TLV9101_V06 [TI]

TLV910x 16-V, 1-MHz, Rail-to-Rail Input/Output, Low Power Op Amp;
TLV9101_V06
型号: TLV9101_V06
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TLV910x 16-V, 1-MHz, Rail-to-Rail Input/Output, Low Power Op Amp

文件: 总74页 (文件大小:5356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
TLV910x 16-V, 1-MHz, Rail-to-Rail Input/Output, Low Power Op Amp  
1 Features  
3 Description  
The TLV910x family (TLV9101, TLV9102, and  
TLV9104) is a family of 16-V general purpose  
operational amplifiers. This family offers excellent DC  
precision and AC performance, including rail-to-rail  
input/output, low offset (±300 µV, typ), low offset drift  
(±0.5 µV/°C, typ), and 1.1-MHz bandwidth.  
1
Rail-to-rail input and output  
Wide bandwidth: 1.1-MHz GBW  
Low quiescent current: 120 µA per amplifier  
Low offset voltage: ±300 µV  
Low offset voltage drift: ±0.6 µV/°C  
Low noise: 28 nV/Hz at 10 kHz  
High common-mode rejection: 110 dB  
Low bias current: ±10 pA  
Wide differential and common-mode input-voltage  
range, high output current (±80 mA), high slew rate  
(4.5 V/µs), low power operation (120 µA, typ) and  
shutdown functionality make the TLV910x a robust,  
low-power, high-performance operational amplifier for  
industrial applications.  
High slew rate: 4.5 V/µs  
Wide supply: ±1.35 V to ±8 V, 2.7 V to 16 V  
Robust EMIRR performance: 77 dB at 1.8 GHz  
The TLV910x family of op amps is available in micro-  
size packages, as well as standard packages, and is  
specified from –40°C to 125°C.  
2 Applications  
Device Information(1)  
Optical modules  
Portable test and measurement  
Macro remote radio unit (RRU)  
Baseband unit (BBU)  
Appliances  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
2.90 mm × 1.60 mm  
2.90 mm × 1.60 mm  
2.00 mm × 1.25 mm  
1.60 mm × 1.20 mm  
4.90 mm × 3.90 mm  
2.90 mm × 1.60 mm  
3.00 mm × 4.40 mm  
3.00 mm × 3.00 mm  
3.00 mm × 3.00 mm  
2.00 mm × 2.00 mm  
1.50 mm × 1.50 mm  
8.65 mm × 3.90 mm  
5.00 mm × 4.40 mm  
3.00 mm × 3.00 mm  
2.00 mm × 2.00 mm  
SOT-23 (5)  
SOT-23 (6)  
SC70 (5)  
SOT-553 (5)(2)  
TLV9101  
SOIC (8)  
SOT-23 (8)(2)  
TSSOP (8)  
VSSOP (8)(2)  
VSSOP (10)  
WSON (8)  
TLV9102  
TLV9104  
X2QFN (10)  
SOIC (14)  
TSSOP (14)  
WQFN (16)(2)  
X2QFN (14)(2)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
(2) This package is preview only.  
TLV910x in a Single-Pole, Low-Pass Filter  
RG  
RF  
R1  
VOUT  
VIN  
C1  
1
2pR1C1  
f
=
-3 dB  
VOUT  
VIN  
RF  
1
1 + sR1C1  
=
1 +  
(
(
(  
(
RG  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
Table of Contents  
7.4 Device Functional Modes........................................ 30  
Application and Implementation ........................ 31  
8.1 Application Information............................................ 31  
8.2 Typical Applications ................................................ 31  
Power Supply Recommendations...................... 33  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 9  
6.1 Absolute Maximum Ratings ...................................... 9  
6.2 ESD Ratings.............................................................. 9  
6.3 Recommended Operating Conditions....................... 9  
6.4 Thermal Information for Single Channel ................... 9  
6.5 Thermal Information for Dual Channel.................... 10  
6.6 Thermal Information for Quad Channel .................. 10  
6.7 Electrical Characteristics......................................... 11  
6.8 Typical Characteristics............................................ 14  
Detailed Description ............................................ 22  
7.1 Overview ................................................................. 22  
7.2 Functional Block Diagram ....................................... 22  
7.3 Feature Description................................................. 23  
8
9
10 Layout................................................................... 33  
10.1 Layout Guidelines ................................................. 33  
10.2 Layout Example .................................................... 33  
11 Device and Documentation Support ................. 36  
11.1 Device Support...................................................... 36  
11.2 Documentation Support ........................................ 36  
11.3 Related Links ........................................................ 36  
11.4 Receiving Notification of Documentation Updates 36  
11.5 Support Resources ............................................... 37  
11.6 Trademarks........................................................... 37  
11.7 Electrostatic Discharge Caution............................ 37  
11.8 Glossary................................................................ 37  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 38  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (January 2020) to Revision C  
Page  
Removed preview notation from TLV9102 VSSOP (10) package from Device Information table ......................................... 1  
Removed preview notation from TLV9102 X2QFN (10) package from Device Information table.......................................... 1  
Removed preview notation from TLV9102 DGS package (VSSOP) in the Pin Configuration and Functions section........... 5  
Removed preview notation from TLV9102 RUG package (X2QFN) in the Pin Configuration and Functions section........... 5  
Changes from Revision A (April 2019) to Revision B  
Page  
Changed the TLV9101 and TLV9104 device statuses from Advance Information to Production Data ................................. 1  
Removed preview notation from TLV9101 SOT-23 (5) package from Device Information table........................................... 1  
Removed preview notation from TLV9101 SOT-23 (6) package from Device Information table........................................... 1  
Removed preview notation from TLV9101 SC70 (5) package from Device Information table............................................... 1  
Removed preview notation from TLV9102 TSSOP (8) package from Device Information table ........................................... 1  
Removed preview notation from TLV9102 WSON (8) package from Device Information table ............................................ 1  
Removed preview notation from TLV9104 SOIC (14) package from Device Information table............................................. 1  
Removed preview notation from TLV9104 TSSOP(14) package from Device Information table .......................................... 1  
Removed preview notation from TLV9102 DSG package (WSON) in the Pin Configuration and Functions section............ 4  
Added SHUTDOWN to Electrical Characteristics................................................................................................................. 12  
Added Packages With an Exposed Thermal Pad to the Feature Description...................................................................... 29  
Changes from Original (February 2019) to Revision A  
Page  
Changed the TLV9102 device status from Advance Information to Production Data............................................................ 1  
Removed preview notation from TLV9102 SOIC (8) package from Device Information table............................................... 1  
2
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
 
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
5 Pin Configuration and Functions  
TLV9101 DBV Package  
5-Pin SOT-23  
TLV9101 DCK and DRL Package  
5-Pin SC70 and SOT-553  
Top View  
Top View  
OUT  
Vœ  
1
2
3
5
V+  
IN+  
Vœ  
1
2
3
5
V+  
IN+  
4
INœ  
INœ  
4
OUT  
Not to scale  
Not to scale  
(1) Package is preview only.  
Pin Functions: TLV9101  
PIN  
I/O  
DESCRIPTION  
NAME  
DBV  
DCK and DRL  
+IN  
–IN  
3
4
1
5
2
1
3
4
5
2
I
Noninverting input  
Inverting input  
Output  
I
OUT  
V+  
O
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
TLV9101S DBV Package  
6-Pin SOT-23  
Top View  
+IN  
Vœ  
1
2
3
6
5
4
V+  
SHDN  
OUT  
œIN  
Not to scale  
Pin Functions: TLV9101S  
PIN  
I/O  
DESCRIPTION  
NAME  
DBV  
IN+  
3
4
1
I
I
Noninverting input  
Inverting input  
Output  
IN–  
OUT  
O
Shutdown: low = amplifier enabled, high = amplifier disabled. See the  
Shutdown section for more information.  
SHDN  
5
I
V+  
V–  
6
2
Positive (highest) power supply  
Negative (lowest) power supply  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
TLV9102 D, DDF, DGK, and PW Package(1)  
8-Pin SOIC, SOT-23, TSSOP, and VSSOP  
Top View  
TLV9102 DSG Package(1)  
8-Pin WSON With Exposed Thermal Pad  
Top View  
OUT1  
IN1œ  
IN1+  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT2  
IN2œ  
IN2+  
OUT1  
IN1œ  
IN1+  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT2  
IN2œ  
IN2+  
Thermal  
Pad  
Not to scale  
(1) DDF and DGK packages are preview only.  
Not to scale  
(1) Connect thermal pad to V–. See the  
Packages With an Exposed Thermal Pad  
section for more information.  
Pin Functions: TLV9102  
PIN  
SOIC, SOT-23,  
I/O  
DESCRIPTION  
NAME  
TSSOP, VSSOP,  
and WSON  
IN1+  
IN1–  
IN2+  
IN2–  
OUT1  
OUT2  
V+  
3
2
5
6
1
7
8
4
I
I
Noninverting input, channel 1  
Inverting input, channel 1  
Noninverting input, channel 2  
Inverting input, channel 2  
Output, channel 1  
I
I
O
O
Output, channel 2  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
4
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
TLV9102S DGS Package  
10-Pin VSSOP  
TLV9102S RUG Package  
10-Pin X2QFN  
Top View  
Top View  
OUT1  
IN1œ  
1
2
3
4
5
10  
V+  
9
8
7
6
OUT2  
IN2œ  
IN2+  
SHDN2  
IN1+  
Vœ  
SHDN1  
SHDN2  
IN2+  
1
2
3
4
9
8
7
6
IN1œ  
OUT1  
V+  
Vœ  
SHDN1  
Not to scale  
OUT2  
Not to scale  
Pin Functions: TLV9102S  
PIN  
I/O  
DESCRIPTION  
NAME  
IN1+  
VSSOP  
X2QFN  
3
2
7
8
1
9
10  
9
I
I
Noninverting input, channel 1  
Inverting input, channel 1  
IN1–  
IN2+  
4
I
Noninverting input, channel 2  
Inverting input, channel 2  
Output, channel 1  
IN2–  
5
I
OUT1  
OUT2  
8
O
O
6
Output, channel 2  
Shutdown, channel 1: low = amplifier enabled, high = amplifier  
disabled. See the Shutdown section for more information.  
SHDN1  
SHDN2  
5
6
2
3
I
I
Shutdown, channel 2: low = amplifier enabled, high = amplifier  
disabled. See the Shutdown section for more information.  
V+  
V–  
10  
4
7
1
Positive (highest) power supply  
Negative (lowest) power supply  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
TLV9104 D and PW Package  
14-Pin SOIC and TSSOP  
Top View  
TLV9104 RUC Package(1)  
14-Pin WQFN With Exposed Thermal Pad  
Top View  
OUT1  
IN1œ  
IN1+  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT4  
IN4œ  
IN4+  
Vœ  
IN1œ  
IN1+  
V+  
1
2
3
4
5
12  
11  
10  
9
IN4œ  
IN4+  
Vœ  
IN2+  
IN2œ  
OUT2  
IN3+  
IN3œ  
OUT3  
8
IN2+  
IN2œ  
IN3+  
IN3œ  
Not to scale  
8
TLV9104 RTE Package(2)  
16-Pin WQFN With Exposed Thermal Pad  
Top View  
Not to scale  
(1) Package is preview only.  
IN1+  
1
2
3
4
12  
11  
10  
9
IN4+  
V+  
IN2+  
IN2œ  
Vœ  
Thermal  
Pad  
IN3+  
IN3œ  
Not to scale  
(1) Connect thermal pad to V–. See the  
Packages With an Exposed Thermal Pad  
section for more information.  
(2) Package is preview only.  
Pin Functions: TLV9104  
PIN  
I/O  
DESCRIPTION  
SOIC and  
TSSOP  
NAME  
WQFN  
X2QFN  
IN1+  
IN1–  
IN2+  
IN2–  
IN3+  
IN3–  
3
2
1
16  
3
2
1
4
5
9
8
I
I
I
I
I
I
Noninverting input, channel 1  
Inverting input, channel 1  
Noninverting input, channel 2  
Inverting input, channel 2  
Noninverting input, channel 3  
Inverting input, channel 3  
5
6
4
10  
9
10  
9
6
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
Pin Functions: TLV9104 (continued)  
PIN  
I/O  
DESCRIPTION  
SOIC and  
TSSOP  
NAME  
WQFN  
X2QFN  
IN4+  
IN4–  
NC  
12  
13  
1
12  
13  
6, 7  
15  
5
11  
12  
14  
6
I
Noninverting input, channel 4  
I
Inverting input, channel 4  
Do not connect  
O
O
O
O
OUT1  
OUT2  
OUT3  
OUT4  
V+  
Output, channel 1  
7
Output, channel 2  
8
8
7
Output, channel 3  
14  
4
14  
2
13  
3
Output, channel 4  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
11  
11  
10  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
TLV9104S RTE Package(1)  
16-Pin WQFN With Exposed Thermal Pad  
Top View  
IN1+  
V+  
1
2
3
4
12  
11  
10  
9
IN4+  
Vœ  
Thermal  
Pad  
IN2+  
IN2œ  
IN3+  
IN3œ  
Not to scale  
(1) Connect thermal pad to V–. See Packages With an Exposed Thermal Pad section for more information.  
(2) Package is preview only.  
Pin Functions: TLV9104S  
PIN  
I/O  
DESCRIPTION  
NAME  
WQFN  
1
IN1+  
IN1–  
IN2+  
IN2–  
IN3+  
IN3–  
IN4+  
IN4–  
OUT1  
OUT2  
OUT3  
OUT4  
I
I
Noninverting input, channel 1  
Inverting input, channel 1  
Noninverting input, channel 2  
Inverting input, channel 2  
Noninverting input, channel 3  
Inverting input, channel 3  
Noninverting input, channel 4  
Inverting input, channel 4  
Output, channel 1  
16  
3
I
4
I
10  
9
I
I
12  
13  
15  
5
I
I
O
O
O
O
Output, channel 2  
8
Output, channel 3  
14  
Output, channel 4  
Shutdown, channels 1 and 2: low = amplifiers enabled, high = amplifiers  
disabled. See the Shutdown section for more information.  
SHDN12  
SHDN34  
6
7
I
I
Shutdown, channels 3 and 4: low = amplifiers enabled, high = amplifiers  
disabled. See the Shutdown section for more information.  
VCC+  
VCC–  
2
Positive (highest) power supply  
Negative (lowest) power supply  
11  
8
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
0
MAX  
20  
UNIT  
V
Supply voltage, VS = (V+) – (V–)  
Common-mode voltage(2)  
(V–) – 0.5  
(V+) + 0.5  
VS + 0.2  
10  
V
Signal input pins  
Differential voltage(2)  
Current(2)  
V
–10  
mA  
Output short-circuit(3)  
Continuous  
Operating ambient temperature, TA  
Junction temperature, TJ  
Storage temperature, Tstg  
–55  
150  
150  
150  
°C  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that may swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
MAX  
16  
UNIT  
V
VS  
VI  
Supply voltage, (V+) – (V–)  
Input voltage range  
2.7  
(V–) – 0.2  
–40  
(V+) + 0.2  
125  
V
TA  
Specified temperature  
°C  
6.4 Thermal Information for Single Channel  
TLV9101, TLV9101S  
DBV  
(SOT-23)  
DCK  
(SC70)  
DRL(2)  
(SOT-553)  
THERMAL METRIC(1)  
UNIT  
5 PINS  
192.2  
113.7  
60.6  
6 PINS  
1174.6  
113.5  
55.9  
5 PINS  
204..7  
116..6  
51.9  
5 PINS  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
37.4  
39.7  
24.9  
ψJB  
60.4  
55.7  
51.6  
RθJC(bot)  
N/A  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) This package option is preview for TLV9101.  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TLV9101 TLV9102 TLV9104  
 
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
6.5 Thermal Information for Dual Channel  
TLV9102, TLV9102S  
D
DDF(2)  
(SOT-23-8)  
DGK(2)  
(VSSOP)  
DGS(2)  
(VSSOP)  
DSG  
(WSON)  
PW  
(TSSOP)  
RUG  
(X2QFN)  
THERMAL METRIC(1)  
UNIT  
(SOIC)  
8 PINS  
8 PINS  
8 PINS  
10 PINS  
8 PINS  
8 PINS  
10 PINS  
Junction-to-ambient  
thermal resistance  
RθJA  
138.7  
TBD  
TBD  
152.2  
81.6  
188.4  
149.6  
58.3  
77.7  
1.3  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top)  
thermal resistance  
RθJC(top)  
78.7  
82.2  
27.8  
81.4  
N/A  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
67.3  
95.5  
67.9  
94.3  
N/A  
101.6  
48.3  
6.0  
77.1  
119.1  
14.2  
Junction-to-board thermal  
resistance  
RθJB  
Junction-to-top  
characterization parameter  
ψJT  
Junction-to-board  
characterization parameter  
ψJB  
48.3  
22.8  
117.4  
N/A  
77.5  
N/A  
Junction-to-case (bottom)  
thermal resistance  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) This package option is preview for TLV9102.  
6.6 Thermal Information for Quad Channel  
TLV9104, TLV9104S  
D
PW  
(TSSOP)  
RTE(2)  
(WQFN)  
RUC(2)  
(WQFN)  
THERMAL METRIC(1)  
UNIT  
(SOIC)  
14 PINS  
105.2  
61.2  
14 PINS  
134.7  
55.0  
16 PINS  
53.5  
58.3  
28.6  
2.1  
14 PINS  
143.0  
46.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
61.1  
79.0  
81.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
21.4  
9.2  
1.0  
ψJB  
60.7  
78.1  
28.6  
12.6  
81.5  
RθJC(bot)  
N/A  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) This package option is preview for TLV9104.  
10  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
6.7 Electrical Characteristics  
For VS = (V+) – (V–) = 2.7 V to 16 V (±1.35 V to ±8 V) at TA = 25°C, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT  
=
VS / 2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±0.3  
±1.5  
VOS  
Input offset voltage  
VCM = V–  
mV  
TA = –40°C to 125°C  
±1.75  
dVOS/dT  
PSRR  
Input offset voltage drift  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
±0.6  
±0.1  
5
µV/  
µV/V  
µV/V  
Input offset voltage versus  
power supply  
VCM = V–  
f = 0 Hz  
±0.7  
Channel separation  
INPUT BIAS CURRENT  
IB  
Input bias current  
±10  
±5  
pA  
pA  
IOS  
Input offset current  
NOISE  
6
1
µVPP  
EN  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
µVRMS  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
30  
28  
2
eN  
iN  
Input voltage noise density  
Input current noise  
nV/Hz  
fA/Hz  
INPUT VOLTAGE RANGE  
Common-mode voltage  
range  
VCM  
(V–) – 0.2  
90  
(V+) + 0.2  
V
VS = 16 V, (V–) – 0.1 V <  
VCM < (V+) – 2 V (Main  
input pair)  
110  
95  
VS = 4 V, (V–) – 0.1 V < VCM  
< (V+) – 2 V (Main input  
pair)  
75  
dB  
Common-mode rejection  
ratio  
CMRR  
TA = –40°C to 125°C  
VS = 2.7 – 16 V, (V+) – 1 V  
< VCM < (V+) + 0.1 V (Aux  
input pair)  
80  
(V+) – 2 V < VCM < (V+) – 1  
V
See Offset Voltage (Transition Region)  
INPUT CAPACITANCE  
ZID  
Differential  
100 || 3  
6 || 1  
MΩ || pF  
ZICM  
Common-mode  
TΩ || pF  
OPEN-LOOP GAIN  
VS = 16 V, VCM = V–  
115  
104  
135  
125  
dB  
dB  
(V–) + 0.1 V < VO < (V+) –  
0.1 V  
AOL  
Open-loop voltage gain  
TA = –40°C to 125°C  
VS = 4 V, VCM = V–  
(V–) + 0.1 V < VO < (V+) –  
0.1 V  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
1.1  
4.5  
4
MHz  
V/µs  
Slew rate  
VS = 16 V, G = +1, CL = 20 pF  
To 0.1%, VS = 16 V, VSTEP = 10 V, G = +1, CL = 20 pF  
To 0.1%, VS = 16 V, VSTEP = 2 V, G = +1, CL = 20 pF  
To 0.01%, VS = 16 V, VSTEP = 10 V, G = +1, CL = 20 pF  
To 0.01%, VS = 16 V, VSTEP = 2 V, G = +1, CL = 20 pF  
G = +1, RL = 10 k, CL = 20 pF  
2
tS  
Settling time  
µs  
5
3
Phase margin  
60  
600  
°
Overload recovery time  
VIN × gain > VS  
ns  
Total harmonic distortion +  
noise  
THD+N  
VS = 16 V, VO = 1 VRMS, G = -1, f = 1 kHz  
0.0028%  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TLV9101 TLV9102 TLV9104  
 
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
Electrical Characteristics (continued)  
For VS = (V+) – (V–) = 2.7 V to 16 V (±1.35 V to ±8 V) at TA = 25°C, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT  
=
VS / 2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
VS = 16 V, RL = no load  
3
45  
200  
1
VS = 16 V, RL = 10 kΩ  
VS = 16 V, RL = 2 kΩ  
VS = 2.7 V, RL = no load  
VS = 2.7 V, RL = 10 kΩ  
VS = 2.7 V, RL = 2 kΩ  
60  
300  
Voltage output swing from Positive and negative rail  
mV  
rail  
headroom  
5
20  
50  
25  
±80  
ISC  
Short-circuit current  
Capacitive load drive  
mA  
CLOAD  
See Typical Characteristics  
Open-loop output  
impedance  
ZO  
f = 1 MHz, IO = 0 A  
600  
POWER SUPPLY  
115  
150  
160  
Quiescent current per  
amplifier  
IQ  
IO = 0 A  
µA  
TA = –40°C to 125°C  
SHUTDOWN  
Quiescent current per  
amplifier  
IQSD  
VS = 2.7 V to 16 V, all amplifiers disabled, SHDN = V–  
VS = 2.7 V to 16 V, amplifier disabled  
20  
30  
µA  
Output impedance during  
shutdown  
ZSHDN  
VIH  
10 || 12  
GΩ || pF  
Logic high threshold  
voltage (amplifier enabled)  
(V–) + 1.1  
V
V
V
Logic low threshold  
voltage (amplifier disabled)  
VIL  
(V–) + 0.2 V  
(1)  
tON  
Amplifier enable time  
G = +1, VCM = V–, VO = 0.1 × VS / 2  
11  
2.5  
µs  
µs  
(1)  
tOFF  
Amplifier disable time  
VCM = V–, VO = VS / 2  
VS = 2.7 V to 40 V, (V–) + 20 V SHDN (V–) + 0.9 V  
VS = 2.7 V to 40 V, (V–) SHDN (V–) + 0.7 V  
500  
150  
SHDN pin input bias  
current (per pin)  
nA  
(1) Disable time (tOFF) and enable time (tON) are defined as the time interval between the 50% point of the signal applied to the SHDN pin  
and the point at which the output voltage reaches the 10% (disable) or 90% (enable) level.  
12  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
Table 1. Table of Graphs  
DESCRIPTION  
FIGURE  
Figure 1  
Offset Voltage Production Distribution  
Offset Voltage Drift Distribution  
Figure 2  
Offset Voltage vs Temperature  
Figure 3, Figure 4  
, Figure 6, Figure 7, Figure 8  
Figure 9  
Offset Voltage vs Common-Mode Voltage  
Offset Voltage vs Power Supply  
Open-Loop Gain and Phase vs Frequency  
Figure 10  
Closed-Loop Gain and Phase vs Frequency  
Input Bias Current vs Common-Mode Voltage  
Input Bias Current vs Temperature  
Output Voltage Swing vs Output Current  
CMRR and PSRR vs Frequency  
CMRR vs Temperature  
Figure 11  
Figure 12  
Figure 13  
Figure 14, Figure 15, Figure 16, Figure 17  
Figure 18  
Figure 19  
PSRR vs Temperature  
Figure 20  
0.1-Hz to 10-Hz Noise  
Figure 21  
Input Voltage Noise Spectral Density vs Frequency  
THD+N Ratio vs Frequency  
Figure 22  
Figure 23  
THD+N vs Output Amplitude  
Figure 24  
Quiescent Current vs Supply Voltage  
Quiescent Current vs Temperature  
Open Loop Voltage Gain vs Temperature  
Open Loop Output Impedance vs Frequency  
Small Signal Overshoot vs Capacitive Load (100-mV Output Step)  
Phase Margin vs Capacitive Load  
No Phase Reversal  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29, Figure 30  
Figure 31  
Figure 32  
Positive Overload Recovery  
Figure 33  
Negative Overload Recovery  
Figure 34  
Small-Signal Step Response (100 mV)  
Large-Signal Step Response  
Figure 35, Figure 36  
Figure 37, Figure 38, Figure 39  
Figure 40  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
Channel Separation vs Frequency  
EMIRR vs Frequency  
Figure 41  
Figure 42  
Figure 43  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
6.8 Typical Characteristics  
at TA = 25°C, VS = ±8 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
25%  
20%  
15%  
10%  
5%  
25%  
20%  
15%  
10%  
5%  
0
0
D001  
Offset Voltage (mV)  
Offset Voltage Drift (mV/èC)  
D002  
Distribution from 13, 481 amplifiers; TA = 25°C  
Distribution from 175 amplifiers  
Figure 1. Offset Voltage Production Distribution  
Figure 2. Offset Voltage Drift Distribution  
1000  
800  
800  
600  
400  
200  
0
600  
400  
200  
0
-200  
-400  
-600  
-800  
-1000  
-200  
-400  
-600  
-800  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D003  
D004  
VCM = V+  
VCM = V–  
Figure 3. Offset Voltage vs Temperature  
Figure 4. Offset Voltage vs Temperature  
800  
600  
400  
200  
0
800  
600  
400  
200  
0
-200  
-400  
-600  
-800  
-200  
-400  
-600  
-800  
-8  
-6  
-4  
-2  
Common Mode Voltage (V)  
0
2
4
6
8
4
4.5  
5
5.5  
Common Mode Voltage (V)  
6
6.5  
7
7.5  
8
D005  
D005  
TA = 25°C  
TA = 25°C  
Figure 5. Offset Voltage vs Common-Mode Voltage  
Figure 6. Offset Voltage vs Common-Mode Voltage  
(Transition Region)  
14  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
 
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±8 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
1000  
800  
800  
600  
600  
400  
400  
200  
200  
0
0
-200  
-400  
-600  
-800  
-1000  
-1200  
-200  
-400  
-600  
-800  
-1000  
-8  
-6  
-4  
-2  
Common Mode Voltage (V)  
0
2
4
6
8
-8  
-6  
-4  
-2  
Common Mode Voltage (V)  
0
2
4
6
8
D006  
D007  
TA = 125°C  
TA = –40°C  
Figure 7. Offset Voltage vs Common-Mode Voltage  
Figure 8. Offset Voltage vs Common-Mode Voltage  
100  
80  
60  
40  
20  
0
150  
750  
600  
450  
300  
150  
0
Gain  
Phase  
125  
100  
75  
50  
25  
0
-150  
-300  
-450  
-600  
-750  
-20  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
2
4
6
8
10  
12  
Supply Voltage (V)  
14  
16  
18  
C002  
D008  
CLOAD = 15 pF  
Figure 10. Open-Loop Gain and Phase vs Frequency  
Figure 9. Offset Voltage vs Power Supply  
70  
60  
50  
40  
30  
20  
10  
0
3
G = 1  
G = -1  
G = 10  
G = 100  
G = 1000  
IB-  
IB+  
IOS  
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-10  
-20  
-30  
-1.5  
-2  
-2.5  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
-8  
-6  
-4  
-2  
0
2
Common Mode Voltage (V)  
4
6
8
C001  
D010  
Figure 11. Closed-Loop Gain and Phase vs Frequency  
Figure 12. Input Bias Current vs Common-Mode Voltage  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±8 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
V+  
V+ 1 V  
V+ 2 V  
V+ 3 V  
V+ 4 V  
V+ 5 V  
V+ 6 V  
V+ 7 V  
V+ 8 V  
V+ 9 V  
V+ 10 V  
320  
280  
240  
200  
160  
120  
80  
IB-  
IB+  
IOS  
-40°C  
25°C  
85°C  
125°C  
40  
0
-40  
-40  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
Output Current (mA)  
D012  
D011  
Figure 14. Output Voltage Swing vs Output Current  
(Sourcing)  
Figure 13. Input Bias Current vs Temperature  
V+ 10 V  
V+ 9 V  
V+ 8 V  
V+ 7 V  
V+ 6 V  
V+ 5 V  
V+ 4 V  
V+ 3 V  
V+ 2 V  
V+ 1 V  
Vꢀ  
5
4.5  
4
-40°C  
25°C  
85°C  
125°C  
-40èC  
3.5  
3
25èC  
125èC  
2.5  
2
85èC  
1.5  
1
0.5  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
Output Current (mA)  
D012  
D013  
VS = 5 V, RL  
connected to V–  
Figure 15. Output Voltage Swing vs Output Current  
(Sinking)  
Figure 16. Output Voltage Swing vs Output Current  
(Sourcing)  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5
4.5  
4
PSRR+  
PSRR-  
CMRR  
3.5  
3
85èC  
2.5  
2
125èC  
1.5  
1
-40èC  
25èC  
0.5  
0
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D013  
C003  
VS = 5 V, RL  
connected to V+  
Figure 18. CMRR and PSRR vs Frequency  
Figure 17. Output Voltage Swing vs Output Current  
(Sinking)  
16  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±8 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
145  
144  
143  
142  
141  
140  
139  
138  
137  
136  
135  
124  
120  
116  
112  
108  
104  
100  
96  
VS = 16 V  
VS = 4 V  
92  
88  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D016  
D015  
f = 0 Hz  
f = 0 Hz  
Figure 20. PSRR vs Temperature (dB)  
Figure 19. CMRR vs Temperature (dB)  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Time (1s/Div)  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
C015  
C017  
Figure 21. 0.1-Hz to 10-Hz Noise  
Figure 22. Input Voltage Noise Spectral Density vs  
Frequency  
-40  
-50  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
RL = 10 kW  
RL = 2 kW  
RL = 600 W  
RL = 128 W  
-60  
-70  
-80  
-90  
RL = 10 k  
RL = 2 kꢀ  
RL = 549 ꢀ  
RL = 128 ꢀ  
-100  
-110  
100  
1k  
Frequency (Hz)  
10k  
0.001  
0.01  
0.1  
1
8
C012  
Amplitude (V  
)
RMS  
C023  
BW = 80 kHz, VOUT = 3.5 VRMS  
Figure 23. THD+N Ratio vs Frequency  
BW = 80 kHz, f = 1 kHz  
Figure 24. THD+N vs Output Amplitude  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±8 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
127.5  
130  
125  
120  
115  
110  
105  
100  
95  
125  
122.5  
120  
117.5  
115  
112.5  
110  
107.5  
105  
90  
102.5  
85  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
0
2
4
6
8
10  
Supply Voltage (V)  
12  
14  
16  
18  
D022  
D021  
Figure 26. Quiescent Current vs Temperature  
Figure 25. Quiescent Current vs Supply Voltage  
780  
720  
660  
600  
540  
480  
420  
360  
300  
240  
180  
120  
146  
144  
142  
140  
138  
136  
134  
132  
130  
128  
126  
124  
VS = 16 V  
VS = 4 V  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
C013  
D023  
Figure 28. Open-Loop Output Impedance vs Frequency  
Figure 27. Open-Loop Voltage Gain vs Temperature (dB)  
33  
30  
27  
24  
21  
18  
15  
55  
50  
45  
40  
35  
30  
25  
12  
20  
RISO = 0 W, Positive Overshoot  
RISO = 0 W, Positive Overshoot  
9
15  
RISO = 0 W, Negative Overshoot  
RISO = 0 W, Negative Overshoot  
RISO = 50 W, Positive Overshoot  
RISO = 50 W, Negative Overshoot  
RISO = 50 W, Positive Overshoot  
RISO = 50 W, Negative Overshoot  
6
10  
3
5
0
40  
80  
120 160 200 240 280 320 360  
Cap Load (pF)  
0
40  
80  
120 160 200 240 280 320 360  
Cap Load (pF)  
C007  
C008  
G = –1, 100-mV output step  
G = 1, 100-mV output step  
Figure 29. Small-Signal Overshoot vs Capacitive Load  
Figure 30. Small-Signal Overshoot vs Capacitive Load  
18  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±8 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
64  
Input  
Output  
60  
56  
52  
48  
44  
40  
36  
32  
28  
24  
20  
Time (20µs/Div)  
0
100 200 300 400 500 600 700 800 900 1000  
Cap Load (pF)  
C016  
C009  
G = –1, 100-mV output step  
Figure 32. No Phase Reversal  
Figure 31. Small-Signal Overshoot vs Capacitive Load  
Input  
Output  
Input  
Output  
Time (500ns/div)  
Time (500ns/div)  
C018  
C018  
G = –10  
G = –10  
Figure 33. Positive Overload Recovery  
Figure 34. Negative Overload Recovery  
Input  
Output  
Input  
Output  
Time (2ms/div)  
Time (1µs/div)  
C010  
C011  
CL = 20 pF, G = 1, 20-mV step response  
RL = 1 kΩ, CL = 20 pF, G = –1, 10-mV step response  
Figure 35. Small-Signal Step Response  
Figure 36. Small-Signal Step Response  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±8 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
Input  
Output  
Input  
Output  
Time (1µs/div)  
Time (1µs/div)  
C005  
C005  
CL = 20 pF, G = 1  
CL = 20 pF, G = 1  
Figure 37. Large-Signal Step Response (Falling)  
Figure 38. Large-Signal Step Response (Rising)  
100  
80  
60  
Input  
Output  
40  
20  
Sourcing  
Sinking  
0
-20  
-40  
-60  
-80  
-100  
Time (2µs/div)  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
C021  
D038  
CL = 10 pF, G = –1  
Figure 39. Large-Signal Step Response  
Figure 40. Short-Circuit Current vs Temperature  
20  
15  
10  
5
-60  
-70  
VS = 15 V  
VS = 2.7 V  
-80  
-90  
-100  
-110  
-120  
-130  
0
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
C020  
C014  
Figure 41. Maximum Output Voltage vs Frequency  
Figure 42. Channel Separation vs Frequency  
20  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
Typical Characteristics (continued)  
at TA = 25°C, VS = ±8 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
100  
90  
80  
70  
60  
50  
40  
30  
1M  
10M  
100M  
Frequency (Hz)  
1G  
C004  
Figure 43. EMIRR (Electromagnetic Interference Rejection Ratio) vs Frequency  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TLV910x family (TLV9101, TLV9102, and TLV9104) is a family of 16-V general purpose operational  
amplifiers.  
These devices offer excellent DC precision and AC performance, including rail-to-rail input/output, low offset  
(±300 µV, typ), low offset drift (±0.6 µV/°C, typ), and 1.1-MHz bandwidth.  
Wide differential and common-mode input-voltage range, high output current (±80 mA), high slew rate (4.5 V/µs),  
low power operation (120 µA, typ), and shutdown functionality make the TLV910x a robust, low-power, high-  
performance operational amplifier for industrial applications.  
7.2 Functional Block Diagram  
V+  
Reference  
Current  
VIN+  
VINÛ  
VBIAS1  
Class AB  
Control  
Circuitry  
VO  
VBIAS2  
VÛ  
(Ground)  
22  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
7.3 Feature Description  
7.3.1 EMI Rejection  
The TLV910x uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from  
sources such as wireless communications and densely-populated boards with a mix of analog signal chain and  
digital components. EMI immunity can be improved with circuit design techniques; the TLV910x benefits from  
these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the  
immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz.  
Figure 44 shows the results of this testing on the TLV910x. Table 2 shows the EMIRR IN+ values for the  
TLV910x at particular frequencies commonly encountered in real-world applications. Table 2 lists applications  
that can be centered on or operated near the particular frequency shown. The EMI Rejection Ratio of Operational  
Amplifiers application report contains detailed information on the topic of EMIRR performance as it relates to op  
amps and is available for download from www.ti.com.  
100  
90  
80  
70  
60  
50  
40  
30  
1M  
10M  
100M  
Frequency (Hz)  
1G  
C004  
Figure 44. TLV910x EMIRR Testing  
Table 2. TLV910x EMIRR IN+ for Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF)  
applications  
400 MHz  
59.5 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5 GHz  
68.9 dB  
77.8 dB  
78.0 dB  
88.8 dB  
87.6 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
7.3.2 Phase Reversal Protection  
The TLV910x family has internal phase-reversal protection. Many op amps exhibit a phase reversal when the  
input is driven beyond its linear common-mode range. This condition is most often encountered in noninverting  
circuits when the input is driven beyond the specified common-mode voltage range, causing the output to  
reverse into the opposite rail. The TLV910x is a rail-to-rail input op amp; therefore, the common-mode range can  
extend up to the rails. Input signals beyond the rails do not cause phase reversal; instead, the output limits into  
the appropriate rail. This performance is shown in Figure 45.  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TLV9101 TLV9102 TLV9104  
 
 
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
Input  
Output  
Time (20µs/Div)  
C016  
Figure 45. No Phase Reversal  
7.3.3 Thermal Protection  
The internal power dissipation of any amplifier causes its internal (junction) temperature to rise. This  
phenomenon is called self heating. The absolute maximum junction temperature of the TLV910x is 150°C.  
Exceeding this temperature causes damage to the device. The TLV910x has a thermal protection feature that  
prevents damage from self heating. The protection works by monitoring the temperature of the device and  
turning off the op amp output drive for temperatures above 140°C. Figure 46 shows an application example for  
the TLV9101 that has significant self heating (154°C) because of its power dissipation (0.39 W). Thermal  
calculations indicate that for an ambient temperature of 100°C, the device junction temperature must reach  
154°C. The actual device, however, turns off the output drive to maintain a safe junction temperature. Figure 46  
shows how the circuit behaves during thermal protection. During normal operation, the device acts as a buffer so  
the output is 3 V. When self heating causes the device junction temperature to increase above 140°C, the  
thermal protection forces the output to a high-impedance state and the output is pulled to ground through resistor  
RL.  
Normal  
Operation  
3 V  
TA = 100°C  
16 V  
PD = 0.39W  
JA = 138.7°C/W  
TJ = 138.7°C/W × 0.39W + 100°C  
Output  
High-Z  
0 V  
TJ = 154.1°C (expected)  
-
150°C  
140ºC  
TLV9101  
+
IOUT = 30 mA  
+
3 V  
œ
RL  
100 Ω  
+
VIN  
3 V  
œ
Figure 46. Thermal Protection  
24  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
 
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
7.3.4 Capacitive Load and Stability  
The TLV910x features a resistive output stage capable of driving moderate capacitive loads, and by leveraging  
an isolation resistor, the device can easily be configured to drive large capacitive loads. Increasing the gain  
enhances the ability of the amplifier to drive greater capacitive loads; see Figure 47 and Figure 48. The particular  
op amp circuit configuration, layout, gain, and output loading are some of the factors to consider when  
establishing whether an amplifier will be stable in operation.  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
33  
30  
27  
24  
21  
18  
15  
12  
9
RISO = 0 W, Positive Overshoot  
RISO = 0 W, Negative Overshoot  
RISO = 50 W, Positive Overshoot  
RISO = 50 W, Negative Overshoot  
RISO = 0 W, Positive Overshoot  
RISO = 0 W, Negative Overshoot  
RISO = 50 W, Positive Overshoot  
RISO = 50 W, Negative Overshoot  
6
3
0
40  
80  
120 160 200 240 280 320 360  
Cap Load (pF)  
0
40  
80  
120 160 200 240 280 320 360  
Cap Load (pF)  
C008  
C007  
Figure 47. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step, G = 1)  
Figure 48. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step, G = –1)  
For additional drive capability in unity-gain configurations, improve capacitive load drive by inserting a small (10  
Ω to 20 Ω) resistor, RISO, in series with the output, as shown in Figure 49. This resistor significantly reduces  
ringing and maintains DC performance for purely capacitive loads. However, if a resistive load is in parallel with  
the capacitive load, then a voltage divider is created, thus introducing a gain error at the output and slightly  
reducing the output swing. The error introduced is proportional to the ratio RISO / RL, and is generally negligible at  
low output levels. A high capacitive load drive makes the TLV910x well suited for applications such as reference  
buffers, MOSFET gate drives, and cable-shield drives. The circuit shown in Figure 49 uses an isolation resistor,  
RISO, to stabilize the output of an op amp. RISO modifies the open-loop gain of the system for increased phase  
margin.  
+Vs  
Vout  
Riso  
+
Cload  
+
Vin  
-Vs  
œ
Figure 49. Extending Capacitive Load Drive With the TLV9101  
7.3.5 Common-Mode Voltage Range  
The TLV910x is a 16-V, true rail-to-rail input operational amplifier with an input common-mode range that  
extends 100 mV beyond either supply rail. This wide range is achieved with paralleled complementary N-channel  
and P-channel differential input pairs, as shown in Figure 50. The N-channel pair is active for input voltages  
close to the positive rail, typically (V+) – 1 V to 100 mV above the positive supply. The P-channel pair is active  
for inputs from 100 mV below the negative supply to approximately (V+) – 2 V. There is a small transition region,  
typically (V+) –2 V to (V+) – 1 V in which both input pairs are on. This transition region can vary modestly with  
process variation, and within this region PSRR, CMRR, offset voltage, offset drift, noise, and THD performance  
can be degraded compared to operation outside this region. To achieve best performance with the TLV910x  
family, avoid this transition region when possible.  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TLV9101 TLV9102 TLV9104  
 
 
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
V+  
IN-  
PMOS  
PMOS  
NMOS  
IN+  
NMOS  
V-  
Figure 50. Rail-to-Rail Input Stage  
26  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
7.3.6 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress  
(EOS). These questions tend to focus on the device inputs, but can involve the supply voltage pins or even the  
output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is  
helpful. Figure 51 shows an illustration of the ESD circuits contained in the TLV910x (indicated by the dashed  
line area). The ESD protection circuitry involves several current-steering diodes connected from the input and  
output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device or  
the power-supply ESD cell, internal to the operational amplifier. This protection circuitry is intended to remain  
inactive during normal circuit operation.  
TVS  
RF  
+VS  
VDD  
TLV960x  
100 Ω  
100 Ω  
R1  
RS  
INœ  
œ
IN+  
+
Power-Supply  
ESD Cell  
RL  
ID  
+
VIN  
œ
VSS  
œVS  
TVS  
Figure 51. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: TLV9101 TLV9102 TLV9104  
 
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
An ESD event is very short in duration and very high voltage (for example, 1 kV, 100 ns), whereas an EOS event  
is long duration and lower voltage (for example, 50 V, 100 ms). The ESD diodes are designed for out-of-circuit  
ESD protection (that is, during assembly, test, and storage of the device before being soldered to the PCB).  
During an ESD event, the ESD signal is passed through the ESD steering diodes to an absorption circuit (labeled  
ESD power-supply circuit). The ESD absorption circuit clamps the supplies to a safe level.  
Although this behavior is necessary for out-of-circuit protection, excessive current and damage is caused if  
activated in-circuit. A transient voltage suppressors (TVS) can be used to prevent damage caused by turning on  
the ESD absorption circuit during an in-circuit ESD event. Using the appropriate current limiting resistors and  
TVS diodes allows for the use of device ESD diodes to protect against EOS events.  
7.3.7 Overload Recovery  
Overload recovery is defined as the time required for the op amp output to recover from a saturated state to a  
linear state. The output devices of the op amp enter a saturation region when the output voltage exceeds the  
rated operating voltage, either due to the high input voltage or the high gain. After the device enters the  
saturation region, the charge carriers in the output devices require time to return back to the linear state. After  
the charge carriers return back to the linear state, the device begins to slew at the specified slew rate. Thus, the  
propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time.  
The overload recovery time for the TLV910x is approximately 1 µs.  
7.3.8 Typical Specifications and Distributions  
Designers often have questions about a typical specification of an amplifier in order to design a more robust  
circuit. Due to natural variation in process technology and manufacturing procedures, every specification of an  
amplifier will exhibit some amount of deviation from the ideal value, like the input offset voltage of an amplifier.  
These deviations often follow Gaussian ("bell curve"), or normal distributions, and circuit designers can leverage  
this information to guardband their system, even when there is not a minimum or maximum specification in the  
Electrical Characteristics table.  
0.00312% 0.13185%  
0.13185% 0.00312%  
0.00002%  
0.00002%  
2.145% 13.59% 34.13% 34.13% 13.59% 2.145%  
1
1 1 1 1 1 1 1 1  
1
1
1
-61 -51 -41 -31 -21 -1  
+1 +21 +31 +41 +51 +61  
Figure 52. Ideal Gaussian Distribution  
Figure 52 shows an example distribution, where µ, or mu, is the mean of the distribution, and where σ, or sigma,  
is the standard deviation of a system. For a specification that exhibits this kind of distribution, approximately two-  
thirds (68.26%) of all units can be expected to have a value within one standard deviation, or one sigma, of the  
mean (from µ–σ to µ+σ).  
28  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
 
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
Depending on the specification, values listed in the typical column of the Electrical Characteristics table are  
represented in different ways. As a general rule of thumb, if a specification naturally has a nonzero mean (for  
example, gain bandwidth), then the typical value is equal to the mean (µ). However, if a specification naturally  
has a mean near zero (like input offset voltage), then the typical value is equal to the mean plus one standard  
deviation (µ + σ) in order to most accurately represent the typical value.  
You can use this chart to calculate approximate probability of a specification in a unit; for example, for TLV910x,  
the typical input voltage offset is 300 µV, so 68.2% of all TLV910x devices are expected to have an offset from  
–300 µV to +300 µV. At 4 σ (±1200 µV), 99.9937% of the distribution has an offset voltage less than ±1200 µV,  
which means 0.0063% of the population is outside of these limits, which corresponds to about 1 in 15,873 units.  
Specifications with a value in the minimum or maximum column are assured by TI, and units outside these limits  
will be removed from production material. For example, the TLV910x family has a maximum offset voltage of 1.5  
mV at 25°C, and even though this corresponds to 5 σ (1 in 1.7 million units), which is extremely unlikely, TI  
assures that any unit with larger offset than 1.5 mV will be removed from production material.  
For specifications with no value in the minimum or maximum column, consider selecting a sigma value of  
sufficient guardband for your application, and design worst-case conditions using this value. For example, the 6-σ  
value corresponds to about 1 in 500 million units, which is an extremely unlikely chance and can be an option as  
a wide guardband to design a system around. In this case, the TLV910x family does not have a maximum or  
minimum for offset voltage drift, but based on Figure 2 and the typical value of 0.6 µV/°C in the Electrical  
Characteristics table, it can be calculated that the 6-σ value for offset voltage drift is about 3.6 µV/°C. When  
designing for worst-case system conditions, this value can be used to estimate the worst possible offset across  
temperature without having an actual minimum or maximum value.  
However, process variation and adjustments over time can shift typical means and standard deviations, and  
unless there is a value in the minimum or maximum specification column, TI cannot assure the performance of a  
device. This information should be used only to estimate the performance of a device.  
7.3.9 Packages With an Exposed Thermal Pad  
The TLV910x family is available in packages such as the WSON-8 (DSG) and WQFN-16 (RTE), which feature  
an exposed thermal pad. Inside the package, the die is attached to this thermal pad using an electrically  
conductive compound. For this reason, when using a package with an exposed thermal pad, the thermal pad  
must either be connected to V– or left floating. Attaching the thermal pad to a potential other than V– is not  
allowed, and performance of the device is not assured when doing so.  
7.3.10 Shutdown  
The TLV910xS devices feature one or more shutdown pins (SHDN) that disable the op amp, placing it into a low-  
power standby mode. In this mode, the op amp typically consumes about 20 µA. The SHDN pins are active high,  
meaning that shutdown mode is enabled when the input to the SHDN pin is a valid logic high.  
The SHDN pins are referenced to the negative supply rail of the op amp. The threshold of the shutdown feature  
lies around 800 mV (typical) and does not change with respect to the supply voltage. Hysteresis has been  
included in the switching threshold to ensure smooth switching characteristics. To ensure optimal shutdown  
behavior, the SHDN pins should be driven with valid logic signals. A valid logic low is defined as a voltage  
between V– and V– + 0.4 V. A valid logic high is defined as a voltage between V– + 1.2 V and V+. The shutdown  
pin circuitry includes a pulldown resistor, which will inherently pull the voltage of the pin to the negative supply  
rail if not driven. Thus, to enable the amplifier, the SHDN pins should either be left floating or driven to a valid  
logic low. To disable the amplifier, the SHDN pins must be driven to a valid logic high. The maximum voltage  
allowed at the SHDN pins is V+. Exceeding this voltage level will damage the device.  
The SHDN pins are high-impedance CMOS inputs. Channels of single and dual op amp packages are  
independently controlled, and channels of quad op amp packages are controlled in pairs. For battery-operated  
applications, this feature can be used to greatly reduce the average current and extend battery life. The typical  
enable time out of shutdown is 30 µs; disable time is 3 µs. When disabled, the output assumes a high-  
impedance state. This architecture allows the TLV910xS family to operate as a gated amplifier, multiplexer, or  
programmable-gain amplifier. Shutdown time (tOFF) depends on loading conditions and increases as load  
resistance increases. To ensure shutdown (disable) within a specific shutdown time, the specified 10-kΩ load to  
midsupply (VS / 2) is required. If using the TLV910xS without a load, the resulting turnoff time significantly  
increases.  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
7.4 Device Functional Modes  
The TLV910x has a single functional mode and is operational when the power-supply voltage is greater than 2.7  
V (±1.35 V). The maximum power supply voltage for the TLV910x is 16 V (±8 V).  
30  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV910x family offers excellent DC precision and DC performance. These devices operate up to 16-V  
supply rails and offer true rail-to-rail input/output, low offset voltage and offset voltage drift, as well as 1.1-MHz  
bandwidth and high output drive. These features make the TLV910x a robust, high-performance operational  
amplifier for high-voltage industrial applications.  
8.2 Typical Applications  
8.2.1 High Voltage Precision Comparator  
Many different systems require controlled voltages across numerous system nodes to ensure robust operation. A  
comparator can be used to monitor and control voltages by comparing a reference threshold voltage with an  
input voltage and providing an output when the input crosses this threshold.  
The TLV910x family of op amps make excellent high voltage, precision comparators due to their robust input  
stage, low typical offset, and high slew rate. Previous generation high-voltage op amps often use back-to-back  
diodes across the inputs to prevent damage to the op amp which greatly limits these op amps to be used as  
comparators, but the patented input stage of the TLV910x allows the device to have a wide differential voltage  
between the inputs.  
V+  
+
VIN  
VOUT  
VTH  
V+  
R1  
R2  
Figure 53. Typical Comparator Application  
8.2.1.1 Design Requirements  
The primary objective is to design a 15-V precision comparator.  
System supply voltage (V+): 15 V  
Resistor 1 value: 100 kΩ  
Resistor 2 value: 100 kΩ  
Reference threshold voltage (VTH): 7.5 V  
Input voltage range (VIN): 2.5 V – 12.5 V  
Output voltage range (VOUT): 0 V – 15 V  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: TLV9101 TLV9102 TLV9104  
 
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
Typical Applications (continued)  
8.2.1.2 Detailed Design Procedure  
This noninverting comparator circuit applies the input voltage (VIN) to the noninverting terminal of the op amp.  
Two resistors (R1 and R2) divide the supply voltage (V+) to create a mid-supply threshold voltage (VTH) as  
calculated in Equation 1. The circuit is shown in Figure 53. When VIN is less then VTH, the output voltage  
transitions to the negative supply and equals the low-level output voltage. When VIN is greater than VTH, the  
output voltage transitions to the positive supply and equals the high-level output voltage.  
In this example, resistor 1 and 2 have been selected to be 100 kΩ, which sets the reference threshold at 7.5 V.  
However, resistor 1 and 2 can be adjusted to modify the threshold using Equation 1. The values of resistor 1 and  
2 have also been selected to reduce power consumption, but these values can be further increased to reduce  
power consumption, or reduced to improve noise performance.  
R
2
V
=
ìV+  
2
TH  
R + R  
1
(1)  
8.2.1.3 Application Curve  
16  
14  
12  
10  
8
Input  
Output  
6
4
2
0
-2  
0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8  
Time (ms)  
2
comp  
Figure 54. Comparator Output Response to Input Voltage  
32  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
 
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
9 Power Supply Recommendations  
The TLV910x is specified for operation from 2.7 V to 16 V (±1.35 V to ±8 V); many specifications apply from  
–40°C to 125°C.  
CAUTION  
Supply voltages larger than 20 V can permanently damage the device; see the  
Absolute Maximum Ratings table.  
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout  
section.  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp itself.  
Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to  
the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds paying attention to the flow of the ground current.  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as  
opposed to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As illustrated in Figure 56, keeping RF and  
RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic  
package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended to  
remove moisture introduced into the device packaging during the cleaning process. A low temperature, post  
cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
10.2 Layout Example  
VIN  
+
VOUT  
RG  
RF  
Figure 55. Schematic Representation  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: TLV9101 TLV9102 TLV9104  
 
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
Layout Example (continued)  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
VS+  
RF  
NC  
NC  
Use a low-ESR,  
ceramic bypass  
capacitor  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
NC  
VIN  
GND  
GND  
VSœ  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitor  
Figure 56. Operational Amplifier Board Layout for Noninverting Configuration  
GND  
GND  
OUT  
V-  
GND  
Figure 57. Example Layout for SC70 (DCK) Package  
GND  
GND  
GND  
V+  
INPUT A  
OUTPUT B  
V-  
GND  
GND  
GND  
Figure 58. Example Layout for VSSOP-8 (DGK) Package  
34  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
Layout Example (continued)  
GND  
GND  
GND  
-
+
OUT B  
+
-
+IN A  
GND  
GND  
GND  
Figure 59. Example Layout for WSON-8 (DSG) Package  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 TINA-TI™ (Free Software Download)  
TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a  
free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range  
of both passive and active models. TINA-TI provides all the conventional DC, transient, and frequency domain  
analysis of SPICE, as well as additional design capabilities.  
Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing  
capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select  
input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.  
NOTE  
These files require that either the TINA software (from DesignSoft™) or TINA-TI software  
be installed. Download the free TINA-TI software from the TINA-TI folder.  
11.2 Documentation Support  
11.2.1 Related Documentation  
Texas Instruments, EMI Rejection Ratio of Operational Amplifiers application report  
11.3 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
Table 3. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TLV9101  
TLV9102  
TLV9104  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
11.4 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
36  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
www.ti.com  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
11.5 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.6 Trademarks  
E2E is a trademark of Texas Instruments.  
TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
11.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2019–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: TLV9101 TLV9102 TLV9104  
TLV9101, TLV9102, TLV9104  
SBOS943C FEBRUARY 2019REVISED MAY 2020  
www.ti.com  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
38  
Submit Documentation Feedback  
Copyright © 2019–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9101 TLV9102 TLV9104  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV9101IDBVR  
TLV9101SIDBVR  
TLV9102IDDFR  
TLV9102IDR  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
DDF  
D
5
6
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
2000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
T91V  
T91S  
T91F  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAUAG  
NIPDAUAG  
NIPDAU  
SN  
ACTIVE SOT-23-THIN  
8
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
WSON  
TSSOP  
VSSOP  
X2QFN  
SOIC  
8
T9102D  
TLV9102IDSGR  
TLV9102IPWR  
TLV9102SIDGSR  
TLV9102SIRUGR  
TLV9104IDR  
DSG  
PW  
DGS  
RUG  
D
8
T912  
8
T9102P  
10  
10  
14  
14  
T910  
HBF  
TLV9104D  
TLV9104IPWR  
TSSOP  
PW  
(PTL91PW, TLV91PW)  
TLV9104IRUCR  
ACTIVE  
QFN  
RUC  
14  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
FOF  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jan-2021  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV9101IDBVR  
TLV9101SIDBVR  
TLV9102IDDFR  
SOT-23  
SOT-23  
DBV  
DBV  
DDF  
5
6
8
3000  
3000  
3000  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
SOT-  
23-THIN  
TLV9102IDR  
TLV9102IDSGR  
TLV9102IPWR  
TLV9102SIDGSR  
TLV9102SIRUGR  
TLV9104IDR  
SOIC  
WSON  
TSSOP  
VSSOP  
X2QFN  
SOIC  
D
8
2500  
3000  
2000  
2500  
3000  
2500  
2000  
3000  
330.0  
180.0  
330.0  
330.0  
178.0  
330.0  
330.0  
180.0  
12.4  
8.4  
6.4  
2.3  
5.2  
2.3  
2.1  
1.15  
1.6  
8.0  
4.0  
8.0  
8.0  
4.0  
8.0  
8.0  
4.0  
12.0  
8.0  
Q1  
Q2  
Q1  
Q1  
Q1  
Q1  
Q1  
Q2  
DSG  
PW  
DGS  
RUG  
D
8
8
12.4  
12.4  
8.4  
7.0  
3.6  
12.0  
12.0  
8.0  
10  
10  
14  
14  
14  
5.3  
3.4  
1.4  
1.75  
6.5  
2.25  
9.0  
0.56  
2.1  
16.4  
12.4  
9.5  
16.0  
12.0  
8.0  
TLV9104IPWR  
TLV9104IRUCR  
TSSOP  
QFN  
PW  
RUC  
6.9  
5.6  
1.6  
2.16  
2.16  
0.5  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV9101IDBVR  
TLV9101SIDBVR  
TLV9102IDDFR  
TLV9102IDR  
SOT-23  
SOT-23  
SOT-23-THIN  
SOIC  
DBV  
DBV  
DDF  
D
5
6
3000  
3000  
3000  
2500  
3000  
2000  
2500  
3000  
2500  
2000  
3000  
210.0  
210.0  
210.0  
853.0  
210.0  
853.0  
366.0  
205.0  
853.0  
366.0  
205.0  
185.0  
185.0  
185.0  
449.0  
185.0  
449.0  
364.0  
200.0  
449.0  
364.0  
200.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
50.0  
33.0  
35.0  
50.0  
30.0  
8
8
TLV9102IDSGR  
TLV9102IPWR  
TLV9102SIDGSR  
TLV9102SIRUGR  
TLV9104IDR  
WSON  
DSG  
PW  
8
TSSOP  
VSSOP  
X2QFN  
SOIC  
8
DGS  
RUG  
D
10  
10  
14  
14  
14  
TLV9104IPWR  
TLV9104IRUCR  
TSSOP  
QFN  
PW  
RUC  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
2X 0.95  
1.9  
3.05  
2.75  
1.9  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/E 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/E 09/2019  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/E 09/2019  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
PIN 1 INDEX AREA  
2.1  
1.9  
0.32  
0.18  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
8X  
0.4  
0.2  
PIN 1 ID  
8X  
0.1  
C A B  
C
0.05  
4218900/D 04/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/D 04/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/D 04/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
PW0008A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
8
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
A
0.1 C  
6X 0.65  
8
5
1
3.1  
2.9  
NOTE 3  
2X  
1.95  
4
0.30  
0.19  
8X  
4.5  
4.3  
1.2 MAX  
B
0.1  
C A  
B
NOTE 4  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
0 - 8  
DETAIL A  
TYPICAL  
4221848/A 02/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
8X (0.45)  
(R0.05)  
1
4
TYP  
8
SYMM  
6X (0.65)  
5
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221848/A 02/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
(R0.05) TYP  
8X (0.45)  
1
4
8
SYMM  
6X (0.65)  
5
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221848/A 02/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RUC0014A  
A
2.1  
1.9  
B
2.1  
1.9  
PIN 1 INDEX AREA  
0.4 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.15) TYP  
2X 0.4  
6
7
8X 0.4  
5
8
SYMM  
1.6  
12  
1
0.25  
0.15  
14  
13  
14X  
0.5  
PIN 1 ID  
SYMM  
(45oX0.1)  
0.1  
C A B  
C
14X  
0.3  
0.05  
4220584/A 05/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RUC0014A  
SYMM  
14X (0.6)  
14X (0.2)  
8X (0.4)  
SYMM  
(1.6) (1.8)  
(R0.05)  
2X (0.4)  
(1.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 23X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
EXPOSED METAL  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220584/A 05/2019  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
X2QFN - 0.4 mm max height  
RUC0014A  
PLASTIC QUAD FLAT PACK- NO LEAD  
SYMM  
14X (0.6)  
14X (0.2)  
8X (0.4)  
SYMM  
(1.6) (1.8)  
(R0.05)  
2X (0.4)  
(1.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.100mm THICK STENCIL  
SCALE: 23X  
4220584/A 05/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.4  
0.2  
8X  
0.1  
C A  
B
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/B 11/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/B 11/2015  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/B 11/2015  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/B 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/B 03/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/B 03/2018  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TLV9101_V07

TLV910x 16-V, 1-MHz, Rail-to-Rail Input/Output, Low Power Op Amp
TI

TLV9101_V08

TLV910x 16-V, 1-MHz, Rail-to-Rail Input/Output, Low Power Op Amp
TI

TLV9101_V09

TLV910x 16-V, 1-MHz, Rail-to-Rail Input/Output, Low Power Op Amp
TI

TLV9102

双路、16V、1.1MHz、低功耗运算放大器
TI

TLV9102IDDFR

TLV910x 16-V, 1-MHz, Rail-to-Rail Input/Output, Low Power Op Amp
TI

TLV9102IDGKR

TLV910x 16-V, 1-MHz, Rail-to-Rail Input/Output, Low Power Op Amp
TI

TLV9102IDR

双路、16V、1.1MHz、低功耗运算放大器 | D | 8 | -40 to 125
TI

TLV9102IDSGR

双路、16V、1.1MHz、低功耗运算放大器 | DSG | 8 | -40 to 125
TI

TLV9102IPWR

双路、16V、1.1MHz、低功耗运算放大器 | PW | 8 | -40 to 125
TI

TLV9102SIDGSR

TLV910x 16-V, 1-MHz, Rail-to-Rail Input/Output, Low Power Op Amp
TI

TLV9102SIRUGR

TLV910x 16-V, 1-MHz, Rail-to-Rail Input/Output, Low Power Op Amp
TI

TLV9104

四路、16V、1.1MHz、低功耗运算放大器
TI