TLV9161-Q1 [TI]

汽车类、单通道、16V、11MHz 轨到轨输入和输出运算放大器;
TLV9161-Q1
型号: TLV9161-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类、单通道、16V、11MHz 轨到轨输入和输出运算放大器

放大器 运算放大器
文件: 总49页 (文件大小:2847K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
ZHCSRZ5 APRIL 2023  
TLV916x-Q1 汽车16V11MHz、轨到轨输入或输出、  
低失调电压、低噪声运算放大器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
TLV916x-Q1 TLV9161-Q1TLV9162-Q1 和  
TLV9164-Q116V 通用汽车类运算放大器系列。这  
些器件具有出色的直流精度和交流性能包括轨到轨输  
入或输出、低失调电压±210µV典型值、低温漂  
±0.25µV/°C典型值和低噪声1kHz 时为 6.8nV/  
Hz10kHz 4.2nV/Hz。  
– 温度等140°C +125°CTA  
– 器HBM ESD 分类等3A  
(2500V)  
– 器CDM ESD 分类等C3  
(1500V)  
• 低失调电压±210µV  
TLV916x-Q1 具有诸多特性例如宽差分输入电压范  
围、高短路电流 (±73mA) 和高压摆率 (33V/µs)是一  
款灵活可靠的高性能运算放大器适用于汽车应用。  
• 低失调电压漂移±0.25µV/°C  
• 低噪声1kHz 6.8nV/Hz4.2nV/Hz 宽带  
• 高共模抑制110dB  
TLV916x-Q1 系列运算放大器采用标准封装额定工作  
温度范围-40°C 125°C。  
• 低偏置电流±10pA  
• 轨至轨输入和输出  
• 宽带宽11MHz GBW单位增益稳定  
• 高压摆率33V/µs  
• 低静态电流每个放大2.4mA  
• 宽电源电压±1.35V ±8V2.7V 16V  
• 强大EMIRR 性能  
封装信息  
器件型号(1)  
封装尺寸标称值)  
2.90mm × 1.60mm  
2.00mm × 1.25mm  
4.90mm × 3.90mm  
3.00mm × 3.00mm  
8.65mm × 3.90mm  
5.00mm × 4.40mm  
封装  
DBVSOT-235)  
DCKSC705)  
DSOIC8)  
TLV9161-Q1  
TLV9162-Q1  
TLV9164-Q1  
2 应用  
DGKVSSOP8)  
DSOIC14)  
PWTSSOP14)  
• 针AEC-Q100 1 级应用进行了优化  
信息娱乐系统与仪表组  
被动安全  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
车身电子装置和照明  
混合动力汽车/电动汽车逆变器和电机控制  
车载充电(OBC) 和无线充电器  
动力总成电流传感器  
高级驾驶辅助系(ADAS)  
高侧和低侧电流检测  
TLV916x  
+
+
Vshunt Rshunt  
+
System  
MCU  
-
Vo  
Load  
-
-
Iload  
GND  
+
+
Vbus  
Vbus  
Iload  
GND  
System  
Load  
TLV916x  
+
MCU  
+
Vshunt  
+
Rshunt  
-
-
Vo  
-
GND  
GND  
GND  
GND  
Low-Side Current Sense  
High-Side Current Sense  
电流检测应用中TLV916x-Q1  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOSAD7  
 
 
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
ZHCSRZ5 APRIL 2023  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................18  
7.4 Device Functional Modes..........................................25  
8 Application and Implementation..................................26  
8.1 Application Information............................................. 26  
8.2 Typical Applications.................................................. 26  
8.3 Power Supply Recommendations.............................27  
8.4 Layout....................................................................... 28  
9 Device and Documentation Support............................31  
9.1 Device Support......................................................... 31  
9.2 Documentation Support............................................ 31  
9.3 接收文档更新通知..................................................... 31  
9.4 支持资源....................................................................31  
9.5 Trademarks...............................................................32  
9.6 静电放电警告............................................................ 32  
9.7 术语表....................................................................... 32  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information for Single Channel..................... 7  
6.5 Thermal Information for Dual Channel........................7  
6.6 Thermal Information for Quad Channel...................... 7  
6.7 Electrical Characteristics.............................................8  
6.8 Typical Characteristics..............................................10  
7 Detailed Description......................................................17  
7.1 Overview...................................................................17  
7.2 Functional Block Diagram.........................................17  
Information.................................................................... 32  
4 Revision History  
DATE  
REVISION  
NOTES  
April 2023  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
www.ti.com.cn  
ZHCSRZ5 APRIL 2023  
5 Pin Configuration and Functions  
OUT  
Vœ  
1
2
3
5
V+  
IN+  
Vœ  
1
2
3
5
V+  
IN+  
4
INœ  
INœ  
4
OUT  
Not to scale  
Not to scale  
5-1. TLV9161-Q1 DBV Package,  
5-Pin SOT-23  
5-2. TLV9161-Q1 DCK Package,  
5-Pin SC70  
(Top View)  
(Top View)  
5-1. Pin Functions: TLV9161-Q1  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
SOT-23 (DBV)  
SC70 (DCK)  
IN+  
3
4
1
5
2
1
3
4
5
2
I
Noninverting input  
I
Inverting input  
IN–  
OUT  
V+  
O
Output  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
(1) I = input, O = output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
ZHCSRZ5 APRIL 2023  
www.ti.com.cn  
OUT1  
IN1œ  
IN1+  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT2  
IN2œ  
IN2+  
Not to scale  
5-3. TLV9162-Q1 D and DGK Package,  
8-Pin SOIC and VSSOP  
(Top View)  
5-2. Pin Functions: TLV9162-Q1  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
3
IN1+  
IN1–  
IN2+  
IN2–  
OUT1  
OUT2  
V+  
I
I
Noninverting input, channel 1  
Inverting input, channel 1  
Noninverting input, channel 2  
Inverting input, channel 2  
Output, channel 1  
2
5
I
6
I
1
O
O
7
Output, channel 2  
8
Positive (highest) power supply  
Negative (lowest) power supply  
4
V–  
(1) I = input, O = output  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
www.ti.com.cn  
ZHCSRZ5 APRIL 2023  
OUT1  
IN1œ  
IN1+  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT4  
IN4œ  
IN4+  
Vœ  
IN2+  
IN2œ  
OUT2  
IN3+  
IN3œ  
OUT3  
8
Not to scale  
5-4. TLV9164-Q1 D and PW Package,  
14-Pin SOIC and TSSOP  
(Top View)  
5-3. Pin Functions: TLV9164-Q1  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
IN1+  
NO.  
3
I
Noninverting input, channel 1  
Inverting input, channel 1  
Noninverting input, channel 2  
Inverting input, channel 2  
Noninverting input, channel 3  
Inverting input, channel 3  
Noninverting input, channel 4  
Inverting input, channel 4  
Output, channel 1  
2
I
I
IN1–  
IN2+  
5
6
I
IN2–  
IN3+  
10  
9
I
I
IN3–  
IN4+  
12  
13  
1
I
I
IN4–  
OUT1  
OUT2  
OUT3  
OUT4  
V+  
O
O
O
O
7
Output, channel 2  
8
Output, channel 3  
14  
4
Output, channel 4  
Positive (highest) power supply  
Negative (lowest) power supply  
11  
V–  
(1) I = input, O = output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
ZHCSRZ5 APRIL 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
0
MAX  
UNIT  
V
20  
(V+) + 0.5  
VS + 0.2  
10  
Supply voltage, VS = (V+) (V)  
Common-mode voltage(3)  
V
(V) 0.5  
Signal input pins  
Differential voltage(3)  
Current(3)  
V
mA  
10  
V–  
Shutdown pin voltage  
V+  
Output short-circuit(2)  
Continuous  
Operating ambient temperature, TA  
Junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
150  
°C  
°C  
°C  
55  
65  
(1) Operating the device beyond the ratings listed under Absolute Maximum Ratings will cause permanent damage to the device. These  
are stress ratings only, based on process and design limitations, and this device has not been designed to function outside the  
conditions indicated under Recommended Operating Conditions. Exposure to any condition outside Recommended Operating  
Conditions for extended periods, including absolute-maximum-rated conditions, may affect device reliability and performance.  
(2) Short-circuit to ground, one amplifier per package. Extended short-circuit current, especially with higher supply voltage, can cause  
excessive heating and eventual destruction.  
(3) Input pins are diode-clamped to the power-supply rails. Input signals that may swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less.  
6.2 ESD Ratings  
VALUE  
UNIT  
TLV9161-Q1  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
±2000  
±1500  
V(ESD)  
Electrostatic discharge  
V
TLV9162-Q1 and TLV9164-Q1  
V(ESD) Electrostatic discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
±2500  
±1500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
2.7  
MAX  
UNIT  
VS  
VI  
16  
V+  
V
V
Supply voltage, (V+) (V)  
Common mode voltage range  
Specified temperature  
V–  
40  
TA  
125  
°C  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
 
 
 
 
 
 
 
 
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
www.ti.com.cn  
ZHCSRZ5 APRIL 2023  
6.4 Thermal Information for Single Channel  
TLV9161-Q1  
DBV  
DCK  
(SC70)  
THERMAL METRIC(1)  
UNIT  
(SOT-23)  
5 PINS  
189.3  
86.8  
5 PINS  
202.4  
111.6  
51.6  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
55.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
23.6  
25.8  
ψJT  
55.5  
51.4  
ψJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Thermal Information for Dual Channel  
TLV9162-Q1  
D
DGK  
(VSSOP)  
THERMAL METRIC(1)  
Unit  
(SOIC)  
8 PINS  
130.8  
74.0  
8 PINS  
173.9  
65.7  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
RθJC(top)  
RθJB  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
74.3  
95.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
25.8  
10.9  
ψJT  
73.5  
94.1  
ψJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.6 Thermal Information for Quad Channel  
TLV9164-Q1  
D
PW  
(TSSOP)  
THERMAL METRIC(1)  
UNIT  
(SOIC)  
14 PINS  
94.9  
14 PINS  
120.0  
50.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
51.1  
51.4  
63.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
15.3  
8.1  
ψJT  
51.0  
62.5  
ψJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
 
 
 
 
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
ZHCSRZ5 APRIL 2023  
www.ti.com.cn  
6.7 Electrical Characteristics  
For VS = (V+) (V) = 2.7 V to 16 V (±1.35 V to ±8 V) at TA = 25°C, RL = 10 kconnected to VS / 2, VCM = VS / 2, and  
VOUT = VS / 2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±0.21  
±1.03  
±1.2  
VOS  
Input offset voltage  
mV  
VCM = V–  
TA = 40°C to 125°C  
dVOS/dT  
Input offset voltage drift  
±0.25  
±0.45  
±0.45  
±0.45  
±0.45  
VCM = V–  
TA = 40°C to 125°C  
TA = 40°C to 125°C  
TA = 40°C to 125°C  
µV/℃  
±2  
±3  
TLV9161-Q1, TLV9162-Q1,  
V
CM = V, VS = 5 V to 16 V  
±2.2  
±3.8  
TLV9164-Q1, VCM = V, VS  
= 5 V to 16 V  
Input offset voltage versus  
power supply  
PSRR  
μV/V  
TLV9161-Q1, TLV9162-Q1,  
±2  
±12  
TLV9164-Q1, VCM = V, VS TA = 40°C to 125°C  
= 2.7 V to 16 V(1)  
DC channel separation  
0.4  
µV/V  
INPUT BIAS CURRENT  
IB  
Input bias current  
±10  
±10  
pA  
pA  
IOS  
Input offset current  
NOISE  
2.7  
0.49  
6.8  
μVPP  
EN  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
µVRMS  
f = 1 kHz  
eN  
iN  
Input voltage noise density  
nV/Hz  
fA/Hz  
f = 10 kHz  
4.2  
Input current noise density f = 1 kHz  
55  
INPUT VOLTAGE RANGE  
Common-mode voltage  
range  
VCM  
(V+)  
V
(V)  
85  
VS = 16 V, V< VCM < (V+)  
2 V (PMOS pair)  
110  
VS = 5 V, V< VCM < (V+) –  
75  
98  
90  
2 V (PMOS pair)(1)  
Common-mode rejection  
ratio  
VS = 2.7 V, V< VCM < (V+)  
2 V (PMOS pair)  
CMRR  
dB  
TA = 40°C to 125°C  
VS = 2.7 16 V, (V+) 1 V  
< VCM < V+ (NMOS pair)  
78  
(V+) 2 V < VCM < (V+) 1  
V
See 6-6  
INPUT IMPEDANCE  
ZID  
Differential  
Common-mode  
100 || 9  
6 || 1  
MΩ|| pF  
TΩ|| pF  
ZICM  
OPEN-LOOP GAIN  
VS = 16 V, VCM = VS / 2,  
(V) + 0.1 V < VO < (V+) –  
0.1 V  
120  
104  
90  
136  
136  
125  
125  
105  
105  
TA = 40°C to 125°C  
TA = 40°C to 125°C  
TA = 40°C to 125°C  
VS = 5 V, VCM = VS / 2,  
(V) + 0.1 V < VO < (V+) –  
0.1 V(1)  
AOL  
Open-loop voltage gain  
dB  
VS = 2.7 V, VCM = VS / 2,  
(V) + 0.1 V < VO < (V+) –  
0.1 V(1)  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
www.ti.com.cn  
ZHCSRZ5 APRIL 2023  
6.7 Electrical Characteristics (continued)  
For VS = (V+) (V) = 2.7 V to 16 V (±1.35 V to ±8 V) at TA = 25°C, RL = 10 kconnected to VS / 2, VCM = VS / 2, and  
VOUT = VS / 2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
11  
33  
MHz  
Slew rate  
VS = 16 V, G = +1, VSTEP = 10 V, CL = 20 pF(2)  
To 0.1%, VS = 16 V, VSTEP = 10 V, G = +1, CL = 20 pF  
To 0.1%, VS = 16 V, VSTEP = 2 V, G = +1, CL = 20 pF  
To 0.01%, VS = 16 V, VSTEP = 10 V, G = +1, CL = 20 pF  
To 0.01%, VS = 16 V, VSTEP = 2 V, G = +1, CL = 20 pF  
G = +1, RL = 10 k, CL = 20 pF  
V/μs  
0.70  
0.22  
tS  
Settling time  
μs  
0.89  
0.42  
Phase margin  
64  
°
Overload recovery time  
VIN × gain > VS  
120  
ns  
0.00005%  
126  
VS = 16 V, VO = 3 VRMS, G = 1, f = 1 kHz  
dB  
dB  
dB  
0.0032%  
90  
Total harmonic distortion +  
noise  
THD+N  
VS = 10 V, VO = 3 VRMS, G = 1, f = 1 kHz, RL = 128 Ω  
VS = 10 V, VO = 0.4 VRMS, G = 1, f = 1 kHz, RL = 32 Ω  
0.00032%  
110  
OUTPUT  
VS = 16 V, RL = no load  
6
25  
60  
VS = 16 V, RL = 10 kΩ  
85  
300  
VS = 16 V, RL = 2 kΩ  
VS = 2.7 V, RL = no load  
VS = 2.7 V, RL = 10 kΩ  
VS = 2.7 V, RL = 2 kΩ  
Voltage output swing from Positive and negative  
mV  
rail  
rail headroom  
0.5  
5
20  
20  
50  
ISC  
Short-circuit current  
Capacitive load drive  
±73  
mA  
pF  
CLOAD  
See 6-33  
Open-loop output  
impedance  
ZO  
IO = 0 A  
See 6-30  
POWER SUPPLY  
2.4  
2.8  
2.84  
2.92  
2.98  
TLV9162-Q1, TLV9164-Q1,  
IO = 0 A  
TA = 40°C to 125°C  
TA = 40°C to 125°C  
Quiescent current per  
amplifier  
IQ  
mA  
2.48  
TLV9161-Q1, IO = 0 A  
(1) Specified by characterization only.  
(2) See Slew Rate vs. Input Step Voltage for more information.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
ZHCSRZ5 APRIL 2023  
www.ti.com.cn  
6.8 Typical Characteristics  
at TA = 25°C, VS = ±8 V, VCM = VS / 2, RLOAD = 10 kΩ(unless otherwise noted)  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
-675 -525 -375 -225 -75  
0
75  
Offset Voltage (µV)  
225 375 525 675  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Offset Voltage Drift (µV/°C)  
0.7  
0.8  
0.9  
D001  
D002  
Distribution from 74 amplifiers, TA = 25°C  
6-1. Offset Voltage Production Distribution  
Distribution from 74 amplifiers  
6-2. Offset Voltage Drift Distribution  
500  
400  
300  
200  
100  
0
2000  
1600  
1200  
800  
400  
0
-400  
-800  
-1200  
-1600  
-2000  
-100  
-200  
-300  
-400  
-500  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D014  
D013  
VCM = V+  
VCM = V–  
Data from 74 amplifiers  
Data from 74 amplifiers  
6-4. Offset Voltage vs Temperature  
6-3. Offset Voltage vs Temperature  
2000  
1600  
1200  
800  
2000  
1600  
1200  
800  
400  
400  
0
0
-400  
-800  
-1200  
-1600  
-2000  
-400  
-800  
-1200  
-1600  
-2000  
-8 -7 -6 -5 -4 -3 -2 -1  
0
1
Common-Mode Voltage (V)  
2
3
4
5
6
7
8
4
4.5  
5
5.5  
Common-Mode Voltage (V)  
6
6.5  
7
7.5  
8
D015  
D060  
TA = 25°C  
TA = 25°C  
Data from 74 amplifiers  
Data from 74 amplifiers  
6-5. Offset Voltage vs Common-Mode Voltage  
6-6. Offset Voltage vs Common-Mode Voltage (Transition  
Region)  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
www.ti.com.cn  
ZHCSRZ5 APRIL 2023  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±8 V, VCM = VS / 2, RLOAD = 10 kΩ(unless otherwise noted)  
2000  
1600  
1200  
800  
2000  
1600  
1200  
800  
400  
400  
0
0
-400  
-800  
-1200  
-1600  
-2000  
-400  
-800  
-1200  
-1600  
-2000  
-8 -7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
8
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
Common-Mode Voltage (V)  
Common-Mode Voltage (V)  
TA = 125°C  
TA = 125°C  
Data from 74 amplifiers  
Data from 74 amplifiers  
6-7. Offset Voltage vs Common-Mode Voltage  
6-8. Offset Voltage vs Common-Mode Voltage (Transition  
Region)  
2000  
1600  
1200  
800  
2000  
1600  
1200  
800  
400  
400  
0
0
-400  
-800  
-1200  
-1600  
-2000  
-400  
-800  
-1200  
-1600  
-2000  
-8 -7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
8
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
Common-Mode Voltage (V)  
Common-Mode Voltage (V)  
TA = 40°C  
TA = 40°C  
Data from 74 amplifiers  
Data from 74 amplifiers  
6-9. Offset Voltage vs Common-Mode Voltage  
6-10. Offset Voltage vs Common-Mode Voltage (Transition  
Region)  
500  
400  
300  
200  
100  
0
75  
G=-1  
G=1  
G=11  
G=101  
G=1001  
60  
45  
30  
15  
0
-100  
-200  
-300  
-400  
-500  
-15  
-30  
-45  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
Supply Voltage (V)  
D005  
VCM = V–  
Data from 74 amplifiers  
6-12. Closed-Loop Gain vs Frequency  
6-11. Offset Voltage vs Power Supply  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
ZHCSRZ5 APRIL 2023  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±8 V, VCM = VS / 2, RLOAD = 10 kΩ(unless otherwise noted)  
20  
15  
10  
5
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
IB-  
IB+  
IOS  
IB-  
IB+  
IOS  
0
-5  
-10  
-15  
-20  
0
-50  
-100  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-8  
-6  
-4  
-2  
0
2
Common-Mode Voltage (V)  
4
6
8
D020  
D019  
No Load  
No Load  
6-14. Input Bias Current and Offset Current vs Temperature  
6-13. Input Bias Current and Offset Current vs Common-  
Mode Voltage  
V+  
V+ - 1V  
V+ - 2V  
V+ - 3V  
V+ - 4V  
V+ - 5V  
V+ - 6V  
V+ - 7V  
50  
SR+  
SR-  
45  
40  
35  
30  
25  
20  
15  
10  
5
V+ - 8V  
-40°C  
25°C  
V+ - 9V  
125°C  
V+ - 10V  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
0
0
0.5  
1
1.5  
2
2.5  
3
Input Step (V)  
3.5  
4
4.5  
5
D021  
D035  
VS = 16 V  
6-15. Slew Rate vs Input Step Voltage  
6-16. Output Voltage Swing vs Output Current (Sourcing)  
V- + 10V  
V- + 9V  
V- + 8V  
V- + 7V  
V- + 6V  
V- + 5V  
V- + 4V  
V- + 3V  
V- + 2V  
V- + 1V  
V-  
V+  
-40°C  
25°C  
125°C  
V+ - 1V  
V+ - 2V  
V+ - 3V  
V+ - 4V  
-40°C  
25°C  
125°C  
V+ - 5V  
0
10  
20  
30  
40  
Output Current (mA)  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
Output Current (mA)  
50  
60  
70  
80  
90 100  
D022  
D049  
VS = 16 V  
VS = 5 V  
6-17. Output Voltage Swing vs Output Current (Sinking)  
6-18. Output Voltage Swing vs Output Current (Sourcing)  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
www.ti.com.cn  
ZHCSRZ5 APRIL 2023  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±8 V, VCM = VS / 2, RLOAD = 10 kΩ(unless otherwise noted)  
V- + 5V  
V- + 4V  
V- + 3V  
V- + 2V  
V- + 1V  
V-  
120  
105  
90  
75  
60  
45  
30  
15  
0
-40°C  
25°C  
125°C  
CMRR  
PSRR+  
PSRR-  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
D050  
D006  
VS = 5 V  
6-20. CMRR and PSRR vs Frequency  
6-19. Output Voltage Swing vs Output Current (Sinking)  
1000  
1000  
100  
10  
60  
80  
100  
80  
100  
10  
100  
120  
140  
120  
1
1
140  
100 120 140  
0.1  
-40  
0.1  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D023  
D051  
VS = 16 V, VCM = V–  
6-21. CMRR vs Temperature  
VS = 5 V, VCM = V–  
6-22. CMRR vs Temperature  
1000  
60  
80  
100  
10  
80  
100  
10  
1
100  
120  
140  
160  
100  
1
0.1  
120  
0.01  
0.1  
140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
Temperature (°C)  
D052  
6-24. PSRR vs Temperature  
VS = 2.7 V, VCM = V–  
6-23. CMRR vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
ZHCSRZ5 APRIL 2023  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±8 V, VCM = VS / 2, RLOAD = 10 kΩ(unless otherwise noted)  
2
1.5  
1
100  
10  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
Time (1s/div)  
10  
100  
1k  
Frequency (Hz)  
10k  
D025  
D007  
6-25. 0.1-Hz to 10-Hz Noise  
6-26. Input Voltage Noise Spectral Density vs Frequency  
2.6  
2.55  
2.5  
2.45  
2.4  
2.8  
2.4  
2
2.35  
2.3  
2.25  
2.2  
2.15  
2.1  
2.05  
2
1.95  
1.9  
1.6  
1.2  
0.8  
0.4  
0
Vs=2.7V  
Vs=5V  
Vs=16V  
1.85  
1.8  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16  
Supply Voltage (V)  
D027  
VCM = V–  
VCM = V–  
6-28. Quiescent Current vs Temperature  
6-27. Quiescent Current vs Supply Voltage  
145  
1000  
100  
10  
VS = 2.7V  
VS = 5V  
VS = 16V  
140  
135  
130  
125  
120  
115  
110  
105  
100  
1
0.1  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D028  
D099  
6-29. Open-Loop Voltage Gain vs Temperature (dB)  
6-30. Open-Loop Output Impedance vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
www.ti.com.cn  
ZHCSRZ5 APRIL 2023  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±8 V, VCM = VS / 2, RLOAD = 10 kΩ(unless otherwise noted)  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
RISO = 0W, Overshoot (+)  
RISO = 0W, Overshoot (-)  
RISO = 50W, Overshoot (+)  
RISO = 50W, Overshoot (-)  
RISO = 0W, Overshoot (+)  
RISO = 0W, Overshoot (-)  
RISO = 50W, Overshoot (+)  
RISO = 50W, Overshoot (-)  
0
80  
160  
240 320  
Capacitive Load (pF)  
400  
480  
560  
0
80  
160  
240 320  
Capacitive Load (pF)  
400  
480  
560  
D029  
D030  
20-mVpp output step, G = +1  
20-mVpp output step, G = 1  
6-32. Small-Signal Overshoot vs Capacitive Load  
6-31. Small-Signal Overshoot vs Capacitive Load  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
20  
Input  
Output  
10  
0
-10  
-20  
Time (2 µs/div)  
0
20 40 60 80 100 120 140 160 180 200 220  
Capacitive Load (pF)  
D033  
D004  
CL = 20 pF, G = 1, 20-mVpp step response  
G = +1  
6-34. Small-Signal Step Response  
6-33. Phase Margin vs Capacitive Load  
20  
4
Input  
Output  
Input  
Output  
3
2
10  
0
1
0
-1  
-2  
-3  
-4  
-10  
-20  
Time (2 µs/div)  
Time (2 µs/div)  
D054  
D034  
CL = 20 pF, G = 1, 20-mVpp step response  
6-35. Small-Signal Step Response  
CL = 20 pF, G = 1, 5-Vpp step response  
6-36. Large-Signal Step Response  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
ZHCSRZ5 APRIL 2023  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±8 V, VCM = VS / 2, RLOAD = 10 kΩ(unless otherwise noted)  
4
3
20  
16  
12  
8
Vs=16V  
Vs=2.7V  
Input  
Output  
2
1
0
-1  
-2  
-3  
-4  
4
0
Time (2 µs/div)  
100  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100M  
D055  
6-38. Maximum Output Voltage vs Frequency  
CL = 20 pF, G = 1, 5-Vpp step response  
6-37. Large-Signal Step Response  
-60  
120  
110  
100  
90  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
80  
70  
60  
50  
40  
30  
20  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10M  
100M  
Frequency (Hz)  
1G  
D011  
D012  
6-39. Channel Separation vs Frequency  
6-40. EMIRR (Electromagnetic Interference Rejection Ratio)  
vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
www.ti.com.cn  
ZHCSRZ5 APRIL 2023  
7 Detailed Description  
7.1 Overview  
The TLV916x-Q1 family (TLV9161-Q1, TLV9162-Q1, and TLV9164-Q1) is a family of 16-V, general-purpose,  
automotive operational amplifiers.  
These devices offer excellent DC precision and AC performance, including rail-to-rail input or output, low offset  
(±210 µV, typical), low offset drift (±0.25 µV/°C, typical), and 11-MHz bandwidth.  
Features such as wide differential input range, high short-circuit current (±73 mA), and high slew rate (33 V/μs)  
make the TLV916x-Q1 a flexible, robust, and high-performance operational amplifier for 16-V automotive  
applications.  
7.2 Functional Block Diagram  
+
NCH Input  
Stage  
IN+  
IN-  
+
16-V  
OUT  
Gain  
Stage  
Output  
Stage  
Differential  
MUX-Friendly  
Front End  
Slew  
Boost  
Shutdown  
Circuitry  
+
PCH Input  
Stage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
 
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
ZHCSRZ5 APRIL 2023  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Input Protection Circuitry  
The TLV916x-Q1 uses a special input architecture to eliminate the requirement for input protection diodes but  
still provides robust input protection under transient conditions. 7-1 shows conventional input diode protection  
schemes that are activated by fast transient step responses and introduce signal distortion and settling time  
delays because of alternate current paths, as shown in 7-2. For low-gain circuits, these fast-ramping input  
signals forward-bias back-to-back diodes, causing an increase in input current and resulting in extended settling  
time.  
V+  
V+  
VIN+  
VIN+  
VOUT  
VOUT  
TLV916x  
~0.7 V  
16 V  
VIN  
VINꢀ  
V  
Vꢀ  
TLV916x Provides Full 16-V  
Differential Input Range  
Conventional Input Protection  
Limits Differential Input Range  
7-1. TLV916x-Q1 Input Protection Does Not Limit Differential Input Capability  
1
Ron_mux  
Vn = 8 V  
RFILT  
8 V  
Sn  
D
1
2
~–7.3 V  
8 V  
CFILT  
CS  
CD  
VIN–  
2
Ron_mux  
Sn+1  
V
n+1 = –8 V RFILT  
–8 V  
~0.7 V  
VOUT  
CFILT  
CS  
Idiode_transient  
VIN+  
–8 V  
Input Low-Pass Filter  
Simplified Mux Model  
Buffer Amplifier  
7-2. Back-to-Back Diodes Create Settling Issues  
The TLV916x-Q1 family of operational amplifiers provides a true high-impedance differential input capability  
using a patented input protection architecture that does not introduce additional signal distortion or delayed  
settling time, making the device an optimal op amp for multichannel, high-switched, input applications. The  
TLV916x-Q1 tolerates a maximum differential swing (voltage between inverting and non-inverting pins of the op  
amp) of up to 16 V, making the device suitable for use as a comparator or in applications with fast-ramping input  
signals such as data-acquisition systems; see the TI TechNote MUX-Friendly Precision Operational Amplifiers  
for more information.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
 
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
www.ti.com.cn  
ZHCSRZ5 APRIL 2023  
7.3.2 EMI Rejection  
The TLV916x-Q1 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from  
sources such as wireless communications and densely-populated boards with a mix of analog signal chain and  
digital components. EMI immunity can be improved with circuit design techniques; the TLV916x-Q1 benefits from  
these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the  
immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. 7-3  
shows the results of this testing on the TLV916x-Q1. 7-1 provides the EMIRR IN+ values for the TLV916x-Q1  
at particular frequencies commonly encountered in real-world applications. The EMI Rejection Ratio of  
Operational Amplifiers application report contains detailed information on the topic of EMIRR performance as it  
relates to op amps and is available for download from www.ti.com.  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10M  
100M  
Frequency (Hz)  
1G  
D012  
7-3. EMIRR Testing  
7-1. TLV9161-Q1 EMIRR IN+ for Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF)  
applications  
400 MHz  
50.0 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5 GHz  
56.3 dB  
65.6 dB  
70.0 dB  
78.9 dB  
91.0 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
ZHCSRZ5 APRIL 2023  
www.ti.com.cn  
7.3.3 Thermal Protection  
The internal power dissipation of any amplifier causes its internal (junction) temperature to rise. This  
phenomenon is called self heating. The absolute maximum junction temperature of the TLV916x-Q1 is 150°C.  
Exceeding this temperature causes damage to the device. The TLV916x-Q1 has a thermal protection feature  
that reduces damage from self heating. The protection works by monitoring the temperature of the device and  
turning off the op amp output drive for temperatures above 170°C. 7-4 shows an application example for the  
TLV9162-Q1 that has significant self heating because of its power dissipation (0.627 W). In this example, both  
channels have a quiescent power dissipation while one of the channels has a significant load. Thermal  
calculations indicate that for an ambient temperature of 60°C, the device junction temperature reaches 175°C.  
The actual device, however, turns off the output drive to recover towards a safe junction temperature. 7-4  
shows how the circuit behaves during thermal protection. During normal operation, the device acts as a buffer so  
the output is 5 V. When self heating causes the device junction temperature to increase above the internal limit,  
the thermal protection forces the output to a high-impedance state and the output is pulled to ground through  
resistor RL. If the condition that caused excessive power dissipation is not removed, the amplifier will oscillate  
between a shutdown and enabled state until the output fault is corrected. Please note that thermal performance  
can vary greatly depending on the package selected and the PCB layout design. This example uses the thermal  
performance of the TSSOP (8) package.  
One channel has load  
Consider IQ of two channels  
TA = 60°C  
5 V  
16 V  
PD = 0.627W  
JA = 183.4°C/W  
0 V  
TJ = 183.4°C/W × 0.627W + 60°C  
TJ = 175°C (expected)  
TLV9162  
170ºC  
IOUT = 50 mA  
+
5 V  
RL  
100  
+
VIN  
5 V  
7-4. Thermal Protection  
7.3.4 Capacitive Load and Stability  
The TLV916x-Q1 features an output stage capable of driving moderate capacitive loads, and by leveraging an  
isolation resistor, the device can easily be configured to drive larger capacitive loads. Increasing the gain  
enhances the ability of the amplifier to drive greater capacitive loads; see 7-5 and 7-6. The particular op  
amp circuit configuration, layout, gain, and output loading are some of the factors to consider when establishing  
whether an amplifier will be stable in operation.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
www.ti.com.cn  
ZHCSRZ5 APRIL 2023  
70  
60  
50  
40  
30  
20  
10  
70  
60  
50  
40  
30  
20  
10  
0
RISO = 0W, Overshoot (+)  
RISO = 0W, Overshoot (-)  
RISO = 50W, Overshoot (+)  
RISO = 50W, Overshoot (-)  
RISO = 0W, Overshoot (+)  
RISO = 0W, Overshoot (-)  
RISO = 50W, Overshoot (+)  
RISO = 50W, Overshoot (-)  
0
0
80  
160  
240 320  
Capacitive Load (pF)  
400  
480  
560  
0
80  
160  
240 320  
Capacitive Load (pF)  
400  
480  
560  
D030  
D029  
7-5. Small-Signal Overshoot vs Capacitive Load 7-6. Small-Signal Overshoot vs Capacitive Load  
(20-mVpp Output Step, G = +1) (20-mVpp Output Step, G = -1)  
For additional drive capability in unity-gain configurations, improve capacitive load drive by inserting a small  
resistor, RISO, in series with the output, as shown in 7-7. This resistor significantly reduces ringing and  
maintains DC performance for purely capacitive loads. However, if a resistive load is in parallel with the  
capacitive load, then a voltage divider is created, thus introducing a gain error at the output and slightly reducing  
the output swing. The error introduced is proportional to the ratio RISO / RL, and is generally negligible at low  
output levels. A high capacitive load drive makes the TLV916x-Q1 well suited for applications such as reference  
buffers, MOSFET gate drives, and cable-shield drives. The circuit shown in 7-7 uses an isolation resistor,  
RISO, to stabilize the output of an op amp. RISO modifies the open-loop gain of the system for increased phase  
margin.  
+Vs  
Vout  
Riso  
+
Cload  
+
Vin  
-Vs  
œ
7-7. Extending Capacitive Load Drive With the TLV9161-Q1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
ZHCSRZ5 APRIL 2023  
www.ti.com.cn  
7.3.5 Common-Mode Voltage Range  
The TLV916x-Q1 is a 16-V, rail-to-rail input operational amplifier with an input common-mode range that extends  
to both supply rails. This wide range is achieved with paralleled complementary N-channel and P-channel  
differential input pairs, as shown in 7-8. The N-channel pair is active for input voltages close to the positive  
rail, typically from (V+) 1 V to the positive supply. The P-channel pair is active for inputs from the negative  
supply to approximately (V+) 2 V. There is a small transition region, typically (V+) 2 V to (V+) 1 V in  
which both input pairs are on. This transition region can vary modestly with process variation. Within this region  
PSRR, CMRR, offset voltage, offset drift, noise, and THD performance may be degraded compared to operation  
outside this region.  
6-5 shows this transition region for a typical device in terms of input voltage offset in more detail.  
For more information on common-mode voltage range and PMOS/NMOS pair interaction, see Op Amps With  
Complementary-Pair Input Stages application note.  
V+  
IN-  
PMOS  
PMOS  
NMOS  
IN+  
NMOS  
V-  
7-8. Rail-to-Rail Input Stage  
7.3.6 Phase Reversal Protection  
The TLV916x-Q1 family has internal phase-reversal protection. Many op amps exhibit a phase reversal when the  
input is driven beyond its linear common-mode range. This condition is most often encountered in non-inverting  
circuits when the input is driven beyond the specified common-mode voltage range, causing the output to  
reverse into the opposite rail. The TLV916x-Q1 is a rail-to-rail input op amp; therefore, the common-mode range  
can extend up to the rails. Input signals beyond the rails do not cause phase reversal; instead, the output limits  
into the appropriate rail. For more information on phase reversal, see Op Amps With Complementary-Pair Input  
Stages application note.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
www.ti.com.cn  
ZHCSRZ5 APRIL 2023  
7.3.7 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress  
(EOS). These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the  
output pin. Each of these different pin functions have electrical stress limits determined by the voltage  
breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to  
the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them  
from accidental ESD events both before and during product assembly.  
Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is  
helpful. 7-9 shows an illustration of the ESD circuits contained in the TLV916x-Q1 (indicated by the dashed  
line area). The ESD protection circuitry involves several current-steering diodes connected from the input and  
output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device or  
the power-supply ESD cell, internal to the operational amplifier. This protection circuitry is intended to remain  
inactive during normal circuit operation.  
TVS  
RF  
+VS  
VDD  
50  
50  
R1  
RS  
IN–  
IN+  
+
Power-Supply  
ESD Cell  
RL  
ID  
+
VIN  
VSS  
–VS  
TVS  
7-9. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
An ESD event is very short in duration and very high voltage (for example; 1 kV, 100 ns), whereas an EOS event  
is long duration and lower voltage (for example; 50 V, 100 ms). The ESD diodes are designed for out-of-circuit  
ESD protection (that is, during assembly, test, and storage of the device before being soldered to the PCB).  
During an ESD event, the ESD signal is passed through the ESD steering diodes to an absorption circuit  
(labeled ESD power-supply circuit). The ESD absorption circuit clamps the supplies to a safe level.  
Although this behavior is necessary for out-of-circuit protection, excessive current and damage is caused if  
activated in-circuit. A transient voltage suppressors (TVS) can be used to prevent against damage caused by  
turning on the ESD absorption circuit during an in-circuit ESD event. Using the appropriate current limiting  
resistors and TVS diodes allows for the use of device ESD diodes to protect against EOS events.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
ZHCSRZ5 APRIL 2023  
www.ti.com.cn  
7.3.8 Overload Recovery  
Overload recovery is defined as the time required for the op amp output to recover from a saturated state to a  
linear state. The output devices of the op amp enter a saturation region when the output voltage exceeds the  
rated operating voltage, either due to the high input voltage or the high gain. After the device enters the  
saturation region, the charge carriers in the output devices require time to return back to the linear state. After  
the charge carriers return back to the linear state, the device begins to slew at the specified slew rate. Thus, the  
propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time.  
The overload recovery time for the TLV916x-Q1 is approximately 120 ns.  
7.3.9 Typical Specifications and Distributions  
Designers often have questions about a typical specification of an amplifier in order to design a more robust  
circuit. Due to natural variation in process technology and manufacturing procedures, every specification of an  
amplifier will exhibit some amount of deviation from the ideal value, like an amplifier's input offset voltage. These  
deviations often follow Gaussian (bell curve), or normal distributions, and circuit designers can leverage this  
information to guardband their system, even when there is not a minimum or maximum specification in the  
Electrical Characteristics table.  
0.00312% 0.13185%  
0.13185% 0.00312%  
0.00002%  
0.00002%  
2.145% 13.59% 34.13% 34.13% 13.59% 2.145%  
1
1 1 1 1 1 1 1 1  
1
1
1
-61 -51 -41 -31 -21 -1  
+1 +21 +31 +41 +51 +61  
7-10. Ideal Gaussian Distribution  
7-10 shows an example distribution, where µ, or mu, is the mean of the distribution, and where σ, or sigma,  
is the standard deviation of a system. For a specification that exhibits this kind of distribution, approximately two-  
thirds (68.26%) of all units can be expected to have a value within one standard deviation, or one sigma, of the  
mean (from µ σto µ + σ).  
Depending on the specification, values listed in the typical column of the Electrical Characteristics table are  
represented in different ways. As a general rule of thumb, if a specification naturally has a nonzero mean (for  
example, like gain bandwidth), then the typical value is equal to the mean (µ). However, if a specification  
naturally has a mean near zero (like input offset voltage), then the typical value is equal to the mean plus one  
standard deviation (µ + σ) in order to most accurately represent the typical value.  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
www.ti.com.cn  
ZHCSRZ5 APRIL 2023  
This chart can be used to calculate approximate probability of a specification in a unit; for example, for TLV916x-  
Q1, the typical input voltage offset is 210 µV, so 68.2% of all TLV916x-Q1 devices are expected to have an offset  
from 210 µV to 210 µV. At 4 σ (±840 µV), 99.9937% of the distribution has an offset voltage less than ±840  
µV, which means 0.0063% of the population is outside of these limits, which corresponds to about 1 in 15,873  
units.  
Specifications with a value in the minimum or maximum column are assured by TI, and units outside these limits  
will be removed from production material. For example, the TLV916x-Q1 family has a maximum offset voltage of  
1 mV at 25°C, and even though this corresponds to about 5-σ (1 in 1.7 million units), which is extremely  
unlikely, TI assures that any unit with larger offset than 1 mV will be removed from production material.  
For specifications with no value in the minimum or maximum column, consider selecting a sigma value of  
sufficient guardband for the application, and design worst-case conditions using this value. For example, the 6-  
σ value corresponds to about 1 in 500 million units, which is an extremely unlikely chance, and could be an  
option as a wide guardband to design a system around. In this case, the TLV916x-Q1 family does not have a  
maximum or minimum for offset voltage drift, but based on the typical value of 0.25 µV/°C in the Electrical  
Characteristics table, it can be calculated that the 6-σ value for offset voltage drift is about 1.5 µV/°C. When  
designing for worst-case system conditions, this value can be used to estimate the worst possible offset across  
temperature without having an actual minimum or maximum value.  
However, process variation and adjustments over time can shift typical means and standard deviations, and  
unless there is a value in the minimum or maximum specification column, TI cannot assure the performance of a  
device. This information should be used only to estimate the performance of a device.  
7.4 Device Functional Modes  
The TLV916x-Q1 has a single functional mode and is operational when the power-supply voltage is greater than  
2.7 V (±1.35 V). The maximum power supply voltage for the TLV916x-Q1 is 16 V (±8 V).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
ZHCSRZ5 APRIL 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TLV916x-Q1 family offers excellent DC precision and AC performance. These devices operate up to 16-V  
supply rails and offer true rail-to-rail input/output, low offset voltage and offset voltage drift, as well as 11-MHz  
bandwidth and high output drive. These features make the TLV916x-Q1 a robust, high-performance operational  
amplifier for 16-V industrial applications.  
8.2 Typical Applications  
8.2.1 Low-Side Current Measurement  
8-1 shows the TLV9161-Q1 configured in a low-side current sensing application. For a full analysis of the  
circuit shown in 8-1 including theory, calculations, simulations, and measured data, see TI Precision Design  
TIPD129, 0-A to 1-A Single-Supply Low-Side Current-Sensing Solution.  
VCC  
5 V  
LOAD  
TLV9161  
+
VOUT  
RSHUNT  
ILOAD  
100 m  
LM7705  
RF  
5.76 k  
RG  
120  
8-1. TLV9161-Q1 in a Low-Side, Current-Sensing Application  
8.2.1.1 Design Requirements  
The design requirements for this design are:  
Load current: 0 A to 1 A  
Output voltage: 4.9 V  
Maximum shunt voltage: 100 mV  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
 
 
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
www.ti.com.cn  
ZHCSRZ5 APRIL 2023  
8.2.1.2 Detailed Design Procedure  
The transfer function of the circuit in 8-1 is given in 方程1:  
V
= I  
× R × Gain  
SHUNT  
(1)  
OUT  
LOAD  
The load current (ILOAD) produces a voltage drop across the shunt resistor (RSHUNT). The load current is set from  
0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is  
defined using 方程2:  
V
SHUNT_MAX  
100 mV  
1 A  
R
=
=
= 100 mΩ  
(2)  
SHUNT  
I
LOAD_MAX  
Using 方程式 2, RSHUNT is calculated to be 100 m. The voltage drop produced by ILOAD and RSHUNT is  
amplified by the TLV916x-Q1 to produce an output voltage of 0 V to 4.9 V. The gain needed by the TLV916x-Q1  
to produce the necessary output voltage is calculated using 方程3:  
V
− V  
− V  
OUT_MAX  
OUT_MIN  
Gain =  
(3)  
V
IN_MAX  
IN_MIN  
Using 方程式 3, the required gain is calculated to be 49 V/V, which is set with resistors RF and RG. 方程式 4 is  
used to size the resistors, RF and RG, to set the gain of the TLV916x-Q1 to 49 V/V.  
R
F
Gain = 1 +  
(4)  
R
G
Choosing RF as 5.76 k, RG is calculated to be 120 . RF and RG were chosen as 5.76 kand 120 because  
the values are standard value resistors that create a 49:1 ratio. Other resistors that create a 49:1 ratio can also  
be used. However, excessively large resistors generate thermal noise that exceeds the intrinsic noise of the op  
amp. 8-2 shows the measured transfer function of the circuit shown in 8-1.  
8.2.1.3 Application Curves  
5
4
3
2
1
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
ILOAD (A)  
1
8-2. Low-Side, Current-Sense, Transfer Function  
8.3 Power Supply Recommendations  
The TLV916x-Q1 is specified for operation from 2.7 V to 16 V (±1.35 V to ±8 V); many specifications apply from  
40°C to 125°C or with specific supply voltage and test conditions.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
 
 
 
 
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
ZHCSRZ5 APRIL 2023  
www.ti.com.cn  
CAUTION  
Supply voltages larger than 20 V can permanently damage the device; see the Absolute Maximum  
Ratings section.  
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout  
section.  
8.4 Layout  
8.4.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp itself.  
Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to  
the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds paying attention to the flow of the ground current.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed  
to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in 8-4, keeping RF and RG  
close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic  
package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended to  
remove moisture introduced into the device packaging during the cleaning process. A low temperature, post  
cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
www.ti.com.cn  
ZHCSRZ5 APRIL 2023  
8.4.2 Layout Example  
V-  
C3  
INPUT  
OUTPUT  
2
1
3
R3  
+
4
C4  
C2  
V+  
R1  
C1  
R2  
8-3. Schematic for Non-inverting Configuration Layout Example  
GND  
GND  
OUTPUT  
V-  
GND  
8-4. Operational Amplifier Board Layout for Non-inverting Configuration - SC70 (DCK) Package  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
ZHCSRZ5 APRIL 2023  
www.ti.com.cn  
GND  
GND  
GND  
V+  
INPUT A  
OUTPUT B  
V-  
GND  
GND  
GND  
8-5. Example Layout for VSSOP-8 (DGK) Package  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
www.ti.com.cn  
ZHCSRZ5 APRIL 2023  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
9.1.1.1 TINA-TI(Free Software Download)  
TINAis a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a  
free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range  
of both passive and active models. TINA-TI provides all the conventional dc, transient, and frequency domain  
analysis of SPICE, as well as additional design capabilities.  
Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing  
capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select  
input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.  
备注  
These files require that either the TINA software (from DesignSoft) or TINA-TI software be installed.  
Download the free TINA-TI software from the TINA-TI folder.  
9.2 Documentation Support  
9.2.1 Related Documentation  
For related documentation, see the following:  
1. Texas Instruments, Analog Engineer's Circuit Cookbook: Amplifiers  
2. Texas Instruments, AN31 amplifier circuit collection application note  
3. Texas Instruments, MUX-Friendly, Precision Operational Amplifiers application brief  
4. Texas Instruments, EMI Rejection Ratio of Operational Amplifiers application note  
5. Texas Instruments, Op Amps With Complementary-Pair Input Stages application note  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
 
 
 
 
TLV9161-Q1, TLV9162-Q1, TLV9164-Q1  
ZHCSRZ5 APRIL 2023  
www.ti.com.cn  
9.5 Trademarks  
TINA-TIis a trademark of Texas Instruments, Inc and DesignSoft, Inc.  
TINAand DesignSoftare trademarks of DesignSoft, Inc.  
TI E2Eis a trademark of Texas Instruments.  
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.  
所有商标均为其各自所有者的财产。  
9.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TLV9161-Q1 TLV9162-Q1 TLV9164-Q1  
English Data Sheet: SBOSAD7  
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV9161QDBVRQ1  
TLV9161QDCKRQ1  
TLV9162QDGKRQ1  
TLV9162QDRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SC70  
DBV  
DCK  
DGK  
D
5
5
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2W2H  
1NJ  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
VSSOP  
SOIC  
8
2S5T  
8
T9162Q  
TLV9164QDRQ1  
SOIC  
D
14  
14  
TLV9164QD  
T9164PW  
TLV9164QPWRQ1  
TSSOP  
PW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jul-2023  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV9161-Q1, TLV9162-Q1, TLV9164-Q1 :  
Catalog : TLV9161, TLV9162, TLV9164  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV9161IDBVR

TLV916x 16-V, 11-MHz, Rail-to-Rail Input/Output, Low Offset Voltage, Low Noise Op Amp

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9161IDCKR

TLV916x 16-V, 11-MHz, Rail-to-Rail Input/Output, Low Offset Voltage, Low Noise Op Amp

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9161QDBVRQ1

Automotive, single, 16-V 11-MHz rail-to-rail input and output operational amplifier | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9161QDCKRQ1

Automotive, single, 16-V 11-MHz rail-to-rail input and output operational amplifier | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9161SIDBVR

TLV916x 16-V, 11-MHz, Rail-to-Rail Input/Output, Low Offset Voltage, Low Noise Op Amp

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9162

TLV916x 16-V, 11-MHz, Rail-to-Rail Input/Output, Low Offset Voltage, Low Noise Op Amp

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9162-Q1

汽车类、双通道、16V、11MHz 轨到轨输入和输出运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9162IDDFR

TLV916x 16-V, 11-MHz, Rail-to-Rail Input/Output, Low Offset Voltage, Low Noise Op Amp

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9162IDGKR

TLV916x 16-V, 11-MHz, Rail-to-Rail Input/Output, Low Offset Voltage, Low Noise Op Amp

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9162IDR

TLV916x 16-V, 11-MHz, Rail-to-Rail Input/Output, Low Offset Voltage, Low Noise Op Amp

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9162IDSGR

TLV916x 16-V, 11-MHz, Rail-to-Rail Input/Output, Low Offset Voltage, Low Noise Op Amp

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9162IPWR

TLV916x 16-V, 11-MHz, Rail-to-Rail Input/Output, Low Offset Voltage, Low Noise Op Amp

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI