TLV9051IDBVR [TI]

适用于成本优化型应用的单路、5.5V、5MHz、15V/μs 压摆率、RRIO 运算放大器 | DBV | 5 | -40 to 125;
TLV9051IDBVR
型号: TLV9051IDBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于成本优化型应用的单路、5.5V、5MHz、15V/μs 压摆率、RRIO 运算放大器 | DBV | 5 | -40 to 125

放大器 运算放大器
文件: 总82页 (文件大小:6021K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
TLV9051/TLV9052/TLV9054 5MHz 15V/µs 高压摆RRIO 运算放大器  
器件信息(1)  
1 特性  
封装尺寸标称值)  
器件型号  
封装  
SOT-23 (5)  
• 高压摆率15V/µs  
1.60mm × 2.90mm  
1.25mm × 2.00mm  
1.65mm × 1.20mm  
0.80mm × 0.80mm  
1.60mm × 2.90mm  
3.91mm × 4.90mm  
3.00mm × 4.40mm  
3.00mm × 3.00mm  
1.60mm × 2.90mm  
2.00mm × 2.00mm  
3.00mm × 3.00mm  
1.50mm x 2.00mm  
8.65mm × 3.91mm  
4.40mm × 5.00mm  
2.00mm × 2.00mm  
3.00mm × 3.00mm  
3.00mm × 3.00mm  
• 低静态电流330µA  
• 轨至轨输入和输出  
• 低输入失调电压±0.33 mV  
• 单位增益带宽5MHz  
• 低宽带噪声15 nV/Hz  
• 低输入偏置电流2pA  
• 单位增益稳定  
• 内RFI EMI 滤波器  
• 适用于低成本应用的可扩CMOS 运算放大器系列  
• 可在电源电压低1.8V 的情况下运行  
• 工作温度范围40°C 125°C  
SC70 (5)  
TLV9051  
SOT553 (5)(2)  
X2SON (5)  
SOT-23 (6)  
SOIC (8)  
TLV9051S  
TLV9052  
TSSOP (8)  
VSSOP (8)  
SOT-23 (8)  
WSON (8)  
VSSOP (10)  
X2QFN (10)  
SOIC (14)  
TLV9052S  
2 应用  
HVAC暖通空调  
• 光电二极管放大器  
• 用于实现直流电机控制的电流分流监控  
• 白色家电冰箱、洗衣机等)  
• 传感器信号调节  
TSSOP (14)  
X2QFN (14)  
WQFN (16)  
WQFN (16)  
TLV9054  
TLV9054S  
• 有源滤波器  
• 低侧电流检测  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 封装仅为预发布版。  
3 说明  
RG  
RF  
TLV9051TLV9052 TLV9054 器件分别为单通道、  
双通道和四通道的运算放大器。这些器件旨在 1.8V 至  
6.0V 的低电压下运行。它们可以在非常高的压摆率下  
实现轨到轨输入和输出。这些器件非常适合需要低工作  
电压、高压摆率和低静态电流的成本受限应用。  
TLV905x 系列的容性负载驱动器具有 150pF 的电容,  
而电阻式开环输出阻抗使其能够在更高的容性负载下更  
轻松地实现稳定。  
R1  
VOUT  
VIN  
C1  
1
2pR1C1  
f
=
-3 dB  
VOUT  
VIN  
RF  
1
1 + sR1C1  
=
1 +  
(
(
(  
(
RG  
单极低通滤波器  
TLV905xS 器件具有关断模式允许放大器切换至典型  
电流消耗低1µA 的待机模式。  
17  
16.5  
16  
TLV905x 系列易于使用因为它具有稳定的单位增  
集成了 RFI EMI 滤波器且不会在过驱动情况  
下出现相位反转。  
15.5  
15  
14.5  
14  
13.5  
13  
50  
100  
150  
200  
Capacitive Load (pF)  
250  
300  
350  
D019  
压摆率与负载电容间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS942  
 
 
 
 
 
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagram.........................................22  
8.3 Feature Description...................................................23  
8.4 Device Functional Modes..........................................26  
9 Application and Implementation..................................27  
9.1 Application Information............................................. 27  
9.2 Typical Low-Side Current Sense Application............27  
9.3 Power Supply Recommendations.............................29  
9.4 Layout....................................................................... 29  
10 Device and Documentation Support..........................31  
10.1 Documentation Support.......................................... 31  
10.2 Related Links.......................................................... 31  
10.3 Receiving Notification of Documentation Updates..31  
10.4 支持资源..................................................................31  
10.5 Trademarks.............................................................31  
10.6 Electrostatic Discharge Caution..............................31  
10.7 术语表..................................................................... 31  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................4  
6 Pin Configuration and Functions...................................5  
7 Specifications................................................................ 11  
7.1 绝对最大额定值.........................................................11  
7.2 ESD Ratings..............................................................11  
7.3 Recommended Operating Conditions.......................11  
7.4 Thermal Information for Single Channel................... 11  
7.5 Thermal Information for Dual Channel......................12  
7.6 Thermal Information for Quad Channel.................... 12  
7.7 电气特性VS总电源电压= (V+) (V-) =  
1.8V 5.5V................................................................13  
7.8 Typical Characteristics..............................................15  
8 Detailed Description......................................................22  
8.1 Overview...................................................................22  
Information.................................................................... 32  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision H (October 2019) to Revision I (November 2022)  
Page  
• 将绝对最大额定中的最大电源电压6V 更改7V..................................................................................... 11  
• 添加了输入偏置电流和输入失调电流的最大值..................................................................................................13  
Changes from Revision G (September 2019) to Revision H (October 2019)  
Page  
Added new human-body model and charged-device model ratings for TLV9051 X2SON package to the ESD  
Ratings .............................................................................................................................................................11  
Added Packages With an Exposed Thermal Pad section to Feature Description section................................24  
Changes from Revision F (June 2019) to Revision G (September 2019)  
Page  
• 删除了所TLV9051 封装的预发布标记.............................................................................................................1  
• 删除TLV9052 SOT-23 (8) - DDF 封装的预发布标记.......................................................................................1  
Added link to Shutdown Function section in all of the SHDN pin function rows................................................. 5  
Added EMI Rejection section to Feature Description section...........................................................................23  
Added clarification to the Shutdown Function section...................................................................................... 25  
Changes from Revision E (May 2019) to Revision F (June 2019)  
Page  
• 删除了器件信TLV9052S 器件的封装预发布标记....................................................................................... 1  
Deleted package preview notation for TLV9052S devices under Device Comparison Table ............................ 4  
Deleted preview notation for TLV9052S devices in Device Comparison Table ................................................. 4  
Deleted package preview notation for TLV9052S in Pin Configuration and Functions section.......................... 5  
Deleted package preview notation for TLV9052S under Thermal Information for Dual Channel .................... 12  
Changes from Revision D (April 2019) to Revision E (May 2019)  
Page  
Added DDF (SOT-23) information to Thermal Information for Dual Channel table.......................................... 12  
Changes from Revision C (April 2019) to Revision D (April 2019)  
Page  
• 删除了器件信TLV9054/S 器件的预发布标记..............................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
Deleted preview notations for TLV9054 devices in Device Comparison Table ..................................................4  
Deleted preview notations for TLV9054S device in Device Comparison Table ................................................. 4  
Deleted preview notations for TLV9054 packages in Pin Configurations and Functions section....................... 5  
Deleted preview notation for TLV9054S RTE package in Pin Configurations and Functions section................ 5  
Deleted preview notation for TLV9054/S packages in Thermal Information for Quad Channel ...................... 12  
Changes from Revision B (March 2019) to Revision C (April 2019)  
Page  
Added TLV9051 thermal information for DPW, DBV, and DCK packages........................................................ 11  
Changes from Revision A (December 2018) to Revision B (March 2019)  
Page  
• 向部分添加了关断器件说明........................................................................................................................ 1  
• 向器件信中添加SOT-23 (8) 封装............................................................................................................... 1  
• 向器件信中添加了关断器件............................................................................................................................1  
TLV9054 器件信中添加X2QFN (RUC) 封装..........................................................................................1  
Added DDF package information to Device Comparison Table .........................................................................4  
Added Shutdown devices (TLV9051S/TLV9052S/TLV9054S) and packages (DGS/RUG/RTE) to Device  
Comparison Table ..............................................................................................................................................4  
Added DDF (SOT-23) package...........................................................................................................................5  
Added TLV9051S pinout information to Pin Configurations and Functions section............................................5  
Added TLV9052S pinout information to Pin Configurations and Functions section............................................5  
Added TLV9054S and TLV9054 X2QFN (RUC) pinout information to Pin Configurations and Functions  
section................................................................................................................................................................ 5  
Added TLV9051 and TLV9051S thermal information to Thermal Information for Single Channel ...................11  
Added TLV9052S thermal info to Thermal Information for Dual Channel ........................................................12  
Added DDF (SOT-23) package to Thermal Information for Dual Channel ...................................................... 12  
Added TLV9054 and TLV9054S thermal information to Thermal Information for Quad Channel ....................12  
Added Shutdown Function information in Feature Description section............................................................ 25  
Added "S" suffix to Related Links to reflect the addition of Shutdown devices.................................................31  
Changes from Revision * (August 2018) to Revision A (December 2018)  
Page  
• 将器件状态从预告信更改为量产数.............................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV9051 TLV9052 TLV9054  
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
5 Device Comparison Table  
PACKAGE LEADS  
VSSOP TSSOP  
NO. OF  
CH.  
SOT-553  
DEVICE  
SC70  
DCK  
SOT-23  
DBV  
X2SON  
DPW  
SOIC  
D
WSON  
DSG  
SOT-23  
DDF  
VSSOP  
DGS  
X2QFN  
RUG  
X2QFN  
RUC  
WQFN  
RTE  
(1)  
DGK  
PW  
DRL  
5
TLV9051  
TLV9051S  
TLV9052  
TLV9052S  
TLV9054  
TLV9054S  
5
5
5
8
8
8
8
8
10  
10  
14  
16  
16  
1
2
4
6
14  
14  
(1) Package is for preview only.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
 
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
OUT  
Vœ  
1
2
3
5
V+  
IN+  
Vœ  
1
2
3
5
V+  
IN+  
4
INœ  
INœ  
4
OUT  
Not to scale  
Not to scale  
6-1. TLV9051 DBV, DRL Packages 5-Pin SOT-23, 6-2. TLV9051 DCK Package 5-Pin SC70 Top View  
SOT-553 Top View  
OUT  
1
5
V+  
3
Vœ  
INœ  
2
4
IN+  
Not to scale  
6-3. TLV9051 DPW Package 5-Pin X2SON Top View  
6-1. Pin Functions: TLV9051  
PIN  
I/O  
DESCRIPTION  
SOT-23,  
SOT-553  
NAME  
SC-70  
X2SON  
4
3
1
2
5
3
1
4
2
5
2
4
1
3
5
I
I
Inverting input  
Noninverting input  
Output  
IN–  
IN+  
OUT  
V–  
V+  
O
Negative (low) supply or ground (for single-supply operation)  
Positive (high) supply  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
+IN  
Vœ  
1
2
3
6
5
4
V+  
SHDN  
OUT  
œIN  
Not to scale  
6-4. TLV9051S DBV Package 6-Pin SOT-23 Top View  
6-2. Pin Functions: TLV9051S  
PIN  
I/O  
DESCRIPTION  
NAME  
IN  
NO.  
4
I
I
Inverting input  
Noninverting input  
Output  
+IN  
3
OUT  
SHDN  
1
O
I
5
Shutdown: low = amp disabled, high = amp enabled. See 8.3.9 for more information.  
Negative (lowest) supply or ground (for single-supply operation).  
Positive (highest) supply  
2
V–  
V+  
6
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV9051 TLV9052 TLV9054  
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
OUT1  
1
2
3
4
8
7
6
5
V+  
OUT1  
IN1œ  
IN1+  
Vœ  
1
2
3
4
8
7
6
5
V+  
IN1œ  
IN1+  
Vœ  
OUT2  
IN2œ  
IN2+  
OUT2  
IN2œ  
IN2+  
Thermal  
Pad  
Not to scale  
Not to scale  
Connect exposed thermal pad to V. See 8.3.6 for more  
6-5. TLV9052 D, DGK, PW, DDF Packages 8-Pin  
information.  
SOIC, VSSOP, TSSOP, SOT-23 Top View  
6-6. TLV9052 DSG Package 8-Pin WSON With  
Exposed Thermal Pad Top View  
6-3. Pin Functions: TLV9052  
PIN  
I/O  
DESCRIPTION  
NAME  
IN1–  
NO.  
2
I
I
Inverting input, channel 1  
IN1+  
IN2–  
IN2+  
OUT1  
OUT2  
V–  
3
Noninverting input, channel 1  
Inverting input, channel 2  
6
I
5
I
Noninverting input, channel 2  
Output, channel 1  
1
O
O
7
Output, channel 2  
4
Negative (low) supply or ground (for single-supply operation)  
Positive (high) supply  
V+  
8
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV9051 TLV9052 TLV9054  
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
OUT1  
IN1œ  
1
2
3
4
5
10  
9
V+  
OUT2  
IN2œ  
IN2+  
SHDN2  
Vœ  
SHDN1  
SHDN2  
IN2+  
1
2
3
4
9
8
7
6
IN1œ  
IN1+  
8
Vœ  
7
OUT1  
SHDN1  
6
V+  
Not to scale  
6-7. TLV9052S DGS Package 10-Pin VSSOP Top  
View  
OUT2  
Not to scale  
6-8. TLV9052S RUG Package 10-Pin X2QFN Top  
View  
6-4. Pin Functions: TLV9052S  
PIN  
I/O  
DESCRIPTION  
NAME  
IN1–  
VSSOP  
X2QFN  
2
3
8
7
1
9
9
10  
5
I
I
Inverting input, channel 1  
IN1+  
Noninverting input, channel 1  
Inverting input, channel 2  
Noninverting input, channel 2  
Output, channel 1  
I
IN2–  
IN2+  
4
I
OUT1  
OUT2  
8
O
O
6
Output, channel 2  
Shutdown: low = amp disabled, high = amp enabled, channel 1. See 8.3.9 for  
more information.  
SHDN1  
SHDN2  
5
6
2
3
I
I
Shutdown: low = amp disabled, high = amp enabled, channel 2. See 8.3.9 for  
more information.  
4
1
7
Negative (low) supply or ground (for single-supply operation)  
Positive (high) supply  
V–  
V+  
10  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV9051 TLV9052 TLV9054  
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
OUT1  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT4  
IN4œ  
IN4+  
Vœ  
IN1œ  
IN1+  
V+  
IN1œ  
IN1+  
V+  
1
2
3
4
5
12  
11  
10  
9
IN4œ  
IN4+  
Vœ  
IN2+  
IN2œ  
OUT2  
IN3+  
IN3œ  
OUT3  
IN2+  
IN2œ  
IN3+  
IN3œ  
8
8
Not to scale  
Not to scale  
6-9. TLV9054 D, PW Packages 14-Pin SOIC,  
TSSOP Top View  
6-10. TLV9054 RUC Package 14-Pin X2QFN Top  
View  
IN1+  
V+  
1
2
3
4
12  
11  
10  
9
IN4+  
Vœ  
Thermal  
Pad  
IN2+  
IN2œ  
IN3+  
IN3œ  
Not to scale  
Connect exposed thermal pad to V. See 8.3.6 for more information.  
6-11. TLV9054 RTE Package 16-Pin WQFN With Exposed Thermal Pad Top View  
6-5. Pin Functions: TLV9054  
PIN  
I/O  
DESCRIPTION  
SOIC,  
TSSOP  
NAME  
IN1–  
WQFN  
X2QFN  
2
3
16  
1
1
2
I
I
I
I
I
I
I
I
Inverting input, channel 1  
IN1+  
IN2–  
IN2+  
IN3–  
IN3+  
IN4–  
IN4+  
NC  
Noninverting input, channel 1  
Inverting input, channel 2  
Noninverting input, channel 2  
Inverting input, channel 3  
Noninverting input, channel 3  
Inverting input, channel 4  
Noninverting input, channel 4  
No internal connection  
6
4
5
5
3
4
9
9
8
10  
13  
12  
10  
13  
12  
6, 7  
15  
5
9
12  
11  
1
14  
6
O
O
O
O
OUT1  
OUT2  
OUT3  
OUT4  
V–  
Output, channel 1  
7
Output, channel 2  
8
8
7
Output, channel 3  
14  
14  
11  
2
13  
Output, channel 4  
11  
4
10  
3
Negative (low) supply or ground (for single-supply operation)  
Positive (high) supply  
V+  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV9051 TLV9052 TLV9054  
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
IN1+  
V+  
1
2
3
4
12  
11  
10  
9
IN4+  
Vœ  
Thermal  
Pad  
IN2+  
IN2œ  
IN3+  
IN3œ  
Not to scale  
Connect exposed thermal pad to V. See 8.3.6 for more information.  
6-12. TLV9054S RTE Package 16-Pin WQFN With Exposed Thermal Pad Top View  
6-6. Pin Functions: TLV9054S  
PIN  
I/O  
DESCRIPTION  
NAME  
IN1+  
NO.  
1
I
I
I
I
I
I
I
I
Noninverting input, channel 1  
Inverting input, channel 1  
Noninverting input, channel 2  
Inverting input, channel 2  
Noninverting input, channel 3  
Inverting input, channel 3  
Noninverting input, channel 4  
Inverting input, channel 4  
16  
3
IN1–  
IN2+  
4
IN2–  
IN3+  
10  
9
IN3–  
IN4+  
12  
13  
IN4–  
Shutdown: low = amp disabled, high = amp enabled, channel 1 and 2. See 8.3.9 for more  
information.  
SHDN12  
SHDN34  
6
7
I
I
Shutdown: low = amp disabled, high = amp enabled, channel 3 and 4. See 8.3.9 for more  
information.  
OUT1  
OUT2  
OUT3  
OUT4  
V–  
15  
5
O
O
O
O
Output, channel 1  
Output, channel 2  
8
Output, channel 3  
14  
11  
2
Output, channel 4  
Negative (low) supply or ground (for single-supply operation)  
Positive (high) supply  
V+  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV9051 TLV9052 TLV9054  
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
7 Specifications  
7.1 绝对最大额定值  
在自然通风温度下测得除非另有说明(1)  
最小值  
最大值  
单位  
7
V
电源电压  
(V+) + 0.5  
(V+) (V) + 0.2  
10  
(V) 0.5  
共模  
电压(2)  
V
信号输入引脚  
输出短路(3)  
温度  
差分  
电流(2)  
-10  
mA  
mA  
连续  
-40  
125  
150  
150  
额定温度TA  
结温TJ  
°C  
-65  
贮存温度Tstg  
(1) 应力超出绝对最大额定下所列的值可能会对器件造成永久损坏。这些仅为压力额定值并不表示器件在这些条件下以及在建议运行条  
以外的任何其他条件下能够正常运行。长时间处于绝对最大额定条件下可能会影响器件的可靠性。  
(2) 输入引脚被二极管钳制至电源轨。对于摆幅能超过电源0.5V 的输入信号应将其电流限制10mA 或者更低。  
(3) 接地短路每个封装对应一个放大器。  
7.2 ESD Ratings  
VALUE  
UNIT  
TLV9051 X2SON PACKAGE  
V(ESD) Electrostatic discharge  
ALL OTHER PACKAGES  
V(ESD) Electrostatic discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±3000  
±1500  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±4000  
±1500  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
1.8  
MAX  
6.0  
UNIT  
V
VS  
Supply voltage, VS = (V+) (V)  
Input pin voltage  
VIN  
(V+) + 0.1  
125  
V
(V) 0.1  
40  
Specified temperature  
°C  
7.4 Thermal Information for Single Channel  
TLV9051, TLV9051S  
DBV (SOT-23)  
DCK  
(SC70)  
DRL (SOT553)  
THERMAL METRIC(1)  
DPW (X2SON)  
UNIT  
(2)  
5 PINS  
5 PINS  
6 PINS  
5 PINS  
5 PINS  
Junction-to-ambient thermal  
resistance  
RθJA  
470.0  
228.1  
210.8  
231.2  
TBD  
°C/W  
Rθ  
Junction-to-case(top) thermal  
resistance  
211.9  
334.8  
29.8  
152.1  
97.7  
74.1  
152.1  
92.3  
76.2  
144.4  
78.6  
51.3  
TBD  
TBD  
TBD  
°C/W  
°C/W  
°C/W  
JC(top)  
RθJB  
Junction-to-board thermal resistance  
Junction-to-top characterization  
parameter  
ψJT  
Junction-to-board characterization  
parameter  
333.2  
97.3  
92.1  
78.3  
TBD  
°C/W  
ψJB  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
 
 
 
 
 
 
 
 
 
 
 
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
TLV9051, TLV9051S  
DBV (SOT-23)  
DCK  
(SC70)  
DRL (SOT553)  
THERMAL METRIC(1)  
DPW (X2SON)  
5 PINS  
UNIT  
(2)  
5 PINS  
N/A  
6 PINS  
5 PINS  
5 PINS  
Rθ  
Junction-to-case(bottom) thermal  
resistance  
N/A  
N/A  
N/A  
TBD  
°C/W  
JC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) This package option is for preview only.  
7.5 Thermal Information for Dual Channel  
TLV9052, TLV9052S  
D
DGK  
(VSSOP)  
DSG  
PW  
DDF  
(SOT-23)  
DGS  
(VSSOP)  
RUG  
(X2QFN)  
THERMAL METRIC(1)  
UNIT  
(SOIC)  
(WSON) (TSSOP)  
8 PINS  
8 PINS  
8 PINS  
8 PINS  
8 PINS  
10 PINS  
10 PINS  
Junction-to-ambient  
thermal resistance  
RθJA  
155.4  
208.8  
102.3  
205.1  
184.4  
170.4  
197.2  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Rθ  
Junction-to-case(top)  
thermal resistance  
95.5  
98.9  
41.9  
98.1  
N/A  
93.3  
130.7  
26.1  
120.0  
68.2  
15.1  
68.2  
43.6  
93.7  
135.7  
25.0  
112.8  
99.9  
18.7  
99.3  
N/A  
84.9  
113.5  
16.4  
112.3  
N/A  
93.3  
123.8  
3.7  
JC(top)  
Junction-to-board thermal  
resistance  
RθJB  
ψJT  
Junction-to-top  
characterization parameter  
Junction-to-board  
characterization parameter  
128.9  
N/A  
134.0  
N/A  
120.2  
N/A  
ψJB  
Rθ  
Junction-to-case(bottom)  
thermal resistance  
JC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.6 Thermal Information for Quad Channel  
TLV9054, TLV9054S  
THERMAL METRIC(1)  
D (SOIC) PW (TSSOP)  
RTE (WQFN)  
RUC (X2SQFN) UNIT  
14 PINS  
14 PINS  
14 PINS  
14 PINS  
16 PINS  
Junction-to-ambient thermal  
resistance  
RθJA  
115.0  
147.2  
65.5  
65.6  
209.4  
°C/W  
Rθ  
Junction-to-case(top) thermal  
resistance  
71.1  
71.0  
29.7  
67.2  
91.6  
16.6  
70.6  
40.5  
5.8  
70.6  
40.5  
5.8  
68.8  
153.3  
3.0  
°C/W  
°C/W  
°C/W  
JC(top)  
RθJB  
Junction-to-board thermal resistance  
Junction-to-top characterization  
parameter  
ψJT  
Junction-to-board characterization  
parameter  
70.6  
N/A  
90.7  
N/A  
40.5  
24.5  
40.5  
24.5  
152.8  
N/A  
°C/W  
°C/W  
ψJB  
Rθ  
Junction-to-case(bottom) thermal  
resistance  
JC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
 
 
 
 
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.7 电气特性VS总电源电压= (V+) (V-) = 1.8V 5.5V  
TA = 25°CRL = 10kΩ(连接VS/2),VCM = VS/2VOUT = VS/2除非另有说明);  
参数  
测试条件  
最小值  
典型值  
最大值  
单位  
失调电压  
VS = 5V  
±0.33  
±1.6  
±2  
VOS  
mV  
输入失调电压  
VS = 5VTA = 40°C +125°C  
VS = 5VTA = 40°C +125°C  
VS = 1.8V 5.5VVCM = (V)  
在直流  
dVOS/dT  
PSRR  
±0.5  
±13  
115  
µV/°C  
µV/V  
dB  
漂移  
±80  
电源抑制比  
通道分离直流  
输入电压范围  
VCM  
(V+)+0.1  
V
VS = 1.8V 5.5V  
(V) 0.1  
共模电压  
VS = 5.5 V(V) 0.1V < VCM < (V+) 1.4V,  
TA = 40°C +125°C  
80  
96  
79  
88  
72  
VS = 5.5VVCM = -0.1V 5.6V,  
TA = -40°C +125°C  
62  
CMRR  
dB  
共模抑制比  
VS = 1.8V(V) 0.1V < VCM < (V+) 1.4V,  
TA = 40°C +125°C  
VS = 1.8VVCM = -0.1V 1.9V,  
TA = -40°C +125°C  
输入偏置电流  
±2  
±1  
±18(2)  
±525(2)  
±15(2)  
pA  
pA  
pA  
pA  
IB  
输入偏置电流  
输入失调电流  
TA=-40°C +125°C  
TA=-40°C +125°C  
IOS  
±440(2)  
噪声  
En  
6
15  
20  
18  
µVPP  
输入电压噪声峰峰值)  
输入电压噪声密度  
VS = 5Vf = 0.1Hz 10Hz  
VS = 5Vf = 10kHz  
VS = 5Vf = 1kHz  
f = 1kHz  
nV/Hz  
nV/Hz  
fA/Hz  
en  
in  
输入电流噪声密度  
输入电容  
CID  
2
4
pF  
pF  
差分  
共模  
CIC  
开环增益  
VS = 1.8V(V) + 0.04V < VO < (V+) 0.04V,  
RL = 10kΩ  
106  
128  
108  
130  
VS = 5.5V(V) + 0.05V < VO < (V+) 0.05V,  
RL = 10kΩ  
104  
AOL  
dB  
开环电压增益  
VS = 1.8V(V) + 0.06V < VO < (V+) 0.06V,  
RL = 2kΩ  
VS = 5.5V(V) + 0.15V < VO < (V+) 0.15V,  
RL = 2kΩ  
频率响应  
GBP  
VS = 5.5VG = +1  
5
60  
15  
MHz  
增益带宽积  
相位裕度  
压摆率  
VS = 5.5VG = +1  
φm  
SR  
VS = 5.5VG = +1CL = 130pF  
V/µs  
精度达0.1%VS = 5.5V2V 阶跃G = +1CL  
=
0.75  
1
100pF  
tS  
µs  
µs  
趋稳时间  
精度达0.01%VS = 5.5V2V 阶跃G = +1CL  
100pF  
=
tOR  
0.3  
VS = 5.5VVIN × > VS  
过载恢复时间  
总谐波失+ 噪声(1)  
THD + N  
输出  
VS = 5.5VVCM = 2.5VVO = 1VRMSG = +1f = 1kHz  
0.0006%  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.7 电气特性VS总电源电压= (V+) (V-) = 1.8V 5.5V (continued)  
TA = 25°CRL = 10kΩ(连接VS/2),VCM = VS/2VOUT = VS/2除非另有说明);  
参数  
测试条件  
最小值  
典型值  
最大值  
单位  
16  
VS = 5.5VRL = 10kΩ,  
VS = 5.5VRL = 2kΩ,  
VS = 5V  
相对于电源轨的电压输出摆  
VO  
mV  
40  
ISC  
±50  
250  
mA  
短路电流  
ZO  
VS = 5Vf = 5 MHz  
开环输出阻抗  
Ω
电源  
VS = 5.5VIO = 0mA,  
330  
450  
475  
IQ  
µA  
每个放大器的静态电流  
VS = 5.5VIO = 0mATA = -40°C +125°C  
(1) 三阶滤波器3dB 时的带= 80kHz。  
(2) 根据设计和特征确定未经生产测试。  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.8 Typical Characteristics  
at TA = 25°C, VS = 5.5 V, RL = 10 kΩconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
21  
18  
15  
12  
9
40  
30  
20  
10  
0
6
3
0
-1200 -900 -600 -300  
0
300  
600  
900 1200  
DC15  
0
0.4  
0.8  
1.2  
1.6  
2
DC16  
Offset Voltage (µV)  
Offset Voltage Drift (µV/C)  
VS = 5.5 V  
VS = 5.5 V, TA = 40°C to 125°C  
7-1. Offset Voltage Production Distribution  
7-2. Offset Voltage Drift Distribution  
600  
500  
400  
300  
200  
100  
0
450  
350  
250  
150  
50  
-100  
-200  
-300  
-400  
-500  
-600  
-50  
-150  
-250  
-350  
-3  
-2  
-1  
0
1
Common-Mode Voltage (V)  
2
3
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
DC21  
DC08  
7-4. Offset Voltage vs Common-Mode Voltage  
7-3. Offset Voltage vs Temperature  
500  
400  
300  
200  
100  
0
120  
IB-  
IB+  
IOS  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-100  
-200  
-300  
-400  
-500  
1.5  
2
2.5  
3
3.5  
4
Supply Voltage (V)  
4.5  
5
5.5  
-50  
-25  
0
25 50  
Temperature (°C)  
75  
100  
125  
DC23  
DC02  
7-5. Offset Voltage vs Power Supply  
7-6. Input Bias Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.8 Typical Characteristics  
at TA = 25°C, VS = 5.5 V, RL = 10 kΩconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
18  
IB-  
IB+  
IOS  
16  
14  
12  
10  
8
6
4
2
0
-3  
Time (1s/div)  
-2  
-1  
0
1
Input Common-Mode Voltage (V)  
2
3
D008  
DC03  
7-8. 0.1-Hz to 10-Hz Input Voltage Noise  
7-7. Input Bias Current and Offset Current vs Common-Mode  
Voltage  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
PSRR+  
PSRR-  
CMRR  
60  
40  
20  
0
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
D018  
D024  
7-10. CMRR and PSRR vs Frequency (Referred to Input)  
7-9. Input Voltage Noise Spectral Density vs Frequency  
220  
200  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
180  
VS = 5.5 V, VCM = -0.1 V to (V+) - 1.4 V  
VS = 5.5 V, VCM = -0.1 V to 5.6 V  
VS = 1.8 V, VCM = -0.1 V to (V+) - 1.4 V  
VS = 1.8 V, VCM = -0.1 V to 5.6 V  
160  
140  
120  
100  
80  
60  
40  
20  
0
-50  
-25  
0
25 50  
Temperature (°C)  
75  
100  
125  
-50  
-25  
0
25 50  
Temperature (°C)  
75  
100  
125  
DC17  
DC18  
7-11. CMRR vs Temperature  
VS = 1.8 V to 5.5 V  
7-12. PSRR vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV9051 TLV9052 TLV9054  
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
at TA = 25°C, VS = 5.5 V, RL = 10 kΩconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
135  
130  
125  
120  
115  
110  
105  
100  
95  
VS = 1.8V, RL = 2kW  
VS = 5.5V, RL = 2kW  
VS = 1.8V, RL = 10kW  
VS = 5.5V, RL = 10kW  
Gain  
Phase  
-20  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D004  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
7-13. Open Loop Voltage Gain and Phase vs Frequency  
DC01  
7-14. Open Loop Voltage Gain vs Temperature  
180  
160  
140  
120  
100  
80  
70  
G = 1  
G = -1  
G = 10  
G = 100  
G = 1000  
60  
50  
40  
30  
20  
10  
0
60  
40  
-10  
-20  
-30  
20  
0
-0.5  
0.5  
1.5  
2.5 3.5  
Output Voltage (V)  
4.5  
5.5  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
DC26  
D005  
7-15. Open Loop Voltage Gain vs Output Voltage  
7-16. Closed Loop Voltage Gain vs Frequency  
70  
VOUT  
VIN  
60  
50  
40  
30  
20  
10  
0
Time (100 ms/div)  
0
50  
100  
150 200  
Capacitive Load (pF)  
250  
300  
350  
D013  
D017  
7-18. No Phase Reversal  
7-17. Phase Margin vs Capacitive Load  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV9051 TLV9052 TLV9054  
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
at TA = 25°C, VS = 5.5 V, RL = 10 kΩconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
Overshoot(+)  
Overshoot(-)  
Overshoot(+)  
Overshoot(-)  
0
50  
100 150 200 250 300 350 400 450  
Capacitive Load (pF)  
0
50  
100 150 200 250 300 350 400 450  
Capacitive Load (pF)  
D016  
D015  
G = +1 V/V  
G = 1 V/V  
VOUT step = 100 mVp-p  
VOUT step = 100 mVp-p  
7-19. Small-Signal Overshoot vs Load Capacitance  
7-20. Small-Signal Overshoot vs Load Capacitance  
17  
16.5  
16  
Output  
Input  
15.5  
15  
14.5  
14  
13.5  
13  
50  
100  
150  
200  
Capacitive Load (pF)  
250  
300  
350  
Time (2 us/div)  
D019  
D014  
7-21. Slew Rate vs Capacitive Load  
G = 10 V/V  
7-22. Overload Recovery  
VOUT  
VIN  
VOUT  
VIN  
Time (1 ms/div)  
Time (1 ms)  
D021  
D020  
G = +1 V/V  
VOUT step = 10  
mVp-p  
G = 1 V/V  
VOUT step = 10  
mVp-p  
7-23. Small-Signal Step Response  
7-24. Small-Signal Step Response  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV9051 TLV9052 TLV9054  
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
at TA = 25°C, VS = 5.5 V, RL = 10 kΩconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
VOUT  
VIN  
VOUT  
VIN  
Time (1 ms/div)  
Time (1 ms/div)  
D012  
D011  
G = +1 V/V  
G = 1 V/V  
VOUT step = 4 Vp-p  
VOUT step = 4 Vp-p  
7-25. Large-Signal Step Response  
7-26. Large-Signal Step Response  
20  
10  
20  
10  
0
0
0.1% Settling = ê 2 mV  
0.1% Settling = ê 2 mV  
-10  
-20  
-30  
-10  
-20  
-30  
0.2  
0.4  
0.6  
0.8  
Time (µs)  
1
1.2  
1.4  
0.2  
0.4  
0.6  
0.8  
Time (µs)  
1
1.2  
1.4  
D010  
D009  
CL = 100 pF  
G = +1 V/V  
CL = 100 pF  
G = +1 V/V  
7-27. Positive Large-Signal Settling Time  
7-28. Negative Large-Signal Settling Time  
-65  
-10  
RL = 10 kW  
RL = 2 kW  
RL = 600 W  
G = +1, RL = 10 kW  
G = +1, RL = 2 kW  
G = +1, RL = 600 W  
-30  
-50  
-75  
-85  
-70  
-95  
-90  
-105  
-110  
100  
1k  
Frequency (Hz)  
10k  
1m  
10m 100m  
Output Voltage Amplitude (VRMS)  
1
D023  
D022  
VOUT = 0.5 VRMS  
G = +1  
VCM = 2.5 V  
f = 1 kHz  
G = +1  
VCM = 2.5 V  
BW = 80 kHz  
BW = 80 kHz  
7-29. THD + N vs Frequency  
7-30. THD + N vs Amplitude  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV9051 TLV9052 TLV9054  
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
at TA = 25°C, VS = 5.5 V, RL = 10 kΩconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
3
2.5  
2
6
5
4
3
2
1
0
1.5  
1
125èC  
125èC  
25èC  
-40èC  
-40èC  
85èC  
85èC  
0.5  
0
-0.5  
-1  
25èC  
-1.5  
-2  
VS = 5.5 V  
VS = 1.8 V  
-2.5  
-3  
0
10  
20  
30  
Output Current (mA)  
40  
50  
60  
1
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M 100M  
DC07  
DC25  
7-31. Output Voltage Swing vs Output Current  
7-32. Maximum Output Voltage vs Frequency and Supply  
Voltage  
100  
330  
325  
320  
315  
310  
305  
300  
Sinking  
Sourcing  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
1.8  
2.3  
2.8  
3.3  
3.8  
Supply Voltage (V)  
4.3  
4.8  
5.3  
DC06  
DC05  
7-33. Short-Circuit Current vs Temperature  
7-34. Quiescent Current vs Supply Voltage  
330  
325  
320  
315  
310  
305  
300  
500  
400  
VS = 1.8V  
VS = 5.5V  
300  
200  
IOUT = 0 mA  
IOUT = 5 mA  
IOUT = -5 mA  
100  
70  
50  
40  
30  
20  
-40  
-20  
0
20  
40  
60  
Temperature (°C)  
80  
100  
120  
10k  
100k  
Frequency (Hz)  
1M  
DC04  
D025  
7-35. Quiescent Current vs Temperature  
7-36. Open-Loop Output Impedance vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLV9051 TLV9052 TLV9054  
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
at TA = 25°C, VS = 5.5 V, RL = 10 kΩconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
140  
120  
100  
80  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
60  
40  
20  
0
10M  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
100M  
Frequency (Hz)  
1G  
D006  
D007  
PRF = 10 dBm  
PRF = 10 dBm  
7-38. Channel Separation vs Frequency  
7-37. Electromagnetic Interference Rejection Ratio Referred  
to Noninverting Input (EMIRR+) vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLV9051 TLV9052 TLV9054  
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TLV905x devices are a 5-MHz family of low-power, rail-to-rail input and output op amps. These devices  
operate from 1.8 V to 5.5 V, are unity-gain stable, and are designed for a wide range of general-purpose  
applications. The input common-mode voltage range includes both rails and allows the TLV905x family to be  
used in virtually any single-supply application. The unique combination of a high slew rate and low quiescent  
current makes this family a potential choice for battery-powered motor-drive applications. Rail-to-rail input and  
output swing significantly increase dynamic range, especially in low-supply applications.  
8.2 Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
 
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Operating Voltage  
The TLV905x family of op amps is specified for operation from 1.8 V to 6.0 V. In addition, many specifications  
apply from 40°C to 125°C. Parameters that vary significantly with operating voltages or temperature are  
illustrated in the 7.8.  
8.3.2 Rail-to-Rail Input  
The input common-mode voltage range of the TLV905x family extends 100 mV beyond the supply rails for the  
full supply voltage range of 1.8 V to 6.0 V. This performance is achieved with a complementary input stage: an  
N-channel input differential pair in parallel with a P-channel differential pair, as shown in the 8.2. The N-  
channel pair is active for input voltages close to the positive rail, typically (V+) 1.4 V to 200 mV above the  
positive supply, whereas the P-channel pair is active for inputs from 200 mV below the negative supply to  
approximately (V+) 1.4 V. There is a small transition region, typically (V+) 1.2 V to (V+) 1 V, in which  
both pairs are on. This 200-mV transition region can vary up to 200 mV with process variation. Thus, the  
transition region (with both stages on) can range from (V+) 1.4 V to (V+) 1.2 V on the low end, and up to  
(V+) 1 V to (V+) 0.8 V on the high end. Within this transition region, PSRR, CMRR, offset voltage, offset  
drift, and THD can degrade compared to device operation outside this region.  
8.3.3 Rail-to-Rail Output  
Designed as low-power, low-voltage operational amplifiers, the TLV905x family delivers a robust output drive  
capability. A class AB output stage with common-source transistors achieves full rail-to-rail output swing  
capability. For resistive loads of 10 kΩ, the output swings to within 16 mV of either supply rail, regardless of the  
applied power-supply voltage. Different load conditions change the ability of the amplifier to swing close to the  
rails.  
8.3.4 EMI Rejection  
The TLV905x uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from  
sources such as wireless communications and densely-populated boards with a mix of analog signal chain and  
digital components. EMI immunity can be improved with circuit design techniques; the TLV905x benefits from  
these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the  
immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. 8-1  
shows the results of this testing on the TLV905x. 8-1 shows the EMIRR IN+ values for the TLV905x at  
particular frequencies commonly encountered in real-world applications. The EMI Rejection Ratio of Operational  
Amplifiers application report contains detailed information on the topic of EMIRR performance as it relates to op  
amps and is available for download from www.ti.com.  
140  
120  
100  
80  
60  
40  
20  
0
10M  
100M  
Frequency (Hz)  
1G  
D007  
8-1. EMIRR Testing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
 
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
8-1. TLV905x EMIRR IN+ for Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF)  
applications  
400 MHz  
41.8 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5 GHz  
53.1 dB  
71.8 dB  
70.0 dB  
81.2 dB  
92.5 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
8.3.5 Overload Recovery  
Overload recovery is defined as the time required for the operational amplifier output to recover from a saturated  
state to a linear state. The output devices of the operational amplifier enter a saturation region when the output  
voltage exceeds the rated operating voltage, because of the high input voltage or high gain. After the device  
enters the saturation region, the output devices require time to return to the linear operating state. After the  
output devices return to their linear operating state, the device begins to slew at the specified slew rate.  
Therefore, the propagation delay (in case of an overload condition) is the sum of the overload recovery time and  
the slew time. The overload recovery time for the TLV905x family is approximately 300 ns.  
8.3.6 Packages With an Exposed Thermal Pad  
The TLV905x family is available in packages such as the WSON-8 (DSG) and WQFN-16 (RTE) which feature an  
exposed thermal pad. Inside the package, the die is attached to this thermal pad using an electrically conductive  
compound. For this reason, when using a package with an exposed thermal pad, the thermal pad must either be  
connected to Vor left floating. Attaching the thermal pad to a potential other then Vis not allowed, and the  
performance of the device is not verified when doing so.  
8.3.7 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but can involve the supply voltage pins or even the output  
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is  
helpful. 8-2 shows the ESD circuits contained in the TLV905x devices. The ESD protection circuitry involves  
several current-steering diodes connected from the input and output pins and routed back to the internal power  
supply lines, where they meet at an absorption device internal to the operational amplifier. This protection  
circuitry is intended to remain inactive during normal circuit operation.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
V+  
Power Supply  
ESD Cell  
+IN  
+
œ
OUT  
œ IN  
Vœ  
8-2. Equivalent Internal ESD Circuitry  
8.3.8 Input Protection  
The TLV905x family incorporates internal ESD protection circuits on all pins. For input and output pins, this  
protection primarily consists of current-steering diodes connected between the input and power-supply pins.  
These ESD protection diodes provide in-circuit, input overdrive protection, as long as the current is limited to 10  
mA, as shown in the 7.1. 8-3 shows how a series input resistor can be added to the driven input to limit the  
input current. The added resistor contributes thermal noise at the amplifier input and the value must be kept to a  
minimum in noise-sensitive applications.  
V+  
IOVERLOAD  
10-mA maximum  
VOUT  
Device  
VIN  
5 kW  
8-3. Input Current Protection  
8.3.9 Shutdown Function  
The TLV905xS devices feature SHDN pins that disable the op amp, placing the device into a low-power standby  
mode. In this mode, the op amp typically consumes less than 1 µA. The SHDN pins are active low, meaning that  
shutdown mode is enabled when the input to the SHDN pin is a valid logic low.  
The SHDN pins are referenced to the negative supply voltage of the op amp. The threshold of the shutdown  
feature lies around 800 mV (typical) and does not change with respect to the supply voltage. Hysteresis has  
been included in the switching threshold to ensure smooth switching characteristics. To ensure shutdown  
behavior, the SHDN pins should be driven with valid logic signals. A valid logic low is defined as a voltage  
between Vand V+ 0.4 V. A valid logic high is defined as a voltage between V+ 1.2 V and V+. The  
shutdown pin circuitry includes a pull-up resistor, which will inherently pull the voltage of the pin to the positive  
supply rail if not driven. Thus, to enable the amplifier, the SHDN pins must either be left floating or driven to a  
valid logic high. To disable the amplifier, the SHDN pins must be driven to a valid logic low .While TI highly  
recommends that the shutdown pin be connected to a valid high or a low voltage or driven, TI has included a  
pull-up resistor connected to VCC. The maximum voltage allowed at the SHDN pins is (V+) + 0.5 V. Exceeding  
this voltage level will damage the device.  
The SHDN pins are high-impedance CMOS inputs. Dual op amp versions are independently controlled and quad  
op amp versions are controlled in pairs with logic inputs. For battery-operated applications, this feature may be  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
 
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
used to greatly reduce the average current and extend battery life. The enable time is 35 µs for full shutdown of  
all channels; disable time is 6 µs. When disabled, the output assumes a high-impedance state. This architecture  
allows the TLV905xS to be operated as a gated amplifier (or to have the device output multiplexed onto a  
common analog output bus). Shutdown time (tOFF) depends on loading conditions and increases as load  
resistance increases. To ensure shutdown (disable) within a specific shutdown time, the specified 10-kΩ load to  
midsupply (VS / 2) is required. If using the TLV905xS without a load, the resulting turnoff time is significantly  
increased.  
8.4 Device Functional Modes  
The TLV905x family is operational when the power-supply voltage is between 1.8 V (±0.9 V) and 6.0 V (±3.0 V).  
The TLV905xS devices feature a shutdown mode and are shutdown when a valid logic low is applied to the  
shutdown pin.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TLV905x family features 5-MHz bandwidth and very high slew rate of 15 V/µs with only 330 µA of supply  
current per channel, providing excellent AC performance at very low-power consumption. DC applications are  
well served with a very low input noise voltage of 15 nV/Hz at 10 kHz, low input bias current, and a typical  
input offset voltage of 0.33 mV.  
9.2 Typical Low-Side Current Sense Application  
9-1 shows the TLV905x configured in a low-side current sensing application.  
VBUS  
ILOAD  
ZLOAD  
5 V  
+
TLV905x  
VOUT  
Þ
+
RSHUNT  
VSHUNT  
RF  
0.1 Ω  
165 kΩ  
Þ
RG  
3.4 kΩ  
9-1. TLV905x in a Low-Side, Current-Sensing Application  
9.2.1 Design Requirements  
The design requirements for this design are:  
Load current: 0 A to 1 A  
Output voltage: 4.95 V  
Maximum shunt voltage: 100 mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
 
 
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
The transfer function of the circuit in 9-1 is given in 方程1.  
VOUT = ILOAD × RSHUNT × Gain  
(1)  
The load current (ILOAD) produces a voltage drop across the shunt resistor (RSHUNT). The load current is set from  
0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is  
defined using 方程2.  
V
SHUNT_MAX  
100 mV  
1 A  
R
=
=
= 100 mΩ  
(2)  
SHUNT  
I
LOAD_MAX  
Using 方程式 2, RSHUNT equals 100 mΩ. The voltage drop produced by ILOAD and RSHUNT is amplified by the  
TLV905x device to produce an output voltage of approximately 0 V to 4.95 V. 方程式 3 calculates the gain  
required for the TLV905x device to produce the required output voltage.  
V
− V  
− V  
OUT_MAX  
OUT  
MIN  
Gain =  
(3)  
V
IN_MAX  
IN_MIN  
Using 方程式 3, the required gain equals 49.5 V/V, which is set with the RF and RG resistors. 方程式 4 sizes the  
RF and RG, resistors to set the gain of the TLV905x device to 49.5 V/V.  
R
F
Gain = 1 +  
(4)  
R
G
Selecting RF to equal 165 kΩ and RG to equal 3.4 kΩ provides a combination that equals approximately 49.5  
V/V. 9-2 shows the measured transfer function of the circuit shown in 9-1.  
9.2.3 Application Curve  
5
4
3
2
1
0
0
0.2  
0.4  
0.6  
0.8  
1
ILOAD (A)  
C219  
9-2. Low-Side, Current-Sense Transfer Function  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
 
 
 
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.3 Power Supply Recommendations  
The TLV905x family is specified for operation from 1.8 V to 6.0 V (±0.9 V to ±3.0 V); many specifications apply  
from 40°C to 125°C. The 7.8 section presents parameters that can exhibit significant variance with regard  
to operating voltage or temperature.  
CAUTION  
Supply voltages larger than 7 V can permanently damage the device; see the 7.1 table.  
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more-detailed information on bypass capacitor placement, see the 9.4.2  
section.  
9.4 Layout  
9.4.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and of the op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources  
local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. Take care  
to physically separate digital and analog grounds, paying attention to the flow of the ground current. For more  
detailed information, see Circuit Board Layout Techniques.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed  
to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As illustrated in 9-4, keeping RF and RG  
close to the inverting input minimizes parasitic capacitance on the inverting input.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended  
to remove moisture introduced into the device packaging during the cleaning process. A low-temperature,  
post-cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.4.2 Layout Example  
VIN 1  
VIN 2  
+
+
VOUT 1  
VOUT 2  
RG  
RG  
RF  
RF  
9-3. Schematic Representation for 9-4  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
OUT 1  
Use low-ESR,  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VS+  
GND  
OUT1  
V+  
RF  
RG  
OUT 2  
GND  
IN1œ  
IN1+  
Vœ  
OUT2  
IN2œ  
IN2+  
RF  
RG  
VIN 1  
GND  
VIN 2  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
GND  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VSœ  
Ground (GND) plane on another layer  
as possible .  
9-4. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
Texas Instruments, TLVx313 Low-Power, Rail-to-Rail In/Out, 500-µV Typical Offset, 1-MHz Operational Amplifier  
for Cost-Sensitive Systems  
Texas Instruments, TLVx314 3-MHz, Low-Power, Internal EMI Filter, RRIO, Operational Amplifier  
Texas Instruments, EMI Rejection Ratio of Operational Amplifiers  
Texas Instruments, QFN/SON PCB Attachment  
Texas Instruments, Quad Flatpack No-Lead Logic Packages  
Texas Instruments, Circuit Board Layout Techniques  
Texas Instruments, Single-Ended Input to Differential Output Conversion Circuit Reference Design  
10.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
10-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TLV9051/S  
TLV9052/S  
TLV9054/S  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
10.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
10.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.  
所有商标均为其各自所有者的财产。  
10.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
 
 
 
 
 
 
 
TLV9051, TLV9052, TLV9054  
ZHCSI62I AUGUST 2018 REVISED NOVEMBER 2022  
www.ti.com.cn  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most-  
current data available for the designated devices. This data is subject to change without notice and without  
revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TLV9051 TLV9052 TLV9054  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV9051IDBVR  
TLV9051IDCKR  
TLV9051IDPWR  
TLV9051SIDBVR  
TLV9052IDDFR  
TLV9052IDGKR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SC70  
DBV  
DCK  
DPW  
DBV  
DDF  
DGK  
5
5
5
6
8
8
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
T51D  
T51  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
SN  
X2SON  
SOT-23  
NIPDAUAG  
NIPDAU  
NIPDAU  
FH  
T51S  
T052  
ACTIVE SOT-23-THIN  
ACTIVE  
VSSOP  
NIPDAU | SN  
| NIPDAUAG  
1PWX  
TLV9052IDR  
TLV9052IDSGR  
TLV9052IPWR  
TLV9052SIDGSR  
TLV9052SIRUGR  
TLV9054IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
WSON  
TSSOP  
VSSOP  
X2QFN  
SOIC  
D
8
2500 RoHS & Green  
3000 RoHS & Green  
2000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
2000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAUAG  
NIPDAUAG  
NIPDAU  
SN  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TL9052  
9052  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
DSG  
PW  
8
8
TL9052  
T052  
DGS  
RUG  
D
10  
10  
14  
14  
16  
14  
16  
FPF  
TLV9054D  
T9054PW  
T54RT  
1FF  
TLV9054IPWR  
TLV9054IRTER  
TLV9054IRUCR  
TLV9054SIRTER  
TSSOP  
WQFN  
QFN  
PW  
RTE  
RUC  
RTE  
NIPDAU  
NIPDAU  
NIPDAU  
WQFN  
T9054S  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jul-2023  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV9051IDBVR  
TLV9051IDCKR  
TLV9051IDPWR  
TLV9051SIDBVR  
TLV9052IDDFR  
SOT-23  
SC70  
DBV  
DCK  
DPW  
DBV  
DDF  
5
5
5
6
8
3000  
3000  
3000  
3000  
3000  
180.0  
178.0  
178.0  
180.0  
180.0  
8.4  
9.0  
8.4  
8.4  
8.4  
3.2  
2.4  
3.2  
2.5  
1.4  
1.2  
0.5  
1.4  
1.4  
4.0  
4.0  
2.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q2  
Q3  
Q3  
X2SON  
SOT-23  
0.91  
3.2  
0.91  
3.2  
SOT-23-  
THIN  
3.2  
3.2  
TLV9052IDGKR  
TLV9052IDGKR  
TLV9052IDSGR  
TLV9052IPWR  
TLV9052SIDGSR  
TLV9052SIRUGR  
TLV9054IDR  
VSSOP  
VSSOP  
WSON  
TSSOP  
VSSOP  
X2QFN  
SOIC  
DGK  
DGK  
DSG  
PW  
8
8
2500  
2500  
3000  
2000  
2500  
3000  
2500  
2000  
3000  
3000  
330.0  
330.0  
180.0  
330.0  
330.0  
178.0  
330.0  
330.0  
330.0  
180.0  
12.4  
12.4  
8.4  
5.3  
5.3  
2.3  
7.0  
5.3  
1.75  
6.5  
6.9  
3.3  
2.16  
3.4  
3.4  
2.3  
3.6  
3.4  
2.25  
9.0  
5.6  
3.3  
2.16  
1.4  
1.4  
1.15  
1.6  
1.4  
0.56  
2.1  
1.6  
1.1  
0.5  
8.0  
8.0  
4.0  
8.0  
8.0  
4.0  
8.0  
8.0  
8.0  
4.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q2  
Q1  
Q1  
Q1  
Q1  
Q1  
Q2  
Q2  
8
8
12.4  
12.4  
8.4  
12.0  
12.0  
8.0  
DGS  
RUG  
D
10  
10  
14  
14  
16  
14  
16.4  
12.4  
12.4  
9.5  
16.0  
12.0  
12.0  
8.0  
TLV9054IPWR  
TLV9054IRTER  
TLV9054IRUCR  
TSSOP  
WQFN  
QFN  
PW  
RTE  
RUC  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV9054SIRTER  
WQFN  
RTE  
16  
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV9051IDBVR  
TLV9051IDCKR  
TLV9051IDPWR  
TLV9051SIDBVR  
TLV9052IDDFR  
TLV9052IDGKR  
TLV9052IDGKR  
TLV9052IDSGR  
TLV9052IPWR  
TLV9052SIDGSR  
TLV9052SIRUGR  
TLV9054IDR  
SOT-23  
SC70  
DBV  
DCK  
DPW  
DBV  
DDF  
DGK  
DGK  
DSG  
PW  
5
5
3000  
3000  
3000  
3000  
3000  
2500  
2500  
3000  
2000  
2500  
3000  
2500  
2000  
3000  
3000  
3000  
210.0  
190.0  
205.0  
210.0  
210.0  
366.0  
366.0  
210.0  
356.0  
366.0  
205.0  
356.0  
366.0  
367.0  
205.0  
367.0  
185.0  
190.0  
200.0  
185.0  
185.0  
364.0  
364.0  
185.0  
356.0  
364.0  
200.0  
356.0  
364.0  
367.0  
200.0  
367.0  
35.0  
30.0  
33.0  
35.0  
35.0  
50.0  
50.0  
35.0  
35.0  
50.0  
33.0  
35.0  
50.0  
35.0  
30.0  
35.0  
X2SON  
SOT-23  
SOT-23-THIN  
VSSOP  
VSSOP  
WSON  
TSSOP  
VSSOP  
X2QFN  
SOIC  
5
6
8
8
8
8
8
DGS  
RUG  
D
10  
10  
14  
14  
16  
14  
16  
TLV9054IPWR  
TLV9054IRTER  
TLV9054IRUCR  
TLV9054SIRTER  
TSSOP  
WQFN  
PW  
RTE  
RUC  
RTE  
QFN  
WQFN  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DPW0005A  
X2SON - 0.4 mm max height  
S
C
A
L
E
1
2
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
0.85  
0.75  
A
B
PIN 1 INDEX AREA  
0.85  
0.75  
0.4 MAX  
C
SEATING PLANE  
NOTE 3  
(0.1)  
0.05  
0.00  
(0.324)  
4X (0.05)  
0.25 0.1  
2
1
4
5
NOTE 3  
2X  
3
2X (0.26)  
0.48  
0.27  
0.17  
4X  
0.239  
0.139  
0.1  
C A B  
C
0.288  
0.188  
3X  
0.05  
4223102/D 03/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The size and shape of this feature may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DPW0005A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.78)  
(
0.1)  
SYMM  
4X (0.42)  
VIA  
0.05 MIN  
ALL AROUND  
TYP  
1
5
4X (0.22)  
SYMM  
4X (0.26)  
(0.48)  
3
2
4
(R0.05) TYP  
SOLDER MASK  
OPENING, TYP  
4X (0.06)  
(
0.25)  
(0.21) TYP  
EXPOSED METAL  
CLEARANCE  
METAL UNDER  
SOLDER MASK  
TYP  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE:60X  
4223102/D 03/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DPW0005A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
4X (0.42)  
4X (0.06)  
5
1
4X (0.22)  
SYMM  
(
0.24)  
4X (0.26)  
(0.21)  
(0.48)  
TYP  
SOLDER MASK  
EDGE  
3
2
4
(R0.05) TYP  
SYMM  
(0.78)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 3  
92% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:100X  
4223102/D 03/2022  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
PW0008A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
8
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
A
0.1 C  
6X 0.65  
8
5
1
3.1  
2.9  
NOTE 3  
2X  
1.95  
4
0.30  
0.19  
8X  
4.5  
4.3  
1.2 MAX  
B
0.1  
C A  
B
NOTE 4  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
0 - 8  
DETAIL A  
TYPICAL  
4221848/A 02/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
8X (0.45)  
(R0.05)  
1
4
TYP  
8
SYMM  
6X (0.65)  
5
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221848/A 02/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
(R0.05) TYP  
8X (0.45)  
1
4
8
SYMM  
6X (0.65)  
5
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221848/A 02/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RUC0014A  
A
2.1  
1.9  
B
2.1  
1.9  
PIN 1 INDEX AREA  
0.4 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.15) TYP  
2X 0.4  
6
7
8X 0.4  
5
8
SYMM  
1.6  
12  
1
0.25  
0.15  
14  
13  
14X  
0.5  
PIN 1 ID  
SYMM  
(45oX0.1)  
0.1  
C A B  
C
14X  
0.3  
0.05  
4220584/A 05/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RUC0014A  
SYMM  
14X (0.6)  
14X (0.2)  
8X (0.4)  
SYMM  
(1.6) (1.8)  
(R0.05)  
2X (0.4)  
(1.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 23X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
EXPOSED METAL  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220584/A 05/2019  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
X2QFN - 0.4 mm max height  
RUC0014A  
PLASTIC QUAD FLAT PACK- NO LEAD  
SYMM  
14X (0.6)  
14X (0.2)  
8X (0.4)  
SYMM  
(1.6) (1.8)  
(R0.05)  
2X (0.4)  
(1.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.100mm THICK STENCIL  
SCALE: 23X  
4220584/A 05/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.38  
0.22  
8X  
0.1  
C A B  
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/C 10/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/C 10/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/C 10/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016C  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4219117/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219117/B 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219117/B 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV9051IDCKR

适用于成本优化型应用的单路、5.5V、5MHz、15V/μs 压摆率、RRIO 运算放大器 | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9051IDPWR

适用于成本优化型应用的单路、5.5V、5MHz、15V/μs 压摆率、RRIO 运算放大器 | DPW | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9051SIDBVR

适用于成本优化型应用的单路、5.5V、5MHz、15V/μs 压摆率、RRIO 运算放大器 | DBV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9052

适用于成本优化型应用的双路、5.5V、5MHz、15V/μs 压摆率、RRIO 运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9052IDDFR

适用于成本优化型应用的双路、5.5V、5MHz、15V/μs 压摆率、RRIO 运算放大器 | DDF | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9052IDGKR

适用于成本优化型应用的双路、5.5V、5MHz、15V/μs 压摆率、RRIO 运算放大器 | DGK | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9052IDR

适用于成本优化型应用的双路、5.5V、5MHz、15V/μs 压摆率、RRIO 运算放大器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9052IDSGR

适用于成本优化型应用的双路、5.5V、5MHz、15V/μs 压摆率、RRIO 运算放大器 | DSG | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9052IPWR

适用于成本优化型应用的双路、5.5V、5MHz、15V/μs 压摆率、RRIO 运算放大器 | PW | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9052SIDGSR

适用于成本优化型应用的双路、5.5V、5MHz、15V/μs 压摆率、RRIO 运算放大器 | DGS | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9052SIRUGR

适用于成本优化型应用的双路、5.5V、5MHz、15V/μs 压摆率、RRIO 运算放大器 | RUG | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9054

适用于成本优化型应用的四路、5.5V、5MHz、15V/μs 压摆率、RRIO 运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI