TLV9061QDCKRQ1 [TI]

汽车类单通道 40V 10MHz 轨至轨输入和输出低噪声运算放大器 | DCK | 5 | -40 to 125;
TLV9061QDCKRQ1
型号: TLV9061QDCKRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类单通道 40V 10MHz 轨至轨输入和输出低噪声运算放大器 | DCK | 5 | -40 to 125

放大器 运算放大器
文件: 总44页 (文件大小:3227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
TLV906xS-Q1 Automotive 10-MHz, RRIO, CMOS Operational Amplifiers  
1 Features  
3 Description  
AEC-Q100 qualified for automotive applications  
Temperature grade 1: –40°C to +125°C, TA  
– Device HBM ESD classification level 3A  
– Device CDM ESD classification level C6  
Rail-to-rail input and output  
Low input offset voltage: ±0.3 mV  
Unity-gain bandwidth: 10 MHz  
Low broadband noise: 10 nV/√ Hz  
Low input bias current: 0.5 pA  
Low quiescent current: 538 µA  
Unity-gain stable  
Internal RFI and EMI filter  
Wide supply range: 1.8 V to 5.5 V  
Easier to stabilize with higher capacitive load due  
to resistive open-loop output impedance  
Shutdown version: TLV906xS  
Functional Safety-Capable  
Documentation available to aid functional safety  
system design  
The TLV9061-Q1 (single), TLV9062-Q1 (dual) and  
TLV9064-Q1 (quad) are single-, dual- and quad-low-  
voltage (1.8 V to 5.5 V) operational amplifiers (op  
amps) with rail-to-rail input- and output-swing  
capabilities. These devices are cost-effective  
solutions for automotive applications where low-  
voltage operation,  
a
small footprint, and high  
capacitive load drive are required. Although the  
capacitive load drive of the TLV906x-Q1 is 100 pF, the  
resistive open-loop output impedance makes  
stabilizing with higher capacitive loads simpler. These  
op amps are designed specifically for low-voltage  
operation (1.8  
V to 5.5 V) with performance  
specifications similar to the OPAx316 and TLVx316  
devices, and identical to their non-automotive  
qualified TLV906x counterparts.  
Device Information  
PACKAGE  
SOT-23 (6)(2)  
PART NUMBER (1)  
BODY SIZE (NOM)  
1.60 mm × 2.90 mm  
3.91 mm × 4.90 mm  
3.00 mm × 4.40 mm  
3.00 mm × 3.00 mm  
8.65 mm × 3.91 mm  
4.40 mm × 5.00 mm  
TLV9061S-Q1  
SOIC (8)  
TLV9062-Q1  
TLV9064-Q1  
TSSOP (8)(2)  
VSSOP (8)  
SOIC (14)  
TSSOP (14)  
2 Applications  
Optimized for AEC-Q100 grade 1 applications  
Infotainment and cluster  
Passive safety  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Body electronics and lighting  
HEV/EV inverter and motor control  
On-board (OBC) and wireless charger  
Powertrain current sensor  
Advanced driver assistance systems (ADAS)  
Single-supply, low-side, unidirectional current-  
sensing circuit  
(2) Package is preview only.  
60  
50  
40  
30  
20  
RG  
RF  
R1  
VOUT  
VIN  
C1  
1
2pR1C1  
f
=
-3 dB  
10  
0
Overshoot+  
Overshoot-  
VOUT  
VIN  
RF  
1
1 + sR1C1  
=
1 +  
(
(
(  
(
RG  
0
50  
100  
150  
200  
250  
300  
Capacitive Load (pF)  
C025  
Single-Pole, Low-Pass Filter  
Small-Signal Overshoot vs Load Capacitance  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
 
 
 
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Description (continued).................................................. 3  
6 Device Comparison Table...............................................3  
7 Pin Configuration and Functions...................................4  
Pin Functions: TLV9061S-Q1........................................... 4  
Pin Functions: TLV9062-Q1..............................................4  
Pin Functions: TLV9064-Q1..............................................5  
8 Specifications.................................................................. 6  
8.1 Absolute Maximum Ratings........................................ 6  
8.2 ESD Ratings............................................................... 6  
8.3 Recommended Operating Conditions.........................6  
8.4 Thermal Information: TLV9061S-Q1...........................6  
8.5 Thermal Information: TLV9062-Q1............................. 7  
8.6 Thermal Information: TLV9064-Q1............................. 7  
8.7 Electrical Characteristics.............................................8  
8.8 Typical Characteristics..............................................10  
9 Detailed Description......................................................16  
9.1 Overview...................................................................16  
9.2 Functional Block Diagram.........................................16  
9.3 Feature Description...................................................17  
9.4 Device Functional Modes..........................................18  
10 Application and Implementation................................19  
10.1 Application Information........................................... 19  
10.2 Typical Applications................................................ 19  
11 Power Supply Recommendations..............................23  
11.1 Input and ESD Protection........................................23  
12 Layout...........................................................................24  
12.1 Layout Guidelines................................................... 24  
12.2 Layout Example...................................................... 25  
13 Device and Documentation Support..........................26  
13.1 Documentation Support.......................................... 26  
13.2 Related Links.......................................................... 26  
13.3 Receiving Notification of Documentation Updates..26  
13.4 Support Resources................................................. 26  
13.5 Trademarks.............................................................26  
13.6 Electrostatic Discharge Caution..............................26  
13.7 Glossary..................................................................26  
14 Mechanical, Packaging, and Orderable  
Information.................................................................... 27  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (September 2020) to Revision D (October 2020)  
Page  
Added TLV9061-Q1 GPN throughout the data sheet......................................................................................... 1  
Changes from Revision B (September 2020) to Revision C (September 2020)  
Page  
Updated the numbering format for tables, figures, and cross-references throughout the document..................1  
Functional Safety-Capable document link added in the Features section..........................................................1  
Added note 5 to differential input voltage in Absolute Maximum Ratings table..................................................6  
Changes from Revision A (March 2020) to Revision B (September 2020)  
Page  
Deleted preview note form VSSOP (8) and TSSOP (14) package from Device Information section................. 1  
Added thermal information for VSSOP (8) package in Thermal Information section..........................................7  
Added thermal information for TSSOP (14) package in Thermal Information section........................................7  
Changes from Revision * (April 2019) to Revision A (March 2020)  
Page  
First public release of data sheet .......................................................................................................................1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
5 Description (continued)  
The TLV906x-Q1 family of devices serve as general-purpose automotive amplifiers, for use in low-voltage  
systems requiring low noise and/or wide bandwidth.  
The TLV906x-Q1 family helps simplify system design, because the family is unity-gain stable, integrates the RFI  
and EMI rejection filter, and provides no phase reversal in overdrive condition.  
These devices are available in both dual (TLV9062-Q1), and quad (TLV9064-Q1) versions. Both versions are  
available in industry standard SOIC and TSSOP packages, with the dual channel also available as a VSSOP.  
6 Device Comparison Table  
PACKAGE LEADS  
NO. OF  
DEVICE  
CHANNELS  
D
8
DGK  
PW  
8
TLV9061S-Q1  
TLV9062-Q1  
TLV9064-Q1  
1
2
4
8
14  
14  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
7 Pin Configuration and Functions  
+IN  
Vœ  
1
2
3
6
5
4
V+  
SHDN  
OUT  
œIN  
Not to scale  
Figure 7-1. TLV9061S-Q1 DBV Package  
6-Pin SOT-23  
Top View  
Pin Functions: TLV9061S-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
4
IN–  
IN+  
I
I
Inverting input  
Noninverting input  
Output  
3
OUT  
1
O
Shutdown: low = amp disabled, high = amp enabled. See Shutdown Function section for  
more information.  
SHDN  
5
I
V–  
V+  
2
6
I or — Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
I
OUT1  
1
2
3
4
8
7
6
5
V+  
IN1œ  
IN1+  
Vœ  
OUT2  
IN2œ  
IN2+  
Not to scale  
Figure 7-2. TLV9062-Q1 D, DGK, and PW Package  
8-Pin SOIC, VSSOP, and TSSOP  
Top View  
Pin Functions: TLV9062-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
IN1–  
NO.  
2
I
I
Inverting input, channel 1  
Noninverting input, channel 1  
Inverting input, channel 2  
Noninverting input, channel 2  
Output, channel 1  
IN1+  
IN2–  
IN2+  
OUT1  
OUT2  
V–  
3
6
I
5
I
1
O
O
7
Output, channel 2  
4
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
V+  
8
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
 
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
OUT1  
IN1œ  
IN1+  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT4  
IN4œ  
IN4+  
Vœ  
IN2+  
IN2œ  
OUT2  
IN3+  
IN3œ  
OUT3  
8
Not to scale  
Figure 7-3. TLV9064-Q1 D and PW Package  
14-Pin SOIC and TSSOP  
Top View  
Pin Functions: TLV9064-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
2
IN1–  
IN1+  
IN2–  
IN2+  
IN3–  
IN3+  
IN4–  
IN4+  
NC  
I
Inverting input, channel 1  
Noninverting input, channel 1  
Inverting input, channel 2  
Noninverting input, channel 2  
Inverting input, channel 3  
Noninverting input, channel 3  
Inverting input, channel 4  
Noninverting input, channel 4  
No internal connection  
3
I
6
I
5
I
9
I
10  
13  
12  
1
I
I
I
O
OUT1  
OUT2  
OUT3  
OUT4  
V–  
Output, channel 1  
7
O
Output, channel 2  
8
O
Output, channel 3  
14  
11  
4
O
Output, channel 4  
I or —  
I
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
V+  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating ambient temperature (unless otherwise noted)(1)  
MIN  
0
MAX  
UNIT  
V
Supply voltage [(V+) – (V–)]  
6
(V+) + 0.5  
Common-mode  
Voltage(2)  
(V–) – 0.5  
V
Signal input pins  
Differential(5)  
(V+) – (V–) + 0.2  
10  
V
Current(2)  
Output short-circuit(3) (4)  
Specified, TA  
–10  
mA  
mA  
Continuous  
–40  
125  
150  
150  
Temperature  
Junction, TJ  
Storage, Tstg  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Current limit input signals that can swing more than 0.5 V beyond the supply  
rails to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
(4) Long term continuous current limit is determined by electromigration limits.  
(5) Differential input voltages greater than 0.5 V applied continuously can result in a shift to the input offset voltage above the maximum  
specification of this parameter. The magnitude of this effect increases as the ambient operating temperature rises.  
8.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with ANSI/ESDA/JEDEC JS-001 Specification.  
8.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
1.8  
MAX  
UNIT  
V
VS  
Supply voltage (VS = [V+] – [V–])  
Input voltage  
5.5  
(V+) + 0.1  
V+  
VI  
(V–) – 0.1  
V–  
V
VO  
Output voltage  
V
VSHDN_IH  
VSHDN_IL  
TA  
High level input voltage at shutdown pin (amplifier enabled)  
Low level input voltage at shutdown pin (amplifier disabled)  
Specified temperature  
1.1  
V+  
V
V–  
0.2  
V
–40  
125  
°C  
8.4 Thermal Information: TLV9061S-Q1  
TLV9061S-Q1  
DBV (SOT-23)  
6 PINS  
TBD  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
TBD  
TBD  
ψJT  
TBD  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
 
 
 
 
 
 
 
 
 
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
TLV9061S-Q1  
THERMAL METRIC(1)  
DBV (SOT-23)  
6 PINS  
UNIT  
ψJB  
Junction-to-board characterization parameter  
TBD  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8.5 Thermal Information: TLV9062-Q1  
TLV9062-Q1  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
152.0  
92.1  
DGK (VSSOP)  
8 PINS  
198.5  
PW (TSSOP)  
8 PINS  
TBD  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
87.2  
TBD  
95.6  
120.3  
TBD  
Junction-to-top characterization  
parameter  
ψJT  
ψJB  
40.1  
94.8  
23.8  
TBD  
TBD  
°C/W  
°C/W  
Junction-to-board characterization  
parameter  
118.7  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
8.6 Thermal Information: TLV9064-Q1  
TLV9064-Q1  
THERMAL METRIC(1)  
PW (TSSOP)  
14 PINS  
133.8  
D (SOIC)  
14 PINS  
111.1  
67.6  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
62.1  
76.9  
67  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
13.2  
27.4  
ψJB  
76.3  
66.6  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
 
 
 
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
8.7 Electrical Characteristics  
For VS (total supply voltage) = (V+) – (V–) = 1.8 V to 5.5 V at TA = 25°C, RL = 10 kΩ connected to VS / 2, VCM  
VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VS = 5 V  
±0.3  
±1.85  
±2  
VOS  
Input offset voltage  
mV  
VS = 5 V, TA = –40°C to 125°C  
VS = 5 V, TA = –40°C to 125°C  
VS = 1.8 V – 5.5 V, VCM = (V–)  
At DC  
dVOS/dT Drift  
PSRR Power-supply rejection ratio  
Channel separation, DC  
INPUT VOLTAGE RANGE  
±0.53  
±7  
µV/°C  
µV/V  
dB  
±80  
100  
VCM  
Common-mode voltage range  
VS = 1.8 V to 5.5 V  
(V–) – 0.1  
80  
(V+) + 0.1  
V
VS = 5.5 V, (V–) – 0.1 V < VCM < (V+) – 1.4 V  
TA = –40°C to 125°C  
103  
75  
VS = 5.5 V, VCM = –0.1 V to 5.6 V  
TA = –40°C to 125°C  
57  
CMRR  
Common-mode rejection ratio  
dB  
VS = 1.8 V, (V–) – 0.1 V < VCM < (V+) – 1.4 V,  
TA = –40°C to 125°C  
88  
VS = 1.8 V, VCM = –0.1 V to 1.9 V  
TA = –40°C to 125°C  
70  
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
±5  
±5  
pA  
pA  
IOS  
NOISE  
En  
Input voltage noise (peak-to-peak) VS = 5 V, f = 0.1 Hz to 10 Hz  
4.77  
10  
µVPP  
VS = 5 V, f = 10 kHz  
Input voltage noise density  
en  
nV/√ Hz  
fA/√ Hz  
VS = 5 V, f = 1 kHz  
16  
in  
Input current noise density  
f = 1 kHz  
23  
INPUT CAPACITANCE  
CID  
CIC  
Differential  
2
4
pF  
pF  
Common-mode  
OPEN-LOOP GAIN  
VS = 1.8 V, (V–) + 0.04 V < VO < (V+) – 0.04 V,  
RL = 10 kΩ  
100  
130  
100  
130  
VS = 5.5 V, (V–) + 0.05 V < VO < (V+) – 0.05 V,  
RL = 10 kΩ  
104  
AOL  
Open-loop voltage gain  
dB  
VS = 1.8 V, (V–) + 0.06 V < VO < (V+) – 0.06 V,  
RL = 2 kΩ  
VS = 5.5 V, (V–) + 0.15 V < VO < (V+) – 0.15 V,  
RL = 2 kΩ  
FREQUENCY RESPONSE  
GBP  
φm  
Gain bandwidth product  
VS = 5 V, G = +1  
10  
55  
MHz  
°
Phase margin  
Slew rate  
VS = 5 V, G = +1  
SR  
VS = 5 V, G = +1  
6.5  
0.5  
V/µs  
To 0.1%, VS = 5 V, 2-V step , G = +1, CL = 100 pF  
tS  
Settling time  
µs  
µs  
To 0.01%, VS = 5 V, 2-V step,  
G = +1, CL = 100 pF  
1
0.2  
tOR  
Overload recovery time  
VS = 5 V, VIN × gain > VS  
VS = 5.5 V, VCM = 2.5 V, VO = 1 VRMS, G = +1,  
f = 1 kHz  
THD + N Total harmonic distortion + noise(1)  
0.0008%  
OUTPUT  
VS = 5.5 V, RL = 10 kΩ  
VS = 5.5 V, RL = 2 kΩ  
VS = 5 V  
20  
60  
Voltage output swing from supply  
rails  
VO  
mV  
ISC  
ZO  
Short-circuit current  
±50  
100  
mA  
Ω
Open-loop output impedance  
VS = 5 V, f = 10 MHz  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
For VS (total supply voltage) = (V+) – (V–) = 1.8 V to 5.5 V at TA = 25°C, RL = 10 kΩ connected to VS / 2, VCM  
VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VS = 5.5 V, IO = 0 mA  
538  
750  
800  
IQ  
Quiescent current per amplifier  
µA  
VS = 5.5 V, IO = 0 mA TA = –40°C to 125°C  
SHUTDOWN (2)  
VS = 1.8 V to 5.5 V, all amplifiers disabled, SHDN =  
Low  
IQSD  
Quiescent current per amplifier  
0.5  
10 || 8  
1.5  
µA  
ZSHDN  
Output impedance during shutdown VS = 1.8 V to 5.5 V, amplifier disabled  
GΩ || pF  
V
VSHDN_TH High level voltage shutdown  
VS = 1.8 V to 5.5 V  
VS = 1.8 V to 5.5 V  
(V–) + 0.9  
(V–) + 1.1  
threshold (amplifier enabled)  
R_HI  
VSDHN_TH Low level voltage shutdown  
(V–) + 0.2  
(V–) + 0.7  
10  
V
threshold (amplifier disabled)  
R_LO  
VS = 1.8 V to 5.5 V, full shutdown; G = 1, VOUT = 0.9 ×  
VS / 2, RL connected to V–  
tON  
Amplifier enable time (shutdown)(3)  
Amplifier disable time(3)  
µs  
µs  
VS = 1.8 V to 5.5 V, G = 1, VOUT = 0.1 × VS / 2, RL  
connected to V–  
tOFF  
0.6  
VS = 1.8 V to 5.5 V, V+ ≥ SHDN ≥ (V+) – 0.8 V  
VS = 1.8 V to 5.5 V, V– ≤ SHDN ≤ V– + 0.8 V  
130  
40  
SHDN pin input bias current (per  
pin)  
pA  
(1) Third-order filter; bandwidth = 80 kHz at –3 dB.  
(2) Ensured by design and characterization; not production tested.  
(3) Disable time (tOFF) and enable time (tON) are defined as the time interval between the 50% point of the signal applied to the SHDN pin  
and the point at which the output voltage reaches the 10% (disable) or 90% (enable) level.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
 
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
8.8 Typical Characteristics  
at TA = 25°C, VS = 5.5 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
35  
30  
25  
20  
15  
10  
5
50  
40  
30  
20  
10  
0
0
Offset Voltage Drift (µV/C)  
C001  
C002  
Offset Voltage (µV)  
TA = –40°C to 125°C  
Figure 8-2. Offset Voltage Drift Distribution  
Figure 8-1. Offset Voltage Production Distribution  
500  
400  
2500  
2000  
1500  
1000  
500  
300  
200  
100  
0
0
œ500  
œ1000  
œ1500  
œ2000  
œ2500  
œ100  
œ200  
œ300  
œ400  
œ500  
-4  
-3  
-2  
-1  
0
1
2
3
4
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
Input Common Mode Voltage (V)  
Temperature (°C)  
C005  
C003  
V+ = 2.75 V  
V– = –2.75 V  
Figure 8-4. Offset Voltage vs Common-Mode  
Voltage  
Figure 8-3. Offset Voltage vs Temperature  
1000  
120  
100  
80  
180  
135  
90  
Gain  
Phase  
500  
0
60  
40  
20  
45  
œ500  
œ1000  
0
œ20  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
100  
1k  
10k  
100k  
1M  
10M  
Supply Voltage (V)  
Frequency (Hz)  
C004  
C006  
VS = 1.8 V to 5.5 V  
CL = 10 pF  
Figure 8-5. Offset Voltage vs Power Supply  
Figure 8-6. Open-Loop Gain and Phase vs  
Frequency  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
20  
40  
30  
VS = 5.5 V  
VS = 1.8 V  
16  
12  
8
20  
10  
0
œ10  
œ20  
œ30  
œ40  
G=+1  
G=-1  
4
G=+10  
0
0
25  
50  
75  
100  
125  
1000  
10k  
100k  
1M  
10M  
œ50  
œ25  
Temperature (°C)  
Frequency (Hz)  
C022  
C007  
RL = 2 kΩ  
Figure 8-7. Open-Loop Gain vs Temperature  
Figure 8-8. Closed-Loop Gain vs Frequency  
250  
3
IBN  
200  
150  
100  
50  
IBP  
IOS  
2
-40°C  
125°C  
85°C  
1
0
25°C  
25°C  
85°C  
-40°C  
œ1  
œ2  
œ3  
125°C  
0
œ50  
0
25  
50  
75  
100  
125  
œ50  
œ25  
10  
20  
30  
40  
50  
60  
Temperature (°C)  
Output Current (mA)  
C008  
C009  
V+ = 2.75 V  
V– = –2.75 V  
Figure 8-9. Input Bias Current vs Temperature  
Figure 8-10. Output Voltage Swing vs Output  
Current  
120  
55  
50  
45  
40  
35  
30  
CMRR  
100  
80  
60  
40  
20  
0
PSRR-  
PSRR+  
1000  
10k  
100k  
1M  
10M  
Frequency (Hz)  
0
25  
50  
75  
100  
125  
œ50  
œ25  
C011  
Temperature (°C)  
C012  
VS = 5.5 V VCM = –0.1 V to 5.6 V  
RL= 10 kΩ  
TA= –40°C to 125°C  
Figure 8-12. CMRR vs Temperature  
Figure 8-11. CMRR and PSRR vs Frequency  
(Referred to Input)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
10  
9
8
7
6
5
4
3
2
1
10  
9
8
7
6
5
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
0
25  
50  
75  
100  
125  
œ50  
œ25  
Temperature (°C)  
Temperature (°C)  
C016  
C013  
VCM = (V–) – 0.1 V to (V+) – 1.4 V  
TA= –40°C to 125°C RL= 10 kΩ  
VS = 1.8 V to 5.5 V  
VS = 5.5 V  
Figure 8-13. CMRR vs Temperature  
Figure 8-14. PSRR vs Temperature  
120  
100  
80  
60  
40  
20  
0
Time (1s/div)  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
C014  
C015  
VS = 1.8 V to 5.5 V  
Figure 8-15. 0.1-Hz to 10-Hz Input Voltage Noise  
Figure 8-16. Input Voltage Noise Spectral Density  
vs Frequency  
œ90  
œ95  
œ40  
œ60  
œ100  
œ105  
œ110  
œ115  
œ120  
œ80  
œ100  
œ120  
100  
1k  
10k  
0.001  
0.01  
0.1  
1
Frequency (Hz)  
Output Voltage Amplitude (VRMS  
)
C017  
C018  
VS = 5.5 V  
VCM = 2.5 V  
BW = 80 kHz  
RL = 2 kΩ  
G = +1  
VS = 5.5 V  
RL = 2 kΩ  
G = +1  
VOUT = 0.5 VRMS  
VCM = 2.5 V  
BW = 80 kHz  
f = 1 kHz  
Figure 8-17. THD + N vs Frequency  
Figure 8-18. THD + N vs Amplitude  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
œ40  
600  
580  
560  
540  
520  
500  
œ60  
œ80  
œ100  
œ120  
0.001  
0.01  
0.1  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Output Voltage Amplitude (VRMS  
)
Supply Voltage (V)  
C019  
C020  
VS = 5.5 V  
G = –1  
VCM = 2.5 V  
RL = 2 kΩ  
f = 1 kHz  
BW = 80 kHz  
Figure 8-19. THD + N vs Amplitude  
Figure 8-20. Quiescent Current vs Supply Voltage  
800  
200  
700  
600  
500  
400  
300  
200  
100  
0
160  
120  
80  
40  
0
0
25  
50  
75  
100  
125  
10k  
100k  
Frequency (Hz)  
1M  
10M  
œ50  
œ25  
Temperature (°C)  
C021  
C024  
Figure 8-21. Quiescent Current vs Temperature  
Figure 8-22. Open-Loop Output Impedance vs  
Frequency  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
10  
0
10  
0
Overshoot+  
Overshoot-  
Overshoot(+)  
Overshoot(-)  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Capacitive Load (pF)  
Capacitive Load (pF)  
C025  
C026  
V+ = 2.75 V  
V– = –2.75 V  
RL = 10 kΩ  
G = +1 V/V  
V+ = 2.75 V  
V– = –2.75 V  
RL = 10 kΩ  
G = –1 V/V  
VOUT step = 100 mVp-p  
VOUT step = 100 mVp-p  
Figure 8-23. Small-Signal Overshoot vs Load  
Capacitance  
Figure 8-24. Small-Signal Overshoot vs Load  
Capacitance  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
Input  
INPUT  
OUTPUT  
Output  
Time (200 µs/div)  
Time (1 µs/div)  
C036  
C028  
V+ = 2.75 V  
V– = –2.75 V  
V+ = 2.75 V  
V– = –2.75 V  
G = –10 V/V  
Figure 8-25. No Phase Reversal  
Figure 8-26. Overload Recovery  
Input  
Output  
Input  
Output  
Time (0.1µs/div)  
Time (1 µs/div)  
C030  
C031  
V+ = 2.75 V  
V– = –2.75 V  
G = 1 V/V  
V+ = 2.75 V  
G = 1 V/V  
V– = –2.75 V  
CL = 100 pF  
Figure 8-27. Small-Signal Step Response  
Figure 8-28. Large-Signal Step Response  
80  
60  
40  
20  
6
5
4
3
2
Sinking  
0
Sourcing  
œ20  
œ40  
œ60  
œ80  
1
0
VS = 5.5 V  
VS = 1.8 V  
0
25  
50  
75  
100  
125  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
œ50  
œ25  
Temperature (°C)  
Frequency (Hz)  
C034  
C035  
RL = 10 kΩ  
CL = 10 pF  
Figure 8-29. Short-Circuit Current vs Temperature  
Figure 8-30. Maximum Output Voltage vs  
Frequency and Supply Voltage  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
140  
120  
100  
80  
0
œ20  
œ40  
œ60  
60  
œ80  
40  
œ100  
œ120  
œ140  
20  
0
10M  
100M  
Frequency (Hz)  
1G  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
C041  
C038  
PRF = –10 dBm  
V+ = 2.75 V  
V– = –2.75 V  
Figure 8-31. Electromagnetic Interference  
Figure 8-32. Channel Separation vs Frequency  
Rejection Ratio Referred to Noninverting Input  
(EMIRR+) vs Frequency  
90  
75  
60  
45  
30  
15  
0
200  
160  
120  
80  
40  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Output Voltage (V)  
Capacitive Load (pF)  
C023  
C037  
VS = 5.5 V  
VS = 5.5 V  
Figure 8-34. Open Loop Voltage Gain vs Output  
Voltage  
Figure 8-33. Phase Margin vs Capacitive Load  
100  
75  
100  
75  
50  
50  
25  
25  
0
0
-25  
-50  
-75  
-100  
-125  
-150  
œ25  
œ50  
œ75  
œ100  
0
0.3  
0.6  
0.9  
0
0.3  
0.6  
0.9  
1.2  
1.5  
Settling time (µs)  
Settling time (µs)  
C032  
C033  
Figure 8-35. Large Signal Settling Time (Positive)  
Figure 8-36. Large Signal Settling Time (Negative)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
9 Detailed Description  
9.1 Overview  
The TLV906x-Q1 devices are a family of low-power, rail-to-rail input and output op amps. These devices operate  
from 1.8 V to 5.5 V, are unity-gain stable, and are designed for a wide range of general-purpose applications.  
The input common-mode voltage range includes both rails and allows the TLV906x-Q1 series to be used in  
virtually any single-supply application. Rail-to-rail input and output swing significantly increases dynamic range,  
especially in low-supply applications. The high bandwidth enables this family to drive the sample-hold circuitry of  
analog-to-digital converters (ADCs).  
9.2 Functional Block Diagram  
V+  
Reference  
Current  
VIN+  
VINÛ  
VBIAS1  
Class AB  
Control  
Circuitry  
VO  
VBIAS2  
VÛ  
(Ground)  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
 
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
9.3 Feature Description  
9.3.1 Rail-to-Rail Input  
The input common-mode voltage range of the TLV906x-Q1 family extends 100 mV beyond the supply rails for  
the full supply voltage range of 1.8 V to 5.5 V. This performance is achieved with a complementary input stage:  
an N-channel input differential pair in parallel with a P-channel differential pair, as shown in the Functional Block  
Diagram section. The N-channel pair is active for input voltages close to the positive rail, typically (V+) – 1.4 V to  
200 mV above the positive supply, whereas the P-channel pair is active for inputs from 200 mV below the  
negative supply to approximately (V+) – 1.4 V. There is a small transition region, typically (V+) – 1.2 V to (V+) – 1  
V, in which both pairs are on. This 200-mV transition region can vary up to 200 mV with process variation. Thus,  
the transition region (with both stages on) can range from (V+) – 1.4 V to (V+) – 1.2 V on the low end, and up to  
(V+) – 1 V to (V+) – 0.8 V on the high end. Within this transition region, PSRR, CMRR, offset voltage, offset drift,  
and THD can degrade compared to device operation outside this region.  
9.3.2 Rail-to-Rail Output  
Designed as a low-power, low-voltage operational amplifier, the TLV906x-Q1 series delivers a robust output  
drive capability. A class AB output stage with common-source transistors achieves full rail-to-rail output swing  
capability. For resistive loads of 10-kΩ, the output swings to within 15 mV of either supply rail, regardless of the  
applied power-supply voltage. Different load conditions change the ability of the amplifier to swing close to the  
rails.  
9.3.3 Overload Recovery  
Overload recovery is defined as the time required for the operational amplifier output to recover from a saturated  
state to a linear state. The output devices of the operational amplifier enter a saturation region when the output  
voltage exceeds the rated operating voltage, because of the high input voltage or the high gain. After the device  
enters the saturation region, the charge carriers in the output devices require time to return to the linear state.  
After the charge carriers return to the linear state, the device begins to slew at the specified slew rate. Therefore,  
the propagation delay (in case of an overload condition) is the sum of the overload recovery time and the slew  
time. The overload recovery time for the TLV906x-Q1 family is approximately 200 ns.  
9.3.4 Shutdown Function  
The TLV906xS-Q1 devices feature SHDN pins that disable the op amp, placing it into a low-power standby  
mode. In this mode, the op amp typically consumes less than 1 µA. The SHDN pins are active-low, meaning that  
shutdown mode is enabled when the input to the SHDN pin is a valid logic low.  
The SHDN pins are referenced to the negative supply voltage of the op amp. The threshold of the shutdown  
feature lies around 800 mV (typical) and does not change with respect to the supply voltage. Hysteresis has  
been included in the switching threshold to ensure smooth switching characteristics. To ensure optimal shutdown  
behavior, the SHDN pins should be driven with valid logic signals. A valid logic low is defined as a voltage  
between V– and V– + 0.2 V. A valid logic high is defined as a voltage between V– + 1.2 V and V+. The shutdown  
pin must either be connected to a valid high or a low voltage or driven, and not left as an open circuit.  
The SHDN pins are high-impedance CMOS inputs. Dual op amp versions are independently controlled, and  
quad op amp versions are controlled in pairs with logic inputs. For battery-operated applications, this feature  
may be used to greatly reduce the average current and extend battery life. The enable time is 10 µs for full  
shutdown of all channels; disable time is 3 µs. When disabled, the output assumes a high-impedance state. This  
architecture allows the TLV906xS-Q1 to be operated as a gated amplifier (or to have the device output  
multiplexed onto a common analog output bus). Shutdown time (tOFF) depends on loading conditions and  
increases as load resistance increases. To ensure shutdown (disable) within a specific shutdown time, the  
specified 10-kΩ load to midsupply (VS / 2) is required. If using the TLV906xS-Q1 without a load, the resulting  
turnoff time is significantly increased.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
9.4 Device Functional Modes  
Devices in the TLV906x-Q1 family are operational when the power-supply voltage is between 1.8 V (±0.9 V) and  
5.5 V (±2.75 V). The TLV906xS devices feature a shutdown mode and are shut down when a valid logic low is  
applied to the shutdown pin.  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
10 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
The TLV906x-Q1 family features 10-MHz bandwidth and 6.5-V/µs slew rate with only 538 µA of supply current  
per channel, providing good AC performance at very low power consumption. DC applications are well served  
with a very low input noise voltage of 10 nV/√ Hz at 10 kHz, low input bias current, and a typical input offset  
voltage of 0.3 mV.  
10.2 Typical Applications  
10.2.1 Typical Low-Side Current Sense Application  
Figure 10-1 shows the TLV906x-Q1 configured in a low-side current-sensing application.  
VBUS  
ZLOAD  
ILOAD  
5V  
+
TLV906x  
VOUT  
Rshunt  
VSHUNT  
0.1  
RF  
165 kꢀ  
RG  
3.4 kꢀ  
Figure 10-1. TLV906x-Q1 in a Low-Side, Current-Sensing Application  
10.2.1.1 Design Requirements  
The design requirements for this design are:  
Load current: 0 A to 1 A  
Output voltage: 4.95 V  
Maximum shunt voltage: 100 mV  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
 
 
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
10.2.1.2 Detailed Design Procedure  
The transfer function of the circuit in Figure 10-1 is given in Equation 1.  
VOUT = ILOAD ìRSHUNT ìGain  
(1)  
The load current (ILOAD) produces a voltage drop across the shunt resistor (RSHUNT). The load current is set from  
0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is  
defined using Equation 2.  
VSHUNT _MAX  
100mV  
1A  
RSHUNT  
=
=
=100mW  
ILOAD_MAX  
(2)  
Using Equation 2, RSHUNT equals 100 mΩ. The voltage drop produced by ILOAD and RSHUNT is amplified by the  
TLV906x-Q1 to produce an output voltage of approximately 0 V to 4.95 V. Equation 3 calculates the gain  
required for the TLV906x-Q1 to produce the required output voltage.  
V
OUT _MAX - VOUT _MIN  
(
)
Gain =  
VIN_MAX - V  
(
)
IN_MIN  
(3)  
Using Equation 3, the required gain equals 49.5 V/V, which is set with the RF and RG resistors. Equation 4 sizes  
the RF and RG, resistors to set the gain of the TLV906x-Q1 to 49.5 V/V.  
R
(
(
)
)
F
Gain = 1+  
R
G
(4)  
Selecting RF to equal 165 kΩ and RG to equal 3.4 kΩ provides a combination that equals approximately 49.5  
V/V. Figure 10-2 shows the measured transfer function of the circuit shown in Figure 10-1. Notice that the gain is  
only a function of the feedback and gain resistors. This gain is adjusted by varying the ratio of the resistors and  
the actual resistor values are determined by the impedance levels that the designer wants to establish. The  
impedance level determines the current drain, the effect that stray capacitance has, and a few other behaviors.  
There is no optimal impedance selection that works for every system, you must choose an impedance that is  
ideal for your system parameters.  
10.2.1.3 Application Curve  
5
4
3
2
1
0
0
0.2  
0.4  
0.6  
0.8  
1
ILOAD (A)  
C219  
Figure 10-2. Low-Side, Current-Sense, Transfer Function  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
 
 
 
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
10.2.2 Typical Comparator Application  
Comparators are used to differentiate between two different signal levels. For example, a comparator can be  
used to differentiate between an overvoltage situation and normal operation. The TLV9062-Q1 can be used as a  
comparator by applying the two voltages being compared to each input without any feedback from output to  
inverting input.  
The TLV9062-Q1 features a rail-to-rail input and output stage with an input common-mode range that exceeds  
the supply rails by 100 mV. The TLV9062-Q1 is designed to prevent phase reversal over the entire input  
common-mode range. The propagation delay for the TLV9062-Q1 used as a comparator is equal to the overload  
recovery time plus the slew rate. Overdrive voltages less than 100 mV result in longer propagation delays  
because the overload recovery time increases and the slew rate decreases.  
V+  
R1  
100k  
VTH  
V+  
+
R2  
100kꢀ  
TLV9062  
VOUT  
VIN  
Figure 10-3. Typical Comparator Application  
10.2.2.1 Design Requirements  
The design requirements for this design are:  
Supply voltage (V+): 5 V  
Input (VIN): 0 V to 5 V  
Threshold voltage (VTH): 2.5 V  
10.2.2.2 Detailed Design Procedure  
The inverting comparator circuit applies the input voltage (VIN) to the inverting terminal of the op amp. Two  
resistors (R1 and R2) divide the supply voltage (VCC) to create a midsupply threshold voltage (VTH) as calculated  
in Equation 5. The circuit is shown in Figure 10-3. When VIN is less then VTH, the output voltage transitions to the  
positive supply and equals the high-level output voltage. When VIN is greater than VTH, the output voltage  
transitions to the negative supply and equals the low-level output voltage, VTH  
.
R2  
R1 + R2  
VTH  
=
ì V+ = 2.5V  
(5)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
10.2.2.3 Application Curves  
5.5  
5
5.5  
5
Input  
Output  
Input  
Output  
4.5  
4
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-0.5  
0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8  
Time (us)  
2
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (us)  
D102  
D101  
Figure 10-5. Rising Edge  
Figure 10-4. Comparator Response to Input  
Voltage (Propagation Delay Included)  
5.5  
5.5  
5
Input  
Output  
20mV  
50mV  
100mV  
200mV  
500mV  
5
4.5  
4.5  
4
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-0.5  
0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8  
Time (us)  
2
0
5
10  
15  
20  
Time (us)  
25  
30  
35  
40  
D103  
D104  
Figure 10-6. Falling Edge  
Figure 10-7. Falling Edge Propagation Delay vs  
Input Overdrive Voltage  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
11 Power Supply Recommendations  
The TLV906x-Q1 series is specified for operation from 1.8 V to 5.5 V (±0.9 V to ±2.75 V); many specifications  
apply from –40°C to 125°C. The Typical Characteristics section presents parameters that can exhibit significant  
variance with regard to operating voltage or temperature.  
CAUTION  
Supply voltages larger than 6 V can permanently damage the device; see the Absolute Maximum  
Ratings table.  
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
section.  
11.1 Input and ESD Protection  
The TLV906x-Q1 series incorporates internal ESD protection circuits on all pins. For input and output pins, this  
protection primarily consists of current-steering diodes connected between the input and power-supply pins.  
These ESD protection diodes provide in-circuit, input overdrive protection, as long as the current is limited to  
10 mA, as shown in the Absolute Maximum Ratings table. Figure 11-1 shows how a series input resistor can be  
added to the driven input to limit the input current. The added resistor contributes thermal noise at the amplifier  
input and the value must be kept to a minimum in noise-sensitive applications.  
V+  
IOVERLOAD  
10-mA maximum  
VOUT  
Device  
VIN  
5 kW  
Figure 11-1. Input Current Protection  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
 
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
12 Layout  
12.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and of the op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources  
local to the analog circuitry.  
– Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is adequate for single-supply  
applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. Take care  
to physically separate digital and analog grounds, paying attention to the flow of the ground current.  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace at a 90 degree angle is much  
better as opposed to running the traces in parallel with the noisy trace.  
Place the external components as close to the device as possible. As illustrated in Figure 12-2, keeping RF  
and RG close to the inverting input minimizes parasitic capacitance on the inverting input.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended  
to remove moisture introduced into the device packaging during the cleaning process. A low-temperature,  
post-cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
12.2 Layout Example  
VIN 1  
VIN 2  
+
+
VOUT 1  
VOUT 2  
RG  
RG  
RF  
RF  
Figure 12-1. Schematic Representation  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
OUT 1  
Use low-ESR,  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VS+  
GND  
OUT1  
V+  
RF  
RG  
OUT 2  
GND  
IN1œ  
IN1+  
Vœ  
OUT2  
IN2œ  
IN2+  
RF  
RG  
VIN 1  
GND  
VIN 2  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
GND  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VSœ  
Ground (GND) plane on another layer  
as possible .  
Figure 12-2. Layout Example  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
Texas Instruments, TLVx313-Q1 Low-Power, Rail-to-Rail In/Out, 500-μV Typical Offset, 1-MHz Operational  
Amplifier for Cost-Sensitive Systems data sheet.  
Texas Instruments, TLVx314-Q1 3-MHz, Low-Power, Internal EMI Filter, RRIO, Operational Amplifier data sheet.  
Texas Instruments, EMI Rejection Ratio of Operational Amplifiers application report.  
Texas Instruments, QFN/SON PCB Attachment application report.  
Texas Instruments, Single-Ended Input to Differential Output Conversion Circuit Reference Design.  
13.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
Table 13-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TLV9062-Q1  
TLV9064-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
13.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
13.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
 
 
 
 
 
 
 
TLV9061-Q1, TLV9062-Q1, TLV9064-Q1  
SBOS966D – APRIL 2019 – REVISED OCTOBER 2020  
www.ti.com  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLV9061-Q1 TLV9062-Q1 TLV9064-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Oct-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTLV9061SQDBVRQ1  
PTLV9062QDGKRQ1  
ACTIVE  
ACTIVE  
SOT-23  
VSSOP  
DBV  
DGK  
6
8
3000  
2500  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
Call TI  
TLV9061SQDBVRQ1  
TLV9062QDGKRQ1  
PREVIEW  
PREVIEW  
SOT-23  
VSSOP  
DBV  
DGK  
6
8
3000  
2500  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-1-260C-UNLIM  
27CT  
TLV9062QDRQ1  
TLV9064QDRQ1  
TLV9064QPWRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
2500  
2500  
2000  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
T9062Q  
14  
14  
Green (RoHS  
& no Sb/Br)  
TLV9064QD  
T9064Q  
TSSOP  
PW  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Oct-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV9061-Q1, TLV9062-Q1, TLV9064-Q1 :  
Catalog: TLV9061, TLV9062, TLV9064  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Oct-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV9062QDRQ1  
TLV9064QDRQ1  
TLV9064QPWRQ1  
SOIC  
SOIC  
D
D
8
2500  
2500  
2000  
330.0  
330.0  
330.0  
12.4  
16.4  
12.4  
6.4  
6.5  
6.9  
5.2  
9.0  
5.6  
2.1  
2.1  
1.6  
8.0  
8.0  
8.0  
12.0  
16.0  
12.0  
Q1  
Q1  
Q1  
14  
14  
TSSOP  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Oct-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV9062QDRQ1  
TLV9064QDRQ1  
TLV9064QPWRQ1  
SOIC  
SOIC  
D
D
8
2500  
2500  
2000  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
35.0  
38.0  
35.0  
14  
14  
TSSOP  
PW  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/B 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/B 03/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/B 03/2018  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TLV9061SIDBVR

适用于成本优化型应用的单路、5.5V、10MHz、RRIO 运算放大器 | DBV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9061SQDBVRQ1

TLV906xS-Q1 Automotive 10-MHz, RRIO, CMOS Operational Amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9062

双路、5.5V、10MHz 运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9062-Q1

汽车级、双路、5.5V、10MHz 运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9062-Q1_V03

TLV906x-Q1 Automotive 10-MHz, RRIO, CMOS Operational Amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9062-Q1_V04

TLV906x-Q1 Automotive 10-MHz, RRIO, CMOS Operational Amplifiers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9062IDDFR

双路、5.5V、10MHz 运算放大器 | DDF | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9062IDGKR

双路、5.5V、10MHz 运算放大器 | DGK | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9062IDGKT

双路、5.5V、10MHz 运算放大器 | DGK | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9062IDR

双路、5.5V、10MHz 运算放大器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9062IDSGR

双路、5.5V、10MHz 运算放大器 | DSG | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9062IDSGT

双路、5.5V、10MHz 运算放大器 | DSG | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI