turns off causing RESET output to pull-up to the pull-up voltage. Connect the pull-up resistor to the desired  
interface voltage logic. RESET can be pulled up to any voltage up to maximum voltage independent of the VDD  
voltage. To ensure proper voltage levels, take care when choosing the pull-up resistor values. The pull-up  
resistor value is determined by VOL, the output capacitive loading, and the output leakage current (ILKG(OD)).  
The push-pull variant does not require a pull-up resistor.  
8.3.5.2 RESET Output, Active-High  
RESET remains logic low (deasserted) as long as VDD is above the positive threshold (VIT+). If VDD falls below  
the negative threshold (VIT–), then reset is asserted and RESET transistions to logic high (VOH).  
When VDD rises above VIT+, the delay circuit holds RESET active and logic high for the specified reset delay  
period (tD). When the reset delay has elapsed the RESET pin transistions to low voltage (VOL).  
8.4 Device Functional Modes  
summarizes the various functional modes of the device.  
VDD  
MR (X2SON package only)  
RESET (Active-High)  
RESET(Active-Low)  
VDD < VPOR  
N/A  
N/A  
L
Undefined  
Undefined  
VPOR < VDD < VIT–  
H
H
L
L
L
V
DD VIT–  
DD VIT–  
V
H
H
16  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
www.ti.com  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
8.4.1 Normal Operation (VDD > VDD(min)  
)
When VDD voltage is greater than VDD(min), the reset signal is determined by the voltage on the VDD pin with  
respect to the trip point (VIT–) and the MR pin voltage (X2SON package only).  
8.4.2 VDD Between VPOR and VDD(min)  
When the voltage on VDD is less than the VDD(min) voltage and greater than the power-on-reset voltage (VPOR),  
the reset signal is asserted.  
8.4.3 Below Power-On-Reset (VDD < VPOR  
)
When the voltage on VDD is lower than VPOR, the device does not have enough bias voltage to internally pull the  
asserted output low or high and reset voltage level is undefined.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
www.ti.com  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TLV803E, TLV809E, and TLV810E devices are used for voltage monitoring. These devices have only three  
pins: VDD, GND, and RESET (or RESET for TLV810E). There are at the most two external components: a  
capacitor on the VDD pin and a pull-up resistor on the RESET/RESET to VDD or another pull-up voltage for the  
open-drain variants. The design involves choosing the device with the desired voltage threshold and output  
topology and adding these components, if needed, as explained in the following sections.  
9.2 Typical Application  
A typical application for TLV803E, TLV809E, and TLV810E devices is voltage rail monitoring. This rail can be the  
input power supply or the output of an LDO or DC/DC converter. Figure 32 shows the TLV803EA29 monitoring  
the supply rail for a DSP, FPGA, or ASIC. This rail is at 3.3 V and generated by an LDO with an input power  
supply of 5 V. The supervisor is needed to make sure that the supply to the MCU/ASIC/FPGA/DSP is above a  
certain voltage threshold. If the supply voltage drops below a certain threshold, supervisor generates a reset  
output to indicate to the MCU that the supply is going down so that the MCU can take actions to save register  
data before supply enters brown-out conditions.  
LDO  
3.3 V  
5 V  
IN  
OUT  
10 kQ  
VDD  
FPGA, ASIC, DSP  
VDD  
RESET  
TLV803E  
RESET  
GND  
GND  
Figure 32. The Output of LDO Powering the MCU is Monitored by the TLV803EA29  
9.2.1 Design Requirements  
This design monitors a 3.3-V rail and flags an undervoltage fault at the RESET output when supply rail falls  
approximately 12% below the nominal rail voltage. The TLV803E device has an open-drain output topology so a  
pull-up resistor is required and chosen such that the RESET current (IRESET) spec of ±5 mA is not violated. Pull-  
up resistors between 10 kand 1 Mare recommended. If you are using the TLV809E device variant, no pull-  
up resistor is required because TLV809E has push-pull output topology.  
9.2.2 Detailed Design Procedure  
Select the TLV803EA29DBZR to satisfy the voltage threshold requirement for 3.3-V rail monitoring. As  
mentioned in , the TLV803EA29DBZR triggers an undervoltage fault at the RESET output when VDD falls below  
VIT- which is 2.93 V for this device variant. Place a pull-up resistor on RESET to VDD to satisfy the output logic  
requirement while not violating the IRESET recommended limit.  
18  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TLV803E TLV809E TLV810E  
 
TLV803E, TLV809E, TLV810E  
www.ti.com  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
Typical Application (continued)  
9.2.3 Application Curves  
Figure 33 and Figure 34 show the TLV803EA29 functionality. In Figure 33, the VDD supply voltage drops from  
30% above VIT- = 3.8 V to 10% below VIT- = 2.6 V with a 0.1-µF capacitor on VDD. The RESET output is  
connected to VDD through the pull-up resistor so when the VDD supply voltage drops. The RESET output  
discharges down to the VDD supply voltage through the pull-up resistor and RESET pin capacitance. Once the  
high-to-low propagation delay tPD_HL expires, the internal MOSFET turns on and asserts RESET to logic low.  
Note that tPD_HL varies with VDD specifically on how much VDD drops and how quickly in addition to the VDD  
and RESET pin capacitances. In Figure 34, VDD rises from 2 V to 4 V and the RESET output deasserts to logic  
high after the reset delay time (tD) expires.  
VDD  
VDD  
Propagation Delay from VDD falling below VIT- to Reset  
Reset Delay (tD) = 200 ms  
(tPD_HL) = 25 µs  
RESET  
RESET  
Figure 34. RESET Delay when Returning from Fault after  
Figure 33. Propagation Delay when Fault Occurs after VDD  
Falls Below VIT- (TLV803EA29 No Load) (1) (2)  
VDD Rises Above VIT+ (TLV803EA29)  
1. Typical tPD_HL= 30 µs for VDD falling from (VIT+ + 30%) to (VIT- - 10%).  
2. VDD does not fall all the way to 0 V so RESET momentarily discharges to VDD until tPD_HL expires.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TLV803E TLV809E TLV810E  
 
TLV803E, TLV809E, TLV810E  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
www.ti.com  
9.3 Typical Application  
A typical use case for the push-pull active-high device variant TLV810E is overvoltage monitoring. The TLV810E  
can monitor a power supply, a MCU power rail, or a battery during charging for example. The VDD pin monitors  
the voltage rail and once VDD rises above VIT+, the RESET output deactivates to logic low after the reset delay  
time tD. If VDD falls below VIT-, the RESET output activates to logic high after the propagation delay (tPD_HL). The  
voiltage thresholds and the reset delay time depends on the device variant. See Device Comparison for device  
variant naming nomenclature.  
3 V  
VDD  
Battery Charger  
VDD  
RESET  
TLV810EA29  
ENABLE  
GND  
GND  
Figure 35. TLV810E Overvoltage Monitor Circuit for Battery Charger  
9.3.1 Design Requirements  
In this application design, the TLV810E device is monitoring a 3 V battery connected to a battery charger. The  
battery charger turns on when the battery voltage is below 2.93 V and turns off once the battery charges to 2.96  
V and remains above 2.96 V for at least 200 ms. The design must be low power and not consume more than 500  
nA typical.  
9.3.2 Detailed Design Procedure  
Select the TLV810EA29 to accomplish this design. The TLV810EA29 is a push-pull active-high device with a VIT-  
= 2.9 V and VIT+ = 2.9 + 1.2% = 2.93 V. Because the device is a push-pull output and the device threshold meets  
the design requirements, no external resistors are needed. The TLV810EA29 device variant comes with 200 ms  
reset delay time meaning VDD must be above VIT+ for at least 200 ms for the RESET output to transistion to  
logic low to turn off the battery charger. This device meets the low power requirement because the TLV810E only  
consumes 250 nA typical.  
20  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
www.ti.com  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
10 Power Supply Recommendations  
These devices are designed to operate from an input supply range of 1.7 V to 6 V. An input supply capacitor is  
recommended between the VDD pin and GND pin. If the voltage supply that provides power to VDD is  
susceptible to any large voltage transient that can exceed VDD maximum, the user must take additional  
precautions.  
11 Layout  
11.1 Layout Guidelines  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice recommends  
placing a minimum 0.1-µF ceramic capacitor as close to the VDD pin as possible. A pull-up resistor is required  
for the open-drain output. Place the pull-up resistor on the RESET pin as close to the pin as possible.  
11.2 Layout Example  
1
2
GND  
3
VDD  
(TLV803E, TLV809E)  
(TLV810E)  
RESET  
RESET  
RESET  
RESET  
Figure 36. TLV803E, TLV809E, and TLV810E SOT23 (DBZ) Layout Example  
Rpull-up  
RESET  
1
4
VDD  
PAD  
CIN  
GND  
2
MR  
3
Pull-up resistor required for Open-Drain output  
Connection between PAD and GND is optional  
Figure 37. TLV803E, TLV809E, and TLV810E X2SON (DPW) Layout Example  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
www.ti.com  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Device Nomenclature  
shows how to decode the function of the device based on its part number. For example: TLV803EA29DBZR is  
open-drain, active-low, 200 ms reset delay, 2.93 V threshold voltage, Pin 1 = GND, SOT23-3 pin package, and  
large reel option.  
shows all the possible variants of the TLV80xE and TLV81xE. Refer to the orderable device information table for  
the options available to order. Contact Texas Instruments for the details and availability of devices not in the  
orderable device information table.  
Table 1. Device Naming Convention  
DESCRIPTION  
NOMENCLATURE  
VALUE  
Open-Drain, Active-Low  
Part Number  
TLV803E  
TLV809E  
Push-Pull, Active-Low  
Push-Pull, Active-High  
200 ms  
TLV810E  
A
Reset Time Delay Option  
B
40 µs  
C
10 ms  
D
50 ms  
E
100 ms  
F
400 ms  
Threshold Voltage Option  
17  
1.7 V  
18  
1.8 V  
19  
1.9 V  
24  
2.4 V  
26  
2.64 V  
29  
2.93 V  
30  
3.08 V  
43  
4.38 V  
46  
4.63 V  
Reverse Pinout Indicator  
Package Option  
R
Pin 1 = RESET Pin 2 = GND  
SOT23-3 pin  
SC70-3 pin  
X2SON-5 pin  
Large reel  
DBZ  
DCK  
DPW  
R
Reel  
22  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
www.ti.com  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TLV803EA29EVM User Guide  
Texas Instruments, Voltage Supervisors (Reset ICs): Frequenctly Asked Questions (FAQs)  
12.3 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
Table 2. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TLV803E  
TLV809E  
TLV810E  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.4 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.5 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.6 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
www.ti.com  
PACKAGE OUTLINE  
DPW0004A  
X2SON - 0.4 mm max height  
S
C
A
L
E
1
2
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
0.85  
0.75  
A
B
PIN 1 INDEX AREA  
0.85  
0.75  
0.4 MAX  
C
SEATING PLANE  
NOTE 4  
(0.1)  
0.25 0.1  
0.05  
0.00  
THERMAL PAD  
2
3
4
NOTE 4  
5
2X  
(45 ) TYP  
0.48  
1
0.27  
4X  
PIN 1 ID  
(OPTIONAL)  
NOTE 5  
0.17  
0.32  
3X  
0.1 C A  
0.05 C  
B
0.27  
0.17  
0.23  
4218860/A 12/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
4. The size and shape of this feature may vary.  
5. Features may not exist. Recommend use of pin 1 marking on top of package for orientation purposes.  
www.ti.com  
24  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
www.ti.com  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
EXAMPLE BOARD LAYOUT  
DPW0004A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.78)  
( 0.1)  
VIA  
SYMM  
4X (0.42)  
0.05 MIN  
ALL AROUND  
TYP  
1
4
4X (0.22)  
5
SYMM  
4X (0.26)  
(0.48)  
2
3
(R0.05) TYP  
SOLDER MASK  
OPENING, TYP  
4X (0.06)  
(
0.25)  
METAL UNDER  
SOLDER MASK  
TYP  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE:60X  
4218860/A 12/2015  
NOTES: (continued)  
6. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
7. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TLV803E TLV809E TLV810E  
TLV803E, TLV809E, TLV810E  
SLVSES2F AUGUST 2018REVISED JUNE 2020  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DPW0004A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
4X (0.42)  
4X (0.06)  
4
1
4X (0.22)  
(
0.24)  
4X (0.26)  
5
SYMM  
(0.21)  
(0.48)  
TYP  
SOLDER MASK  
EDGE  
2
3
(R0.05) TYP  
SYMM  
(0.78)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 5:  
92% PRINTED SOLDER COVERAGE BY AREA  
SCALE:100X  
4218860/A 12/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
26  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TLV803E TLV809E TLV810E  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Aug-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
DPW  
DPW  
DBZ  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV803EA17DPWR  
TLV803EA18DPWR  
TLV803EA26DBZR  
TLV803EA26DCKR  
TLV803EA26DPWR  
TLV803EA26RDBZR  
TLV803EA29DBZR  
TLV803EA29DCKR  
TLV803EA29DPWR  
TLV803EA29RDBZR  
TLV803EA30DCKR  
TLV803EA43DBZR  
TLV803EA43RDBZR  
TLV803EB29DBZR  
TLV803EB46DCKR  
TLV803EC29DBZR  
ACTIVE  
X2SON  
X2SON  
SOT-23  
SC70  
5
5
3
3
5
3
3
3
5
3
3
3
3
3
3
3
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
IT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
SN  
IV  
Green (RoHS  
& no Sb/Br)  
326A  
32A  
IW  
DCK  
DPW  
DBZ  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
SN  
X2SON  
SOT-23  
SOT-23  
SC70  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
36AR  
329A  
39A  
IX  
DBZ  
Green (RoHS  
& no Sb/Br)  
SN  
DCK  
DPW  
DBZ  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
SN  
X2SON  
SOT-23  
SC70  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
39AR  
30A  
343A  
34AR  
329B  
36B  
329C  
DCK  
DBZ  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
SN  
SOT-23  
SOT-23  
SOT-23  
SC70  
Green (RoHS  
& no Sb/Br)  
DBZ  
Green (RoHS  
& no Sb/Br)  
SN  
DBZ  
Green (RoHS  
& no Sb/Br)  
SN  
DCK  
DBZ  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
SN  
SOT-23  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Aug-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV803EC30DBZR  
TLV803ED17DPWR  
TLV803ED18DPWR  
TLV809EA26DBZR  
TLV809EA26DPWR  
TLV809EA29DBZR  
TLV809EA29DCKR  
TLV809EA29DPWR  
TLV809EA30DBZR  
TLV809EA43DBZR  
TLV809EA46DBZR  
TLV809EA46DPWR  
TLV809EC26DBZR  
TLV809EC46DBZR  
TLV810EA29DBZR  
TLV810EA29DPWR  
ACTIVE  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
SOT-23  
SC70  
DBZ  
3
5
5
3
5
3
3
5
3
3
3
5
3
3
3
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
SN  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
330C  
IS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DPW  
DPW  
DBZ  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
SN  
Green (RoHS  
& no Sb/Br)  
IU  
Green (RoHS  
& no Sb/Br)  
926A  
IZ  
DPW  
DBZ  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
SN  
Green (RoHS  
& no Sb/Br)  
929A  
99A  
J1  
DCK  
DPW  
DBZ  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
SN  
X2SON  
SOT-23  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
SOT-23  
X2SON  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
930A  
943A  
946A  
J2  
DBZ  
Green (RoHS  
& no Sb/Br)  
SN  
DBZ  
Green (RoHS  
& no Sb/Br)  
SN  
DPW  
DBZ  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
SN  
Green (RoHS  
& no Sb/Br)  
926C  
946C  
029A  
J3  
DBZ  
Green (RoHS  
& no Sb/Br)  
SN  
DBZ  
Green (RoHS  
& no Sb/Br)  
SN  
DPW  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Aug-2020  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Aug-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV803EA17DPWR  
TLV803EA18DPWR  
TLV803EA26DBZR  
TLV803EA26DCKR  
TLV803EA26DPWR  
TLV803EA26RDBZR  
TLV803EA29DBZR  
TLV803EA29DCKR  
TLV803EA29DPWR  
TLV803EA29RDBZR  
TLV803EA30DCKR  
TLV803EA43DBZR  
TLV803EA43RDBZR  
TLV803EB29DBZR  
TLV803EB46DCKR  
TLV803EC29DBZR  
TLV803EC30DBZR  
TLV803ED17DPWR  
X2SON  
X2SON  
SOT-23  
SC70  
DPW  
DPW  
DBZ  
DCK  
DPW  
DBZ  
DBZ  
DCK  
DPW  
DBZ  
DCK  
DBZ  
DBZ  
DBZ  
DCK  
DBZ  
DBZ  
DPW  
5
5
3
3
5
3
3
3
5
3
3
3
3
3
3
3
3
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
9.0  
9.0  
8.4  
9.0  
9.0  
9.0  
8.4  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
8.4  
0.91  
0.91  
3.15  
2.4  
0.91  
0.91  
2.77  
2.5  
0.5  
0.5  
2.0  
2.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
2.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q3  
Q3  
Q2  
Q3  
Q3  
Q3  
Q2  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q2  
1.22  
1.2  
X2SON  
SOT-23  
SOT-23  
SC70  
0.91  
3.15  
3.15  
2.4  
0.91  
2.77  
2.77  
2.5  
0.5  
1.22  
1.22  
1.2  
X2SON  
SOT-23  
SC70  
0.91  
3.15  
2.4  
0.91  
2.77  
2.5  
0.5  
1.22  
1.2  
SOT-23  
SOT-23  
SOT-23  
SC70  
3.15  
3.15  
3.15  
2.4  
2.77  
2.77  
2.77  
2.5  
1.22  
1.22  
1.22  
1.2  
SOT-23  
SOT-23  
X2SON  
3.15  
3.15  
0.91  
2.77  
2.77  
0.91  
1.22  
1.22  
0.5  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Aug-2020  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV803ED18DPWR  
TLV809EA26DBZR  
TLV809EA26DPWR  
TLV809EA29DBZR  
TLV809EA29DCKR  
TLV809EA29DPWR  
TLV809EA30DBZR  
TLV809EA43DBZR  
TLV809EA46DBZR  
TLV809EA46DPWR  
TLV809EC26DBZR  
TLV809EC46DBZR  
TLV810EA29DBZR  
TLV810EA29DPWR  
X2SON  
SOT-23  
X2SON  
SOT-23  
SC70  
DPW  
DBZ  
DPW  
DBZ  
DCK  
DPW  
DBZ  
DBZ  
DBZ  
DPW  
DBZ  
DBZ  
DBZ  
DPW  
5
3
5
3
3
5
3
3
3
5
3
3
3
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
9.0  
8.4  
9.0  
9.0  
8.4  
9.0  
9.0  
9.0  
8.4  
9.0  
9.0  
9.0  
8.4  
0.91  
3.15  
0.91  
3.15  
2.4  
0.91  
2.77  
0.91  
2.77  
2.5  
0.5  
1.22  
0.5  
2.0  
4.0  
2.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
2.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q3  
Q2  
Q3  
Q3  
Q2  
Q3  
Q3  
Q3  
Q2  
Q3  
Q3  
Q3  
Q2  
1.22  
1.2  
X2SON  
SOT-23  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
SOT-23  
X2SON  
0.91  
3.15  
3.15  
3.15  
0.91  
3.15  
3.15  
3.15  
0.91  
0.91  
2.77  
2.77  
2.77  
0.91  
2.77  
2.77  
2.77  
0.91  
0.5  
1.22  
1.22  
1.22  
0.5  
1.22  
1.22  
1.22  
0.5  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV803EA17DPWR  
TLV803EA18DPWR  
TLV803EA26DBZR  
X2SON  
X2SON  
SOT-23  
DPW  
DPW  
DBZ  
5
5
3
3000  
3000  
3000  
205.0  
205.0  
180.0  
200.0  
200.0  
180.0  
33.0  
33.0  
18.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Aug-2020  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV803EA26DCKR  
TLV803EA26DPWR  
TLV803EA26RDBZR  
TLV803EA29DBZR  
TLV803EA29DCKR  
TLV803EA29DPWR  
TLV803EA29RDBZR  
TLV803EA30DCKR  
TLV803EA43DBZR  
TLV803EA43RDBZR  
TLV803EB29DBZR  
TLV803EB46DCKR  
TLV803EC29DBZR  
TLV803EC30DBZR  
TLV803ED17DPWR  
TLV803ED18DPWR  
TLV809EA26DBZR  
TLV809EA26DPWR  
TLV809EA29DBZR  
TLV809EA29DCKR  
TLV809EA29DPWR  
TLV809EA30DBZR  
TLV809EA43DBZR  
TLV809EA46DBZR  
TLV809EA46DPWR  
TLV809EC26DBZR  
TLV809EC46DBZR  
TLV810EA29DBZR  
TLV810EA29DPWR  
SC70  
DCK  
DPW  
DBZ  
DBZ  
DCK  
DPW  
DBZ  
DCK  
DBZ  
DBZ  
DBZ  
DCK  
DBZ  
DBZ  
DPW  
DPW  
DBZ  
DPW  
DBZ  
DCK  
DPW  
DBZ  
DBZ  
DBZ  
DPW  
DBZ  
DBZ  
DBZ  
DPW  
3
5
3
3
3
5
3
3
3
3
3
3
3
3
5
5
3
5
3
3
5
3
3
3
5
3
3
3
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
205.0  
180.0  
180.0  
180.0  
205.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
205.0  
205.0  
180.0  
205.0  
180.0  
180.0  
205.0  
180.0  
180.0  
180.0  
205.0  
180.0  
180.0  
180.0  
205.0  
180.0  
200.0  
180.0  
180.0  
180.0  
200.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
200.0  
200.0  
180.0  
200.0  
180.0  
180.0  
200.0  
180.0  
180.0  
180.0  
200.0  
180.0  
180.0  
180.0  
200.0  
18.0  
33.0  
18.0  
18.0  
18.0  
33.0  
18.0  
18.0  
18.0  
18.0  
18.0  
18.0  
18.0  
18.0  
33.0  
33.0  
18.0  
33.0  
18.0  
18.0  
33.0  
18.0  
18.0  
18.0  
33.0  
18.0  
18.0  
18.0  
33.0  
X2SON  
SOT-23  
SOT-23  
SC70  
X2SON  
SOT-23  
SC70  
SOT-23  
SOT-23  
SOT-23  
SC70  
SOT-23  
SOT-23  
X2SON  
X2SON  
SOT-23  
X2SON  
SOT-23  
SC70  
X2SON  
SOT-23  
SOT-23  
SOT-23  
X2SON  
SOT-23  
SOT-23  
SOT-23  
X2SON  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DPW0005A  
X2SON - 0.4 mm max height  
S
C
A
L
E
1
2
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
0.85  
0.75  
A
B
PIN 1 INDEX AREA  
0.85  
0.75  
0.4 MAX  
C
SEATING PLANE  
NOTE 3  
(0.1)  
0.05  
0.00  
(0.25)  
4X (0.05)  
0.25 0.1  
2
1
4
5
NOTE 3  
2X  
0.48  
3
2X (0.26)  
0.27  
0.17  
4X  
0.27  
0.17  
0.1 C A B  
0.05 C  
(0.06)  
3X  
0.32  
0.23  
4223102/B 09/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The size and shape of this feature may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DPW0005A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.78)  
(
0.1)  
SYMM  
4X (0.42)  
VIA  
0.05 MIN  
ALL AROUND  
TYP  
1
5
4X (0.22)  
SYMM  
4X (0.26)  
(0.48)  
3
2
4
(R0.05) TYP  
SOLDER MASK  
OPENING, TYP  
4X (0.06)  
(
0.25)  
(0.21) TYP  
EXPOSED METAL  
CLEARANCE  
METAL UNDER  
SOLDER MASK  
TYP  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE:60X  
4223102/B 09/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DPW0005A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
4X (0.42)  
4X (0.06)  
5
1
4X (0.22)  
SYMM  
(
0.24)  
4X (0.26)  
(0.21)  
(0.48)  
TYP  
SOLDER MASK  
EDGE  
3
2
4
(R0.05) TYP  
SYMM  
(0.78)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
92% PRINTED SOLDER COVERAGE BY AREA  
SCALE:100X  
4223102/B 09/2017  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
4203227/C  
PACKAGE OUTLINE  
DBZ0003A  
SOT-23 - 1.12 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
2.64  
2.10  
1.12 MAX  
1.4  
1.2  
B
A
0.1 C  
PIN 1  
INDEX AREA  
1
0.95  
3.04  
2.80  
1.9  
3
2
0.5  
0.3  
3X  
0.10  
0.01  
(0.95)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.08  
TYP  
0.6  
0.2  
TYP  
SEATING PLANE  
0 -8 TYP  
4214838/C 04/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration TO-236, except minimum foot length.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X (0.95)  
2
(R0.05) TYP  
(2.1)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214838/C 04/2017  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X(0.95)  
2
(R0.05) TYP  
(2.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214838/C 04/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DCK0003A  
SOT-SC70 - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR SC70  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
0.65  
1.3  
2.15  
1.85  
3
0.30  
3X  
0.15  
C A B  
0.1  
0.0  
0.1  
(0.9)  
TYP  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
TYP  
TYP  
0
SEATING PLANE  
4220745/B 06/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0003A  
SOT-SC70 - 1.1 max height  
SMALL OUTLINE TRANSISTOR SC70  
PKG  
3X (0.95)  
3X (0.4)  
1
SYMM  
3
(1.3)  
(0.65)  
2
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220745/B 06/2020  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0003A  
SOT-SC70 - 1.1 max height  
SMALL OUTLINE TRANSISTOR SC70  
PKG  
3X (0.95)  
3X (0.4)  
1
SYMM  
3
(1.3)  
(0.65)  
2
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4220745/B 06/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TLV809EC26DBZR

具有低电平有效、推挽复位功能的低功耗 3 引脚电压监控器(复位 IC) | DBZ | 3 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV809EC46DBZR

具有低电平有效、推挽复位功能的低功耗 3 引脚电压监控器(复位 IC) | DBZ | 3 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV809ED29DBZR

TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage Supervisors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV809EF30DBZR

TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage Supervisors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV809I50

3-Pin Supply Voltage Supervisors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV809I50DBVR

3-Pin Supply Voltage Supervisors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV809I50DBVT

3-Pin Supply Voltage Supervisors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV809I50DBZR

3-Pin Supply Voltage Supervisors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV809I50DBZT

3-Pin Supply Voltage Supervisors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV809J25DBVR

3-Pin Supply Voltage Supervisors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV809J25DBVT

3-Pin Supply Voltage Supervisors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV809J25DBZR

3-Pin Supply Voltage Supervisors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI