TLVH431BQDBVRQ1 [TI]

汽车类低电压可调节精密并联稳压器(反向引脚排列) | DBV | 5 | -40 to 125;
TLVH431BQDBVRQ1
型号: TLVH431BQDBVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类低电压可调节精密并联稳压器(反向引脚排列) | DBV | 5 | -40 to 125

稳压器
文件: 总27页 (文件大小:1254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLVH431A-Q1  
TLVH431B-Q1  
www.ti.com  
SLVS906B DECEMBER 2008REVISED MARCH 2011  
LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS  
Check for Samples: TLVH431A-Q1, TLVH431B-Q1  
1
FEATURES  
Qualified for Automotive Applications  
Low-Voltage Operation: Down to 1.24 V  
Reference Voltage Tolerances at 25°C  
0.5% for B Grade  
1% for A Grade  
Adjustable Output Voltage, VO = VREF to 18 V  
Wide Operating Cathode Current Range:  
100 μA to 70 mA  
0.25-Typical Output Impedance  
40°C to 125°C Specifications  
DESCRIPTION/ORDERING INFORMATION  
The TLVH431 devices are low-voltage 3-terminal adjustable voltage references, with thermal stability specified  
over the automotive temperature range. Output voltage can be set to any value between VREF (1.24 V) and 18 V  
with two external resistors (see Figure 2). These devices operate from a lower voltage (1.24 V) than the widely  
used TL431 and TL1431 shunt-regulator references.  
When used with an optocoupler, the TLVH431 devices are ideal voltage reference in isolated feedback circuits  
for 3-V to 3.3-V switching-mode power supplies. They have a typical output impedance of 0.25 . Active output  
circuitry provides a very sharp turn-on characteristic, making the TLVH431 an excellent replacement for  
low-voltage Zener diodes in many applications, including on-board regulation and adjustable power supplies.  
ORDERING INFORMATION(1)  
VREF  
TOLERANCE  
TA  
PACKAGE(2)  
ORDERABLE PART NUMBER  
TOP-SIDE MARKING  
0.5%  
SOT-23-5 DBV  
Reel of 3000  
Reel of 3000  
Reel of 3000  
TLVH431BQDBVRQ1  
TLVH431BQDBZRQ1  
TLVH431AQDBVRQ1  
VOPQ  
VPIQ  
40°C to 125°C  
0.5%  
SOT-23-3 - DBZ  
1%  
SOT-23-5 DBV  
VOOQ  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 20082011, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
TLVH431A-Q1  
TLVH431B-Q1  
SLVS906B DECEMBER 2008REVISED MARCH 2011  
www.ti.com  
LOGIC BLOCK DIAGRAM  
CATHODE  
REF  
+
V
REF  
= 1.24 V  
ANODE  
EQUIVALENT SCHEMATIC  
Cathode  
REF  
Anode  
2
Submit Documentation Feedback  
Copyright © 20082011, Texas Instruments Incorporated  
Product Folder Link(s): TLVH431A-Q1 TLVH431B-Q1  
TLVH431A-Q1  
TLVH431B-Q1  
www.ti.com  
SLVS906B DECEMBER 2008REVISED MARCH 2011  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
VKA  
IK  
Cathode voltage(2)  
20 V  
Cathode current range  
25 mA to 80 mA  
0.05 mA to 3 mA  
206°C/W  
Iref  
θJA  
TJ  
Reference current range  
Package thermal impedance(3) (4)  
Operating virtual junction temperature  
Storage temperature range  
150°C  
Tstg  
65°C to 150°C  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Voltage values are with respect to the anode terminal, unless otherwise noted.  
(3) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient  
temperature is PD = (TJ(max) TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.  
(4) The package thermal impedance is calculated in accordance with JESD 51-7.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
VREF  
0.1  
MAX UNIT  
VKA  
IK  
Cathode voltage  
18  
70  
V
Cathode current (continuous)  
Operating free-air temperature  
mA  
°C  
TA  
40  
125  
Copyright © 20082011, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TLVH431A-Q1 TLVH431B-Q1  
TLVH431A-Q1  
TLVH431B-Q1  
SLVS906B DECEMBER 2008REVISED MARCH 2011  
www.ti.com  
MAX UNIT  
TLVH431A ELECTRICAL CHARACTERISTICS  
at 25°C free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
TA = 25°C  
1.228  
1.24 1.252  
TA = full range(1)  
(see Figure 1)  
VREF  
Reference voltage  
VKA = VREF, IK = 10 mA  
V
1.209  
1.271  
VREF deviation over full temperature  
range(1) (2)  
VREF(dev)  
VKA = VREF, IK = 10 mA (see Figure 1)  
11  
31  
mV  
DVREF  
DVKA  
Ratio of VREF change to cathode  
voltage change  
VK = VREF to 18 V, IK = 10 mA (see Figure 2)  
1.5  
2.7 mV/V  
Iref  
Reference terminal current  
IK = 10 mA, R1 = 10 k, R2 = open (see Figure 2)  
IK = 10 mA, R1 = 10 k, R2 = open (see Figure 2)  
0.1  
0.5  
0.5  
μA  
μA  
Iref deviation over full temperature  
range(1) (2)  
Iref(dev)  
0.15  
Minimum cathode current for  
regulation  
IK(min)  
IK(off)  
|zKA  
VKA = VREF (see Figure 1)  
60  
0.02  
0.25  
100  
0.1  
0.4  
μA  
μA  
Off-state cathode current  
Dynamic impedance(3)  
VREF = 0, VKA = 18 V (see Figure 3)  
VKA = VREF, f 1 kHz, IK = 0.1 mA to 70 mA  
(see Figure 1)  
|
(1) Full temperature range is 40°C to 125°C.  
(2) The deviation parameters VREF(dev) and Iref(dev) are defined as the differences between the maximum and minimum values obtained over  
the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αVREF, is defined as:  
VREF(dev)  
VREF (TA+25oC)  
6
ǒ
Ǔ
  10  
ppm  
ǒ Ǔ +  
oC  
Ť
Ť
aVREF  
DTA  
where ΔTA is the rated operating free-air temperature range of the device.  
αVREF can be positive or negative, depending on whether minimum VREF or maximum VREF, respectively, occurs at the lower  
temperature.  
(3) The dynamic impedance is defined as:  
V  
KA  
ŤzKAŤ +  
I  
K
When the device is oŤperating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is defined as:  
V  
I  
R1  
R2  
ŤzKAŤ + ŤzKA  
ǒ1 )  
Ǔ
[   
4
Submit Documentation Feedback  
Copyright © 20082011, Texas Instruments Incorporated  
Product Folder Link(s): TLVH431A-Q1 TLVH431B-Q1  
TLVH431A-Q1  
TLVH431B-Q1  
www.ti.com  
SLVS906B DECEMBER 2008REVISED MARCH 2011  
TLVH431B ELECTRICAL CHARACTERISTICS  
at 25°C free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TA = 25°C  
1.234  
1.24 1.246  
TA = full range(1)  
(see Figure 1)  
VREF  
Reference voltage  
VKA = VREF, IK = 10 mA  
V
1.221  
1.265  
VREF deviation over full temperature  
range(1) (2)  
VREF(dev)  
VKA = VREF, IK = 10 mA (see Figure 1)  
11  
31  
mV  
DVREF  
DVKA  
Ratio of VREF change to cathode  
voltage change  
IK = 10 mA, VK = VREF to 18 V (see Figure 2)  
1.5  
2.7 mV/V  
Iref  
Reference terminal current  
IK = 10 mA, R1 = 10 k, R2 = open (see Figure 2)  
IK = 10 mA, R1 = 10 k, R2 = open (see Figure 2)  
0.1  
0.5  
0.5  
μA  
μA  
Iref deviation over full temperature  
range(1) (2)  
Iref(dev)  
0.15  
Minimum cathode current for  
regulation  
IK(min)  
IK(off)  
|zKA  
VKA = VREF (see Figure 1)  
60  
0.02  
0.25  
100  
0.1  
0.4  
μA  
μA  
Off-state cathode current  
Dynamic impedance(3)  
VREF = 0, VKA = 18 V (see Figure 3)  
VKA = VREF, f 1 kHz, IK = 0.1 mA to 70 mA  
(see Figure 1)  
|
(1) Full temperature range is 40°C to 125°C.  
(2) The deviation parameters VREF(dev) and Iref(dev) are defined as the differences between the maximum and minimum values obtained over  
the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αVREF, is defined as:  
VREF(dev)  
VREF (TA+25oC)  
6
ǒ
Ǔ
  10  
ppm  
ǒ Ǔ +  
oC  
Ť
Ť
aVREF  
DTA  
where ΔTA is the rated operating free-air temperature range of the device.  
αVREF can be positive or negative, depending on whether minimum VREF or maximum VREF, respectively, occurs at the lower  
temperature.  
(3) The dynamic impedance is defined as:  
V  
KA  
ŤzKAŤ +  
I  
K
When the device is oŤperating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is defined as:  
V  
I  
R1  
R2  
ŤzKAŤ + ŤzKA  
ǒ1 )  
Ǔ
[   
Copyright © 20082011, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TLVH431A-Q1 TLVH431B-Q1  
TLVH431A-Q1  
TLVH431B-Q1  
SLVS906B DECEMBER 2008REVISED MARCH 2011  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION  
Operation of the device at any conditions beyond those indicated under recommended operating conditions is  
not implied.  
Input  
V
O
I
K
V
REF  
Figure 1. Test Circuit for VKA = VREF, VO = VKA = VREF  
Input  
R1  
V
O
I
K
I
ref  
R2  
V
REF  
Figure 2. Test Circuit for VKA > VREF, VO = VKA = VREF × (1 + R1/R2) + Iref × R1  
Input  
V
O
I
K(off)  
Figure 3. Test Circuit for IK(off)  
6
Submit Documentation Feedback  
Copyright © 20082011, Texas Instruments Incorporated  
Product Folder Link(s): TLVH431A-Q1 TLVH431B-Q1  
TLVH431A-Q1  
TLVH431B-Q1  
www.ti.com  
SLVS906B DECEMBER 2008REVISED MARCH 2011  
PARAMETER MEASUREMENT INFORMATION (continued)  
REFERENCE VOLTAGE  
vs  
JUNCTION TEMPERATURE  
1.254  
1.252  
1.250  
1.248  
I
K
= 10 mA  
1.246  
1.244  
1.242  
1.240  
1.238  
−50 −25  
0
25  
50  
75  
100 125 150  
T − Junction Temperature − °C  
J
Figure 4.  
REFERENCE INPUT CURRENT  
vs  
JUNCTION TEMPERATURE  
250  
230  
210  
190  
170  
150  
130  
110  
90  
I
= 10 mA  
K
R1 = 10 k  
R2 = Open  
70  
50  
−50 −25  
0
25  
50  
75  
100 125 150  
Figure 5.  
Copyright © 20082011, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TLVH431A-Q1 TLVH431B-Q1  
TLVH431A-Q1  
TLVH431B-Q1  
SLVS906B DECEMBER 2008REVISED MARCH 2011  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
CATHODE CURRENT  
vs  
CATHODE VOLTAGE  
70  
V
KA  
= V  
REF  
T = 25°C  
A
10  
5
0
−5  
−10  
−15  
−1  
−0.5  
0
0.5  
1
1.5  
V
KA  
− Cathode Voltage − V  
Figure 6.  
CATHODE CURRENT  
vs  
CATHODE VOLTAGE  
250  
200  
150  
100  
50  
V
= V  
REF  
KA  
T = 25°C  
A
0
−50  
−100  
−150  
−200  
−250  
−1  
−0.5  
0
0.5  
1
1.5  
V
KA  
− Cathode Voltage − V  
Figure 7.  
8
Submit Documentation Feedback  
Copyright © 20082011, Texas Instruments Incorporated  
Product Folder Link(s): TLVH431A-Q1 TLVH431B-Q1  
TLVH431A-Q1  
TLVH431B-Q1  
www.ti.com  
SLVS906B DECEMBER 2008REVISED MARCH 2011  
PARAMETER MEASUREMENT INFORMATION (continued)  
OFF-STATE CATHODE CURRENT  
vs  
JUNCTION TEMPERATURE  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
V
V
= 5 V  
= 0  
KA  
REF  
0
−50 −25  
0
25  
50  
75  
100 125 150  
T − Junction Temperature − °C  
J
Figure 8.  
RATIO OF DELTA REFERENCE VOLTAGE  
TO DELTA CATHODE VOLTAGE  
vs  
JUNCTION TEMPERATURE  
0
I
= 10 mA  
K
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
−0.6  
−0.7  
−0.8  
−0.9  
V = V  
to 18 V  
KA  
REF  
−1  
−50 −25  
0
25  
50  
75  
100 125 150  
T − Junction Temperature − °C  
J
Figure 9.  
Copyright © 20082011, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TLVH431A-Q1 TLVH431B-Q1  
TLVH431A-Q1  
TLVH431B-Q1  
SLVS906B DECEMBER 2008REVISED MARCH 2011  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
PERCENTAGE CHANGE IN VREF  
vs  
OPERATING LIFE AT 55°C  
0.025  
0
I
K
= 1 mA  
% Change (avg)  
% Change (3δ)  
− 0.025  
− 0.05  
− 0.075  
− 0.1  
% Change (−3δ)  
− 0.125  
0
10  
20  
30  
40  
50  
60  
(1)  
Operating Life at 55°C − kh  
(1) Extrapolated from life-test data taken at 125°C; the activation energy  
assumed is 0.7 eV.  
Figure 10.  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
FREQUENCY  
3 V  
350  
300  
V
I
= V  
REF  
= 1 mA  
KA  
1 k  
K
T = 25°C  
A
+
750 Ω  
470 µF  
TLE2027  
2200 µF  
+
+
_
TP  
250  
200  
150  
820 Ω  
TLVH431  
160 kΩ  
160 Ω  
TEST CIRCUIT FOR EQUIVALENT INPUT NOISE VOLTAGE  
10  
100  
1 k  
10 k  
100 k  
f – Frequency – Hz  
Figure 11.  
10  
Submit Documentation Feedback  
Copyright © 20082011, Texas Instruments Incorporated  
Product Folder Link(s): TLVH431A-Q1 TLVH431B-Q1  
TLVH431A-Q1  
TLVH431B-Q1  
www.ti.com  
SLVS906B DECEMBER 2008REVISED MARCH 2011  
PARAMETER MEASUREMENT INFORMATION (continued)  
EQUIVALENT INPUT NOISE VOLTAGE  
OVER A 10-S PERIOD  
10  
8
f = 0.1 Hz to 10 Hz  
I
K
= 1 mA  
T
A
= 25°C  
6
4
2
0
−2  
−4  
−6  
−8  
−10  
0
2
4
6
8
10  
t − Time − s  
3 V  
1 kΩ  
0.47 µF  
+
750 Ω  
470 µF  
2200 µF  
+
TLE2027  
+
TP  
TLE2027  
+
10 k10 kΩ  
1 µF  
2.2 µF  
+
_
_
820 Ω  
160 kΩ  
0.1 µF  
TLVH431  
1 MΩ  
CRO  
33 kΩ  
33 kΩ  
16 Ω  
TEST CIRCUIT FOR 0.1-Hz TO 10-Hz EQUIVALENT NOISE VOLTAGE  
Figure 12.  
Copyright © 20082011, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TLVH431A-Q1 TLVH431B-Q1  
TLVH431A-Q1  
TLVH431B-Q1  
SLVS906B DECEMBER 2008REVISED MARCH 2011  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
SMALL-SIGNAL VOLTAGE GAIN  
/PHASE MARGIN  
vs  
FREQUENCY  
80  
70  
0°  
I
T
= 10 mA  
K
= 25°C  
36°  
A
Output  
60  
50  
72°  
I
K
6.8 kΩ  
4.3 kΩ  
180 Ω  
108°  
10 µF  
40  
144°  
180°  
5 V  
30  
20  
10  
GND  
0
−10  
−20  
TEST CIRCUIT FOR VOLTAGE GAIN  
AND PHASE MARGIN  
100  
1 k  
10 k  
f − Frequency − Hz  
100 k  
1 M  
Figure 13.  
REFERENCE IMPEDANCE  
vs  
FREQUENCY  
100  
10  
I
= 0.1 mA to 70 mA  
K
T = 25°C  
A
100 Ω  
Output  
I
K
100 Ω  
1
+
GND  
0.1  
0.01  
TEST CIRCUIT FOR REFERENCE IMPEDANCE  
1 k  
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
Figure 14.  
12  
Submit Documentation Feedback  
Copyright © 20082011, Texas Instruments Incorporated  
Product Folder Link(s): TLVH431A-Q1 TLVH431B-Q1  
TLVH431A-Q1  
TLVH431B-Q1  
www.ti.com  
SLVS906B DECEMBER 2008REVISED MARCH 2011  
PARAMETER MEASUREMENT INFORMATION (continued)  
PULSE RESPONSE 1  
3.5  
3
R = 18 k  
T = 25°C  
A
Input  
18 kΩ  
Output  
2.5  
2
I
k
Pulse  
Generator  
f = 100 kHz  
50 Ω  
1.5  
1
Output  
GND  
0.5  
0
TEST CIRCUIT FOR PULSE RESPONSE 1  
−0.5  
0
1
2
3
4
5
6
7
8
t − Time − µs  
Figure 15.  
PULSE RESPONSE 2  
Input  
3.5  
3
R = 1.8 k  
T = 25°C  
A
1.8 kΩ  
Output  
2.5  
2
I
K
Pulse  
Generator  
f = 100 kHz  
50 Ω  
1.5  
1
Output  
GND  
0.5  
0
TEST CIRCUIT FOR PULSE RESPONSE 2  
−0.5  
0
1
2
3
4
5
6
7
8
t − Time − µs  
Figure 16.  
Copyright © 20082011, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TLVH431A-Q1 TLVH431B-Q1  
TLVH431A-Q1  
TLVH431B-Q1  
SLVS906B DECEMBER 2008REVISED MARCH 2011  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
30 kW  
IK  
100 µF  
50 W  
I2  
CL  
I1  
Figure 17. Phase Margin Test Circuit  
IK  
Figure 18.  
14  
Submit Documentation Feedback  
Copyright © 20082011, Texas Instruments Incorporated  
Product Folder Link(s): TLVH431A-Q1 TLVH431B-Q1  
TLVH431A-Q1  
TLVH431B-Q1  
www.ti.com  
SLVS906B DECEMBER 2008REVISED MARCH 2011  
PARAMETER MEASUREMENT INFORMATION (continued)  
IK  
Figure 19.  
IK  
Figure 20.  
Copyright © 20082011, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TLVH431A-Q1 TLVH431B-Q1  
TLVH431A-Q1  
TLVH431B-Q1  
SLVS906B DECEMBER 2008REVISED MARCH 2011  
www.ti.com  
APPLICATION INFORMATION  
V
120 V  
I
+
P
V
O
3.3 V  
P
P
Gate Drive  
V
CC  
Controller  
V
FB  
TLVH431  
Current  
Sense  
GND  
P
P
P
P
Figure 21. Flyback With Isolation Using TLVH431 as Voltage Reference and Error Amplifier  
Figure 21 shows the TLVH431 used in a 3.3-V isolated flyback supply. Output voltage VO can be as low as  
reference voltage VREF (1.24 V). The output of the regulator plus the forward voltage drop of the optocoupler LED  
(1.24 + 1.4 = 2.64 V) determine the minimum voltage that can be regulated in an isolated supply configuration.  
Regulated voltage as low as 2.7 Vdc is possible in the topology shown in Figure 21.  
16  
Submit Documentation Feedback  
Copyright © 20082011, Texas Instruments Incorporated  
Product Folder Link(s): TLVH431A-Q1 TLVH431B-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLVH431AQDBVRQ1  
TLVH431BQDBVRQ1  
TLVH431BQDBZRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBZ  
5
5
3
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
VOOQ  
NIPDAU  
NIPDAU  
VOPQ  
VPIQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLVH431A-Q1, TLVH431B-Q1 :  
Catalog: TLVH431A, TLVH431B  
Enhanced Product: TLVH431B-EP  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLVH431AQDBVRQ1  
TLVH431BQDBVRQ1  
TLVH431BQDBZRQ1  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBZ  
5
5
3
3000  
3000  
3000  
179.0  
179.0  
179.0  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
3.15  
2.95  
1.22  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLVH431AQDBVRQ1  
TLVH431BQDBVRQ1  
TLVH431BQDBZRQ1  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBZ  
5
5
3
3000  
3000  
3000  
200.0  
200.0  
200.0  
183.0  
183.0  
183.0  
25.0  
25.0  
25.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBZ0003A  
SOT-23 - 1.12 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
2.64  
2.10  
1.12 MAX  
1.4  
1.2  
B
A
0.1 C  
PIN 1  
INDEX AREA  
1
0.95  
(0.125)  
3.04  
2.80  
1.9  
3
(0.15)  
NOTE 4  
2
0.5  
0.3  
3X  
0.10  
0.01  
(0.95)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.08  
TYP  
0.6  
0.2  
TYP  
SEATING PLANE  
0 -8 TYP  
4214838/D 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration TO-236, except minimum foot length.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X (0.95)  
2
(R0.05) TYP  
(2.1)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214838/D 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X(0.95)  
2
(R0.05) TYP  
(2.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214838/D 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

TLVH431BQDBVT

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATOR
TI

TLVH431BQDBVTE4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLVH431BQDBZR

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATOR
TI

TLVH431BQDBZRG4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLVH431BQDBZRQ1

汽车类低电压可调节精密并联稳压器(反向引脚排列) | DBZ | 3 | -40 to 125
TI

TLVH431BQDBZT

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATOR
TI

TLVH431BQDBZTG4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLVH431BQDCKR

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATOR
TI

TLVH431BQDCKRE4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLVH431BQDCKT

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATOR
TI

TLVH431BQDCKTE4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLVH431BQLP

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATOR
TI