TLV840CADL28DBVR [TI]

TLV840 Nano-Power Ultra-Low Voltage Supervisor with Adjustable Reset Time Delay;
TLV840CADL28DBVR
型号: TLV840CADL28DBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TLV840 Nano-Power Ultra-Low Voltage Supervisor with Adjustable Reset Time Delay

文件: 总29页 (文件大小:1937K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV840  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
TLV840 Nano-Power Ultra-Low Voltage Supervisor with Adjustable Reset Time Delay  
1 Features  
3 Description  
Operating voltage range : 0.7 V to 6 V  
Nano supply current : 120 nA (Typical)  
Fixed threshold voltage (VIT-): 0.8 V to 5.4 V  
– Threshold voltages available in 100mV steps  
– High accuracy: ±0.5% (Typical)  
– Built-in hysteresis (VHYS): 5% (Typical)  
Reset time delay (tD): capacitor-based  
programmable (TLV840C, TLV840M)  
– Minimum time delay: 40 µs (typical) without  
capacitor  
The TLV840 family of voltage supervisors or reset ICs  
can operate at high voltage levels while maintaining  
very low quiescent current across the whole VDD and  
temperature range. TLV840 offers best combination of  
low power consumption, high accuracy and low  
propagation delay (tp_HL= 30 µs typical).  
Reset output signal is asserted when the voltage at  
VDD drops below the negative voltage threshold  
(VIT-). Reset signal is cleared when VDD rise above  
VIT- plus hysteresis (VHYS) and the reset time delay  
(tD) expires. Reset time delay can be programmed by  
connecting a capacitor between the CT pin and  
ground for TLV840C and TLV840M. For a minimum  
reset delay time the CT pin can be left floating.  
TLV840N does not offer a programmable delay and  
offers fixed reset delay timing options: 40 µs, 2 ms, 10  
ms, 30 ms, 50 ms, 80 ms, 100 ms, 150 ms, 200 ms.  
Active-low manual reset (MR) (TLV840M)  
Four output topologies:  
– TLV840xxDL: open-drain, active-low (RESET)  
– TLV840xxPL: push-pull, active-low (RESET)  
– TLV840xxDH: open-drain, active-high (RESET)  
– TLV840xxPH: push-pull, active-high (RESET)  
Wide temperature range: –40°C to +125°C  
Package: SOT23-5 (DBV)  
Additional features: Low power-on reset voltage  
(VPOR), built-in glitch immunity protection for VDD,  
built-in hysteresis, low open-drain output leakage  
2 Applications  
current (Ilkg(OD)). TLV840 is  
a
perfect voltage  
Motor Drives  
monitoring solution for industrial applications and  
battery-powered / low-power applications.  
Factory Automation and Control  
Home Theater and Entertainment  
Electronic Point of Sale  
Grid Infrastructure  
Data Center and Enterprise Computing  
Multifunction Printer  
Device Information  
PART NUMBER  
TLV840  
PACKAGE(1)  
BODY SIZE (NOM)  
SOT-23 (5) (DBV)  
2.90 mm × 1.60 mm  
(1) For package details, see the mechanical drawing addendum  
at the end of the data sheet.  
0.4  
25°C  
-40°C  
125°C  
0.36  
0.32  
0.28  
0.24  
0.2  
3.3 V  
5 V  
IN  
LDO  
OUT  
*Rpu  
VDD  
VDD  
Microcontroller  
RESET  
CT  
RESET  
TLV840CADL29  
GND  
0.16  
0.12  
0.08  
*Rpu only for open-drain output  
Typical Application Circuit  
0.5  
1
1.5  
2
2.5  
3 3.5  
VDD (V)  
4
4.5  
5
5.5  
6
IDDv  
Typical Supply Current  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison.........................................................3  
6 Pin Configuration and Functions...................................4  
Pin Functions.................................................................... 4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings ....................................... 5  
7.2 ESD Ratings .............................................................. 5  
7.3 Recommended Operating Conditions ........................5  
7.4 Thermal Information ...................................................5  
7.5 Electrical Characteristics ............................................6  
7.6 Timing Requirements .................................................7  
7.7 Timing Diagrams ........................................................8  
7.8 Typical Characteristics................................................9  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagram.........................................10  
8.3 Feature Description...................................................10  
8.4 Device Functional Modes..........................................14  
9 Application and Implementation..................................15  
9.1 Application Information............................................. 15  
9.2 Typical Application.................................................... 15  
10 Power Supply Recommendations..............................18  
11 Layout...........................................................................19  
11.1 Layout Guidelines................................................... 19  
11.2 Layout Example...................................................... 19  
12 Device and Documentation Support..........................20  
12.1 Device Nomenclature..............................................20  
12.2 Receiving Notification of Documentation Updates..21  
12.3 Support Resources................................................. 21  
12.4 Trademarks.............................................................21  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 21  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (July 2020) to Revision C (September 2020)  
Page  
Updated the numbering format for tables, figures, and cross-references throughout the document..................1  
Updated Pin Connections...................................................................................................................................4  
Added Timing Diagram....................................................................................................................................... 8  
New Typical Characteristics................................................................................................................................9  
Changes from Revision A (February 2020) to Revision B (July 2020)  
Page  
APL to RTM release............................................................................................................................................1  
Changes from Revision * (December 2019) to Revision A (February 2020)  
Page  
Initial APL Release............................................................................................................................................. 1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV840  
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
5 Device Comparison  
Figure 5-1 shows the device naming nomenclature to compare the different device variants. See Table 12-1 for a  
more detailed explanation.  
TLV 840 X X XX XX XXX  
Package  
DBV: SOT23  
Detect Voltage Threshold  
Output Type  
DL: Open-drain,  
active-low  
PL: Push-pull,  
active-low  
Feature Option  
Delay Option  
A: 40 µs  
B: 2 ms  
C: 10 ms  
D: 30 ms  
E: 50 ms  
F: 80 ms  
08: 0.8V  
...  
54: 5.4V  
N: no capacitor delay (CT),  
no manual reset (MR)  
C: Capacitor delay (CT)  
M: Capacitor delay (CT) and  
manual reset (MR)  
DH: Open-drain,  
active-high  
PH: Push-pull,  
active-high  
G: 100 ms  
H: 150 ms  
I: 200 ms  
Figure 5-1. Device Naming Nomenclature  
Orderable part numbers starting with TLV840C and TLV840M are only available with the delay option A.  
However, longer delays can be achieved through an external capacitor on the CT pin. Leaving the CT pin  
floating will result in typical 40us delay for these 2 feature options.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV840  
 
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
6 Pin Configuration and Functions  
CT  
CT  
RESET  
VDD  
1
2
3
RESET  
VDD  
1
2
3
5
5
NC  
MR  
GND  
4
GND  
4
Not to scale  
Not to scale  
Figure 6-1. Pin Configuration TLV840C,  
DBV Package, 5-Pin SOT-23,  
TLV840C Top View  
Figure 6-2. Pin Configuration TLV840M,  
DBV Package, 5-Pin SOT-23,  
TLV840M Top View  
RESET  
VDD  
1
2
3
5
NC  
NC  
GND  
4
Not to scale  
Figure 6-3. Pin Configuration TLV840N,  
DBV Package, 5-Pin SOT-23,  
TLV840N Top View  
Pin Functions  
PIN  
TLV840CxL TLV840MxL  
I/O  
DESCRIPTION  
PIN  
TLV840NxL  
NUMBER  
1
RESET  
RESET  
RESET  
O
Active-Low Output Reset Signal: This pin is driven logic low when  
VDD voltage falls below the negative voltage threshold (VIT-). RESET  
remains low (asserted) for the delay time period (tD) after VDD voltage  
rises above VIT+=VIT-+VHYS  
.
2
3
4
VDD  
GND  
NC  
VDD  
GND  
MR  
VDD  
GND  
NC  
I
_
I
Input Supply Voltage TLV840 monitors VDD voltage  
Ground  
Manual Reset Pull this pin to a logic low to assert a reset signal in the  
RESEToutput pin. After MRpin is left floating or pulls to logic high, the  
RESEToutput deasserts to the nominal state after the reset delay time  
(tD)expires.  
NC stands for “No Connect”. The pin can be left floating.  
Recommended connection to GND.  
5
CT  
CT  
NC  
-
Capacitor Time Delay Pin. The CT pin offers a user-programmable  
delay time. Connect an external capacitor on this pin to adjust time  
delay. When not in use leave pin floating for the smallest fixed time  
delay.  
NC stands for “No Connect”. The pin can be left floating.  
Recommended connection to GND.  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV840  
 
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range, unless otherwise noted(1)  
MIN  
–0.3  
–0.3  
–0.3  
–20  
–40  
–65  
MAX  
6.5  
UNIT  
Voltage  
Voltage  
VDD  
V
CT, MR (2), RESET (TLV840xxPL)  
RESET (TLV840xxDL)  
RESET, RESET pin  
VDD+0.3 (3)  
V
6.5  
Current  
20  
mA  
Temperature (4)  
Temperature (4)  
Operating ambient temperature, TA  
Storage, Tstg  
125  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) If the logic signal driving MRis less than VDD, then additional current flows into VDD and out of MR.  
(3) The absolute maximum rating is (VDD + 0.3) V or 6.5 V, whichever is smaller  
(4) As a result of the low dissipated power in this device, it is assumed that TJ = TA.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001(1)  
± 2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101(2)  
± 750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.7  
0
NOM  
MAX  
6
UNIT  
VDD (TLV840xxxL)  
Voltage  
V
CT, RESET (TLV840xxxL), MR  
RESET pin current  
6
Current  
TA  
–5  
5
mA  
Operating ambient temperature  
–40  
125  
7.4 Thermal Information  
TLV840  
DBV (SOT23-5)  
5 PINS  
193.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
117.9  
98.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
43.4  
ψJB  
97.8  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV840  
 
 
 
 
 
 
 
 
 
 
 
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
7.5 Electrical Characteristics  
At 0.7 V ≤ VDD ≤ 6 V, CT = MR= Open, RESETpull-up resistor (Rpull-up) = 100 kΩ to VDD, output reset  
load (CLOAD) = 10 pF and over operating free-air temperature range –40to 125, unless otherwise noted.  
VDD ramp rate ≤ 100 mV/µs. Typical values are at TA = 25℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
COMMON PARAMETERS  
VDD  
VIT–  
VHYS  
Input supply voltage  
TLV840xxxL  
0.7  
–2.5  
–2  
6
2.5  
2
V
%
%
VIT- = 0.8 V to 1.7 V  
VIT- = 1.8 V to 5.4 V  
±0.5  
±0.5  
5
Negative-going input threshold accuracy  
(1)  
Hysteresis on VIT– pin  
2.5  
7
TA = –40to  
85℃  
0.12  
0.12  
0.15  
0.15  
0.3  
1.0  
0.4  
VDD = 2 V  
VIT– = 0.8 V to 1.8 V  
IDD  
Supply current into VDD pin (2)  
µA  
TA = –40to  
85℃  
VDD = 6 V  
VIT– = 0.8 V to 5.5 V  
1.2  
V MR_L  
V MR_H  
R MR  
Manual reset logic low input (2)  
Manual reset logic high input (2)  
Manual reset internal pull-up resistance  
CT pin internal resistance  
0.3VDD  
V
V
0.7VDD  
100  
500  
kΩ  
kΩ  
RCT  
TLV840xxDL (Open-drain active-low)  
VOL(max) = 300 mV  
IOUT(Sink) = 15 µA  
VPOR  
Power on Reset Voltage (3)  
700  
300  
300  
300  
mV  
mV  
VDD = 0.7 V, 0.8 V ≤ VIT– ≤ 1.5 V  
IOUT(Sink) = 15 µA  
Low level output voltage  
VDD =1.5 V, 1.6 V ≤ VIT– ≤ 3.3 V  
IOUT(Sink) = 500 µA  
VOL  
VDD = 3.3 V, 3.4 V ≤ VIT– ≤ 5.5 V  
IOUT(Sink) = 2 mA  
VDD = VPULLUP = 6V  
TA = –40to 85℃  
10  
10  
100  
350  
nA  
nA  
Ilkg(OD)  
Open-Drain output leakage current  
VDD = VPULLUP = 6V  
TLV840xxPL (Push-pull active-low)  
VOL(max) = 300 mV  
IOUT(Sink) = 15 µA  
VPOR  
Power on Reset Voltage (3)  
Low level output voltage  
700  
300  
300  
300  
mV  
mV  
VDD = 0.7 V, 0.8 V ≤ VIT– ≤ 1.5 V  
IOUT(Sink) = 15 µA  
VDD = 1.5 V, 1.6 V ≤ VIT– ≤ 3.3 V  
IOUT(Sink) = 500 µA  
VOL  
VDD = 3.3 V, 3.4 V ≤ VIT– ≤ 5.5 V  
IOUT(Sink) = 2 mA  
VDD = 1.8 V, 0.8 V ≤ VIT– ≤ 1.4 V  
IOUT(Source) = 500 µA  
0.8VDD  
0.8VDD  
0.8VDD  
High level output voltage  
VDD = 3.3 V, 1.5 V ≤ VIT– ≤ 3.0 V  
IOUT(Source) = 500 µA  
VOH  
V
VDD = 6 V, 3.1 V ≤ VIT– ≤ 5.5 V  
IOUT(Source) = 2 mA  
(1) VIT– threshold voltage range from 0.8 V to 5.4 V (for DL, PL versions) in 100 mV steps  
(2) If the logic signal driving MRis less than VDD, then IDD current increases based on voltage differential  
(3) VPOR is the minimum VDD voltage level for a controlled output state  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV840  
 
 
 
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
7.6 Timing Requirements  
At 0.7 V ≤ VDD ≤ 6 V, CT = MR= Open, RESETpull-up resistor (Rpull-up) = 100 kΩ to VDD, output reset  
load (CLOAD) = 10 pF and over operating free-air temperature range –40to 125, unless otherwise noted.  
VDD ramp rate ≤ 100 mV/µs. Typical values are at TA = 25℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Propagation detect delay for VDD falling  
below VIT–  
VDD : (VIT+ + 10%) to (VIT– – 10%)  
tP_HL  
30  
50  
µs  
(1)  
CT pin = Open or NC  
(VIT- - 10%) to (VIT+ + 10%)  
TLV840xA  
40  
80  
µs  
tD  
Reset time delay  
TLV840CA,  
CT pin = 10 nF  
CT pin = 1 µF  
6.2  
619  
10  
ms  
ms  
µs  
TLV840MA  
tGI_VIT–  
t MR_PW  
Glitch immunity VIT–  
5% VIT– overdrive(2)  
MR pin pulse duration to assert reset (3)  
500  
ns  
Propagation delay from MR low to reset  
assertion  
VDD = 3.3 V,  
MR= V MR_H to V MR_L  
t MR_RES  
t MR_tD  
1
µs  
VDD = 3.3 V,  
MR= V MR_L to V MR_H  
Delay from MR release to reset deassert  
tD  
ms  
(1) tP_HL measured from threshold trip point (VIT–) to RESET assert. VIT+ = VIT– + VHYS  
(2) Overdrive % = [(VDD/ VIT–) – 1] × 100%  
(3) Refer section on Manual Reset Input for min pulse width needed on MR pin  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV840  
 
 
 
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
7.7 Timing Diagrams  
VIT+  
VIT-  
VDD  
VPOR  
VDD(0v)  
tD  
tP_HL  
tD  
tP_HL  
tD  
VOH  
RESET  
VOL  
(1) Open-Drain timing diagram where RESET is pulled up to VDD via a pull-up resistor  
(2) RESEToutput is undefined when VDD is < VPOR  
Figure 7-1. Timing Diagram TLV840DL (Open-Drain Active-Low)  
VIT+  
VIT-  
VDD  
VPOR  
tP_HL  
tD  
tD  
tD  
tP_HL  
VOH  
RESET  
VOL  
(3) RESEToutput is undefined when VDD is < VPOR and limited to VOL for VDD slew rate = 100mV / μS  
Figure 7-2. Timing Diagram TLV840PL (Push-Pull Active-Low)  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV840  
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
7.8 Typical Characteristics  
Typical characteristics show the typical performance of the TLV840 device. Test conditions are TA = 25°C,  
VDD = 3.3 V, RPull-Up = 100 kΩ, CLOAD = 50 pF, unless otherwise noted.  
0.4  
25°C  
-40°C  
125°C  
0.36  
0.32  
0.28  
0.24  
0.2  
0.16  
0.12  
0.08  
0.5  
1
1.5  
2
2.5  
3 3.5  
VDD (V)  
4
4.5  
5
5.5  
6
IDDv  
Figure 7-3. Supply Current vs Supply Voltage for  
TLV840MADL13  
Figure 7-4. Low Output Voltage (VOL) vs  
Temperature for TLV840MADL13 (VDD = 0.7 V)  
Figure 7-5. Voltage Threshold Accuracy vs  
Temperature for TLV840MADL13  
Figure 7-6. Voltage Hysteresis vs Temperature for  
TLV840MADL13  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV840  
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
8 Detailed Description  
8.1 Overview  
The TLV840 is a family of nano-quiescent current voltage detectors with fixed threshold voltage. TLV840  
features include programable reset time delay using external capacitor, active-low manual reset, 0.5% typical  
monitor threshold accuracy with hysteresis and glitch immunity.  
Fixed negative threshold voltages (VIT-) can be factory set from 0.8 V to 5.4 V. TLV840 is available in  
SOT-23 5-pin industry standard package.  
8.2 Functional Block Diagram  
VDD  
Push-pull (TLV840xxxPx)  
version only  
RMR  
VDD  
MR  
TLV840M  
only  
RESET  
LOGIC  
TIMER  
RESET  
+
VDD  
œ
Reference  
GND  
TLV840C,  
TLV840M  
only  
RCT  
CT  
GND  
8.3 Feature Description  
8.3.1 Input Voltage (VDD)  
VDD pin is monitored by the internal comparator to indicate when VDD falls below the fixed threshold voltage.  
VDD also functions as the supply for the internal bandgap, internal regulator, state machine, buffers and other  
control logic blocks. Good design practice involve placing a 0.1 μF to 1 μF bypass capacitor at VDD input for  
noisy applications to ensure enough charge is available for the device to power up correctly.  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV840  
 
 
 
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
8.3.1.1 VDD Hysteresis  
The internal comparator has built-in hysteresis to avoid erroneous output reset release. If the voltage at the VDD  
pin falls below VIT- the output reset is asserted. When the voltage at the VDD pin goes above VIT- plus hysteresis  
(VHYS) the output reset is deasserted after tD delay.  
Hystersis Width  
Hystersis Width  
RESET  
RESET  
VIT-  
VIT-  
VIT+  
VIT+  
VDD  
VDD  
Figure 8-1. Hysteresis Diagram  
8.3.1.2 VDD Transient Immunity  
The TLV840 is immune to quick voltage transients or excursion on VDD. Sensitivity to transients depends on  
both pulse duration (tGI_VIT-) found in Section 7.6 and overdrive. Overdrive is defined by how much VDD deviates  
from the specified threshold. Threshold overdrive is calculated as a percent of the threshold in question, as  
shown in Equation 1.  
Overdrive = | (VDD / VIT- – 1) × 100% |  
(1)  
VDD  
VIT+  
VIT-  
Overdrive  
Pulse  
Duration  
Figure 8-2. Overdrive vs Pulse Duration  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV840  
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
8.3.2 User-Programmable Reset Time Delay  
The reset time delay can be set to a minimum value of 80 µs by leaving the CT pin floating, or a maximum value  
of approximately 6.2 seconds by connecting 10 µF delay capacitor. The reset time delay (tD) can be  
programmed by connecting a capacitor no larger than 10 µF between CT pin and GND.  
The relationship between external capacitor (CCT) in µF at CT pin and the time delay (tD) in seconds is given by  
Equation 2.  
tD = -ln (0.29) x RCT x CCT + tD (CT pin = Open)  
(2)  
Equation 2 is simplified to Equation 3 by plugging RCT and tD (CT pin = Open) given in Section 7.5 section:  
tD = 618937 x CCT + 80µs  
(3)  
Equation 4 solves for external capacitor value (CCT) in units of µF where tD is in units of seconds  
CCT = (tD- 80µs) ÷ 618937  
(4)  
The recommended maximum delay capacitor for the TLV840 is limited to 10 µF as this ensures there is enough  
time for the capacitor to fully discharge when the reset condition occurs. When a voltage fault occurs, the  
previously charged up capacitor discharges, and if the monitored voltage returns from the fault condition before  
the delay capacitor discharges completely, the reset delay will be shorter than expected because the delay  
capacitor will begin charging from a voltage above zero. Larger delay capacitors can be used so long as the  
capacitor has enough time to fully discharge during the duration of the voltage fault. The amount of time required  
to discharge the delay capacitor relative to the reset delay increases as VDD overdrive increases as shown in  
Figure 8-3.  
55  
25°C  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.6  
0.8  
1
1.2  
1.4  
VDD Fault Underoltage (V)  
1.6  
1.8  
2
CTR_  
Figure 8-3. CCT Discharge Time During Fault Condition (VIT- = 2.1 V, CCT = 1 µF)  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV840  
 
 
 
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
8.3.3 Manual Reset (MR) Input for TLV840M Only  
The manual reset (MR) input allows a processor GPIO or other logic circuits to initiate a reset. A logic low on MR  
with pulse duration longer than t MR_PW will cause the reset output to assert. After MRreturns to a logic high  
(V MR_H) and VDD is above VIT+, reset is deasserted after the user programmed reset time delay (tD) expires.  
The minimum duration for which MRis held under V MR_L must be at least 1% of t MR_tD. Otherwise, the effective  
reset delay will be shorter roughly by the difference between 1% of t MR_tD and the actual MR pulse width. For  
large capacitor based delays this difference could be noticeable unless care is taken to lengthen the MR pulse  
width.  
MR is internally connected to VDD through a pull-up resistor R  
shown in Section 8.2. If the logic signal  
MR  
controlling MRis less than VDD, then additional current flows from VDD into MRinternally. For minimum current  
consumption, drive MRto either VDD or GND. V MR should not be higher than VDD voltage.  
VIT+  
VHYS  
VIT-  
VIT+  
VHYS  
VIT-  
VDD  
tP_HL  
tD  
tMR_tD  
RESET  
(2)  
tMR_RES  
VMR_H  
VMR_L  
MR  
(1)  
tMR_PW  
Time  
(1) MR pulse width too small to assert RESET  
(2) MR voltage not low enough to assert RESET  
Figure 8-4. Timing Diagram MR and RESET (TLV840M)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV840  
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
8.3.4 Output Logic  
8.3.4.1 RESET Output, Active-Low  
RESET(Active-Low) applies to TLV840DL (Open-Drain) and TLV840PL (Push-Pull) hence the "L" in the device  
name. RESETremains high (deasserted) as long as VDD is above the negative threshold (VIT-) and the MRpin is  
floating or above V MR_H. If VDD falls below the negative threshold (VIT-) or if MR is driven low, then RESET is  
asserted.  
When MRis again logic high or floating and VDD rise above VIT+, the delay circuit will hold RESETlow for the  
specified reset time delay (tD). When the reset time delay has elapsed, the RESETpin goes back to logic high  
voltage (VOH).  
The TLV840DL (Open-Drain) version, denoted with "D" in the device name, requires a pull-up resistor to hold  
RESETpin high. Connect the pull-up resistor to the desired pull-up voltage source and RESETcan be pulled up  
to any voltage up to 6.5 V independent of the VDD voltage. To ensure proper voltage levels, give some  
consideration when choosing the pull-up resistor values. The pull-up resistor value determines the actual VOL  
,
the output capacitive loading, and the output leakage current (Ilkg(OD)).  
The Push-Pull variants (TLV840PL and TLV840PH), denoted with "P" in the device name, does not require an  
external pull-up resistor.  
8.4 Device Functional Modes  
Table 8-1 summarizes the various functional modes of the device. Logic high is represented by "H" and logic low  
is represented by "L".  
Table 8-1. Truth Table  
VDD  
VDD < VPOR  
VPOR < VDD < VIT-  
VDD ≥ VIT-  
MR  
Ignored  
Ignored  
L
RESET  
RESET  
Undefined  
Undefined  
H
H
L
L
L
VDD ≥ VIT-  
H
H
H
VDD ≥ VIT-  
Floating  
L
8.4.1 Normal Operation (VDD > VPOR)  
When VDD is greater than VPOR, the reset signal is determined by the voltage on the VDD pin with respect to  
the trip point (VIT-)  
MR high: the reset signal corresponds to VDD with respect to the threshold voltage.  
MR low: in this mode, the reset is asserted regardless of the threshold voltage.  
8.4.2 Below Power-On-Reset (VDD < VPOR  
)
When the voltage on VDD is lower than VPOR, the device does not have enough bias voltage to internally pull the  
asserted output low or high and reset voltage level is undefined.  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV840  
 
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The following sections describe in detail how to properly use this device, depending on the requirements of the  
final application.  
9.2 Typical Application  
9.2.1 Design 1: Dual Rail Monitoring with Power-up Sequencing  
A typical application for the TLV840 is voltage rail monitoring and power-up sequencing as shown in Figure 9-1.  
The TLV840 can be used to monitor any rail above 0.9 V. In this design application, two TLV840 devices monitor  
two separate voltage rails and sequences the rails upon power-up. The TLV840CAPL29 is used to monitor the  
3.3-V main power rail and the TLV840CADL09 is used to monitor the 1.2-V rail provided by the LDO for other  
system peripherals. The RESEToutput of the TLV840CAPL29 is connected to the ENABLE input of the LDO. A  
reset event is initiated on either voltage supervisor when the VDD voltage is less than VIT-.  
LDO  
VDD  
EN  
1.2 V  
3.3 V  
1 µF  
1 µF  
VCORE  
VI/O  
40kΩ  
Microcontroller  
VDD  
VDD  
RESET  
RESET  
RESET  
TLV840CAPL29  
TLV840CADL09  
NC CT  
GND  
CT  
GND  
0.047µF  
Figure 9-1. TLV840 Voltage Rail Monitor and Power-Up Sequencer Design Block Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV840  
 
 
 
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
9.2.1.1 Design Requirements  
This design requires voltage supervision on two separate rails: 3.3-V and 1.2-V rails. The voltage rail needs to  
sequence upon power up with the 3.3-V rail coming up first followed by the 1.2-V rail at least 25 ms after.  
PARAMETER  
DESIGN REQUIREMENT  
DESIGN RESULT  
Two TLV840 devices provide voltage monitoring  
with 1% accuracy with device options available in  
0.1 V variations  
Two Rail Voltage Supervision  
Monitor 3.3-V and 1.2-V rails  
Power up the 3.3-V rail first followed by 1.2-V rail  
25 ms after  
The CT capacitor on TLV840CAPL29 is set to  
0.047 µF for a reset time delay of 29 ms typical  
Voltage Rail Sequencing  
Maximum device current  
consumption  
1 µA  
Each TLV840 requires 350 nA typical  
9.2.1.2 Detailed Design Procedure  
The primary constraint for this application is choosing the correct device to monitor the supply voltage of the  
microprocessor. The TLV840 can monitor any voltage between 0.8 V and 5.4 V. Depending on how far away  
from the nominal voltage rail the user wants the voltage supervisor to trigger determines the correct voltage  
supervisor variant to choose. In this example, the first TLV840 triggers when the 3.3-V rail falls to 2.9 V. The  
second TLV840 triggers a reset when the 1.2-V rail falls to 0.9 V. The secondary constraint for this application is  
the reset time delay that must be at least 25 ms to allow the microprocessor, and all other devices using the  
3.3-V rail, enough time to startup correctly before the 1.2-V rail is enabled via the LDO. Because a minimum time  
is required, the user must account for capacitor tolerance. For applications with ambient temperatures ranging  
from –40°C to +125°C, CCT can be calculated using RCT and solving for CCT in Equation 2. Solving Equation 2  
for 25 ms gives a minimum capacitor value of 0.04 µF which is rounded up to a standard value 0.047 µF to  
account for capacitor tolerance.  
A 1 µF decoupling capacitor is connected to the VDD pin as a good analog design practice. The pull-up resistor  
is only required for the Open-Drain device variants and is calculated to ensure that VOL does not exceed max  
limit given the Isink possible at the expected supply voltage. In this design example nominal VDD is 1.2 V but  
dropping to 0.9 V. The Recommended Operating Conditions table provides 15 µA I sink for 0.7 V VDD, which is  
the closest voltage to this design example. Using 15 µA of Isink and 300 mV max VOL, gives us 40 kΩ for the  
pull-up resistor. Any value higher than 40 kΩ would ensure that VOL will not exceed 300 mV max specification.  
9.2.1.3 Application Curves  
VDD  
30ms delay from VDD (3.3 V) to LDO Enable set by 0.047 µF on CT of TLV840CAPL29  
RESET  
(LDO Enable)  
VOUT (LDO)  
Negligible delay from LDO Enable to 1.2 V V  
OUT  
Figure 9-2. Startup Sequence Highlighting the Delay Between 3.3V and 1.2V Rails  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV840  
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
9.2.2 Application Curve: TLV840EVM  
These application curves are taken with the TLV840EVM. Please see the TLV840EVM User Guide for more  
information.  
VDD  
VDD  
Reset Delay (tD)= 57.6 µs  
Reset Delay (tD)= 5.42 ms  
RESET  
RESET  
Figure 9-4. TLV840EVM RESETTime Delay (tD) with  
0.01-µF Capacitor  
Figure 9-3. TLV840EVM RESETTime Delay (tD) with  
No Capacitor  
VDD  
Reset Delay (tD)= 56.8 ms  
RESET  
Figure 9-5. TLV840EVM RESETTime Delay (tD) with 0.1-µF Capacitor  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV840  
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
10 Power Supply Recommendations  
These devices are designed to operate from an input supply with a voltage range between 0.7 V and 6 V. TI  
recommends an input supply capacitor between the VDD pin and GND pin. This device has a 6.5 V absolute  
maximum rating on the VDD pin. If the voltage supply providing power to VDD is susceptible to any large voltage  
transient that can exceed 6.5 V, additional precautions must be taken.  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV840  
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
11 Layout  
11.1 Layout Guidelines  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice recommends  
placing a minimum 0.1 µF ceramic capacitor as near as possible to the VDD pin. If a capacitor is not connected  
to the CT pin, then minimize parasitic capacitance on this pin so the rest time delay is not adversely affected.  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice is to place a  
>0.1 µF ceramic capacitor as near as possible to the VDD pin.  
If a CCT capacitor is used, place these components as close as possible to the CT pin. If the CT pin is left  
unconnected, make sure to minimize the amount of parasitic capacitance on the pin to <5 pF.  
Place the pull-up resistors on RESET pin as close to the pin as possible.  
11.2 Layout Example  
The layout example in shows how the TLV840 is laid out on a printed circuit board (PCB) with a user-defined  
delay.  
Pull-up resistor required for Open-Drain  
(TLV840XXDX) only  
CT  
RESET  
CCT  
Rpull-up  
VDD  
GND  
CIN  
NC  
VDD  
GND  
Figure 11-1. TLV840C Recommended Layout  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV840  
 
 
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
12 Device and Documentation Support  
12.1 Device Nomenclature  
Table 12-1 shows how to decode the function of the device based on its part number  
Table 12-1. Device Naming Convention  
DESCRIPTION  
Generic Part number  
NOMENCLATURE  
VALUE  
TLV840  
N
TLV840  
Feature Option  
No capacitor adjustable delay or manual  
reset options  
C 1  
CT pin for programmable delay using  
external capacitor  
M 1  
A
Manual Reset option in addition to CT pin  
40 µs (No internal reset time delay)  
2 ms reset time delay  
Delay Option  
B
C
10 ms reset time delay  
30 ms reset time delay  
50 ms reset time delay  
80 ms reset time delay  
100 ms reset time delay  
150 ms reset time delay  
200 ms reset time delay  
Open-Drain, Active-Low  
Push-Pull, Active-Low  
D
E
F
G
H
I
Variant code (Output Topology)  
DL  
PL  
DH  
PH  
Open-Drain, Active-High  
Push-Pull, Active-High  
Example: 12 stands for 1.2 V threshold  
SOT23-5  
Detect Voltage Option  
Package  
## (two characters)  
DBV  
R
Reel  
Large Reel  
1. Orderable part numbers starting with TLV840C and TLV840M are only available with the delay option A.  
However, longer delays can be achieved through an external capacitor on the CT pin. Leaving the CT pin  
floating will result in typical 40us delay for these 2 feature options  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLV840  
 
 
 
 
TLV840  
www.ti.com  
SNVSBC3C – DECEMBER 2019 – REVISED SEPTEMBER 2020  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 Support Resources  
12.4 Trademarks  
All other trademarks are the property of their respective owners.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLV840  
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV840CADL11DBVR  
TLV840CADL14DBVR  
TLV840CADL28DBVR  
TLV840CADL29DBVR  
TLV840MADL10DBVR  
TLV840MADL13DBVR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2CLF  
2G1F  
2CKF  
2CNF  
2G2F  
2CMF  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
TLV840MADL29DBVR  
TLV840MADL30DBVR  
TLV840NADL20DBVR  
PREVIEW  
PREVIEW  
PREVIEW  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
5
5
5
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
2G3F  
2G4F  
2G6F  
3000  
RoHS (In  
work) & Green  
(In work)  
TLV840NADL33DBVR  
TLV840NADL35DBVR  
TLV840NADL46DBVR  
TLV840NAPL50DBVR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2CIF  
2CJF  
2G7F  
2GOF  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jan-2021  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV840 :  
Automotive: TLV840-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV840CADL11DBVR  
TLV840CADL11DBVR  
TLV840CADL14DBVR  
TLV840CADL28DBVR  
TLV840CADL28DBVR  
TLV840CADL29DBVR  
TLV840CADL29DBVR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
178.0  
180.0  
178.0  
180.0  
178.0  
180.0  
178.0  
178.0  
180.0  
178.0  
178.0  
180.0  
180.0  
178.0  
178.0  
178.0  
9.0  
8.4  
9.0  
8.4  
9.0  
8.4  
9.0  
9.0  
8.4  
9.0  
9.0  
8.4  
8.4  
9.0  
9.0  
9.0  
3.3  
3.2  
3.3  
3.2  
3.3  
3.2  
3.3  
3.3  
3.2  
3.3  
3.3  
3.2  
3.2  
3.3  
3.3  
3.3  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
TLV840MADL10DBVR SOT-23  
TLV840MADL13DBVR SOT-23  
TLV840MADL13DBVR SOT-23  
TLV840NADL33DBVR  
TLV840NADL33DBVR  
TLV840NADL35DBVR  
TLV840NADL35DBVR  
TLV840NADL46DBVR  
TLV840NAPL50DBVR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV840CADL11DBVR  
TLV840CADL11DBVR  
TLV840CADL14DBVR  
TLV840CADL28DBVR  
TLV840CADL28DBVR  
TLV840CADL29DBVR  
TLV840CADL29DBVR  
TLV840MADL10DBVR  
TLV840MADL13DBVR  
TLV840MADL13DBVR  
TLV840NADL33DBVR  
TLV840NADL33DBVR  
TLV840NADL35DBVR  
TLV840NADL35DBVR  
TLV840NADL46DBVR  
TLV840NAPL50DBVR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
210.0  
180.0  
210.0  
180.0  
210.0  
180.0  
180.0  
210.0  
180.0  
180.0  
210.0  
210.0  
180.0  
180.0  
180.0  
180.0  
185.0  
180.0  
185.0  
180.0  
185.0  
180.0  
180.0  
185.0  
180.0  
180.0  
185.0  
185.0  
180.0  
180.0  
180.0  
18.0  
35.0  
18.0  
35.0  
18.0  
35.0  
18.0  
18.0  
35.0  
18.0  
18.0  
35.0  
35.0  
18.0  
18.0  
18.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
2X 0.95  
1.9  
3.05  
2.75  
1.9  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/E 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/E 09/2019  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/E 09/2019  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TLV840CADL29DBVR

TLV840 Nano-Power Ultra-Low Voltage Supervisor with Adjustable Reset Time Delay

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV840CADL40DBVR

TLV840 Nano-Power Ultra-Low Voltage Supervisor with Adjustable Reset Time Delay

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV840MADL08DBVR

TLV840 Nano-Power Ultra-Low Voltage Supervisor with Adjustable Reset Time Delay

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV840MADL10DBVR

TLV840 Nano-Power Ultra-Low Voltage Supervisor with Adjustable Reset Time Delay

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV840MADL12DBVRQ1

TLV840-Q1 Nano-Power Voltage Supervisor with Adjustable Reset Time Delay

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV840MADL13DBVR

TLV840 Nano-Power Ultra-Low Voltage Supervisor with Adjustable Reset Time Delay

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV840MADL22DBVRQ1

TLV840-Q1 Nano-Power Voltage Supervisor with Adjustable Reset Time Delay

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV840MADL29DBVR

TLV840 Nano-Power Ultra-Low Voltage Supervisor with Adjustable Reset Time Delay

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV840MADL30DBVR

TLV840 Nano-Power Ultra-Low Voltage Supervisor with Adjustable Reset Time Delay

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV840MADL30DBVRQ1

TLV840-Q1 Nano-Power Voltage Supervisor with Adjustable Reset Time Delay

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV840MADL31DBVRQ1

TLV840-Q1 Nano-Power Voltage Supervisor with Adjustable Reset Time Delay

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV840MADL32DBVRQ1

TLV840-Q1 Nano-Power Voltage Supervisor with Adjustable Reset Time Delay

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI