TLV8542 [TI]

双路、3.6V、8kHz、超低静态电流 (500nA)、RRIO 运算放大器;
TLV8542
型号: TLV8542
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路、3.6V、8kHz、超低静态电流 (500nA)、RRIO 运算放大器

放大器 运算放大器
文件: 总38页 (文件大小:1921K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV8544, TLV8542, TLV8541  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
适用于成本优化型系统的 TLV854x 500nA RRIO 纳瓦级功率运算放大器  
1 特性  
3 说明  
1
对于成本优化型系统  
TLV854x 超低功耗运算放大器适用于无线和低功耗有  
线设备中的 成本优化型 传感应用。TLV854x 系列运算  
放大器可最大限度地减少极其注重电池使用寿命的运动  
检测安全系统(如微波和 PIR 运动传感系统)等设备  
的功耗。此类器件的互补金属氧化物半导体 (CMOS)  
输入级经过精心设计,能够实现超低飞安级失调电流,  
从而降低 IBIAS IOS 误差,否则会影响敏感 应用。这  
些方面的示例包括带有兆欧级反馈电阻器的跨阻放大器  
(TIA) 配置以及高源阻抗传感 应用。此外,内置的 EMI  
保护可降低器件对手机、WiFi、无线电发射器和标签阅  
读器等发出的无用射频信号的敏感度。  
纳瓦级功率电源电流:500nA/通道  
失调电压:3.1mV(最大值)  
TcVos0.8µV/°C  
增益带宽:8kHz  
单位增益稳定  
低输入失调电流:100fA  
宽电源电压范围:1.7V 3.6V  
轨至轨输入和输出 (RRIO)  
温度范围:–40°C +125°C  
行业标准封装  
四通道 14 引脚 TSSOP SOIC 封装  
双通道 8 引脚 SOIC 封装  
器件信息(1)  
器件型号  
TLV8544  
封装  
TSSOP封装(14)  
SOIC (14)(预览)  
SOIC (8)  
封装尺寸  
单通道 5 引脚 SOT-23 封装  
5.00mm x 4.40mm  
8.65mm × 3.91mm  
4.9mm × 3.90mm  
1.50mm × 1.50mm  
2.90mm x 1.60mm  
无引线封装  
双通道 8 引脚 X2QFN 封装  
TLV8542  
TLV8541  
X2QFN (8)(预览)  
SOT-23 (5)  
2 应用  
使用 PIR 传感器的运动检测器 SNAA301  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
使用微波传感器的运动检测器  
气体检测器  
纳瓦级功率放大器系列  
VOS(最大  
值)  
离子化烟雾报警器  
每通道的  
IQ  
系列  
通道数  
VSUPPLY  
温度调节装置  
TLV854x  
TLV880x  
LPV81x  
124  
12  
500nA  
320nA  
425nA  
3.1mV  
4.5mV  
0.3mV  
1.7 3.6V  
1.7 5.5V  
1.6 5.5V  
远程传感器、IoT(物联网)  
有效的射频识别 (RFID) 阅读器和标签  
便携式医疗设备  
12  
血糖监测  
低功耗 PIR 运动检测器  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
English Data Sheet: SNOSD29  
 
 
 
 
 
 
TLV8544, TLV8542, TLV8541  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
目录  
9.1 Application Information............................................ 14  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information ................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 12  
8.3 Feature Description................................................. 12  
8.4 Device Functional Modes........................................ 12  
Application and Implementation ........................ 14  
9.2 Typical Application: Battery-Powered Wireless PIR  
Motion Detectors...................................................... 15  
9.3 Typical Application: 60-Hz Twin T Notch Filter....... 19  
9.4 Dos and Don'ts ....................................................... 20  
10 Power Supply Recommendations ..................... 20  
11 Layout................................................................... 21  
11.1 Layout Guidelines ................................................. 21  
11.2 Layout Example .................................................... 21  
12 器件和文档支持 ..................................................... 22  
12.1 器件支持 ............................................................... 22  
12.2 文档支持 ............................................................... 22  
12.3 相关链接................................................................ 22  
12.4 接收文档更新通知 ................................................. 22  
12.5 社区资源................................................................ 22  
12.6 ....................................................................... 23  
12.7 静电放电警告......................................................... 23  
12.8 Glossary................................................................ 23  
13 机械、封装和可订购信息....................................... 23  
8
9
4 修订历史记录  
Changes from Revision C (October 2017) to Revision D  
Page  
TLV8541 的生产数据发....................................................................................................................................................... 1  
TLV8542 添加了 8 引脚 X2QFN ................................................................................................................................ 1  
Changes from Revision B (June 2017) to Revision C  
Page  
已更改 将 TLV8542 双通道数据表更改为生产数据................................................................................................................. 1  
Changes from Revision A (March 2017) to Revision B  
Page  
已添加 向 TLV8544 数据表中添加预告信息 TLV8542............................................................................................................ 1  
Changes from Original (December 2016) to Revision A  
Page  
已更改 将产品预览更改为生产数据发布。 ......................................................................................................................... 1  
5 说明 (续)  
TLV854x 运算放大器采用低至 1.7V 的单电源电压供电,并且可在 –40°C +125°C 的扩展温度范围内、在低电量  
情况下连续运行。所有版本的额定工作温度范围均为 –40°C 125°CTLV8541(单通道版本)采用 5 引脚 SOT-  
23 封装,而 TLV8542(双通道版本)采用 8 引脚 SOIC 封装。四通道 TLV8544(四通道版本)采用行业标准 14  
引脚 TSSOP 封装。  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
TLV8544, TLV8542, TLV8541  
www.ti.com.cn  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
6 Pin Configuration and Functions  
TLV8541 DBV Package  
5-Pin SOT-23  
Top View  
Pin Functions: TLV8541 DBV  
PIN  
I/O  
DESCRIPTION  
NUMBER  
NAME  
OUT  
V–  
1
2
3
4
5
O
P
I
Output  
Negative (lowest) power supply  
Non-Inverting Input  
+IN  
–IN  
I
Inverting Input  
V+  
P
Positive (highest) power supply  
TLV8542 D Package  
8-Pin SOIC  
TLV8542 RUG Package  
8-Pin X2QFN  
Top View  
Top View  
V+  
OUT A  
-IN A  
1
2
3
7
6
5
OUT B  
-IN B  
+IN A  
+IN B  
V-  
Pin Functions: TLV8542 D (X2QFN RUG Package Preview)  
PIN  
I/O  
DESCRIPTION  
NUMBER  
NAME  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
5
6
7
8
O
I
Channel A Output  
Channel A Inverting Input  
Channel A Non-Inverting Input  
Negative (lowest) power supply  
Channel B Non-Inverting Input  
Channel B Inverting Input  
Channel B Output  
I
P
I
+IN B  
–IN B  
OUT B  
V+  
I
O
P
Positive (highest) power supply  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
TLV8544, TLV8542, TLV8541  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
TLV8544 PW and D Package  
14-Pin TSSOP and SOIC  
Top View  
Pin Functions: TLV8544 PW (D SOIC Package Preview)  
PIN  
I/O  
DESCRIPTION  
NUMBER  
NAME  
OUTA  
–INA  
+INA  
V+  
1
O
I
Channel A output  
2
Channel A inverting input  
Channel A non-inverting input  
Positive (highest) power supply  
Channel B non-inverting input  
Channel B inverting input  
Channel B output  
3
I
4
P
I
5
+INB  
–INB  
OUTB  
OUTC  
–INC  
+INC  
V–  
6
I
7
O
O
I
8
Channel C output  
9
Channel C inverting input  
Channel C non-inverting input  
Negative (lowest) power supply  
Channel D non-inverting input  
Channel D inverting input  
Channel D output  
10  
11  
12  
13  
14  
I
P
I
+IND  
–IND  
OUTD  
I
O
4
Copyright © 2016–2017, Texas Instruments Incorporated  
TLV8544, TLV8542, TLV8541  
www.ti.com.cn  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)  
(1) (2) (3)  
MIN  
–0.3  
MAX  
4
UNIT  
V
Supply voltage, Vs = (V+) – (V–)  
Common mode  
Differential  
(V–) – 0.3  
(V–) – 0.3  
–10  
(V+) + 0.3  
(V+) + 0.3  
10  
V
Input pins  
Input pins  
Voltage  
Current  
V
mA  
Output short current(4)  
Continuous  
–40  
Continuous  
125  
Operating ambient temperature  
Storage temperature, Tstg  
Junction temperature  
°C  
°C  
°C  
–65  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails must  
be current-limited to 10 mA or less.  
(3) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(4) Short-circuit to ground.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±750 V may actually have higher performance.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.7  
NOM  
MAX  
3.6  
UNIT  
V
Supply voltage (V+ – V–)  
Specified ambient temperature  
–40  
125  
°C  
7.4 Thermal Information  
TLV8544  
PW (TSSOP)  
14 PINS  
124.5  
TLV8542  
D (SOIC)  
8 PINS  
141.6  
85.7  
TLV8541  
THERMAL METRIC(1)  
DBV (SOT-23)  
5 PINS  
244.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
52.7  
127.3  
66.2  
84.7  
79.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
7.3  
36.3  
44.1  
ψJB  
65.7  
84.0  
78.8  
RθJC(bot)  
N/A  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
TLV8544, TLV8542, TLV8541  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
7.5 Electrical Characteristics  
TA = 25°C, VS = 1.8 V to 3.3 V, VCM = VOUT = VS / 2, and RL10 MΩ to VS / 2, unless otherwise noted.  
PARAMETER  
OFFSET VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCM = V– , VS = 1.8 V and 3.3 V  
VCM = V+, VS = 1.8 V and 3.3 V  
VCM = V–, TA = –40°C to 125°C  
VCM = V– , VS =1.8 V and 3.3 V  
–3.1 See Plots  
–3.4 See Plots  
0.8  
3.1  
3.4  
VOS  
Input offset voltage  
mV  
dVOS/dT  
PSRR  
Input offset drift  
µV/°C  
dB  
Power-supply rejection ratio  
66  
90  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
VS = 3.3 V  
0
3.3  
V
(V–) VCM (V+), Vs = 3.3 V  
(V–) VCM (V+) – 1.2 V  
60  
80  
90  
CMRR  
Common-mode rejection ratio  
dB  
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
100  
100  
fA  
fA  
IOS  
INPUT IMPEDANCE  
Differential  
2
4
pF  
pF  
Common mode  
NOISE  
En  
Input voltage noise  
ƒ = 0.1 Hz to 10 Hz  
ƒ = 1 kHz  
8.6  
µVp–p  
en  
Input voltage noise density  
264  
nV/Hz  
OPEN-LOOP GAIN  
(V–) + 0.3 V VO (V+) – 0.3 V, RL  
100 kΩ to V+/2  
=
AOL  
Open-loop voltage gain  
120  
dB  
OUTPUT  
VOH  
Voltage output swing from  
positive rail  
RL = 100 kΩ to V+/2, VS = 3.3 V  
RL = 100 kΩ to V+/2, VS = 3.3 V  
12  
12  
mV  
mV  
Voltage output swing from  
negative rail  
VOL  
Sourcing, VO to V–, VIN(diff) = 100 mV,  
VS = 3.3 V  
15  
ISC  
Short-circuit current  
mA  
Sinking, VO to V+, VIN(diff) = –100 mV,  
VS = 3.3 V  
30  
8
ZO  
Open loop output impedance  
ƒ = 1 kHz, IO = 0 mA  
kΩ  
FREQUENCY RESPONSE  
GBP  
Gain-bandwidth product  
CL = 20 pF, RL = 10 MΩ  
8
3.5  
4.5  
kHz  
G = 1, rising edge, CL = 20 pF  
G = 1, falling edge, CL = 20 pF  
SR  
Slew rate (10% to 90%)  
V/ms  
POWER SUPPLY  
IQ–TLV8541 Quiescent Current  
VCM = V–, IO = 0 mA, VS = 3.3 V  
VCM = V–, IO = 0 mA, VS = 3.3 V  
VCM = V–, IO = 0 mA, VS = 3.3 V  
550  
550  
500  
640  
640  
640  
nA  
nA  
nA  
IQ–TLV8542 Quiescent Current, per channel  
IQ–TLV8544 Quiescent current, per channel  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
TLV8544, TLV8542, TLV8541  
www.ti.com.cn  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
7.6 Typical Characteristics  
TA = 25°C, RL = 10 MΩ to VS/2 ,CL = 20 pF, VCM = VS / 2 V unless otherwise specified.  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
VOS_  
VOS_  
Offset Voltage (µV)  
Offset Voltage (µV)  
VS = 1.8 V  
VCM = V+ Data from 1500 4-channel devices  
VS = 1.8 V  
VCM = V– Data from 1500 4-channel devices  
Figure 1. Offset Voltage Production Distribution  
Figure 2. Offset Voltage Production Distribution  
10  
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
VOS_  
VOS_  
Offset Voltage (µV)  
Offset Voltage (µV)  
VS = 3.3 V  
VCM = V+ Data from 1500 4-channel devices  
VS = 3.3 V  
VCM = V– Data from 1500 4-channel devices  
Figure 3. Offset Voltage Production Distribution  
Figure 4. Offset Voltage Production Distribution  
800  
720  
640  
560  
480  
400  
320  
240  
160  
80  
800  
720  
640  
560  
480  
400  
320  
240  
160  
80  
IQ (nA) at 125 °C  
IQ (nA) at 25 °C  
IQ (nA) at -40 °C  
IQ (nA) at 125 °C  
IQ (nA) at 25 °C  
IQ (nA) at -40 °C  
0
0
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Common Mode Voltage (V)  
3
3.3  
Common Mode Voltage (V)  
SNOS  
SNOS  
VS = 1.8 V  
TA = –40, 25, 125°C  
Per Channel  
VS = 3.3 V  
TA = –40, 25, 125°C  
Per Channel  
Figure 5. Supply Current vs Common Mode Voltage  
Figure 6. Supply Current vs Common Mode Voltage  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
 
TLV8544, TLV8542, TLV8541  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
TA = 25°C, RL = 10 MΩ to VS/2 ,CL = 20 pF, VCM = VS / 2 V unless otherwise specified.  
50  
50  
Vos (mV) at 125 èC  
Vos (mV) at 25 èC  
Vos (mV) at -40 èC  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-350  
-100  
-150  
-200  
-250  
-300  
-350  
Vos (mV) at 125 èC  
Vos (mV) at 25 èC  
Vos (mV) at -40 èC  
-0.5 -0.25  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Common Mode Voltage (V)  
Common Mode Voltage (V)  
Vos-  
Vos-  
VS = 1.8 V  
TA = –40, 25, 125°C  
VS = 3.3 V  
TA = –40, 25, 125°C  
Figure 7. Typical Offset Voltage vs Common Mode Voltage  
Figure 8. Typical Offset Voltage vs Common Mode Voltage  
625  
600  
575  
550  
525  
500  
475  
450  
425  
400  
375  
120  
100  
80  
60  
IQ (nA) at 125 °C  
IQ (nA) at 25 °C  
IQ (nA) at -40 °C  
350  
325  
300  
1.6 1.8  
40  
10  
2
2.2 2.4 2.6 2.8  
Supply Voltage (V)  
3
3.2 3.4 3.6  
100  
1k  
10k  
Frequency (Hz)  
SNOS  
SNOS  
VS = 1.6 to 3.6V  
TA = –40, 25, 125°C  
VCM = V-  
VS= 3.3V  
TA = 25°C  
Figure 9. Supply Current vs Supply Voltage, Low VCM  
Figure 10. CMRR vs Frequency  
135  
1
120  
105  
90  
100m  
10m  
1m  
Vout (V) at 125 °C  
Vout (V) at 25 °C  
Vout (V) at -40 °C  
75  
100m  
60  
10  
10m  
100m  
1
10  
100  
1k  
10k  
100k  
Output Sinking Current (mA)  
SNOS  
Frequency (Hz)  
PSRR  
VS = 1.8 V  
TA = –40, 25, 125°C  
VS= 3.3V  
TA = 25°C  
VCM = V–  
Figure 12. Output Swing vs Sinking Current  
Figure 11. PSRR vs Frequency  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
TLV8544, TLV8542, TLV8541  
www.ti.com.cn  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
Typical Characteristics (continued)  
TA = 25°C, RL = 10 MΩ to VS/2 ,CL = 20 pF, VCM = VS / 2 V unless otherwise specified.  
1
100m  
10m  
1m  
1
100m  
10m  
1m  
Vout (V) at 125 °C  
Vout (V) at 25 °C  
Vout (V) at -40 °C  
Vout (V) at 125 °C  
Vout (V) at 25 °C  
Vout (V) at -40 °C  
100m  
100m  
100m  
1
10  
1m  
10m  
100m  
1
10  
Output Sinking Current (mA)  
Output Sourcing Current (mA)  
SNOS  
SNOS  
VS = 3.3 V  
TA = –40, 25, 125°C  
VS = 1.8 V  
TA = –40, 25, 125°C  
Figure 13. Output Swing vs Sinking Current  
Figure 14. Output Swing vs Sourcing Current  
100  
80  
1
100m  
10m  
1m  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
Vout (V) at 125 °C  
Vout (V) at 25 °C  
Vout (V) at -40 °C  
10m  
100m  
1
10  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
Output Sourcing Current (mA)  
Common Mode Voltage (V)  
SNOS  
SNOS  
VS = 3.3 V  
TA = –40, 25, 125°C  
VS = 1.8 V  
TA = –40°C  
Figure 15. Output Swing vs Sourcing Current  
Figure 16. Input Bias Current vs Common Mode Voltage  
200  
160  
120  
80  
100  
80  
60  
40  
40  
20  
0
0
-40  
-80  
-120  
-160  
-200  
-20  
-40  
-60  
-80  
-100  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Common Mode Voltage (V)  
Common Mode Voltage  
SNOS  
SNOS  
VS = 3.3 V  
TA = –40°C  
VS = 1.8 V  
TA = 25°C  
Figure 17. Input Bias Current vs Common Mode Voltage  
Figure 18. Input Bias Current vs Common Mode Voltage  
Copyright © 2016–2017, Texas Instruments Incorporated  
9
TLV8544, TLV8542, TLV8541  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
TA = 25°C, RL = 10 MΩ to VS/2 ,CL = 20 pF, VCM = VS / 2 V unless otherwise specified.  
200  
160  
120  
80  
100  
80  
60  
40  
40  
20  
0
0
-40  
-80  
-120  
-160  
-200  
-20  
-40  
-60  
-80  
-100  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Common Mode Voltage (V)  
Common Mode Voltage (V)  
SNOS  
SNOS  
VS = 3.3 V  
TA = 25°C  
VS= 1.8V  
TA = 125°C  
Figure 19. Input Bias Current vs Common Mode Voltage  
Figure 20. Input Bias Current vs Common Mode Voltage  
120  
150  
125  
100  
75  
200  
160  
120  
80  
100  
80  
60  
40  
20  
0
Phase  
40  
0
50  
-40  
-80  
-120  
-160  
-200  
25  
125 èC  
25 èC  
-40 èC  
0
Gain  
-20  
-25  
100k  
10  
100  
1k  
10k  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Frequency (Hz)]  
Common Mode Voltage (V)  
AOL_  
SNOS  
VS = 3.3 V  
TA = 125°C  
VS = 3.3 V  
TA = –40, 25, 125°C  
CL = 50 pF  
Figure 21. Input Bias Current vs Common Mode Voltage  
20000  
Figure 22. Open Loop Gain and Phase  
1k  
10000  
1000  
100  
100  
10  
1
10  
100m  
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
Frequency (Hz)  
Frequency (Hz)  
SNOS  
SNOS  
VS = 3.3 V  
TA = 25°C  
VS = 3.3 V  
TA = 25°C  
Figure 24. Open Loop Output Impedance  
Figure 23. Input Voltage Noise vs Frequency  
10  
Copyright © 2016–2017, Texas Instruments Incorporated  
TLV8544, TLV8542, TLV8541  
www.ti.com.cn  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
Typical Characteristics (continued)  
TA = 25°C, RL = 10 MΩ to VS/2 ,CL = 20 pF, VCM = VS / 2 V unless otherwise specified.  
120  
Input  
Output  
100  
80  
60  
40  
0dBm  
-10dBm  
-20dBm  
20  
0
10  
2 ms/div  
100  
1000  
Frequency (MHz)  
SNOS  
SNOS  
VS = 1.8 V  
TA = 25°C  
AV = 1  
CL = 50 pF  
VS = 3.3 V  
AV = 1  
TA = 25°C  
VIN = 0.9 ± 0.1 V  
Figure 26. Small Signal Pulse Response, 1.8 V  
Figure 25. EMIRR Performance  
Input  
Input  
Output  
Output  
2 ms/div  
2 ms/div  
SNOS  
SNOS  
VS = 3.3 V  
VIN = 1.65 ± 0.1 V  
TA = 25 °C  
AV = 1  
CL = 50 pF  
VS = 1.8 V  
TA = 25°C  
AV = 1  
CL = 50 pF  
VIN = 0.9 ± 0.5 V  
Figure 27. Small Signal Pulse Response, 3.3 V  
Figure 28. Large Signal Pulse Response, 1.8 V  
Input  
Output  
2 ms/div  
SNOS  
VS = 3.3 V  
TA = 25°C  
AV = 1  
CL = 50 pF  
VIN = 1.65 ± 1 V  
Figure 29. Large Signal Pulse Response, 3.3 V  
Copyright © 2016–2017, Texas Instruments Incorporated  
11  
TLV8544, TLV8542, TLV8541  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TLV854x amplifiers are unity-gain stable and can operate on a single supply, making them highly versatile  
and easy to use.  
Parameters that vary significantly with operating voltages or temperature are shown in the Typical Characteristics  
curves.  
8.2 Functional Block Diagram  
V+  
-IN  
OUT  
+IN  
+
V-  
8.3 Feature Description  
The differential inputs of the TLV854x device consist of a non-inverting input (+IN) and an inverting input (–IN).  
The device amplifies only the difference in voltage between the two inputs, which is called the differential input  
voltage. The output voltage of the op-amps VOUT are given by Equation 1:  
VOUT = AOL [(+IN) – (–IN)]  
where  
AOL is the open-loop gain of the amplifier, typically around 100 dB.  
(1)  
8.4 Device Functional Modes  
8.4.1 Rail-To-Rail Input  
The input common-mode voltage range of the TLV854x extends to the supply rails. This is achieved with a  
complementary input stage — an N-channel input differential pair in parallel with a P-channel differential pair.  
The N-channel pair is active for input voltages close to the positive rail, typically (V+) – 800 mV to 200 mV above  
the positive supply, while the P-channel pair is on for inputs from 300 mV below the negative supply to  
approximately (V+) – 800 mV. There is a small transition region, typically (V+) – 1.2 V to (V+) – 0.8 V, in which  
both pairs are on. This 400-mV transition region can vary 200 mV with process variation. Within the 400-mV  
transition region PSRR, CMRR, offset voltage, offset drift, and THD may be degraded compared to operation  
outside this region.  
8.4.2 Supply Current Changes Over Common Mode  
Because of the ultra-low supply current, changes in common mode voltages cause a noticeable change in the  
supply current as the input stages transition through the transition region, as shown in Figure 30.  
12  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TLV8544, TLV8542, TLV8541  
www.ti.com.cn  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
Device Functional Modes (continued)  
800  
720  
640  
560  
480  
400  
320  
240  
160  
80  
IQ (nA) at 125 °C  
IQ (nA) at 25 °C  
IQ (nA) at -40 °C  
0
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
Common Mode Voltage (V)  
SNOS  
Figure 30. Supply Current Change Over Common Mode at 1.8 V  
For the lowest supply current operation, keep the input common mode range between V– and 1 V below V+.  
8.4.3 Design Optimization With Rail-To-Rail Input  
In most applications, operation is within the range of only one differential pair. However, some applications can  
subject the amplifier to a common-mode signal in the transition region. Under this condition, the inherent  
mismatch between the two differential pairs may lead to degradation of the CMRR and THD. The unity-gain  
buffer configuration is the most problematic as it traverses through the transition region if a sufficiently wide input  
swing is required.  
8.4.4 Design Optimization for Nanopower Operation  
When designing for ultra-low power, choose system components carefully. To minimize current consumption,  
select large-value resistors. Any resistors react with stray capacitance in the circuit and the input capacitance of  
the operational amplifier (op amp). These parasitic RC combinations can affect the stability of the overall system.  
A feedback capacitor may be required to assure stability and limit overshoot or gain peaking.  
When possible, use AC coupling and AC feedback to reduce static current draw through the feedback elements.  
Use film or ceramic capacitors because large electolytics may have static leakage currents in the tens to  
hundreds of nanoamps.  
8.4.5 Common-Mode Rejection  
The CMRR for the TLV854x is specified in two ways so the best match for a given application may be used.  
First, the CMRR of the device in the common-mode range below the transition region (VCM < (V+) – 1.2 V) is  
given. This specification is the best indicator of the capability of the device when the application requires use of  
one of the differential input pairs. Second, the CMRR at VS = 3.3 V over the entire common-mode range is  
specified.  
8.4.6 Output Stage  
The TLV854x output voltage swings 20 mV from rails at a 3.3-V supply, which provides the maximum possible  
dynamic range at the output. This is particularly important when operating on low supply voltages.  
The TLV854x maximum output voltage swing defines the maximum swing possible under a particular output  
load.  
Copyright © 2016–2017, Texas Instruments Incorporated  
13  
TLV8544, TLV8542, TLV8541  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Device Functional Modes (continued)  
8.4.7 Driving Capacitive Load  
The TLV854x is internally compensated for stable unity-gain operation, with a 8-kHz typical gain bandwidth.  
However, the unity-gain follower is the most sensitive configuration-to-capacitive load. The combination of a  
capacitive load placed directly on the output of an amplifier along with the output impedance of the amplifier  
creates a phase lag, which reduces the phase margin of the amplifier. If the phase margin is significantly  
reduced, the response is under-damped, which causes peaking in the transfer and, when there is too much  
peaking, the op amp might start oscillating.  
In order to drive heavy (> 50 pF) capacitive loads, use an isolation resistor, RISO, as shown in Figure 31. By  
using this isolation resistor, the capacitive load is isolated from the output of the amplifier. The larger the value of  
RISO, the more stable the amplifier will be. If the value of RISO is sufficiently large, the feedback loop is stable,  
independent of the value of CL. However, larger values of RISO (e.g. 50 kΩ) result in reduced output swing and  
reduced output current drive.  
RISO  
VOUT  
VIN  
+
CL  
Figure 31. Resistive Isolation of Capacitive Load  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TLV854x is a nanopower op amps that provides 8-kHz bandwidth with only 500-nA typical quiescent current  
per channel and near precision drift specifications at a low cost. These rail-to-rail input and output amplifiers are  
specifically designed for battery-powered applications. The input common-mode voltage range extends to the  
power-supply rails and the output swings to within millivolts of the rails, maintaining a wide dynamic range.  
14  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TLV8544, TLV8542, TLV8541  
www.ti.com.cn  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
9.2 Typical Application: Battery-Powered Wireless PIR Motion Detectors  
VBAT  
CR2032  
coin cell  
VBAT  
R7  
C7  
Quad Package  
Supply Pin  
R1  
+
MCU I/O  
MCU I/O  
C1  
C2  
PIR  
TLV8544  
R8  
VBAT  
C
_
D
+
Vin  
+
S
TLV8544  
_
Rg  
R2  
B
Signal  
VBAT  
TLV8544  
A
+
_
R4  
C4  
R3  
C3  
Fresnel  
Lens  
TLV8544  
R9  
D
R5  
_
C8  
R10  
C5  
D1  
D2  
VREF generator  
network  
R6  
C6  
Gain Stages,  
bandpass filters  
Window  
Comparator  
Figure 32. PIR Motion Detector Circuit  
9.2.1 Design Requirements  
Smart building automation systems employ a large number of various sensing nodes distributed throughout  
small, medium, and large infrastructures. The sensing nodes measure motion, temperature, vibration, and other  
parameters of interest. Wireless nodes are monitored in a central location. Because of the large number of  
distributed nodes , battery-operation and cost-optimized electronic components are required. Typically, the  
wireless nodes need to run on a single CR2032 coin battery for eight to ten years.  
For more information see Design of Ultra-Low Power Discrete Signal Conditioning Circuit for Battery-Power,  
Ultra-Low-Power Wireless PIR Motion Detector Reference Design and BOOSTXL-TLV8544PIR User's Guide.  
The BOOSTXL-TLV8544PIR along with the companion CC2650 LaunchPad, LAUNCHXL-CC2650 can be  
obtained from the TI website for hands-on experiments.  
9.2.2 Detailed Design Procedure  
Referring to Figure 32, the TLV8544 4-channel op amp is powered directly by a 3.3-V CR2032 coin battery. The  
first two amplifier stages of the TLV8544 implement active filter functionality. The remaining two amplifiers of the  
TLV8544 are used for building a window comparator. The comparator flags the detection of a motion event to an  
ultra-low-power wireless microcontroller on the same board. Due to the higher gain in the filter stages and higher  
output noise from the sensor, it is necessary to optimize the placement of the high-frequency filter pole and the  
window comparator thresholds to avoid false detection.  
The first two amplifiers (A and B) in the circuit are used in identical active bandpass filters with corner  
frequencies of 0.7 and 10.6 Hz. Each filter stage has a gain of about 220 V/V to account for the reduced  
sensitivity of the sensor due to the low current biasing of the PIR sensor. Considering the 8-kHz unity gain  
bandwidth (UGBW) product of the TLV8544, the bandwidth of each stage is limited to approximately 36 Hz. The  
above choice of cutoff frequencies give a relatively wide bandwidth to detect a person running in the field of view,  
yet narrow enough to limit the peak-to-peak noise at the output of the filters.  
Amplifier A is a noninverting gain/filter stage providing the high input impedance needed to prevent loading of the  
sensor. The DC gain of the stage due to the presence of C6 is unity. Therefore, the sensor output provides the  
bias voltage needed at the A stage to avoid clipping of the lower cycle of the input signal. Diodes D1 and D2 limit  
the output signal, avoiding overdriving of the second stage and consequently placing a large charge on coupling  
capacitor C4, which helps with the recovery time.  
9.2.2.1 Calculation of the Cutoff Frequencies and Gain of Stage A:  
The low cutoff frequency of the bandpass filter in stage A is:  
Copyright © 2016–2017, Texas Instruments Incorporated  
15  
 
TLV8544, TLV8542, TLV8541  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Typical Application: Battery-Powered Wireless PIR Motion Detectors (continued)  
1
ƒClow  
=
2pìR6 ì C6  
(2)  
Choosing R6 = 6.81 kand C6 = 33 μF, the low cutoff frequency is fClow= 0.71 Hz. The high cutoff frequency of  
the filter is:  
1
ƒChigh  
=
2pìR5 ì C5  
(3)  
(4)  
For R5 = 1.5 Mand C5 = 0.01 µF, the high cutoff frequency is fChigh= 10.6 Hz. The gain of the stage is:  
R5  
G = 1+  
R6  
Choosing R5 = 1.5 Mand R6 = 6.81 k, the gain of the stage A is G = 221.26 V/V (46.9 dB).  
9.2.2.2 Calculation of the Cutoff Frequencies and Gain of Stage B  
As shown in Figure 32, amplifier B is an inverting bandpass filter and gain stage. Capacitor C4 creates an AC  
coupled path between the A and the B stages. Thus the signal level must be shifted at the input of the amplifier  
B. This is done by connecting a midpoint voltage of the reference voltage dividers comprising R10, R9, R8 and  
R7 to the non-inverting input of amplifier B, biasing the input signal to the mid-rail (1.65 V). A very large feedback  
resistor R3 is chosen to minimize the dynamic current due to presence of peak-to-peak noise voltage at the  
output of this stage.  
The low cutoff frequency of the filter of the stage B is:  
1
ƒClow  
=
2pìR4 ì C4  
(5)  
Choosing R4 = 68.1 kand C4 = 3.3 μF, the low cutoff frequency is fClow = 0.71 Hz. The high cutoff frequency of  
the filter is:  
1
ƒChigh  
=
2pìR3 ì C3  
(6)  
(7)  
For R3 = 15 Mand C3 = 1000 pF, the high cutoff frequency is fChigh= 10.6 Hz. The gain of the stage is:  
R3  
G = -  
R4  
For R3 = 15 Mand R4 = 68.1 k, the gain is calculated |G| = 220.26 V/V (46.9 dB).  
9.2.2.3 Calculation of the Total Gain of Stages A and B  
The overall gain of the two stages A and B is: GTotal= GA × GB= 221.26 × 220.26 = 48810 V/V = 93.77 dB.  
9.2.2.4 Window Comparator Stage  
The signal from a moving object in front of the PIR sensor, after amplification and filtering, is connected to a  
window comparator. The comparator converts the analog signal to digital pulses for interrupting an on-board  
microcontroller unit (MCU), flagging detection of motion. A different approach is to digitize the analog signal  
continuously by an analog-to-digital converter (ADC) and implement the comparator functionality in the digital  
domain. This method has the advantage of enabling the post processing of the data to reduce the chance of  
false detection. However, continuous conversion and processing of data by the MCU increases the power  
consumption, lowering the lifetime of the battery substantially.  
Rather than using a separate low-power comparator integrated circuits to implement the window comparator  
section of the circuit, the remaining op amps in the TLV8544 package are used to implement the comparator  
stage. Benefits of this approach include fewer components and thus reduced system cost.  
Although an op amp can sometimes be used as a comparator, an amplifier cannot be used as a comparator  
interchangeably in all applications because of relatively long recovery time of the amplifier from output saturation  
and relatively long propagation delay due to internal compensation. Particularly, the nanopower op amps have  
very slow slew rate, limiting their usage as a comparator in only applications with very low frequency input signal.  
Fortunately, PIR sensor signals are relatively slow and this should not be an issue.  
16  
Copyright © 2016–2017, Texas Instruments Incorporated  
TLV8544, TLV8542, TLV8541  
www.ti.com.cn  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
Typical Application: Battery-Powered Wireless PIR Motion Detectors (continued)  
The new TLV8544 device is particularly suitable for implementing a window comparator in a battery operated PIR  
motion detector application because of its rail-to-rail operation capability, relatively low offset voltage, low offset  
voltage drift, very low bias current, and nanopower consumption, all at an optimal cost. The input signal of the  
comparator stage in the presence of moving heat source across the sensor is shown in Figure 33. The signal is  
centered at mid-rail and can swing up or down from the center.  
The window comparator is a combination of a non-inverting comparator implemented with amplifier D and an  
inverting comparator implemented with amplifier C, as shown in Figure 32.  
VBAT  
VREF_High  
PIR signal  
Vbias  
VREF_Low  
GND  
Comp —D“ Output  
Comp —C“ Output  
Order of the pulses depends on the  
direction of the motion  
Figure 33. Ideal Amplified PIR Signal and the Output of the Window Comparator Circuit  
9.2.2.5 Reference Voltages  
Referring to Figure 32, the divider networks comprising R7, R8, R9, and R10, generate the reference voltages  
VREF_High and VREF_Low of the window comparator. The center point of the divider provides the bias voltage  
of the gain in the stage B through the connection to the noninverting input of the amplifier.  
Due to the very low bias current of the TLV8544 device, it is possible to use very large values of resistors in the  
divider networks to minimize the current to ground through the resistors to a negligible amount. For R7 = R8 =  
R9 = R10 = 15 M:  
R7 +R8 +R9  
R7 +R8 +R9 +R10  
4.5ì106  
6ì106  
VREF_High =  
VCC  
=
ì VCC = 0.75ì VCC  
«
÷
(8)  
R7  
1.5ì106  
6ì106  
VREF_Low =  
VCC  
=
ì VCC = 0.25ì VCC  
÷
R8 +R9 +R10 +R7  
«
(9)  
Low leakage ceramic capacitors C7, and C8, maintain constant threshold voltages, preventing potential chatter at  
the output of the comparators. It should be noted that using cheap electrolytic capacitors must be avoided as  
they have high (many µA) leakage current. The comparator outputs stay low in the absence of motion across the  
sensor. In the presence of motion, comparators C and D generate high output pulses as shown in Figure 33. The  
order of the pulses depends on the direction of the motion in front of the sensor.  
Copyright © 2016–2017, Texas Instruments Incorporated  
17  
 
TLV8544, TLV8542, TLV8541  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Typical Application: Battery-Powered Wireless PIR Motion Detectors (continued)  
9.2.3 Application Curve  
Scope plots of the amplified PIR signal at the input of the noninverting comparator and the corresponding output  
signal are shown in Figure 34 and Figure 35. As the PIR signal (blue line) crosses the VREF_High threshold, the  
output of the comparator switches from the cutoff (slightly higher than ground) state to the saturation state  
(slightly lower than VBAT = 3.3 V). Depending on the speed of the object, the PIR signal peaks to its maximum  
and roles off within several seconds. When the signal crosses the VREF_High threshold on the way down, the  
output of the noninverting amplifier toggles back to the cutoff region (low).  
The data for plot of Figure 34 was captured using the BOOSTXL-TLV8544PIR board. Because the motion was  
created at very close proximity of the sensor on the booster board used to collect the data, the signal was limited  
by the diode in the first stage as shown in the plot.  
Figure 34. Noninverting Comparator Input and Output Signals  
Referring to Figure 34, the output of the inverting comparator during the lower cycle of the PIR signal switches  
form the cutoff region to the saturation region as the input signal crosses the VREF_Low threshold.  
Figure 35. Noninverting Comparator Input and Output Signals  
18  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
TLV8544, TLV8542, TLV8541  
www.ti.com.cn  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
9.3 Typical Application: 60-Hz Twin T Notch Filter  
VBAT  
CR2032 coin cell  
10 M  
10 Mꢀ  
VBAT  
Signal from a remote sensor  
containing 60 Hz noise  
+
To ADC  
VOUT  
¼
TLV8544  
VIN  
-
10 MΩ  
10 MΩ  
270 pF  
270 pF  
10 MΩ  
10 MΩ  
60 Hz Twin notch filter  
With gain of Av = 2 V/V  
Copyright © 2017, Texas Instruments Incorporated  
Figure 36. 60 Hz-Notch Filter  
9.3.1 Design Requirements  
Small signals from transducers in remote and distributed sensing applications commonly suffer strong 60-Hz  
interference from AC power lines. The circuit of Figure 36 filters out (notches out) the 60 Hz and provides a  
system gain of AV = 2 V/V for the sensor signal represented by a 1-kHz sine wave. Similar stages may be  
cascaded to remove 2nd and 3rd harmonics of 60 Hz. Thanks to the nanopower consumption of the TLV8544,  
even five such circuits can run for 9.5 years from a small CR2032 lithium cell. These batteries have a nominal  
voltage of 3 V and an end of life voltage of 2 V. With an operating voltage from 1.7 V to 3.6 V the TLV8544  
device can function over this voltage range.  
9.3.2 Detailed Design Procedure  
The notch frequency is set by:  
F0 = 1 / 2πRC.  
(10)  
To achieve a 60-Hz notch use R = 10 Mand C = 270 pF. If eliminating 50-Hz noise, use R = 11.8 Mand C =  
270 pF.  
The twin T notch filter works by having two separate paths from VIN to the input of the amplifier. A low-frequency  
path through the series input resistors and another separate high-frequency path through the series input  
capacitors. However, at frequencies around the notch frequency, the two paths have opposing phase angles,  
and the two signals tend to cancel at the input of the amplifier.  
To ensure that the target center frequency is achieved and to maximize the notch depth (Q factor) the filter must  
be as balanced as possible. To obtain circuit balance, while overcoming limitations of available standard resistor  
and capacitor values, use passives in parallel to achieve the 2C and R/2 circuit requirements for the filter  
components that connect to ground.  
To make sure passive component values stay as expected, clean the board with alcohol, rinse with deionized  
water, and air dry. Make sure board remains in a relatively low humidity environment to minimize moisture which  
may increase the conductivity of board components. Also large resistors come with considerable parasitic stray  
capacitance which effects can be reduced by cutting out the ground plane below components of concern.  
Copyright © 2016–2017, Texas Instruments Incorporated  
19  
 
TLV8544, TLV8542, TLV8541  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Typical Application: 60-Hz Twin T Notch Filter (continued)  
Large resistors are used in the feedback network to minimize battery drain. When designing with large resistors,  
resistor thermal noise, op amp current noise, as well as op-amp voltage noise, must be considered in the noise  
analysis of the circuit. The noise analysis for the circuit in Figure 36 can be done over a bandwidth of 2 kHz,  
which takes the conservative approach of overestimating the bandwidth (TLV8544 typical GBW/AV is lower,  
where AV is the gain of the system). The total noise at the output is approximately 800 µVpp, which is excellent  
considering the total consumption of the circuit is only 500 nA per channel. The dominant noise terms are op-  
amp voltage noise, current noise through the feedback network (430 µVp-p), and current noise through the notch  
filter network (280 µVp-p). Thus the total noise of the circuit is below 1/2 LSB of a 10-bit system with a 2-V  
reference, which is 1 mV.  
9.3.3 Application Curve  
Figure 37. 60-Hz Notch Filter Waveform  
9.4 Dos and Don'ts  
Do properly bypass the power supplies.  
Do add series resistance to the output when driving capacitive loads, particularly cables, multiplexers, and ADC  
inputs.  
Do add series current limiting resistors and external Schottky clamp diodes if input voltage is expected to exceed  
the supplies. Limit the current to 1 mA or less (1 KΩ per volt).  
10 Power Supply Recommendations  
The TLV854x is specified for operation from 1.7 V to 3.6 V (±0.85 V to ±1.8 V) over a –40°C to +125°C  
temperature range. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in the Typical Characteristics.  
CAUTION  
Supply voltages larger than 3.6 V can permanently damage the device.  
For proper operation, the power supplies must be properly decoupled. For decoupling the supply lines it is  
suggested that 100-nF capacitors be placed as close as possible to the op-amp power supply pins. For single  
supply, place a capacitor between V+ and V– supply leads. For dual supplies, place one capacitor between V+  
and ground and one capacitor between V– and ground.  
Low bandwidth nanopower devices do not have good high frequency (> 1 kHz) AC PSRR rejection against high-  
frequency switching supplies and other 1-kHz and above noise sources, so extra supply filtering is recommended  
if kilohertz or above noise is expected on the power supply lines.  
20  
Copyright © 2016–2017, Texas Instruments Incorporated  
TLV8544, TLV8542, TLV8541  
www.ti.com.cn  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
11 Layout  
11.1 Layout Guidelines  
The V+ pin must be bypassed to ground with a low ESR capacitor.  
The optimum placement is closest to the V+ and ground pins.  
Take care to minimize the loop area formed by the bypass capacitor connection between V+ and ground.  
Connect the ground pin to the PCB ground plane at the pin of the device.  
Place the feedback components as close as possible to the device to minimize stray impedance.  
11.2 Layout Example  
VOUTA  
Place components close to  
device and to each other to  
reduce parasitic error  
RF  
OUTA  
-INA  
1
2
OUTD  
-IND  
14  
13  
RG  
V+  
D
A
+
+
GND  
+INA  
V+  
3
+IND  
V-  
12  
11  
10  
VIN  
Run the input traces as  
far away from the supply  
lines as possible  
4
5
6
7
GND  
+INB  
-INB  
+INC  
-INC  
OUTC  
Place low-ESR ceramic  
bypass capacitor close to  
device  
9
8
+
+
B
C
GND  
OUTB  
Figure 38. Layout Example of a Typical Dual Channel Package (Top View)  
版权 © 2016–2017, Texas Instruments Incorporated  
21  
TLV8544, TLV8542, TLV8541  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
基于 SPICE TINA-TI 模拟仿真程序  
DIP 适配器评估模块  
TI 通用运算放大器评估模块  
TI FilterPro 滤波器设计软件  
12.2 文档支持  
12.2.1 相关文档  
相关文档如下:  
AN-1798《设计电化学传感器》  
AN-1803 跨阻放大器设计注意事项》  
AN-1852 使用 pH 电极进行设计》  
《用直观方式补偿互阻抗放大器》  
《高速运算放大器跨阻注意事项》  
FET 跨阻放大器噪声分析》  
《电路板布局布线技巧》  
《运算放大器应用 手册》  
12.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件以及立即订购快速访问。  
1. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
TLV8544  
TLV8542  
TLV8541  
12.4 接收文档更新通知  
要接收文档更新通知,请转至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信  
息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
22  
版权 © 2016–2017, Texas Instruments Incorporated  
TLV8544, TLV8542, TLV8541  
www.ti.com.cn  
ZHCSG36D DECEMBER 2016REVISED NOVEMBER 2017  
12.6 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2016–2017, Texas Instruments Incorporated  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV8541DBVR  
TLV8542DR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOIC  
DBV  
D
5
8
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1D5L  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAUAG  
NIPDAU  
TL8542  
AR  
TLV8542RUGR  
TLV8544DR  
X2QFN  
SOIC  
RUG  
D
8
14  
14  
14  
TLV8544  
TLV8544  
TL8544  
TLV8544DT  
SOIC  
D
250  
RoHS & Green  
NIPDAU  
TLV8544PWR  
TSSOP  
PW  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Mar-2023  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV8541DBVR  
TLV8542DR  
SOT-23  
SOIC  
DBV  
D
5
8
3000  
2500  
3000  
2500  
2000  
180.0  
330.0  
180.0  
330.0  
330.0  
8.4  
12.4  
8.4  
3.2  
6.4  
1.6  
6.5  
6.9  
3.2  
5.2  
1.6  
9.0  
5.6  
1.4  
2.1  
4.0  
8.0  
4.0  
8.0  
8.0  
8.0  
12.0  
8.0  
Q3  
Q1  
Q2  
Q1  
Q1  
TLV8542RUGR  
TLV8544DR  
X2QFN  
SOIC  
RUG  
D
8
0.66  
2.1  
14  
14  
16.4  
12.4  
16.0  
12.0  
TLV8544PWR  
TSSOP  
PW  
1.6  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV8541DBVR  
TLV8542DR  
SOT-23  
SOIC  
DBV  
D
5
8
3000  
2500  
3000  
2500  
2000  
210.0  
340.5  
183.0  
340.5  
356.0  
185.0  
336.1  
183.0  
336.1  
356.0  
35.0  
25.0  
20.0  
32.0  
35.0  
TLV8542RUGR  
TLV8544DR  
X2QFN  
SOIC  
RUG  
D
8
14  
14  
TLV8544PWR  
TSSOP  
PW  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV8542DR

双路、3.6V、8kHz、超低静态电流 (500nA)、RRIO 运算放大器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV8542RUGR

双路、3.6V、8kHz、超低静态电流 (500nA)、RRIO 运算放大器 | RUG | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV8544

四路、3.6V、8kHz、超低静态电流 (500nA)、RRIO 运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV8544DR

四路、3.6V、8kHz、超低静态电流 (500nA)、RRIO 运算放大器 | D | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV8544DT

四路、3.6V、8kHz、超低静态电流 (500nA)、RRIO 运算放大器 | D | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV8544PWR

四路、3.6V、8kHz、超低静态电流 (500nA)、RRIO 运算放大器 | PW | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV863M

采用反向引脚排列、具有低电平有效开漏复位功能的 3 引脚电压监控器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV863MDBZR

3-Pin Voltage Supervisors with Active-Low, Open-Drain Reset

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV863MDBZT

3-Pin Voltage Supervisors with Active-Low, Open-Drain Reset

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV8801

单路、5.5V、6kHz、超低静态电流 (450nA)、RRIO 运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV8801DBVR

单路、5.5V、6kHz、超低静态电流 (450nA)、RRIO 运算放大器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV8801DBVT

单路、5.5V、6kHz、超低静态电流 (450nA)、RRIO 运算放大器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI