TLV9002-Q1_V01 [TI]

TLV900x-Q1 Low-Power RRIO 1-MHz Automotive Operational Amplifier;
TLV9002-Q1_V01
型号: TLV9002-Q1_V01
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TLV900x-Q1 Low-Power RRIO 1-MHz Automotive Operational Amplifier

文件: 总37页 (文件大小:1893K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV9002-Q1, TLV9004-Q1  
SBOS980A MAY 2019REVISED JUNE 2020  
TLV900x-Q1 Low-Power RRIO 1-MHz Automotive Operational Amplifier  
1 Features  
3 Description  
The TLV900x-Q1 family includes dual (TLV9002-Q1)  
and quad-channel (TLV9004-Q1) low-voltage (1.8 V  
to 5.5 V) operational amplifiers (op amps) with rail-to-  
rail input and output swing capabilities. These op  
amps provide a cost-effective solution for space-  
constrained automotive applications such as  
infotainment and lighting where low-voltage operation  
and high capacitive-load drive are required. The  
capacitive-load drive of the TLV900x-Q1 family is 500  
pF, and the resistive open-loop output impedance  
makes stabilization easier with much higher  
capacitive loads. These op amps are designed  
specifically for low-voltage operation (1.8 V to 5.5 V)  
with performance specifications similar to the  
TLV600x-Q1 devices.  
1
AEC-Q100 qualified for automotive applications  
Temperature grade 1: –40°C to +125°C, TA  
Device HBM ESD classification level 3A  
Device CDM ESD classification level C6  
Scalable CMOS amplifier for low-cost applications  
Rail-to-rail input and output  
Low input offset voltage: ±0.4 mV  
Unity-gain bandwidth: 1 MHz  
Low broadband noise: 27 nV/Hz  
Low input bias current: 5 pA  
Low quiescent current: 60 µA\/Ch  
Unity-gain stable  
The robust design of the TLV900x-Q1 family  
simplifies circuit design. The op amps feature unity-  
gain stability, an integrated RFI and EMI rejection  
filter, and no-phase reversal in overdrive conditions.  
Internal RFI and EMI filter  
Operational at supply voltages as low as 1.8 V  
Easier to stabilize with higher capacitive load due  
to resistive open-loop output impedance  
Device Information(1)  
2 Applications  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
3.91 mm × 4.90 mm  
3.00 mm × 4.40 mm  
3.00 mm × 3.00 mm  
4.20 mm × 1.90 mm  
8.65 mm × 3.91 mm  
4.40 mm × 5.00 mm  
SOIC (8)  
Optimized for AEC-Q100 grade 1 applications  
Infotainment & Cluster  
TLV9002-Q1  
TSSOP (8)(2)  
VSSOP (8)(2)  
SOT-23 (14) (2)  
SOIC (14)  
Passive safety  
Body electronics and lighting  
HEV/EV inverter and motor control  
On-board (OBC) & wireless charger  
Powertrain current sensor  
TLV9004-Q1  
TSSOP (14)(2)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Advanced driver assistance systems (ADAS)  
(2) Package is for preview only.  
Single-supply, low-side, unidirectional current-  
sensing circuit  
Single-Pole, Low-Pass Filter  
RG  
RF  
R1  
VOUT  
VIN  
C1  
1
2pR1C1  
f
=
-3 dB  
VOUT  
VIN  
RF  
1
1 + sR1C1  
=
1 +  
(
(
(  
(
RG  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
 
 
 
TLV9002-Q1, TLV9004-Q1  
SBOS980A MAY 2019REVISED JUNE 2020  
www.ti.com  
Table of Contents  
8.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 17  
9.1 Application Information............................................ 17  
9.2 Typical Application ................................................. 17  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information for Dual Channel...................... 6  
7.5 Thermal Information for Quad Channel .................... 6  
7.6 Electrical Characteristics........................................... 7  
7.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 15  
8.3 Feature Description................................................. 16  
9
10 Power Supply Recommendations ..................... 22  
10.1 Input and ESD Protection ..................................... 22  
11 Layout................................................................... 23  
11.1 Layout Guidelines ................................................. 23  
11.2 Layout Example .................................................... 23  
12 Device and Documentation Support ................. 24  
12.1 Documentation Support ........................................ 24  
12.2 Related Links ........................................................ 24  
12.3 Receiving Notification of Documentation Updates 24  
12.4 Support Resources ............................................... 24  
12.5 Trademarks........................................................... 24  
12.6 Electrostatic Discharge Caution............................ 24  
12.7 Glossary................................................................ 24  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 25  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (May 2019) to Revision A  
Page  
Changed the device status from Advance Information to Production Data............................................................................ 1  
Added end equipment links in Application section ................................................................................................................ 1  
Deleted preview tag for SOIC (8) from Device information section ...................................................................................... 1  
Added SOT-23 (14) in Device Information section ................................................................................................................ 1  
Deleted preview tag for SOIC (14) from Device information section .................................................................................... 1  
Added SOT-23 (DYY) package in Device Comparison Table section .................................................................................. 3  
Added DYY (SOT-23) in Pin Functions: TLV9004-Q1 section .............................................................................................. 5  
2
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
 
TLV9002-Q1, TLV9004-Q1  
www.ti.com  
SBOS980A MAY 2019REVISED JUNE 2020  
5 Device Comparison Table  
PACKAGE LEADS  
VSSOP  
NO. OF  
CHANNELS  
DEVICE  
SOIC  
D
TSSOP  
PW  
SOT-23  
DYY  
DGK  
TLV9002-Q1  
TLV9004-Q1  
2
4
8
8
8
14  
14  
14  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
TLV9002-Q1, TLV9004-Q1  
SBOS980A MAY 2019REVISED JUNE 2020  
www.ti.com  
6 Pin Configuration and Functions  
TLV9002-Q1 D, DGK, PW Packages  
8-Pin SOIC, VSSOP, TSSOP  
Top View  
OUT1  
IN1œ  
IN1+  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT2  
IN2œ  
IN2+  
Not to scale  
Pin Functions: TLV9002-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
IN1–  
NO.  
2
I
I
Inverting input, channel 1  
Noninverting input, channel 1  
Inverting input, channel 2  
Noninverting input, channel 2  
Output, channel 1  
IN1+  
IN2–  
IN2+  
OUT1  
OUT2  
V–  
3
6
I
5
I
1
O
O
7
Output, channel 2  
4
Negative (low) supply or ground (for single-supply operation)  
Positive (high) supply  
V+  
8
4
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
TLV9002-Q1, TLV9004-Q1  
www.ti.com  
SBOS980A MAY 2019REVISED JUNE 2020  
TLV9004-Q1 D, PW, DYY Packages  
14-Pin SOIC, TSSOP, SOT-23  
Top View  
OUT1  
IN1œ  
IN1+  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT4  
IN4œ  
IN4+  
Vœ  
IN2+  
IN2œ  
OUT2  
IN3+  
IN3œ  
OUT3  
8
Not to scale  
Pin Functions: TLV9004-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
IN1–  
NO.  
2
I
I
Inverting input, channel 1  
Noninverting input, channel 1  
Inverting input, channel 2  
Noninverting input, channel 2  
Inverting input, channel 3  
Noninverting input, channel 3  
Inverting input, channel 4  
Noninverting input, channel 4  
Output, channel 1  
IN1+  
3
IN2–  
6
I
IN2+  
5
I
IN3–  
9
I
IN3+  
10  
13  
12  
1
I
IN4–  
I
IN4+  
I
OUT1  
OUT2  
OUT3  
OUT4  
V–  
O
O
O
O
7
Output, channel 2  
8
Output, channel 3  
14  
11  
4
Output, channel 4  
Negative (low) supply or ground (for single-supply operation)  
Positive (high) supply  
V+  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
TLV9002-Q1, TLV9004-Q1  
SBOS980A MAY 2019REVISED JUNE 2020  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0
MAX  
UNIT  
V
Supply voltage ([V+] – [V–])  
6
(V+) + 0.5  
Common-mode  
Voltage(2)  
(V–) – 0.5  
V
Signal input pins  
Differential  
(V+) – (V–) + 0.2  
10  
V
Current(2)  
–10  
mA  
mA  
°C  
°C  
°C  
Output short-circuit(3)  
Operating, TA  
Junction, TJ  
Continuous  
–55  
150  
150  
150  
Storage, Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that may swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
5.5  
UNIT  
V
VS  
TA  
Supply voltage  
1.8  
Specified temperature  
–40  
125  
°C  
7.4 Thermal Information for Dual Channel  
TLV9002-Q1  
DGK (VSSOP)  
8 PINS  
TBD  
THERMAL METRIC  
D (SOIC)  
8 PINS  
151.9  
92.0  
PW (TSSOP)  
8 PINS  
TBD  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
TBD  
TBD  
95.4  
TBD  
TBD  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
40.2  
TBD  
TBD  
ψJB  
94.7  
TBD  
TBD  
7.5 Thermal Information for Quad Channel  
TLV9004-Q1  
DYY (SOT-23)  
14 PINS  
THERMAL METRIC  
D (SOIC)  
14 PINS  
115.1  
PW (TSSOP)  
14 PINS  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
TBD  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
TBD  
TBD  
TBD  
TBD  
TBD  
71.2  
71.1  
29.6  
70.7  
TBD  
TBD  
TBD  
TBD  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
6
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
 
TLV9002-Q1, TLV9004-Q1  
www.ti.com  
SBOS980A MAY 2019REVISED JUNE 2020  
7.6 Electrical Characteristics  
For VS = (V+) – (V–) = 1.8 V to 5.5 V (±0.9 V to ±2.75 V), TA = 25 °C, RL = 10 kconnected to VS / 2, and VCM = VOUT = VS /  
2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
Vs = 5 V  
±0.4  
±1.85  
±2  
mV  
mV  
VOS  
Input offset voltage  
Vs = 5 V, TA = –40°C to 125°C  
TA = –40°C to 125°C  
dVOS/dT  
PSRR  
VOS vs temperature  
±0.6  
105  
μV/°C  
VS = 1.8 to 5.5 V, VCM = (V–)  
Power-supply rejection ratio  
80  
dB  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
No phase reversal, rail-to-rail input  
(V–) – 0.1  
(V+) + 0.1  
V
VS = 1.8 V, (V–) – 0.1 V < VCM < (V+) – 1.4 V,  
TA = –40°C to 125°C  
86  
95  
77  
68  
dB  
VS = 5.5 V, (V–) – 0.1 V < VCM < (V+) – 1.4 V,  
TA = –40°C to 125°C  
dB  
dB  
dB  
CMRR  
Common-mode rejection ratio  
VS = 5.5 V, (V–) – 0.1 V < VCM < (V+) + 0.1 V,  
TA = –40°C to 125°C  
63  
VS = 1.8 V, (V–) – 0.1 V < VCM < (V+)+ 0.1 V,  
TA = –40°C to 125°C  
INPUT BIAS CURRENT  
IB  
Input bias current  
Vs = 5 V  
±5  
±2  
pA  
pA  
IOS  
Input offset current  
NOISE  
En  
Input voltage noise (peak-to-peak)  
Input voltage noise density  
Input current noise density  
ƒ = 0.1 Hz to 10 Hz, Vs = 5 V  
ƒ = 1 kHz, Vs = 5 V  
4.7  
30  
27  
23  
μVPP  
nV/Hz  
nV/Hz  
fA/Hz  
en  
ƒ = 10 kHz, Vs = 5 V  
ƒ = 1 kHz, Vs = 5 V  
in  
INPUT CAPACITANCE  
CID  
CIC  
Differential  
1.5  
5
pF  
pF  
Common-mode  
OPEN-LOOP GAIN  
VS = 5.5 V, (V–) + 0.05 V < VO < (V+) – 0.05 V,  
RL = 10 kΩ  
104  
117  
100  
115  
130  
dB  
dB  
dB  
dB  
VS = 1.8 V, (V–) + 0.04 V < VO < (V+) – 0.04 V,  
RL = 10 kΩ  
AOL  
Open-loop voltage gain  
VS = 1.8 V, (V–) + 0.1 V < VO < (V+) – 0.1 V,  
RL = 2 kΩ  
VS = 5.5 V, (V–) + 0.15 V < VO < (V+) – 0.15 V,  
RL = 2 kΩ  
FREQUENCY RESPONSE  
GBW  
φm  
Gain-bandwidth product  
Vs = 5 V  
1
78  
MHz  
degrees  
V/µs  
μs  
Phase margin  
Slew rate  
VS = 5.5 V, G = 1  
SR  
Vs = 5 V  
2
To 0.1%, VS = 5 V, 2 V Step , G = +1, CL = 100 pF  
To 0.01%, VS = 5 V, 2 V Step , G = +1, CL = 100 pF  
VS = 5 V, VIN × gain > VS  
2.5  
3
tS  
Settling time  
μs  
tOR  
Overload recovery time  
0.85  
μs  
VS = 5.5 V, VCM = 2.5 V, VO = 1 VRMS, G = +1,  
f = 1 kHz, 80 kHz measurement BW  
THD+N  
OUTPUT  
Total harmonic distortion + noise  
0.004  
%
VS = 5.5 V, RL = 10 kΩ  
VS = 5.5 V, RL = 2 kΩ  
Vs = 5.5 V  
10  
35  
20  
55  
mV  
mV  
mA  
Ω
VO  
Voltage output swing from supply rails  
ISC  
ZO  
Short-circuit current  
±40  
1200  
Open-loop output impedance  
Vs = 5 V, f = 1 MHz  
POWER SUPPLY  
VS  
Specified voltage range  
1.8 (±0.9)  
5.5 (±2.75)  
V
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
TLV9002-Q1, TLV9004-Q1  
SBOS980A MAY 2019REVISED JUNE 2020  
www.ti.com  
Electrical Characteristics (continued)  
For VS = (V+) – (V–) = 1.8 V to 5.5 V (±0.9 V to ±2.75 V), TA = 25 °C, RL = 10 kconnected to VS / 2, and VCM = VOUT = VS /  
2 (unless otherwise noted)  
PARAMETER  
Quiescent current per amplifier  
Power-on time  
TEST CONDITIONS  
IO = 0 mA, VS = 5.5 V  
MIN  
TYP  
MAX  
80  
UNIT  
µA  
60  
IQ  
IO = 0 mA, VS = 5.5 V, TA = –40°C to 125°C  
VS = 0 V to 5 V, to 90% IQ level  
85  
µA  
50  
µs  
8
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
TLV9002-Q1, TLV9004-Q1  
www.ti.com  
SBOS980A MAY 2019REVISED JUNE 2020  
7.7 Typical Characteristics  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
40  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
-
1200 -900 -600 -300  
0
300 600 900 1200 1500 1800  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
D001  
Offset Voltage (μV)  
D002  
Offset Voltage Drift (μV/°C)  
VS = 5 V  
VS = 5 V, TA = –40°C to +125°C  
Figure 1. Offset Voltage Distribution Histogram  
Figure 2. Offset Voltage Drift Distribution Histogram  
1000  
800  
2000  
1500  
1000  
500  
600  
400  
200  
0
0
-200  
-400  
-600  
-800  
-1000  
-500  
-1000  
-1500  
-2000  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-4  
-3  
-2  
-1  
0
1
Common-Mode Voltage (V)  
2
3
4
D003  
D004  
Figure 3. Input Offset Voltage vs Temperature  
Figure 4. Offset Voltage vs Common-Mode  
1000  
6
4
IB-  
IB+  
IOS  
800  
600  
2
400  
0
200  
-2  
-4  
-6  
-8  
-10  
0
-200  
-400  
-600  
-800  
-1000  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
1.5  
2
2.5  
3
3.5  
4
Supply Voltage (V)  
4.5  
5
5.5  
6
Temperature (èC)  
D006  
D005  
Figure 6. IB and IOS vs Temperature  
Figure 5. Offset Voltage vs Supply Voltage  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
 
TLV9002-Q1, TLV9004-Q1  
SBOS980A MAY 2019REVISED JUNE 2020  
www.ti.com  
Typical Characteristics (continued)  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
160  
140  
120  
100  
80  
3.5  
3
IB-  
IB+  
IOS  
2.5  
2
1.5  
1
0.5  
0
60  
-0.5  
-1  
40  
-1.5  
-2  
20  
VS = 5.5 V  
VS = 1.8 V  
-2.5  
0
-3  
-2  
-1  
Common-Mode Voltage (V)  
0
1
2
3
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D007  
D008  
Figure 7. IB and IOS vs Common-Mode Voltage  
Figure 8. Open-Loop Gain vs Temperature  
100  
120  
160  
140  
120  
100  
80  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
60  
40  
20  
Gain  
Phase  
0
-20  
-3  
-2  
-1 0  
Output Voltage (V)  
1
2
3
1k  
10k  
100k  
Frequency (Hz)  
1M  
D010  
D009  
CL = 10 pF  
Figure 10. Open-Loop Gain vs Output Voltage  
Figure 9. Open-Loop Gain and Phase vs Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
3
2.5  
2
Gain = -1  
Gain = 1  
Gain = 100  
Gain = 1000  
Gain = 10  
1.5  
1
125°C  
85°C  
25°C  
-40°C  
0.5  
0
-0.5  
-1  
85°C  
25°C  
-40°C  
-1.5  
-2  
125°C  
-10  
-20  
-2.5  
-3  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
0
5
10  
15  
20  
25  
30  
Output Current (mA)  
35  
40  
45  
50  
D011  
D012  
CL = 10 pF  
Figure 11. Closed-Loop Gain vs Frequency  
Figure 12. Output Voltage vs Output Current (Claw)  
10  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
TLV9002-Q1, TLV9004-Q1  
www.ti.com  
SBOS980A MAY 2019REVISED JUNE 2020  
Typical Characteristics (continued)  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
PSRR+  
PSRR-  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
Temperature (èC)  
D014  
D013  
VS = 1.8 V to 5.5 V  
Figure 14. DC PSRR vs Temperature  
Figure 13. PSRR vs Frequency  
120  
100  
80  
60  
40  
20  
0
160  
140  
120  
100  
80  
60  
40  
20  
VS = 1.8 V  
VS = 5.5 V  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
Temperature (èC)  
D016  
D015  
VCM = (V–) – 0.1 V to (V+) – 1.4 V  
Figure 16. DC CMRR vs Temperature  
Figure 15. CMRR vs Frequency  
120  
100  
80  
60  
40  
20  
0
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
Time (1 s/div)  
D018  
D017  
Figure 18. Input Voltage Noise Spectral Density  
Figure 17. 0.1 Hz to 10 Hz Integrated Voltage Noise  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
TLV9002-Q1, TLV9004-Q1  
SBOS980A MAY 2019REVISED JUNE 2020  
www.ti.com  
Typical Characteristics (continued)  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
-50  
-60  
0
-20  
G = +1, RL = 2 kW  
G = +1, RL = 10 kW  
G = -1, RL = 2 kW  
G = -1, RL = 10 kW  
-70  
-40  
-80  
-60  
-90  
-80  
RL = 2K  
RL = 10K  
-100  
-100  
100  
1k  
Frequency (Hz)  
10k  
0.001  
0.01  
0.1  
Amplitude (VRMS)  
1
2
D019  
D020  
VS = 5.5 V  
VCM = 2.5 V  
G = 1  
VS = 5.5 V  
G = 1  
VCM = 2.5 V  
BW = 80 kHz  
f = 1 kHz  
BW = 80 kHz  
VOUT = 0.5 VRMS  
Figure 19. THD + N vs Frequency  
Figure 20. THD + N vs Amplitude  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
1.5  
2
2.5  
3
3.5  
4
Voltage Supply (V)  
4.5  
5
5.5  
Temperature (èC)  
D022  
D021  
Figure 22. Quiescent Current vs Temperature  
Figure 21. Quiescent Current vs Supply Voltage  
50  
2000  
45  
40  
35  
30  
25  
20  
15  
10  
5
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
Overshoot (+)  
Overshoot (–)  
0
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
0
200  
400 600  
Capacitance Load (pF)  
800  
1000  
D023  
D024  
G = 1  
VIN = 100 mVpp  
Figure 23. Open-Loop Output Impedance vs Frequency  
Figure 24. Small Signal Overshoot vs Capacitive Load  
12  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
TLV9002-Q1, TLV9004-Q1  
www.ti.com  
SBOS980A MAY 2019REVISED JUNE 2020  
Typical Characteristics (continued)  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Overshoot (+)  
Overshoot (–)  
0
0
200  
400 600  
Capacitance Load (pF)  
800  
1000  
0
200  
400 600  
Capacitance Load (pF)  
800  
1000  
D025  
D026  
G = –1  
VIN = 100 mVpp  
Figure 25. Small Signal Overshoot vs Capacitive Load  
Figure 26. Phase Margin vs Capacitive Load  
VOUT  
VIN  
VOUT  
VIN  
Time (100 ms/div)  
Time (20 ms/div)  
D027  
D028  
G = 1  
VIN = 6.5 VPP  
G = –10  
VIN = 600 mVPP  
Figure 27. No Phase Reversal  
Figure 28. Overload Recovery  
VOUT  
VIN  
VOUT  
VIN  
Time (10 ms/div)  
Time (10 ms/div)  
D029  
D030  
G = 1  
VIN = 100 mVPP  
CL = 10 pF  
G = 1  
VIN = 4 VPP  
CL = 10 pF  
Figure 29. Small-Signal Step Response  
Figure 30. Large-Signal Step Response  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
TLV9002-Q1, TLV9004-Q1  
SBOS980A MAY 2019REVISED JUNE 2020  
www.ti.com  
Typical Characteristics (continued)  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
Time (1 ms/div)  
Time (1 μs/div)  
D032  
D031  
G = 1  
CL = 100 pF  
2-V step  
G = 1  
CL = 100 pF  
2-V step  
Figure 32. Large-Signal Settling Time (Positive)  
Figure 31. Large-Signal Settling Time (Negative)  
80  
60  
6
5
4
3
2
1
0
VS = 5.5 V  
VS = 1.8 V  
40  
20  
0
-20  
-40  
-60  
-80  
Sinking  
Sourcing  
1
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M 100M  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
D034  
D033  
Figure 34. Maximum Output Voltage vs Frequency  
Figure 33. Short-Circuit Current vs Temperature  
140  
120  
100  
80  
0
-20  
-40  
-60  
60  
-80  
40  
-100  
-120  
-140  
20  
0
10M  
100M  
Frequency (Hz)  
1G  
10G  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
D035  
D036  
Figure 35. Electromagnetic Interference Rejection Ratio  
Referred to Noninverting Input (EMIRR+) vs Frequency  
Figure 36. Channel Separation  
14  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
TLV9002-Q1, TLV9004-Q1  
www.ti.com  
SBOS980A MAY 2019REVISED JUNE 2020  
8 Detailed Description  
8.1 Overview  
The TLV900x-Q1 is a family of automotive qualified, low-power, rail-to-rail input and output op amps. These  
devices operate from 1.8 V to 5.5 V, are unity-gain stable, and are designed for a wide range of general-purpose  
applications. The input common-mode voltage range includes both rails and allows the TLV900x-Q1 family to be  
used in virtually any single-supply application. Rail-to-rail input and output swing significantly increases dynamic  
range, especially in low-supply applications, and makes them suitable for driving sampling analog-to-digital  
converters (ADCs).  
8.2 Functional Block Diagram  
V+  
Reference  
Current  
VIN+  
VIN-  
VBIAS1  
Class AB  
Control  
Circuitry  
VO  
VBIAS2  
V-  
(Ground)  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
 
TLV9002-Q1, TLV9004-Q1  
SBOS980A MAY 2019REVISED JUNE 2020  
www.ti.com  
8.3 Feature Description  
8.3.1 Operating Voltage  
The TLV900x-Q1 family of op amps are for operation from 1.8 V to 5.5 V. In addition, many specifications such  
as input offset voltage, quiescent current, offset current, and short circuit current apply from –40°C to 125°C.  
Parameters that vary significantly with operating voltages or temperature are shown in the typical characteristics  
section.  
8.3.2 Rail-to-Rail Input  
The input common-mode voltage range of the TLV900x-Q1 family extends 100 mV beyond the supply rails for  
the full supply voltage range of 1.8 V to 5.5 V. This performance is achieved with a complementary input stage:  
an N-channel input differential pair in parallel with a P-channel differential pair, as shown in the Functional Block  
Diagram section. The N-channel pair is active for input voltages close to the positive rail, typically (V+) – 1.4 V to  
100 mV above the positive supply, whereas the P-channel pair is active for inputs from 100 mV below the  
negative supply to approximately (V+) – 1.4 V. There is a small transition region, typically (V+) – 1.2 V to (V+) –  
1 V, in which both pairs are on. This 100-mV transition region can vary up to 100 mV with process variation.  
Thus, the transition region (with both stages on) can range from (V+) – 1.4 V to (V+) – 1.2 V on the low end, and  
up to (V+) – 1 V to (V+) – 0.8 V on the high end. Within this transition region, PSRR, CMRR, offset voltage,  
offset drift, and THD can degrade compared to device operation outside this region.  
8.3.3 Rail-to-Rail Output  
Designed as a low-power, low-voltage operational amplifier, the TLV900x-Q1 family delivers a robust output drive  
capability. A class-AB output stage with common-source transistors achieves full rail-to-rail output swing  
capability. For resistive loads of 10 kΩ, the output swings to within 20 mV of either supply rail, regardless of the  
applied power-supply voltage. Different load conditions change the ability of the amplifier to swing close to the  
rails.  
8.3.4 Overload Recovery  
Overload recovery is defined as the time required for the operational amplifier output to recover from a saturated  
state to a linear state. The output devices of the operational amplifier enter a saturation region when the output  
voltage exceeds the rated operating voltage, because of the high input voltage or the high gain. After the device  
enters the saturation region, the charge carriers in the output devices require time to return to the linear state.  
After the charge carriers return to the linear state, the device begins to slew at the specified slew rate. Therefore,  
the propagation delay (in case of an overload condition) is the sum of the overload recovery time and the slew  
time. The overload recovery time for the TLV900x-Q1 family is approximately 850 ns.  
8.4 Device Functional Modes  
The TLV900x-Q1 family has a single functional mode. The devices are powered on as long as the power-supply  
voltage is between 1.8 V (±0.9 V) and 5.5 V (±2.75 V).  
16  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
TLV9002-Q1, TLV9004-Q1  
www.ti.com  
SBOS980A MAY 2019REVISED JUNE 2020  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TLV900x-Q1 family of low-power, rail-to-rail input and output operational amplifiers is specifically designed  
for portable applications. The devices operate from 1.8 V to 5.5 V, are unity-gain stable, and are suitable for a  
wide range of general-purpose applications. The class AB output stage is capable of driving less than or equal to  
10kΩ loads connected to any point between V+ and V–. The input common-mode voltage range includes both  
rails, and allows the TLV900x-Q1 devices to be used in any single-supply application.  
9.2 Typical Application  
9.2.1 TLV900x-Q1 Low-Side, Current Sensing Application  
Figure 37 shows the TLV900x-Q1 configured in a low-side current sensing application.  
VBUS  
ILOAD  
ZLOAD  
5 V  
+
TLV9002  
VOUT  
Þ
+
RSHUNT  
VSHUNT  
RF  
0.1 Ω  
57.6 kΩ  
Þ
RG  
1.2 kΩ  
Figure 37. TLV900x-Q1 in a Low-Side, Current-Sensing Application  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
 
TLV9002-Q1, TLV9004-Q1  
SBOS980A MAY 2019REVISED JUNE 2020  
www.ti.com  
Typical Application (continued)  
9.2.1.1 Design Requirements  
The design requirements for this design are:  
Load current: 0 A to 1 A  
Output voltage: 4.9 V  
Maximum shunt voltage: 100 mV  
9.2.1.2 Detailed Design Procedure  
The transfer function of the circuit in Figure 37 is given in Equation 1:  
VOUT = ILOAD ìRSHUNT ìGain  
(1)  
The load current (ILOAD) produces a voltage drop across the shunt resistor (RSHUNT). The load current is set from  
0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is  
shown using Equation 2:  
VSHUNT _MAX  
100mV  
1A  
RSHUNT  
=
=
=100mW  
ILOAD_MAX  
(2)  
Using Equation 2, RSHUNT is calculated to be 100 mΩ. The voltage drop produced by ILOAD and RSHUNT is  
amplified by the TLV900x-Q1 to produce an output voltage of approximately 0 V to 4.9 V. The gain needed by  
the TLV900x-Q1 to produce the necessary output voltage is calculated using Equation 3:  
V
OUT _MAX - VOUT _MIN  
(
)
Gain =  
VIN_MAX - V  
(
)
IN_MIN  
(3)  
Using Equation 3, the required gain is calculated to be 49 V/V, which is set with resistors RF and RG. Equation 4  
sizes the resistors RF and RG, to set the gain of the TLV900x-Q1 to 49 V/V.  
R
(
(
)
)
F
Gain = 1+  
R
G
(4)  
Selecting RF as 57.6 kΩ and RG as 1.2 kΩ provides a combination that equals 49 V/V. Figure 38 shows the  
measured transfer function of the circuit shown in Figure 37. Notice that the gain is only a function of the  
feedback and gain resistors. This gain is adjusted by varying the ratio of the resistors and the actual resistors  
values are determined by the impedance levels that the designer wants to establish. The impedance level  
determines the current drain, the effect that stray capacitance has, and a few other behaviors. There is no  
optimal impedance selection that works for every system, you must choose an impedance that is ideal for your  
system parameters.  
9.2.1.3 Application Curve  
5
4
3
2
1
0
0
0.2  
0.4  
0.6  
0.8  
1
ILOAD (A)  
C219  
Figure 38. Low-Side, Current-Sense Transfer Function  
18  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
 
 
 
 
 
TLV9002-Q1, TLV9004-Q1  
www.ti.com  
SBOS980A MAY 2019REVISED JUNE 2020  
Typical Application (continued)  
9.2.2 Single-Supply Photodiode Amplifier  
Photodiodes are used in many applications to convert light signals to electrical signals. The current through the  
photodiode is proportional to the photon energy absorbed, and is commonly in the range of a few hundred  
picoamps to a few tens of microamps. An amplifier in a transimpedance configuration is typically used to convert  
the low-level photodiode current to a voltage signal for processing in an MCU. The circuit shown in Figure 39 is  
an example of a single-supply photodiode amplifier circuit using the TLV9002-Q1.  
+3.3V  
R1  
11.5 kΩ  
10 pF  
CF  
VREF  
R2  
357 Ω  
RF  
309 kΩ  
3.3 V  
œ
TLV9002  
VOUT  
+
VREF  
CPD  
IIN  
0-10 µA  
RL  
10 k  
47 pF  
Figure 39. Single-Supply Photodiode Amplifier Circuit  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
 
TLV9002-Q1, TLV9004-Q1  
SBOS980A MAY 2019REVISED JUNE 2020  
www.ti.com  
Typical Application (continued)  
9.2.2.1 Design Requirements  
The design requirements for this design are:  
Supply voltage: 3.3 V  
Input: 0 µA to 10 µA  
Output: 0.1 V to 3.2 V  
Bandwidth: 50 kHz  
9.2.2.2 Detailed Design Procedure  
The transfer function between the output voltage (VOUT), the input current, (IIN) and the reference voltage (VREF  
)
is defined in Equation 5.  
VOUT = IIN ìRF + VREF  
(5)  
Where:  
«
÷
R1 ìR2  
R1 + R2 ◊  
VREF = V ì  
+
(6)  
Set VREF to 100 mV to meet the minimum output voltage level by setting R1 and R2 to meet the required ratio  
calculated in Equation 7.  
VREF  
0.1 V  
=
= 0.0303  
V+  
3.3 V  
(7)  
The closest resistor ratio to meet this ratio sets R1 to 11.5 kΩ and R2 to 357 Ω.  
The required feedback resistance can be calculated based on the input current and desired output voltage.  
VOUT - VREF  
3.2 V - 0.1 V  
10 mA  
kV  
RF =  
=
= 310  
ö 309 kW  
I
A
IN  
(8)  
Calculate the value for the feedback capacitor based on RF and the desired –3-dB bandwidth, (f–3dB) using  
Equation 9.  
1
1
CF =  
=
= 10.3 pF ö 10 pF  
2ì pìRF ì f-3dB 2ì pì309 kWì50 kHz  
(9)  
The minimum op amp bandwidth required for this application is based on the value of RF, CF, and the  
capacitance on the INx– pin of the TLV9002-Q1 which is equal to the sum of the photodiode shunt capacitance,  
(CPD) the common-mode input capacitance, (CCM) and the differential input capacitance (CD) as Equation 10  
shows.  
C
= CPD + CCM + CD = 47 pF+ 5 pF +1pF = 53 pF  
IN  
(10)  
The minimum op amp bandwidth is calculated in Equation 11.  
CIN + CF  
f=BGW  
í
í 324 kHz  
2
2ì pìRF ì CF  
(11)  
The 1-MHz bandwidth of the TLV900x-Q1 meets the minimum bandwidth requirement and remains stable in this  
application configuration.  
20  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
 
 
 
 
 
TLV9002-Q1, TLV9004-Q1  
www.ti.com  
SBOS980A MAY 2019REVISED JUNE 2020  
Typical Application (continued)  
9.2.2.3 Application Curves  
The measured current-to-voltage transfer function for the photodiode amplifier circuit is shown in Figure 40. The  
measured performance of the photodiode amplifier circuit is shown in Figure 41.  
3
2.5  
2
120  
100  
80  
1.5  
1
60  
0.5  
0
40  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
0
2E-6  
4E-6 6E-6  
Input Current (A)  
8E-6  
1E-5  
D001  
D002  
Figure 40. Photodiode Amplifier Circuit AC Gain Results  
Figure 41. Photodiode Amplifier Circuit DC Results  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
 
TLV9002-Q1, TLV9004-Q1  
SBOS980A MAY 2019REVISED JUNE 2020  
www.ti.com  
10 Power Supply Recommendations  
The TLV900x-Q1 family is specified for operation from 1.8 V to 5.5 V (±0.9 V to ±2.75 V); many specifications  
apply from –40°C to 125°C. The Typical Characteristics section presents parameters that may exhibit significant  
variance with regard to operating voltage or temperature.  
CAUTION  
Supply voltages larger than 6 V may permanently damage the device; see the  
Absolute Maximum Ratings table.  
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce coupling errors from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
Guidelines section.  
10.1 Input and ESD Protection  
The TLV900x-Q1 family incorporates internal ESD protection circuits on all pins. For input and output pins, this  
protection primarily consists of current-steering diodes connected between the input and power-supply pins.  
These ESD protection diodes provide in-circuit, input overdrive protection, as long as the current is limited to  
10 mA. Figure 42 shows how a series input resistor can be added to the driven input to limit the input current.  
The added resistor contributes thermal noise at the amplifier input and the value must be kept to a minimum in  
noise-sensitive applications.  
V+  
IOVERLOAD  
10-mA maximum  
VOUT  
Device  
VIN  
5 kW  
Figure 42. Input Current Protection  
22  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
 
TLV9002-Q1, TLV9004-Q1  
www.ti.com  
SBOS980A MAY 2019REVISED JUNE 2020  
11 Layout  
11.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power connections of the board and propagate to  
the power pins of the op amp itself. Bypass capacitors are used to reduce the coupled noise by providing  
a low-impedance path to ground.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is adequate for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground  
planes. A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise  
pickup. Take care to physically separate digital and analog grounds, paying attention to the flow of the  
ground current.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace at a 90 degree angle is  
much better as opposed to running the traces in parallel with the noisy trace.  
Place the external components as close to the device as possible, as shown in Figure 44. Keeping RF  
and RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring may significantly  
reduce leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is  
recommended to remove moisture introduced into the device packaging during the cleaning process. A  
low-temperature, post-cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
11.2 Layout Example  
VIN 1  
VIN 2  
+
+
VOUT 1  
VOUT 2  
RG  
RG  
RF  
RF  
Figure 43. Schematic Representation for Figure 44  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
OUT 1  
Use low-ESR,  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VS+  
GND  
OUT1  
V+  
RF  
RG  
OUT 2  
GND  
IN1œ  
IN1+  
Vœ  
OUT2  
IN2œ  
IN2+  
RF  
VIN 1  
GND  
RG  
VIN 2  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
GND  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VSœ  
Ground (GND) plane on another layer  
as possible .  
Figure 44. Layout Example  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
 
TLV9002-Q1, TLV9004-Q1  
SBOS980A MAY 2019REVISED JUNE 2020  
www.ti.com  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, EMI Rejection Ratio of Operational Amplifiers  
12.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
Table 1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TLV9002-Q1  
TLV9004-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.4 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
24  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
TLV9002-Q1, TLV9004-Q1  
www.ti.com  
SBOS980A MAY 2019REVISED JUNE 2020  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TLV9002-Q1 TLV9004-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTLV9002QDGKRQ1  
PTLV9004QDYYRQ1  
ACTIVE  
VSSOP  
DGK  
8
2500 RoHS (In work)  
& Non-Green  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
ACTIVE SOT-23-THN  
DYY  
14  
3000 RoHS (In work)  
& Non-Green  
Call TI  
TLV9002QDGKRQ1  
TLV9002QDRQ1  
PREVIEW  
ACTIVE  
VSSOP  
SOIC  
DGK  
D
8
8
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
27DT  
T9002Q  
TLV9004QDRQ1  
ACTIVE  
SOIC  
D
14  
2500 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
LV9004Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV9002-Q1, TLV9004-Q1 :  
Catalog: TLV9002, TLV9004  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Dec-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV9002QDRQ1  
TLV9004QDRQ1  
SOIC  
SOIC  
D
D
8
2500  
2500  
330.0  
330.0  
12.4  
16.4  
6.4  
6.5  
5.2  
9.0  
2.1  
2.1  
8.0  
8.0  
12.0  
16.0  
Q1  
Q1  
14  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Dec-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV9002QDRQ1  
TLV9004QDRQ1  
SOIC  
SOIC  
D
D
8
2500  
2500  
853.0  
853.0  
449.0  
449.0  
35.0  
35.0  
14  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TLV9002IDDFR

适用于成本优化型应用的双路、5.5V、1MHz、RRIO 运算放大器 | DDF | 8 | -40 to 125
TI

TLV9002IDGKR

适用于成本优化型应用的双路、5.5V、1MHz、RRIO 运算放大器 | DGK | 8 | -40 to 125
TI

TLV9002IDGKT

适用于成本优化型应用的双路、5.5V、1MHz、RRIO 运算放大器 | DGK | 8 | -40 to 125
TI

TLV9002IDR

适用于成本优化型应用的双路、5.5V、1MHz、RRIO 运算放大器 | D | 8 | -40 to 125
TI

TLV9002IDSGR

适用于成本优化型应用的双路、5.5V、1MHz、RRIO 运算放大器 | DSG | 8 | -40 to 125
TI

TLV9002IDSGT

适用于成本优化型应用的双路、5.5V、1MHz、RRIO 运算放大器 | DSG | 8 | -40 to 125
TI

TLV9002IPWR

适用于成本优化型应用的双路、5.5V、1MHz、RRIO 运算放大器 | PW | 8 | -40 to 125
TI

TLV9002QDGKRQ1

TLV900x-Q1 Low-Power RRIO 1-MHz Automotive Operational Amplifier
TI

TLV9002QDRQ1

TLV900x-Q1 Low-Power RRIO 1-MHz Automotive Operational Amplifier
TI

TLV9002SIDGSR

适用于成本优化型应用的双路、5.5V、1MHz、RRIO 运算放大器 | DGS | 10 | -40 to 125
TI

TLV9002SIRUGR

适用于成本优化型应用的双路、5.5V、1MHz、RRIO 运算放大器 | RUG | 10 | -40 to 125
TI

TLV9002SIYCKR

TLV900x Low-Power, RRIO, 1-MHz Operational Amplifier for Cost-Sensitive Systems
TI