TLV9364QPWRQ1 [TI]

汽车类、四通道、40V、10.6MHz 轨到轨输出运算放大器 | PW | 14 | -40 to 125;
TLV9364QPWRQ1
型号: TLV9364QPWRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类、四通道、40V、10.6MHz 轨到轨输出运算放大器 | PW | 14 | -40 to 125

放大器 运算放大器
文件: 总48页 (文件大小:2621K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
TLV936x-Q1 适用于成本敏感型系统的汽车10MHz40V、轨至轨输出运算放  
大器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
TLV936x-Q1 TLV9361-Q1TLV9362-Q1 和  
TLV9364-Q1一个符合 AEC-Q100 车标准的  
40V 成本优化型运算放大器系列。  
– 温度等140°C +125°C  
– 人体放电模(HBM) 静电放(ESD) 分级等  
2A  
这些器件具有出色的直流和交流规格包括轨至轨输  
出、低输入电压噪声密度 (6nV/Hz)、低失调电压  
典 型 值 为 ±400µV 、 低 温 漂 典 型 值 为  
±1.25µV/°C10.6MHz 带宽。  
– 充电器件模(CDM) ESD 分级等级C6  
• 低失调电压±400µV  
• 低失调电压漂移±1.25µV/°C  
• 低噪声1kHz 8.5nV/Hz6nV/Hz 宽带  
• 高共模抑制110dB  
TLV936x-Q1 的特性例如 EMIRR 滤波、大输出电流  
(±60mA) 以及高压摆率 (25V/µs)使其成为了一款可  
靠的运算放大器适用于高电压成本敏感型应用。  
• 低偏置电流±10pA  
• 轨到轨输出  
• 高带宽10.6MHz GBW单位增益稳定  
• 高压摆率25 V/µs  
• 低静态电流每个放大2.6 mA  
• 宽电源电压±2.25V ±20V4.5V 40V  
• 强大EMIRR 性能  
TLV936x-Q1 系列运算放大器采用标准封装额定工作  
温度范围40°C 125°C。  
封装信息  
器件型号(1)  
封装尺寸标称值)  
2.00mm x 1.25mm  
2.90mm × 1.60mm  
3.00mm x 3.00mm  
4.90mm × 3.90mm  
5.00mm x 4.40mm  
8.65mm x 3.90mm  
封装  
DCKSC705)  
DBVSOT-235)  
DGKVSSOP8)  
DSOIC8)  
TLV9361-Q1  
2 应用  
汽车音响主机  
TLV9362-Q1  
TLV9364-Q1  
数字驾驶舱处理单元  
远程信息处理控制单元  
紧急呼(eCall)  
汽车有源噪声消除  
汽车外部放大器  
PWTSSOP14)  
DSOIC14)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
RG  
RF  
R1  
VOUT  
VIN  
C1  
1
2pR1C1  
f
=
-3 dB  
VOUT  
VIN  
RF  
1
( 1 + sR C (  
= 1 +  
(
(
RG  
1
1
单极低通滤波器中TLV936x-Q1  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOSAD6  
 
 
 
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................19  
7.4 Device Functional Modes..........................................24  
8 Application and Implementation..................................25  
8.1 Application Information............................................. 25  
8.2 Typical Applications.................................................. 25  
8.3 Power Supply Recommendations.............................26  
8.4 Layout....................................................................... 27  
9 Device and Documentation Support............................29  
9.1 Device Support......................................................... 29  
9.2 Documentation Support............................................ 29  
9.3 接收文档更新通知..................................................... 29  
9.4 支持资源....................................................................29  
9.5 Trademarks...............................................................29  
9.6 静电放电警告............................................................ 30  
9.7 术语表....................................................................... 30  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information for Single Channel..................... 7  
6.5 Thermal Information for Dual Channel........................7  
6.6 Thermal Information for Quad Channel...................... 7  
6.7 Electrical Characteristics.............................................8  
6.8 Typical Characteristics.............................................. 11  
7 Detailed Description......................................................18  
7.1 Overview...................................................................18  
7.2 Functional Block Diagram.........................................18  
Information.................................................................... 30  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (Aptil 2023) to Revision A (May 2023)  
Page  
PW D 封装状态从预发布 更改为正在供货 ................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
OUT  
Vœ  
1
2
3
5
V+  
IN+  
Vœ  
1
2
3
5
V+  
IN+  
4
INœ  
INœ  
4
OUT  
Not to scale  
Not to scale  
5-1. TLV9361-Q1 DBV Package,  
5-Pin SOT-23  
5-2. TLV9361-Q1 DCK Package,  
5-Pin SC70  
(Top View)  
(Top View)  
5-1. Pin Functions: TLV9361-Q1  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
IN+  
SOT-23  
SC70  
3
4
1
5
2
1
3
4
5
2
I
Non-inverting input  
Inverting input  
I
IN–  
OUT  
V+  
O
Output  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
(1) I = input, O = output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
OUT1  
IN1œ  
IN1+  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT2  
IN2œ  
IN2+  
Not to scale  
5-3. TLV9362-Q1 D and DGK Package,  
8-Pin SOIC and VSSOP  
(Top View)  
5-2. Pin Functions: TLV9362-Q1  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
IN1+  
NO.  
3
I
I
Non-inverting input, channel 1  
2
Inverting input, channel 1  
Non-inverting input, channel 2  
Inverting input, channel 2  
Output, channel 1  
IN1–  
IN2+  
IN2–  
OUT1  
OUT2  
V+  
5
I
6
I
1
O
O
7
Output, channel 2  
8
Positive (highest) power supply  
Negative (lowest) power supply  
4
V–  
(1) I = input, O = output  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
OUT1  
IN1œ  
IN1+  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT4  
IN4œ  
IN4+  
Vœ  
IN2+  
IN2œ  
OUT2  
IN3+  
IN3œ  
OUT3  
8
Not to scale  
5-4. TLV9364-Q1 D and PW Package,  
SOIC and TSSOP  
(Top View)  
5-3. Pin Functions: TLV9364-Q1  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
IN1+  
NO.  
3
I
I
Non-inverting input, channel 1  
2
Inverting input, channel 1  
Non-inverting input, channel 2  
Inverting input, channel 2  
Non-inverting input, channel 3  
Inverting input, channel 3  
Non-inverting input, channel 4  
Inverting input, channel 4  
Output, channel 1  
IN1–  
IN2+  
5
I
6
I
IN2–  
IN3+  
10  
9
I
I
IN3–  
IN4+  
12  
13  
1
I
I
IN4–  
OUT1  
OUT2  
OUT3  
OUT4  
V+  
O
O
O
O
7
Output, channel 2  
8
Output, channel 3  
14  
4
Output, channel 4  
Positive (highest) power supply  
Negative (lowest) power supply  
11  
V–  
(1) I = input, O = output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
0
MAX  
UNIT  
V
42  
(V+) + 0.5  
VS + 0.2  
10  
Supply voltage, VS = (V+) (V)  
Common-mode voltage(3)  
V
(V) 0.5  
Signal input pins  
Differential voltage(3)  
Current(3)  
V
mA  
10  
Output short-circuit(2)  
Continuous  
Operating ambient temperature, TA  
Junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
150  
°C  
°C  
°C  
55  
65  
(1) Operating the device beyond the ratings listed under Absolute Maximum Ratings causes permanent damage to the device. These are  
stress ratings only, based on process and design limitations, and this device has not been designed to function outside the conditions  
indicated under Recommended Operating Conditions. Exposure to any condition outside Recommended Operating Conditions for  
extended periods, including absolute-maximum-rated conditions, can affect device reliability and performance.  
(2) Short-circuit to ground, one amplifier per package. Extended short-circuit current, especially with higher supply voltage, can cause  
excessive heating and eventual destruction.  
(3) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less.  
6.2 ESD Ratings  
VALUE  
UNIT  
TLV9361-Q1  
V(ESD)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
±2000  
±1500  
Electrostatic discharge  
V
TLV9362-Q1 and TLV9364-Q1  
V(ESD) Electrostatic discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
±2500  
±1500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
4.5  
MAX  
UNIT  
VS  
VI  
40  
(V+) 2  
125  
V
V
Supply voltage, (V+) (V)  
Common mode voltage range  
Specified temperature  
(V)  
40  
TA  
°C  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
 
 
 
 
 
 
 
 
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
6.4 Thermal Information for Single Channel  
TLV9361-Q1  
DBV  
DCK  
(SC70)  
THERMAL METRIC(1)  
UNIT  
(SOT-23)  
5 PINS  
189.3  
86.8  
5 PINS  
202.4  
111.6  
51.6  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
55.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
23.6  
25.8  
ψJT  
55.5  
51.4  
ψJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Thermal Information for Dual Channel  
TLV9362-Q1  
D
DGK  
(VSSOP)  
THERMAL METRIC(1)  
Unit  
(SOIC)  
8 PINS  
130.8  
74.0  
8 PINS  
173.9  
65.7  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
RθJC(top)  
RθJB  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
74.3  
95.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
25.8  
10.9  
ψJT  
73.5  
94.1  
ψJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.6 Thermal Information for Quad Channel  
TLV9364-Q1  
D
PW  
(TSSOP)  
THERMAL METRIC(1)  
UNIT  
(SOIC)  
14 PINS  
94.9  
14 PINS  
120.0  
50.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
51.1  
51.4  
63.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
15.3  
8.1  
ψJT  
51.0  
62.5  
ψJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
 
 
 
 
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
6.7 Electrical Characteristics  
For VS = (V+) (V) = 4.5 V to 40 V (±2.25 V to ±20 V) at TA = 25°C, RL = 10 kconnected to VS / 2, VCM = VS / 2, and  
VOUT = VS / 2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±0.4  
±1.7  
±2  
VOS  
Input offset voltage  
mV  
VCM = V–  
VCM = V–  
TA = 40°C to 125°C  
dVOS/dT  
PSRR  
Input offset voltage drift  
±1.25  
±1.5  
1
TA = 40°C to 125°C  
TA = 40°C to 125°C  
µV/℃  
μV/V  
µV/V  
Input offset voltage versus  
power supply  
VCM = V, VS = 5 V to 40  
±7.5  
V(1)  
DC channel separation  
INPUT BIAS CURRENT  
IB  
Input bias current  
±10  
±10  
pA  
pA  
IOS  
Input offset current  
NOISE  
6
1
μVPP  
EN  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
µVRMS  
f = 1 kHz  
8.5  
6
eN  
iN  
Input voltage noise density  
nV/Hz  
fA/Hz  
f = 10 kHz  
Input current noise density f = 1 kHz  
100  
INPUT VOLTAGE RANGE  
Common-mode voltage  
range  
VCM  
V
(V)  
95  
(V+) 2  
VS = 40 V, V< VCM  
(V+) 2 V  
<
110  
85  
Common-mode rejection  
ratio  
CMRR  
dB  
TA = 40°C to 125°C  
VS = 5 V, V< VCM < (V+) –  
75  
2 V(1)  
INPUT IMPEDANCE  
ZID  
Differential  
Common-mode  
100 || 9  
6 || 1  
MΩ|| pF  
TΩ|| pF  
ZICM  
OPEN-LOOP GAIN  
VS = 40 V, VCM = VS / 2,  
(V) + 0.1 V < VO < (V+) –  
0.1 V  
115  
100  
130  
130  
VS = 40 V, VCM = VS / 2,  
(V) + 0.12 V < VO < (V+) TA = 40°C to 125°C  
0.12 V  
AOL  
Open-loop voltage gain  
dB  
VS = 5 V, VCM = VS / 2,  
120  
120  
(V) + 0.1 V < VO < (V+) –  
0.1 V(1)  
TA = 40°C to 125°C  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
10.6  
25  
MHz  
Slew rate  
VS = 40 V, G = +1, VSTEP = 10 V, CL = 20 pF(3)  
To 0.1%, VS = 40 V, VSTEP = 10 V, G = +1, CL = 20 pF  
To 0.1%, VS = 40 V, VSTEP = 2 V, G = +1, CL = 20 pF  
To 0.01%, VS = 40 V, VSTEP = 10 V, G = +1, CL = 20 pF  
To 0.01%, VS = 40 V, VSTEP = 2 V, G = +1, CL = 20 pF  
G = +1, RL = 10 k, CL = 20 pF  
V/μs  
0.65  
0.3  
tS  
Settling time  
μs  
0.86  
0.44  
64  
Phase margin  
°
Overload recovery time  
VIN × gain > VS  
170  
ns  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
For VS = (V+) (V) = 4.5 V to 40 V (±2.25 V to ±20 V) at TA = 25°C, RL = 10 kconnected to VS / 2, VCM = VS / 2, and  
VOUT = VS / 2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.0001%  
120  
MAX  
UNIT  
dB  
VS = 40 V, VO = 3 VRMS, G = 1, f = 1 kHz, RL = 10 kΩ  
0.0056%  
85  
Total harmonic distortion +  
noise  
THD+N  
VS = 10 V, VO = 3 VRMS, G = 1, f = 1 kHz, RL = 128 Ω  
VS = 10 V, VO = 0.4 VRMS, G = 1, f = 1 kHz, RL = 32 Ω  
dB  
0.00056%  
105  
dB  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
For VS = (V+) (V) = 4.5 V to 40 V (±2.25 V to ±20 V) at TA = 25°C, RL = 10 kconnected to VS / 2, VCM = VS / 2, and  
VOUT = VS / 2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
VS = 40 V, RL = no load  
VS = 40 V, RL = 10 kΩ  
VS = 40 V, RL = 2 kΩ  
10  
60  
Voltage output swing from Positive and negative  
100  
400  
mV  
rail  
rail headroom  
250  
ISC  
Short-circuit current  
±60(2)  
mA  
pF  
CLOAD  
Capacitive Load Drive  
See 6-28  
Open-loop output  
impedance  
ZO  
IO = 0 A  
IO = 0 A  
See 6-25  
POWER SUPPLY  
2.6  
3
Quiescent current per  
amplifier  
IQ  
mA  
3.2  
TA = 40°C to 125°C  
(1) Specified by characterization only.  
(2) At high supply voltage, placing the TLV936x-Q1 in a sudden short to mid-supply or ground will lead to rapid thermal shutdown. Output  
current greater than ISC can be achieved if rapid thermal shutdown is avoided as per 6-12.  
(3) See 6-11 for more information.  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
 
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
6.8 Typical Characteristics  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩ(unless otherwise noted)  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
-675 -525 -375 -225 -75  
0
75  
Offset Voltage (µV)  
225 375 525 675  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Offset Voltage Drift (µV/°C)  
0.7  
0.8  
0.9  
D001  
D002  
Distribution from 74 amplifiers, TA = 25°C  
Distribution from 74 amplifiers  
6-2. Offset Voltage Drift Distribution  
6-1. Offset Voltage Production Distribution  
500  
2000  
1600  
1200  
800  
400  
300  
200  
100  
0
400  
0
-100  
-200  
-300  
-400  
-500  
-400  
-800  
-1200  
-1600  
-2000  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-20 -16 -12  
-8  
-4  
0
Common-Mode Voltage (V)  
4
8
12  
16  
20  
D013  
D015  
VCM = V-  
TA = 25°C  
Data from 74 amplifiers  
Data from 74 amplifiers  
6-3. Offset Voltage vs Temperature  
6-4. Offset Voltage vs Common-Mode Voltage  
2000  
1600  
1200  
800  
2000  
1600  
1200  
800  
400  
400  
0
0
-400  
-800  
-1200  
-1600  
-2000  
-400  
-800  
-1200  
-1600  
-2000  
-20 -16 -12  
-8  
-4  
Common-Mode Voltage (V)  
0
4
8
12  
16  
20  
-20 -16 -12  
-8  
-4  
Common-Mode Voltage (V)  
0
4
8
12  
16  
20  
D016  
D017  
TA = 125°C  
TA = 40°C  
Data from 74 amplifiers  
Data from 74 amplifiers  
6-5. Offset Voltage vs Common-Mode Voltage  
6-6. Offset Voltage vs Common-Mode Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩ(unless otherwise noted)  
500  
400  
300  
200  
100  
0
75  
60  
45  
30  
15  
0
G=-1  
G=1  
G=11  
G=101  
G=1001  
-100  
-200  
-300  
-400  
-500  
-15  
-30  
-45  
0
4
8
12  
16  
20  
24  
Supply Voltage (V)  
28  
32  
36  
40  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D018  
D005  
VCM = V–  
6-8. Closed-Loop Gain vs Frequency  
Data from 74 amplifiers  
6-7. Offset Voltage vs Power Supply  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
2000  
1800  
1600  
1400  
1200  
1000  
800  
IB-  
IB+  
IOS  
IB-  
IB+  
IOS  
600  
400  
0
-5  
200  
-10  
-15  
-20  
0
-200  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-20 -16 -12  
-8  
-4  
0
4
8
Common-Mode Voltage (V)  
12  
16  
20  
D020  
D019  
6-10. Input Bias Current and Offset Current vs Temperature  
6-9. Input Bias Current and Offset Current vs Common-Mode  
Voltage  
V+  
V+ - 1V  
V+ - 2V  
V+ - 3V  
V+ - 4V  
V+ - 5V  
V+ - 6V  
V+ - 7V  
50  
SR+  
SR-  
45  
40  
35  
30  
25  
20  
15  
10  
5
V+ - 8V  
-40°C  
25°C  
V+ - 9V  
125°C  
V+ - 10V  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
0
0
0.5  
1
1.5  
2
2.5  
3
Input Step (V)  
3.5  
4
4.5  
5
D021  
D035  
VS = 40 V  
6-11. Slew Rate vs Input Step Voltage  
6-12. Output Voltage Swing vs Output Current (Sourcing)  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩ(unless otherwise noted)  
V- + 10V  
V- + 9V  
V- + 8V  
V- + 7V  
V- + 6V  
V- + 5V  
V- + 4V  
V- + 3V  
V- + 2V  
V- + 1V  
V-  
V+  
V+ - 1V  
V+ - 2V  
V+ - 3V  
V+ - 4V  
V+ - 5V  
-40°C  
25°C  
125°C  
-40°C  
25°C  
125°C  
0
10  
20  
30  
40  
Output Current (mA)  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
Output Current (mA)  
50  
60  
70  
80  
90 100  
D022  
D049  
VS = 40 V  
VS = 5 V  
6-13. Output Voltage Swing vs Output Current (Sinking)  
6-14. Output Voltage Swing vs Output Current (Sourcing)  
V- + 5V  
-40°C  
25°C  
120  
CMRR  
PSRR+  
PSRR-  
105  
90  
75  
60  
45  
30  
15  
0
125°C  
V- + 4V  
V- + 3V  
V- + 2V  
V- + 1V  
V-  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
D050  
D006  
VS = 5 V  
6-15. Output Voltage Swing vs Output Current (Sinking)  
6-16. CMRR and PSRR vs Frequency  
1000  
100  
10  
60  
1000  
100  
10  
60  
80  
80  
100  
120  
140  
100  
120  
140  
1
1
0.1  
0.1  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D023  
D051  
VS = 40 V  
VS = 5 V  
6-17. CMRR vs Temperature  
6-18. CMRR vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩ(unless otherwise noted)  
100  
10  
80  
2
1.5  
1
100  
120  
140  
160  
0.5  
0
1
-0.5  
-1  
0.1  
-1.5  
-2  
0.01  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D024  
Time (1s/div)  
6-19. PSRR vs Temperature  
D025  
6-20. 0.1-Hz to 10-Hz Noise  
2.8  
2.4  
2
100  
10  
1
1.6  
1.2  
0.8  
0.4  
0
0
4
8
12  
16  
20  
24  
Supply Voltage (V)  
28  
32  
36  
40  
10  
100  
1k  
Frequency (Hz)  
10k  
D026  
D007  
6-21. Input Voltage Noise Spectral Density vs Frequency  
VCM = V–  
6-22. Quiescent Current vs Supply Voltage  
2.6  
2.55  
2.5  
2.45  
2.4  
2.35  
2.3  
2.25  
2.2  
2.15  
2.1  
2.05  
2
1.95  
1.9  
1.85  
1.8  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
VS = 2.7V  
VS = 5V  
VS = 40V  
Vs=2.7V  
Vs=5V  
Vs=40V  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D028  
D24_  
6-24. Open-Loop Voltage Gain vs Temperature (dB)  
VCM = V–  
6-23. Quiescent Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩ(unless otherwise noted)  
1000  
100  
10  
70  
60  
50  
40  
30  
20  
10  
0
1
RISO = 0W, Overshoot (+)  
RISO = 0W, Overshoot (-)  
RISO = 50W, Overshoot (+)  
RISO = 50W, Overshoot (-)  
0.1  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
0
80  
160  
240 320  
Capacitive Load (pF)  
400  
480  
560  
D099  
D029  
6-25. Open-Loop Output Impedance vs Frequency  
20-mVpp Output Step, G = -1  
6-26. Small-Signal Overshoot vs Capacitive Load  
70  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
RISO = 0W, Overshoot (+)  
RISO = 0W, Overshoot (-)  
60  
RISO = 50W, Overshoot (+)  
RISO = 50W, Overshoot (-)  
50  
40  
30  
20  
10  
0
0
80  
160  
240 320  
Capacitive Load (pF)  
400  
480  
560  
0
20 40 60 80 100 120 140 160 180 200 220  
Capacitive Load (pF)  
D030  
D004  
20-mVpp Output Step, G = +1  
G = +1  
6-27. Small-Signal Overshoot vs Capacitive Load  
6-28. Phase Margin vs Capacitive Load  
Input  
Output  
Input  
Output  
Time (100ns/div)  
Time (100ns/div)  
D032  
D053  
G = 10  
G = 10  
6-29. Positive Overload Recovery  
6-30. Negative Overload Recovery  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩ(unless otherwise noted)  
20  
10  
0
20  
10  
0
Input  
Output  
Input  
Output  
-10  
-20  
-10  
-20  
Time (2 µs/div)  
Time (2 µs/div)  
D033  
D054  
CL = 20 pF, G = 1, 20-mVpp step response  
CL = 20 pF, G = -1, 20-mVpp step response  
6-31. Small-Signal Step Response  
6-32. Small-Signal Step Response  
4
3
4
3
Input  
Output  
Input  
Output  
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
Time (2 µs/div)  
Time (2 µs/div)  
D034  
D055  
CL = 20 pF, G = 1, 5-Vpp step response  
CL = 20 pF, G = -1, 5-Vpp step response  
6-33. Large-Signal Step Response  
6-34. Large-Signal Step Response  
45  
40  
35  
30  
25  
20  
15  
10  
5
-60  
Vs=40V  
Vs=16V  
Vs=2.7V  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
0
100  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100M  
D011  
D009  
6-36. Channel Separation vs Frequency  
6-35. Maximum Output Voltage vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩ(unless otherwise noted)  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10M  
100M  
Frequency (Hz)  
1G  
D012  
6-37. EMIRR (Electromagnetic Interference Rejection Ratio) vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV936x-Q1 family (TLV9361-Q1, TLV9362-Q1, and TLV9364-Q1) is a family of 40-V, cost-optimized  
operational amplifiers. These devices offer strong general-purpose DC and AC specifications, including rail-to-  
rail output, low offset (±400 µV, typ), low offset drift (±1.25 µV/°C, typ), and 10.6-MHz bandwidth.  
Convenient features such as wide differential input-voltage range, high output current (±60 mA), and high slew  
rate (25 V/μs) make the TLV936x-Q1 a robust operational amplifier for high-voltage, cost-sensitive applications.  
The TLV936x-Q1 family of op amps is available in standard packages and is specified from 40°C to 125°C.  
7.2 Functional Block Diagram  
Slew  
Boost  
IN+  
IN-  
+
OUT  
PCH Input  
Stage  
Gain  
Stage  
Output  
Stage  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
 
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 EMI Rejection  
The TLV936x-Q1 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from  
sources such as wireless communications and densely-populated boards with a mix of analog signal chain and  
digital components. EMI immunity can be improved with circuit design techniques; the TLV936x-Q1 benefits from  
these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the  
immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. 7-1  
shows the results of this testing on the TLV936x-Q1. 7-1 lists the EMIRR IN+ values for the TLV936x-Q1 at  
particular frequencies commonly encountered in real-world applications. 7-1 lists applications that can be  
centered on or operated near the particular frequency shown. The EMI Rejection Ratio of Operational Amplifiers  
application report contains detailed information on the topic of EMIRR performance as relates to op amps and is  
available for download from www.ti.com.  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10M  
100M  
Frequency (Hz)  
1G  
D012  
7-1. EMIRR Testing  
7-1. TLV936x-Q1 EMIRR IN+ for Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF)  
applications  
400 MHz  
50.0 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5 GHz  
56.3 dB  
65.6 dB  
70.0 dB  
78.9 dB  
91.0 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
7.3.2 Thermal Protection  
The internal power dissipation of any amplifier causes the internal (junction) temperature to rise. This  
phenomenon is called self heating. The absolute maximum junction temperature of the TLV936x-Q1 is 150°C.  
Exceeding this temperature causes damage to the device. The TLV936x-Q1 has a thermal protection feature  
that reduces damage from self heating. The protection works by monitoring the temperature of the device and  
turning off the op amp output drive for temperatures above 170°C. 7-2 shows an application example for the  
TLV9362-Q1 that has significant self heating because of the power dissipation (0.954 W). In this example, both  
channels have a quiescent power dissipation while one of the channels has a significant load. Thermal  
calculations indicate that for an ambient temperature of 55°C, the device junction temperature reaches 180°C.  
The actual device, however, turns off the output drive to recover towards a safe junction temperature. 7-2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
 
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
shows how the circuit behaves during thermal protection. During normal operation, the device acts as a buffer so  
the output is 3 V.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
When self heating causes the device junction temperature to increase above the internal limit, the thermal  
protection forces the output to a high-impedance state and the output is pulled to ground through resistor RL. If  
the condition that caused excessive power dissipation is not removed, the amplifier oscillates between a  
shutdown and enabled state until the output fault is corrected. Please note that thermal performance can vary  
greatly depending on the package selected and the PCB layout design. This example uses the thermal  
performance of the SOIC (8) package.  
One channel has load  
Consider IQ of two channels  
TA = 55°C  
3 V  
30 V  
PD = 0.954W  
JA = 131°C/W  
0 V  
TJ = 131°C/W × 0.954W + 55°C  
TJ = 180°C (expected)  
TLV9362  
170ºC  
IOUT = 30 mA  
+
3 V  
RL  
100  
+
VIN  
3 V  
7-2. Thermal Protection  
7.3.3 Capacitive Load and Stability  
The TLV936x-Q1 features an output stage capable of driving moderate capacitive loads, and by leveraging an  
isolation resistor, the device can easily be configured to driver large capacitive loads. Increasing the gain  
enhances the ability of the amplifier to drive greater capacitive loads; see 7-3 and 7-4. The particular op  
amp circuit configuration, layout, gain, and output loading are some of the factors to consider when establishing  
whether an amplifier is stable in operation.  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
RISO = 0W, Overshoot (+)  
RISO = 0W, Overshoot (-)  
RISO = 50W, Overshoot (+)  
RISO = 50W, Overshoot (-)  
RISO = 0W, Overshoot (+)  
RISO = 0W, Overshoot (-)  
RISO = 50W, Overshoot (+)  
RISO = 50W, Overshoot (-)  
0
80  
160  
240 320  
Capacitive Load (pF)  
400  
480  
560  
0
80  
160  
240 320  
Capacitive Load (pF)  
400  
480  
560  
D030  
D029  
7-3. Small-Signal Overshoot vs Capacitive Load 7-4. Small-Signal Overshoot vs Capacitive Load  
(20-mVpp Output Step, G = +1) (20-mVpp Output Step, G = -1)  
For additional drive capability in unity-gain configurations, improve capacitive load drive by inserting a small  
resistor, RISO, in series with the output, as shown in 7-5. This resistor significantly reduces ringing and  
maintains DC performance for purely capacitive loads. However, if a resistive load is in parallel with the  
capacitive load, then a voltage divider is created, thus introducing a gain error at the output and slightly reducing  
the output swing. The error introduced is proportional to the ratio RISO / RL, and is generally negligible at low  
output levels. A high capacitive load drive makes the TLV936x-Q1 an excellent choice for applications such as  
reference buffers, MOSFET gate drives, and cable-shield drives. The circuit shown in 7-5 uses an isolation  
resistor, RISO, to stabilize the output of an op amp. RISO modifies the open-loop gain of the system for increased  
phase margin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
+Vs  
+
Vout  
Riso  
Cload  
+
Vin  
-Vs  
œ
7-5. Extending Capacitive Load Drive With the TLV9361-Q1  
7.3.4 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress  
(EOS). These questions tend to focus on the device inputs, but can involve the supply voltage pins or even the  
output pin. Each of these different pin functions have electrical stress limits determined by the voltage  
breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to  
the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them  
from accidental ESD events both before and during product assembly.  
Having a good understanding of this basic ESD circuitry and relevance to an electrical overstress event is  
helpful. 7-6 shows an illustration of the ESD circuits contained in the TLV936x-Q1 (indicated by the dashed  
line area). The ESD protection circuitry involves several current-steering diodes connected from the input and  
output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device or  
the power-supply ESD cell, internal to the operational amplifier. This protection circuitry is intended to remain  
inactive during normal circuit operation.  
TVS  
RF  
+VS  
VDD  
50  
50  
R1  
RS  
IN–  
IN+  
+
Power-Supply  
ESD Cell  
RL  
ID  
+
VIN  
VSS  
–VS  
TVS  
7-6. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
An ESD event is very short in duration and very high voltage (for example; 1 kV, 100 ns), whereas an EOS event  
is long duration and lower voltage (for example; 50 V, 100 ms). The ESD diodes are designed for out-of-circuit  
ESD protection (that is; during assembly, test, and storage of the device before being soldered to the PCB).  
During an ESD event, the ESD signal is passed through the ESD steering diodes to an absorption circuit  
(labeled ESD power-supply circuit). The ESD absorption circuit clamps the supplies to a safe level.  
Although this behavior is necessary for out-of-circuit protection, excessive current and damage is caused if  
activated in-circuit. A transient voltage suppressors (TVS) can be used to prevent against damage caused by  
turning on the ESD absorption circuit during an in-circuit ESD event. Using the appropriate current limiting  
resistors and TVS diodes allows for the use of device ESD diodes to protect against EOS events.  
7.3.5 Overload Recovery  
Overload recovery is defined as the time required for the op amp output to recover from a saturated state to a  
linear state. The output devices of the op amp enter a saturation region when the output voltage exceeds the  
rated operating voltage, either due to the high input voltage or the high gain. After the device enters the  
saturation region, the charge carriers in the output devices require time to return back to the linear state. After  
the charge carriers return back to the linear state, the device begins to slew at the specified slew rate. Thus, the  
propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time.  
The overload recovery time for the TLV936x-Q1 is approximately 170 ns.  
7.3.6 Typical Specifications and Distributions  
Designers often have questions about a typical specification of an amplifier to design a more robust circuit. Due  
to natural variation in process technology and manufacturing procedures, every specification of an amplifier  
exhibits some amount of deviation from the ideal value, like an amplifier's input offset voltage. These deviations  
often follow Gaussian (bell curve), or normal distributions, and circuit designers can leverage this information to  
guard band their system, even when there is not a minimum or maximum specification in the Electrical  
Characteristics table.  
0.00312% 0.13185%  
0.13185% 0.00312%  
0.00002%  
0.00002%  
2.145% 13.59% 34.13% 34.13% 13.59% 2.145%  
1
1 1 1 1 1 1 1 1  
1
1
1
-61 -51 -41 -31 -21 -1  
+1 +21 +31 +41 +51 +61  
7-7. Ideal Gaussian Distribution  
7-7 shows an example distribution, where µ, or mu, is the mean of the distribution, and where σ, or sigma, is  
the standard deviation of a system. For a specification that exhibits this kind of distribution, approximately two-  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
thirds (68.26%) of all units can be expected to have a value within one standard deviation, or one sigma, of the  
mean (from µ σto µ + σ).  
Depending on the specification, values listed in the typical column of the Electrical Characteristics table are  
represented in different ways. As a general rule, if a specification naturally has a nonzero mean (for example,  
like gain bandwidth), then the typical value is equal to the mean (µ). However, if a specification naturally has a  
mean near zero (like input offset voltage), then the typical value is equal to the mean plus one standard deviation  
(µ + σ) to most accurately represent the typical value.  
You can use this chart to calculate approximate probability of a specification in a unit; for example, for TLV936x-  
Q1, the typical input voltage offset is 400 µV, so 68.2% of all TLV936x-Q1 devices are expected to have an offset  
from  
400 µV to 400 µV. At 4 σ (±1600 µV), 99.9937% of the distribution has an offset voltage less than ±1600 µV,  
which means 0.0063% of the population is outside of these limits, which corresponds to about 1 in 15,873 units.  
Specifications with a value in the minimum or maximum column are specified by TI, and units outside these  
limits are removed from production material. For example, the TLV936x-Q1 family has a maximum offset voltage  
of 1.7 mV at 125°C, and even though this corresponds to about 4.25 σ (2 in 100,000 units), which is unlikely,  
TI verifies that any unit with larger offset than 1.7 mV is removed from production material.  
For specifications with no value in the minimum or maximum column, consider selecting a sigma value of  
sufficient guardband for your application, and design worst-case conditions using this value. For example, the 6-  
σvalue corresponds to about 1 in 500 million units, which is an extremely unlikely chance, and can be an option  
as a wide guardband to design a system around. In this case, the TLV936x-Q1 family does not have a maximum  
or minimum for offset voltage drift, but based on the typical value of 1.25 µV/°C in the Electrical Characteristics  
table, the 6-σ value is calculated for offset voltage drift is about 7.5 µV/°C. When designing for worst-case  
system conditions, this value can be used to estimate the worst possible offset across temperature without  
having an actual minimum or maximum value.  
However, process variation and adjustments over time can shift typical means and standard deviations, and  
unless there is a value in the minimum or maximum specification column, TI cannot verify the performance of a  
device. This information must be used only to estimate the performance of a device.  
7.4 Device Functional Modes  
The TLV936x-Q1 has a single functional mode and is operational when the power-supply voltage is greater than  
4.5 V (±2.25 V). The maximum power supply voltage for the TLV936x-Q1 is 40 V (±20 V).  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TLV936x-Q1 family offers excellent DC precision and DC performance. These devices operate up to 40-V  
supply rails and offer true rail-to-rail output, low offset voltage and offset voltage drift, as well as 10.6-MHz  
bandwidth and high output drive. These features make the TLV936x-Q1 a robust, high-performance operational  
amplifier for high-voltage cost-sensitive applications.  
8.2 Typical Applications  
8.2.1 Low-Side Current Measurement  
8-1 shows the TLV936x-Q1 configured in a low-side current sensing application. For a full analysis of the  
circuit shown in 8-1 including theory, calculations, simulations, and measured data, see TI Precision Design  
TIPD129, 0-A to 1-A Single-Supply Low-Side Current-Sensing Solution.  
VCC  
5 V  
LOAD  
+
VOUT  
RSHUNT  
ILOAD  
100 m  
LM7705  
RF  
5.76 k  
RG  
120  
8-1. TLV936x-Q1 in a Low-Side, Current-Sensing Application  
8.2.2 Design Requirements  
The design requirements for this design are:  
Load current: 0 A to 1 A  
Max output voltage: 4.9 V  
Maximum shunt voltage: 100 mV  
8.2.3 Detailed Design Procedure  
The transfer function of the circuit in 8-1 is given in 方程1:  
V
= I  
× R × Gain  
SHUNT  
(1)  
OUT  
LOAD  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
 
 
 
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
The load current (ILOAD) produces a voltage drop across the shunt resistor (RSHUNT). The load current is set from  
0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is  
defined using 方程2:  
V
SHUNT_MAX  
100 mV  
1 A  
R
=
=
= 100 mΩ  
(2)  
SHUNT  
I
LOAD_MAX  
Using 方程式 2, RSHUNT is calculated to be 100 m. The voltage drop produced by ILOAD and RSHUNT is  
amplified by the TLV936x-Q1 to produce an output voltage of 0 V to 4.9 V. The gain needed by the TLV936x-Q1  
to produce the necessary output voltage is calculated using 方程3:  
V
− V  
− V  
OUT_MAX  
OUT_MIN  
Gain =  
(3)  
V
IN_MAX  
IN_MIN  
Using 方程式 3, the required gain is calculated to be 49 V/V, which is set with resistors RF and RG. 方程式 4 is  
used to size the resistors, RF and RG, to set the gain of the TLV936x-Q1 to 49 V/V.  
R
F
Gain = 1 +  
(4)  
R
G
Choosing RF as 5.76 k, RG is calculated to be 120 . RF and RG were chosen as 5.76 kand 120 because  
the values are standard value resistors that create a 49:1 ratio. Other resistors that create a 49:1 ratio can also  
be used. However, excessively large resistors generate thermal noise that exceeds the intrinsic noise of the op  
amp. 8-2 shows the measured transfer function of the circuit shown in 8-1.  
8.2.4 Application Curves  
5
4
3
2
1
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
ILOAD (A)  
1
8-2. Low-Side, Current-Sense, Transfer Function  
8.3 Power Supply Recommendations  
The TLV936x-Q1 is specified for operation from 4.5 V to 40 V (±2.25 V to ±20 V); many specifications apply from  
40°C to 125°C.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see the Absolute Maximum  
Ratings table.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout  
section.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
 
 
 
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
8.4 Layout  
8.4.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp itself.  
Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to  
the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds paying attention to the flow of the ground current.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed  
to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in 8-4, keeping RF and RG  
close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit can experience performance shifts due to moisture ingress into the plastic  
package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended to  
remove moisture introduced into the device packaging during the cleaning process. A low temperature, post  
cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
8.4.2 Layout Example  
V-  
C3  
INPUT  
OUTPUT  
2
1
3
R3  
+
4
C4  
C2  
V+  
R1  
C1  
R2  
8-3. Schematic for Non-inverting Configuration Layout Example  
GND  
GND  
OUTPUT  
V-  
GND  
8-4. Operational Amplifier Board Layout for Non-inverting Configuration - SC70 (DCK) Package  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
9.1.1.1 TINA-TI(Free Software Download)  
TINAis a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a  
free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range  
of both passive and active models. TINA-TI provides all the conventional dc, transient, and frequency domain  
analysis of SPICE, as well as additional design capabilities.  
Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing  
capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select  
input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.  
备注  
These files require that either the TINA software (from DesignSoft) or TINA-TI software be installed.  
Download the free TINA-TI software from the TINA-TI folder.  
9.1.1.2 TI Precision Designs  
The TLV936x-Q1 is featured in several TI Precision Designs, available online at http://www.ti.com/ww/en/analog/  
precision-designs/. TI Precision Designs are analog solutions created by TIs precision analog applications  
experts and offer the theory of operation, component selection, simulation, complete PCB schematic and layout,  
bill of materials, and measured performance of many useful circuits.  
9.2 Documentation Support  
9.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Analog Engineer's Circuit Cookbook: Amplifiers  
Texas Instruments, AN31 amplifier circuit collection application report  
Texas Instruments, EMI Rejection Ratio of Operational Amplifiers application report  
Texas Instruments, Capacitive Load Drive Solution using an Isolation Resistor reference design  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
TINA-TIis a trademark of Texas Instruments, Inc and DesignSoft, Inc.  
TINAand DesignSoftare trademarks of DesignSoft, Inc.  
TI E2Eis a trademark of Texas Instruments.  
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.  
所有商标均为其各自所有者的财产。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
 
 
 
 
 
TLV9361-Q1, TLV9362-Q1, TLV9364-Q1  
ZHCSRX5A APRIL 2023 REVISED MAY 2023  
www.ti.com.cn  
9.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TLV9361-Q1 TLV9362-Q1 TLV9364-Q1  
English Data Sheet: SBOSAD6  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV9361QDBVRQ1  
TLV9361QDCKRQ1  
TLV9362QDGKRQ1  
TLV9362QDRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SC70  
DBV  
DCK  
DGK  
D
5
5
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2W1H  
1NL  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
VSSOP  
SOIC  
8
2S6T  
8
T9362D  
TLV9364QPWRQ1  
TSSOP  
PW  
14  
T9364PW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-May-2023  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV9361-Q1, TLV9362-Q1, TLV9364-Q1 :  
Catalog : TLV9361, TLV9362, TLV9364  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV9361QDBVRQ1  
TLV9361QDCKRQ1  
TLV9362QDGKRQ1  
TLV9362QDRQ1  
SOT-23  
SC70  
DBV  
DCK  
DGK  
D
5
5
3000  
3000  
2500  
3000  
3000  
180.0  
178.0  
330.0  
330.0  
330.0  
8.4  
9.0  
3.2  
2.4  
5.3  
6.4  
6.9  
3.2  
2.5  
3.4  
5.2  
5.6  
1.4  
1.2  
1.4  
2.1  
1.6  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q1  
Q1  
VSSOP  
SOIC  
8
12.4  
12.4  
12.4  
12.0  
12.0  
12.0  
8
TLV9364QPWRQ1  
TSSOP  
PW  
14  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV9361QDBVRQ1  
TLV9361QDCKRQ1  
TLV9362QDGKRQ1  
TLV9362QDRQ1  
SOT-23  
SC70  
DBV  
DCK  
DGK  
D
5
5
3000  
3000  
2500  
3000  
3000  
210.0  
180.0  
366.0  
356.0  
356.0  
185.0  
180.0  
364.0  
356.0  
356.0  
35.0  
18.0  
50.0  
35.0  
35.0  
VSSOP  
SOIC  
8
8
TLV9364QPWRQ1  
TSSOP  
PW  
14  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV936X

TLV936x 10-MHz, 40-V, RRO, Operational Amplifier for Cost-Sensitive Systems
TI

TLV977-10CPFB

SPECIALTY ANALOG CIRCUIT, PQFP48, PLASTIC, TQFP-48
ROCHESTER

TLV977-10CPFB

SPECIALTY ANALOG CIRCUIT, PQFP48, PLASTIC, TQFP-48
TI

TLV986

3-V, 10-BIT, 12.5 MSPS, AREA CCD SENSOR PROCESSOR
TI

TLV986CPFB

SPECIALTY ANALOG CIRCUIT, PQFP48, PLASTIC, TQFP-48
ROCHESTER

TLV986PFB

3-V, 10-BIT, 12.5 MSPS, AREA CCD SENSOR PROCESSOR
TI

TLV987

3-V 10-BIT 27 MSPS AREA CCD SENSOR SIGNAL PROCESSOR
TI

TLV987CPFB

SPECIALTY ANALOG CIRCUIT, PQFP48, PLASTIC, TQFP-48
TI

TLV987PFB

3-V 10-BIT 27 MSPS AREA CCD SENSOR SIGNAL PROCESSOR
TI

TLV990

3-V, 10-BIT, 28-MSPS AREA CCD AND VIDEO SIGNAL PROCESSOR
TI

TLV990-13

3-V, 10-BIT, 13-MSPS AREA CCD ANALOG FRONT END
TI

TLV990-13PFB

3-V, 10-BIT, 13-MSPS AREA CCD ANALOG FRONT END
TI