TMAG5170D-Q1 [TI]

具有 SPI 接口的汽车类高精度 3D 线性霍尔效应双芯片传感器;
TMAG5170D-Q1
型号: TMAG5170D-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 SPI 接口的汽车类高精度 3D 线性霍尔效应双芯片传感器

传感器
文件: 总83页 (文件大小:3029K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
TMAG5170D-Q1 SPI 接口的双芯片高精3D 线性霍尔效应传感器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
TMAG5170D-Q1 是双芯片高精度线性 3D 霍尔效应传  
感器适用于各种汽车类和工业应用。高集成度可在各  
种位置感测系统中提供灵活性和准确性。此器件X、  
Y Z 轴具3 个独立的霍尔传感器。  
– 温度等040°C 150°C  
• 高精度线3D 霍尔效应传感器可优化位置检测  
速度和精度:  
– 单轴转换率20kSPS  
以功能安全合规型为目标:  
– 专为功能安全应用开发  
精密信号链和集成 12 ADC 可实现高精度和低漂移  
磁场测量同时支持高达 20kSPS 的采样率。片上温  
度传感器数据可用于系统级漂移补偿。  
在发布量产版本时将会提供有助于使系统设计符  
ISO 26262 ASIL D 标准的文档  
10MHz 串行外设接(SPI)该接口具有循环冗余  
(CRC)  
• 误< ±3°C 的内置温度传感器  
• 独立可XY Z 范围:  
TMAG5170DA1-Q1±25±50±100mT  
TMAG5170DA2-Q1±75±150±300mT  
• 仅消1.5µA、可实现阈值检测的自主唤醒和睡眠  
模式  
集成角度计算引擎 (CORDIC) 为同轴和离轴角度测量  
拓扑提供完整的 360° 角度位置信息。使用用户选择的  
两个磁轴执行角度计算。该器件具有磁增益和偏轴校正  
功能可减轻系统机械误差源的影响。  
可以通过 SPI TMAG5170D-Q1以实现磁轴和温  
度测量的任意组合。多个传感器转换方案和 SPI 读取  
帧有助于优化吞吐量和准确性。专用的 ALERT 引脚可  
以在低功耗唤醒和睡眠模式期间充当系统中断也可以  
被微控制器用来触发新的传感器转换。  
ALERT 功能用以启动传感器转换或指示转换完成  
• 多种磁体类型的集成温度补偿  
• 具有增益和偏轴调节的集成CORDIC 计算  
• 电源电压范围2.3V 5.5V  
封装信息(1)  
封装尺寸标称值)  
器件型号  
封装  
TMAG5170D-Q1  
TSSOP (16)  
5.00mm × 4.40mm  
(1) 要了解所有可用封装请参见数据表末尾的封装选项附录。  
2 应用  
转向柱控制  
方向盘控制  
换挡系统  
雨刮器模块  
传动器  
SDI2  
SCK2  
SDO2  
CS2  
ALERT2  
VCC2  
GND2  
GND2  
µController  
GND1  
VCC1  
TMAG5170D-Q1  
ALERT1  
CS1  
SDO1  
SDI1  
SCK1  
应用方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLYS052  
 
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................24  
8.5 Programming............................................................ 26  
8.6 Register Map.............................................................36  
9 Application and Implementation..................................61  
9.1 Application Information............................................. 61  
9.2 Typical Application.................................................... 64  
9.3 Best Design Practices...............................................67  
9.4 Power Supply Recommendations.............................68  
9.5 Layout....................................................................... 68  
10 Device and Documentation Support..........................70  
10.1 接收文档更新通知................................................... 70  
10.2 支持资源..................................................................70  
10.3 Trademarks.............................................................70  
10.4 静电放电警告.......................................................... 70  
10.5 术语表..................................................................... 70  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Description (continued).................................................. 3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Thermal Information....................................................4  
7.4 Recommended Operating Conditions.........................4  
7.5 Electrical Characteristics.............................................5  
7.6 Magnetic Characteristics.............................................7  
7.7 Power up Timing....................................................... 11  
7.8 SPI Interface Timing..................................................11  
7.9 Typical Characteristics..............................................12  
8 Detailed Description......................................................16  
8.1 Overview...................................................................16  
8.2 Functional Block Diagram.........................................16  
8.3 Feature Description...................................................16  
Information.................................................................... 70  
11.1 Package Option Addendum.................................... 74  
11.2 Tape and Reel Information......................................75  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
March 2023  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
5 Description (continued)  
The TMAG5170D-Q1 offers multiple diagnostics features to detect and report both system and device-level  
failures. The SPI communication features a user-enabled cyclic redundancy check to enhance the data integrity.  
The device is offered in two different orderables to support wide magnetic fields ranges from ±25 mT to ±300 mT.  
The device performs consistently across a wide ambient temperature range of 40°C to +150°C.  
6 Pin Configuration and Functions  
CS2  
SDO2  
SCK2  
SDI2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCC2  
GND2  
ALERT2  
TEST2  
ALERT1  
TEST1  
GND1  
SCK1  
SDI1  
SDO1  
CS1  
VCC1  
Not to scale  
6-1. PW Package 16-Pin TSSOP Top View  
6-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
1
NAME  
CS2  
I
O
I
Chip select, bottom die  
Serial data out, bottom die  
Serial clock, bottom die  
Serial data in, bottom die  
Serial clock, top die  
2
SDO2  
SCK2  
SDI2  
3
4
I
5
SCK1  
SDI1  
I
6
I
Serial data in, top die  
Serial data out, top die  
Chip select, top die  
7
SDO1  
CS1  
O
I
8
9
VCC1  
GND1  
TEST1  
ALERT1  
TEST2  
ALERT2  
GND2  
VCC2  
P
Main power supply, top die. Handles 2.3-V to 5.5-V power supply input  
Ground, top die  
10  
11  
12  
13  
14  
15  
16  
G
I/O  
I/O  
I/O  
I/O  
G
P
Test input, top die, connect to ground  
Status output/Trigger, top die  
Test input, bottom die, connect to ground  
Status output/Trigger, bottom die  
Ground, bottom die  
Main power supply, bottom die. Handles 2.3-V to 5.5-V power supply input  
(1) I = input, O = output, I/O = input and output, G = ground, P = power  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
10  
MAX  
UNIT  
V
VCC  
IOUT  
VOUT  
VIN  
Main supply voltage, VCC1, VCC2  
Output current, SDO1, SDO2, ALERT1, ALERT2  
Output voltage, SDO1, SDO2, ALERT1, ALERT2  
Input voltage, SDI1, CS1, SCK1, SDI2, CS2, SCK2  
Magnetic flux density  
7
10  
mA  
V
7
0.3  
0.3  
VVCC+ 0.3  
Unlimited  
170  
V
BMAX  
TJ  
T
Junction temperature  
°C  
°C  
40  
65  
Tstg  
Storage temperature  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
7.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per AEC Q100-002((1))  
±2000  
HBM ESD classification level 2  
V(ESD) Electrostatic discharge  
V
Charged device model (CDM), per Corner pins (1, 8, 9, and 16)  
AEC Q100-011  
CDM ESD classification level C4B  
±750  
±500  
Other pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Thermal Information  
TMAG5170D-Q1  
THERMAL METRIC(1)  
PW (16-TSSOP)  
UNIT  
PINS  
106.4  
33.5  
63.5  
2.4  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
62.7  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.3  
2  
0
NOM  
MAX  
5.5  
2
UNIT  
V
VVCC  
IOUT  
IOUT  
VIH  
Main supply voltage  
Output current, SDO1, SDO2  
mA  
Output current, ALERT1, ALERT2  
Input HIGH voltage, SDI1, CS1, SCK1, SDI2, CS2, SCK2  
2
mA  
0.75  
VVCC  
Input LOW voltage, SDI1, CS1, SCK1, ALERT1, SDI2, CS2,  
SCK2, ALERT2  
VIL  
0.25  
25  
VVCC  
µs  
tw_trigger  
Pulse width for conversion trigger input signal  
1
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
4
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
 
 
 
 
 
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
TA  
Operating free air temperature  
-40  
150  
C
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SDO, ALERT  
VCC –  
VOH  
Output HIGH voltage, SDOx pins  
IOUT = -2 mA  
VCC  
V
0.4  
VOL  
VOL  
Output LOW voltage, SDOx pins  
Output LOW voltage, ALERTx pins  
IOUT = -2 mA  
IOUT = -2 mA  
0
0
0.4  
0.4  
V
V
RPU = 10 kΩ  
tFALL_ALERT  
ALERTx output fall time  
50  
5
ns  
µs  
CL = 20 pF  
VCC = 2.3 V to 5.5 V  
ALERTx output pulse width with  
conversion complete or threshold  
cross interrupt event  
ALERT_MODE = 0b  
Interrupt & Trigger Mode  
tALERT  
ALERTx output pulse width with other ALERT_MODE = 0b  
tALERT  
31  
30  
µs  
interrupt events  
Interrupt & Trigger Mode  
ALERT pin disabled  
VOZ = 5.5V  
IOZ  
Output Leakage current, ALERTx pins  
0
nA  
DC Power  
VCC_PORRise  
Power on reset voltage at VCCx  
ramping up  
1.4  
1.2  
V
V
Power off reset voltage at VCCx  
ramping down  
VCC_PORFall  
VCC_UV  
VCC_OV  
Under voltage threshold at VCCx  
Over voltage threshold at VCCx  
2.1  
5.9  
V
V
Active mode current from VCC1 or  
VCC2  
CS high  
VCC = 2.3 V to 5.5 V  
IACTIVE  
ISTDBY  
ICFG  
3.4  
0.8  
mA  
mA  
mA  
Stand-by mode current from VCC1 or CS high  
VCC2  
VCC = 2.3 V to 5.5 V  
Configuration mode current from  
VCC1 or VCC2  
CS high  
0.06  
CS high  
VCC = 2.3 V to 5.5 V  
TA = -40°C to 125°C  
Sleep mode current from VCC1 or  
VCC2  
ISLP  
1.3  
1.3  
5
µA  
µA  
nA  
CS high  
VCC = 2.3 V to 5.5 V  
TA = -40°C to 125°C  
Sleep mode current from VCC1 or  
VCC2  
ISLP  
CS high  
VCC = 2.3 V to 5.5 V  
TA = -40°C to 125°C  
Deep sleep mode current from VCC1  
or VCC2  
IDEEP_SLP  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
MAX UNIT  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
Average Power  
VCC = 5 V  
Data active rate 1000 Hz  
245  
32  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
VCC = 5 V  
Data active rate 100 Hz  
Duty-cycle mode current consumption  
for each die  
One channel enabled  
CONV_AVG = 000b  
VCC = 5 V  
Data active rate 10 Hz  
4.5  
1.5  
292  
39  
VCC = 5 V  
Data active rate 1 Hz  
ICC_DCM  
VCC = 5 V  
Data active rate 1000 Hz  
VCC = 5 V  
Data active rate 100 Hz  
Duty-cycle mode current consumption  
for each die  
Two channels enabled  
CONV_AVG = 000b  
VCC = 5 V  
Data active rate 10 Hz  
5
VCC = 5 V  
Data active rate 1 Hz  
1.6  
Operating Speed  
OPERATING_MODE = 010b  
Time between trigger and conversion  
start  
tini_active  
Initialization time during Active mode  
Conversion time (1)  
10  
45  
µs  
µs  
µs  
µs  
µs  
CONV_AVG = 000b  
tmeasure  
OPERATING_MODE = 010b  
One channel enabled ((2))  
CONV_AVG = 101b  
tmeasure  
Conversion time (1)  
OPERATING_MODE = 010b  
820  
50  
One channel enabled ((2))  
CONV_AVG = 000b  
OPERATING_MODE = 010b  
One channel enabled ((2))  
tmeasure  
Conversion time (1)  
CONV_AVG = 101b  
OPERATING_MODE = 010b  
825  
One channel enabled ((3))  
Internal high-frequency oscillator  
speed  
fHFOSC  
fLFOSC  
3.2  
16  
MHz  
KHz  
Internal low-frequency oscillator speed  
Temperature Sensing  
TSENS_RANGE Temperature sensing range  
TSENS_T0  
170  
40  
Reference temperature for TADCT0  
23  
25  
27  
TEMP_RESULT decimal value @  
TSENS_T0  
TADCT0  
17522  
TADCRES  
Temp sensing resolution  
60.0  
0.06  
0.35  
LSB/℃  
NRMS (T)  
RMS (1 Sigma) temperature noise  
RMS (1 Sigma) temperature noise  
CONV_AVG = 101b  
CONV_AVG = 000b  
NRMS (T)  
Sensor Location  
Sensor displacement in the X and Y  
plane  
ds1_s2  
As1_s2  
25  
1
µm  
o
Relative angular rotation between top  
and bottom sensor in degree  
(1) To calculate the time between conversion request and the availibility of the conversion result, add the initialization time to the tmeasure  
as explained in Comparing Operating Modes Table. For continuous conversion, the initialization time is applicable only for the first  
conversion.  
(2) Add 25µs for each additional channel enabled for conversion with CONV_AVG =000.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
6
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
(3) For conversion with CONV_AVG =101, each axis data is collected 32 times. If an additional channel is enabled with CONV_AVG =101,  
add 32×25µs = 800µs to the tmeasure to calculate the conversion time for two axes.  
7.6 Magnetic Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TMAG5170A1  
x_RANGE((2)) = 00b  
±50  
±25  
mT  
mT  
BRANGE  
Linear magnetic range  
x_RANGE((2)) = 01b  
x_RANGE((2)) = 10b  
x_RANGE((2)) = 00b  
x_RANGE((2)) = 01b  
x_RANGE((2)) = 10b  
±100  
654  
mT  
LSB/mT  
LSB/mT  
LSB/mT  
SENS  
Sensitivity  
1308  
326  
BRANGE = 25 mT, 50  
mT  
±0.5%  
±0.5%  
±0.9%  
X, Y, or Z axis  
TA = 25°C  
SENSERR  
Sensitivity error  
BRANGE = 100 mT  
MAG_TEMPCO = 00b  
TA = 25°C to 125°C  
X, Y, or Z axis  
BRANGE = 25 mT, 50  
mT  
MAG_TEMPCO = 00b  
TA = -40°C to 25°C  
Sensitivity Drift from TA  
25°C value  
=
=
±1.2%  
±1.2%  
SENSERR_DRI  
MAG_TEMPCO = 01b,  
10b, 11b  
TA = -40°C to 125°C  
FT  
TA = 25°C to 125°C  
TA = -40°C to 25°C  
±1.0%  
±1.2%  
±0.5%  
±0.1%  
±0.05%  
±0.02%  
±0.17%  
±0.15%  
±0.8%  
±0.5%  
±0.7%  
±0.5%  
±1.4%  
±0.1%  
Sensitivity Drift from TA  
25°C value  
X, Y, or Z axis  
BRANGE = 100 mT  
SENSLT_DRIFT Sensitivity Lifetime drift  
X, Y, Z axes  
TA = 25°C  
X, Y axes  
SENSLE  
Sensitivity Linearity Error  
Z axis  
X-Y axes  
SENSMIS  
Sensitivity mismatch  
TA = 25°C  
Y-Z axes  
X-Z axes  
TA = 25°C to 125°C  
TA = -40°C to 25°C  
TA = 25°C to 125°C  
TA = -40°C to 25°C  
TA = 25°C to 125°C  
TA = -40°C to 25°C  
X-Y axes  
Y-Z axes  
X-Z axes  
SENSMIS_DRIF Sensitivity mismatch drift  
from 25°C value  
T
X, Y, or Z axis  
BRANGE = 25 mT, 50  
mT  
TA = 25°C  
TA = 25°C  
±10  
µT  
µT  
BOFFSET  
Magnetic Offset  
X, Y, or Z axis  
BRANGE = 100 mT  
±150  
X or Y axis  
Z axis  
TA = 25°C to 125°C  
TA = 25°C to 125°C  
TA = -40°C to 25°C  
TA = -40°C to 25°C  
±1.0  
±0.50  
±1.5  
±1.0  
±50  
µT/°C  
µT/°C  
µT/°C  
µT/°C  
µT  
Offset drift from TA = 25°C  
value  
BOFFSET_DRIFT  
X or Y axis  
Z axis  
BOFFSET_LT_D  
Offset Lifetime drift  
RIFT  
±50  
µT  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
x_RANGE((2)) = 00b  
CONV_AVG = 000b  
TA = 25°C  
140  
µT  
x_RANGE((2)) = 00b  
CONV_AVG = 000b  
TA = 125°C  
170  
24  
µT  
µT  
µT  
µT  
µT  
µT  
µT  
°
X or Y axis  
x_RANGE((2)) = 00b  
CONV_AVG = 101b  
TA = 25°C  
x_RANGE((2)) = 00b  
CONV_AVG = 101b  
TA = 125°C  
30  
RMS (1 Sigma) magnetic  
noise  
BN,RMS  
Z_RANGE((2)) = 00b  
CONV_AVG = 000b  
TA = 25°C  
61  
Z_RANGE((2)) = 00b  
CONV_AVG = 000b  
TA = 125°C  
70  
Z axis  
Z_RANGE((2)) = 00b  
CONV_AVG = 101b  
TA = 25°C  
11  
Z_RANGE((2)) = 00b  
CONV_AVG = 101b  
TA = 125°C  
13  
Angle drift from TA = 25°C  
value in full 360 degree  
rotation  
Y-Z axes  
X-Z axes  
X-Y axes  
±0.5  
±0.5  
±0.25  
Angle drift from TA = 25°C  
value in full 360 degree  
rotation  
RANGE - 10  
CONV_AVG = 101b  
ANGERR  
°
Angle drift from TA = 25°C  
value in full 360 degree  
rotation  
°
TMAG5170A2  
x_RANGE((2)) = 00b  
x_RANGE((2)) = 01b  
x_RANGE((2)) = 10b  
±150  
±75  
mT  
mT  
BRANGE  
Linear magnetic range  
Sensitivity  
±300  
218  
mT  
x_RANGE(1) = 00b  
x_RANGE(1) = 01b  
x_RANGE(1) = 10b  
LSB/mT  
LSB/mT  
LSB/mT  
SENS  
X, Y, or Z axis  
436  
108  
BRANGE = 75 mT, 150  
mT  
Sensitivity error  
Sensitivity error  
±1.0%  
±1.0%  
X, Y, or Z axis  
TA = 25°C  
SENSERR  
BRANGE = 300 mT  
X, Y, or Z axis  
BRANGE = 75 mT, 150  
mT  
±0.5%  
±4.5%  
TA = 40°C to 125°C  
SENSERR_DRI Sensitivity Drift from TA  
=
25°C value  
FT  
TA = 25°C to 125°C  
TA = 40°C to 25°C  
X, Y axes  
±0.5%  
±1.6%  
±0.1%  
±0.1%  
±0.6%  
±4.0%  
±6.2%  
X, Y, or Z axis  
BRANGE = 300 mT  
SENSLE  
Sensitivity Linearity Error  
TA = 25°C  
Z axis  
SENSLT_DRIFT Sensitivity Lifetime drift  
X, Y, Z axes  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
8
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BRANGE = 75 mT, 150  
mT  
±0.37%  
±0.42%  
±0.41%  
±0.37%  
±0.38%  
±1.2%  
X-Y axes  
TA = 25°C  
BRANGE = 300 mT  
BRANGE = 75 mT, 150  
mT  
Y-Z axes  
TA = 25°C  
SENSMIS  
Sensitivity mismatch  
BRANGE = 300 mT  
BRANGE = 75 mT, 150  
mT  
X-Z axes  
TA = 25°C  
BRANGE = 300 mT  
TA = 40°C to 125°C  
BRANGE = 75 mT, 150  
mT  
±0.5%  
±4.0%  
X-Y axes  
TA = 25°C to 125°C  
BRANGE = 300 mT  
±0.5%  
±0.9%  
±5.2%  
±7.6%  
TA = -40°C to 25°C  
BRANGE = 300 mT  
TA = 40°C to 125°C  
BRANGE = 75 mT, 150  
mT  
±0.4%  
±4.0%  
SENSMIS_DRIF Sensitivity mismatch drift  
from TA = 25°C value  
T
Y-Z axes  
TA = 25°C to 125°C  
BRANGE = 300 mT  
±0.2%  
±0.5%  
±5.4%  
±8.1%  
TA = -40°C to 25°C  
BRANGE = 300 mT  
TA = 40°C to 125°C  
BRANGE = 75 mT, 150  
mT  
±0.2%  
±1.1%  
±5.5%  
±6.6%  
X-Z axes  
TA = 40°C to 125°C  
BRANGE = 300 mT  
BRANGE = 75 mT, 150  
mT  
Magnetic offset  
BOFFSET  
±50  
µT  
µT  
TA = 25°C  
Magnetic offset  
BRANGE = 300 mT  
±300  
X or Y axis  
BRANGE = 75 mt, 150  
mT  
±1.0  
±1.5  
µT/°C  
µT/°C  
TA = 25°C to 125°C  
Z axis  
BRANGE = 75 mt, 150  
mT  
Offset drift from value at TA  
=
X or Y axis  
BRANGE = 75 mt, 150  
mT  
BOFFSET_DRIFT  
25°C  
±3.5  
µT/°C  
TA = -40°C to 25°C  
Z axis  
BRANGE = 75 mt, 150  
mT  
±5.0 µT/°C  
0.4  
X, Y, or Z axis  
BRANGE = 300 mT  
±2.5  
±50  
±12.0 µT/°C  
µT  
TA = 40°C to 125°C  
BOFFSET_LT_D  
Offset Lifetime drift  
RIFT  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
X or Y axis  
TA = 25°C  
160  
µT  
x_RANGE((2)) = 00b  
XONV_AVG = 000b  
TA = 125°C  
TA = 25°C  
193  
28  
34  
72  
84  
13  
15  
µT  
µT  
µT  
µT  
µT  
µT  
µT  
X or Y axis  
x_RANGE((2)) = 00b  
XONV_AVG = 101b  
TA = 125°C  
TA = 25°C  
RMS (1 Sigma) magnetic  
noise  
BN,RMS  
Z axis  
Z_RANGE((2)) = 00b  
XONV_AVG = 000b  
TA = 125°C  
TA = 25°C  
Z axis  
Z_RANGE((2)) = 00b  
XONV_AVG = 101b  
TA = -40°C to 125°C  
Angle drift from TA = 25°C  
value in full 360 degree  
rotation  
Y-Z axes  
X-Z axes  
X-Y axes  
±0.5  
±0.5  
Degree  
Degree  
Degree  
Angle drift from TA = 25°C  
value in full 360 degree  
rotation  
RANGE - 10  
CONV_AVG = 101b  
ANGERR  
Angle drift from TA = 25°C  
value in full 360 degree  
rotation  
±0.25  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
10  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TEMPERATURE COMPENSATION  
Temperature compensation  
(no compensation)  
STC  
MAG_TEMPCO =00b MAG_TEMPCO =00b  
MAG_TEMPCO =01b MAG_TEMPCO =01b  
MAG_TEMPCO =10b MAG_TEMPCO =10b  
MAG_TEMPCO =11b MAG_TEMPCO =11b  
0
0.12  
0.03  
0.2  
%/°C  
%/°C  
%/°C  
%/°C  
Temperature compensation  
(for NdBFe magnet)  
STC  
Temperature compensation  
(for SmCo magnet)  
STC  
Temperature compensation  
(for Ceramic magnet)  
STC  
(1) x_RANGE denotes the X_RANGE, Y_RANGE, or Z_RANGE register bits  
7.7 Power up Timing  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
VCC = 5.5 V  
tstart_power_up Time to start up after VVCC supply voltage crossing VVCC_MIN  
246  
40  
µs  
µs  
µs  
µs  
µs  
µs  
tstart_sleep  
tgo_sleep  
Time to activate from sleep mode  
Time to go into sleep mode after CS goes high  
50  
tstart_deep_sleep Time to start up from deep sleep mode  
246  
75  
tstart_deep_sleep Time to go into deep sleep mode after CS goes high  
tstand_by  
Time to go to Stand-by mode from Configuration mode  
90  
Setup time between CS going low and SCK start during  
sleep mode  
tspi_sleep  
8
µs  
VCC =2.3 V  
tstart_power_up Time to start up after VCC supply voltage crossing VCC_MIN  
260  
40  
µs  
µs  
µs  
µs  
µs  
µs  
tstart_sleep  
tgo_sleep  
Time to activate from sleep mode  
Time to go into sleep mode after CS goes high  
60  
tstart_deep_sleep Time to start up from deep sleep mode  
260  
75  
tstart_deep_sleep Time to go into deep sleep mode after CS goes high  
tstand_by  
tspi_sleep  
Time to go to Stand-by mode from Configuration mode  
90  
Delay time between CS going low and SCK start during  
sleep mode  
8
µs  
7.8 SPI Interface Timing  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
SPI Interface  
fSPI  
SPI clock (SCK) frequency  
LOAD = 25 pF  
10 MHz  
twhigh  
twlow  
High time: SCK logic high time duration  
Low time: SCK logic low time duration  
45  
45  
ns  
ns  
CS setup time: Time delay between falling edge of CS and rising  
edge of SCK  
tsu_cs  
45  
45  
ns  
ns  
Hold time: Time between the falling edge of SCK and rising edge  
of CS  
th_cs  
Delay time: Time delay from falling edge of CS to data valid at  
SDO  
tpd_soen  
tpd_sodis  
45  
55  
ns  
ns  
Delay time: Time delay from rising edge of CS to SDO transition  
to tristate  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
25  
TYP MAX UNIT  
tsu_si  
th_si  
SDI setup time: Setup time of SDI before the rising edge of SCK  
Hold time: Time between the rising edge of SCK to SDI valid  
Propagation delay from falling edge of SCK to SDO  
ns  
ns  
25  
tpd_so  
45  
10  
ns  
ns  
SPI transfer inactive time (time between two transfers) during  
which CS must remain high.  
tw_cs  
LOAD = 25 pF  
100  
Setup time between CS going low and SCK start during sleep  
mode  
tspi_sleep  
8
µs  
7.9 Typical Characteristics  
100  
200  
175  
150  
125  
100  
75  
40C  
0C  
20C  
85C  
125C  
150C  
40C  
0C  
20C  
85C  
125C  
150C  
75  
50  
25  
0
50  
25  
0
0
4
8
12  
16  
20  
24  
28  
32  
0
4
8
12  
16  
20  
24  
28  
32  
Conversion Average  
Conversion Average  
7-1. Z-Axis Noise vs Conversion Average, 25-mT Range  
7-2. X, Y-Axis Noise vs Conversion Average, 25-mT Range  
100  
200  
40C  
0C  
40C  
0C  
175  
150  
125  
100  
75  
20C  
20C  
85C  
125C  
150C  
85C  
125C  
150C  
75  
50  
25  
0
50  
25  
0
0
4
8
12  
16  
20  
24  
28  
32  
0
4
8
12  
16  
20  
24  
28  
32  
Conversion Average  
Conversion Average  
7-3. Z-Axis Noise vs Conversion Average, 50-mT Range  
7-4. X, Y-Axis Noise vs Conversion Average, 50-mT Range  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
7.9 Typical Characteristics (continued)  
100  
200  
175  
150  
125  
100  
75  
40C  
0C  
20C  
85C  
125C  
150C  
40C  
0C  
20C  
85C  
125C  
150C  
75  
50  
25  
0
50  
25  
0
0
4
8
12  
16  
20  
24  
28  
32  
0
4
8
12  
16  
20  
24  
28  
32  
Conversion Average  
Conversion Average  
7-5. Z-Axis Input vs Conversion Average, 75-mT Range  
7-6. X, Y-Axis Noise vs Conversion Average, 75-mT Range  
100  
200  
40C  
0C  
40C  
0C  
175  
150  
125  
100  
75  
20C  
20C  
85C  
125C  
150C  
85C  
125C  
150C  
75  
50  
25  
0
50  
25  
0
0
4
8
12  
16  
20  
24  
28  
32  
0
4
8
12  
16  
20  
24  
28  
32  
Conversion Average  
Conversion Average  
7-7. Z-Axis Noise vs Conversion Average, 100-mT Range  
7-8. X, Y-Axis Noise vs Conversion Average, 100-mT Range  
100  
200  
40C  
0C  
40C  
0C  
175  
150  
125  
100  
75  
20C  
20C  
85C  
125C  
150C  
85C  
125C  
150C  
75  
50  
25  
0
50  
25  
0
0
4
8
12  
16  
20  
24  
28  
32  
0
4
8
12  
16  
20  
24  
28  
32  
Conversion Average  
Conversion Average  
7-9. Z-Axis Noise vs Conversion Average, 150-mT Range  
7-10. X, Y-Axis Noise vs Conversion Average, 150-mT Range  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
7.9 Typical Characteristics (continued)  
125  
250  
200  
150  
100  
50  
40C  
0C  
20C  
85C  
125C  
150C  
40C  
0C  
20C  
85C  
125C  
150C  
100  
75  
50  
25  
0
0
0
4
8
12  
16  
20  
24  
28  
32  
0
4
8
12  
16  
20  
24  
28  
32  
Conversion Average  
Conversion Average  
7-11. Z-Axis Noise vs Conversion Average, 300-mT Range  
7-12. X, Y-Axis Noise vs Conversion Average, 300-mT Range  
6000  
0.5  
VCC = 2.3 V  
VCC = 3.3 V  
VCC = 5.5 V  
40C  
0C  
5500  
5000  
4500  
4000  
3500  
3000  
20C  
0.4  
85C  
125C  
150C  
0.3  
0.2  
0.1  
0
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
0
4
8
12  
16  
20  
24  
28  
32  
Temperature [C]  
Conversion Average  
7-14. Active Mode Supply Current vs Temperature  
7-13. Temperature Sensor Noise vs Conversion Average  
2000  
500  
VCC = 2.3 V  
VCC = 3.3 V  
VCC = 5.5 V  
VCC = 2.3 V  
VCC = 3.3 V  
VCC = 5.5 V  
400  
1500  
1000  
500  
0
300  
200  
100  
0
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature [C]  
Temperature [C]  
7-15. Standby Mode Supply Current vs Temperature  
7-16. Configuration Mode Supply Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
7.9 Typical Characteristics (continued)  
5
4
3
2
1
0
VCC = 2.3 V  
VCC = 3.3 V  
VCC = 5.5 V  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature [C]  
7-17. Sleep Mode Supply Current vs Temperature  
7-18. Deep Sleep Mode Supply Current vs Temperature  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
50  
100  
150  
200  
250  
300  
350  
0
50  
100  
150  
200  
250  
300  
350  
Forced Angle (Degree)  
Forced Angle (Degree)  
7-19. Angle Error at 25°C, X-Y Configuration, 50-mT Range  
7-20. Angle Error at 25°C, X-Z Configuration, 50-mT Range  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
50  
100  
150  
200  
250  
300  
350  
Forced Angle (Degree)  
7-21. Angle Error at 25°C, Y-Z Configuration, 50-mT Range  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TMAG5170D-Q1 IC is based on the Hall-effect technology and precision mixed signal circuitry from Texas  
Instruments. The output signals (raw X, Y, Z magnetic data and die temperature data) is provided through the  
SPI. The device can be configured in multiple settings through user access registers in the SPI.  
The IC consists of the following functional and building blocks:  
The Power Management & Oscillator block contains a low-power oscillator, biasing circuitry, undervoltage  
and overvoltage detection circuitry, and a fast oscillator.  
The sensing and temperature measurement block contains the Hall biasing, Hall sensors with multiplexers,  
noise filters, integrator circuit, temperature sensor, and the ADC. The Hall sensor data and temperature data  
are multiplexed through the same ADC.  
The Interface block contains the SPI control circuitry, ESD protection circuits, and all the I/O circuits. The  
TMAG5170D-Q1 supports SPI along with an integrated cyclic redundancy check (CRC).  
The diagnostic blocks are embedded in the circuitry to enable mandatory and user-enabled diagnostic  
checks.  
8.2 Functional Block Diagram  
VCC1  
SCK1  
Power Management & Oscillator  
Result Registers  
Z
SDO1  
SDI1  
X
+
Gain &  
- Filtering  
ADC  
Interface  
MUX  
Bo om  
Die  
Y
Con g Registers  
Temp sensor  
CS1  
Digital Core  
Top Die  
ALERT1  
GND1  
8.3 Feature Description  
8.3.1 Magnetic Flux Direction  
The TMAG5170D-Q1 is sensitive to the magnetic field component in X, Y, and Z directions. The X and Y fields  
are in-plane with the package. The Z field is perpendicular to the top of the package. The device is sensitive to  
both magnetic north and south poles in each axis. As shown in 8-1, the device generates positive ADC codes  
in response to a magnetic south pole in the proximity. Similarly, the device generates negative ADC codes if  
magnetic north poles approach from the same directions.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
16  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
 
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
N
S
1
8
8-1. Direction of Applied Magnetic South Pole to Generate Positive ADC Codes  
8.3.2 Sensor Location  
8-2 shows the location of the X, Y, Z Hall elements inside the TMAG5170D-Q1.  
2.8 ± 0.15 mm  
Y
X
Z
2.43 ± 0.15 mm  
Top sensor  
Boom sensor  
8-2. Location of X, Y, Z Hall Elements  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.3.3 Magnetic Range Selection  
8-1 shows the magnetic range selection for the TMAG5170D-Q1 device. Each axis range can be  
independently selected irrespective of the others.  
8-1. Magnetic Range Selection  
RANGE REGISTER SETTING  
X_RANGE = 00b  
X_RANGE = 01b  
X_ RANGE = 10b  
Y_RANGE = 00b  
Y_RANGE = 01b  
Y_RANGE = 10b  
Z_RANGE = 00b  
Z_RANGE = 01b  
Z_RANGE = 10b  
TMAG5170A1-Q1  
TMAG5170A2-Q1  
±150 mT  
±75 mT  
COMMENT  
±50 mT  
X Axis Field  
Y Axis Field  
Z Axis Field  
±25 mT  
Best resolution case  
±100 mT  
±50 mT  
±300 mT  
±150 mT  
±75 mT  
Highest range, best SNR case  
±25 mT  
Best resolution case  
±100 mT  
±50 mT  
±300 mT  
±150 mT  
±75 mT  
Highest range, best SNR case  
±25 mT  
Best resolution case  
±100 mT  
±300 mT  
Highest range, best SNR case  
8.3.4 Update Rate Settings  
The TMAG5170D-Q1 offers multiple update rates for system design flexibility. 8-4 shows the different update  
rates for the TMAG5170D-Q1 during continuous conversion.  
8-2. Update Rate Settings  
UPDATE RATE  
TWO AXIS  
13.3 kSPS  
8.0 kSPS  
OPERATING  
MODE  
REGISTER SETTING  
COMMENT  
SINGLE AXIS  
20 kSPS  
THREE AXIS  
10 kSPS  
X, Y, Z Axis  
X, Y, Z Axis  
X, Y, Z Axis  
X, Y, Z Axis  
X, Y, Z Axis  
X, Y, Z Axis  
CONV_AVG = 000b  
CONV_AVG = 001b  
CONV_AVG = 010b  
CONV_AVG = 011b  
CONV_AVG = 100b  
CONV_AVG = 101b  
Fastest update rate  
13.3 kSPS  
8.0 kSPS  
4.4 kSPS  
2.4 kSPS  
1.2 kSPS  
5.7 kSPS  
3.1 kSPS  
1.6 kSPS  
0.8 kSPS  
0.4 kSPS  
4.4 kSPS  
2.4 kSPS  
1.2 kSPS  
0.6 kSPS  
Best SNR case  
8.3.5 ALERT Function  
The ALERT pin of the TMAG5170D-Q1 supports multiple operating modes targeting different applications.  
8.3.5.1 Interrupt and Trigger Mode  
With ALERT_MODE at default value of 0b, the ALERT output can be configured to generate an interrupt signal  
for the microcontroller when a user-defined event occurs. A user-defined event can be a conversion completion  
or an error from diagnostic tests. The ALERT pin can also trigger a conversion start in this mode using the  
TRIGGER_MODE register bit.  
8.3.5.2 Magnetic Switch Mode  
With ALERT_MODE set at 1b, the ALERT output is configured as a magnetic switch. One or multiple magnetic  
channels can be selected in the ALERT_CONFIG register. The magnetic switch thresholds are determined by  
the *_THRX_CONFIG register bits setting. If the measured magnetic field is greater than *_HI_THRESHOLD, or  
smaller than *_LO_THRESHOLD, the ALERT output will assert low. 8-3 shows the magnetic switch function  
using the X-axis magnetic field as an example.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
18  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
X Channel Magnetic  
Field (mT)  
X_HI_THRESHOLD (mT)  
X_LO_THRESHOLD (mT)  
ALERT (V)  
time  
Magnetic field crossing X_HI_THRESHOLD & X_LO_THRESHOLD levels  
X Channel Magnetic  
Field (mT)  
X_HI_THRESHOLD (mT)  
X_LO_THRESHOLD (mT)  
ALERT (V)  
time  
Magnetic field crossing only X_HI_THRESHOLD levels  
8-3. ALERT Pin Working as Magnetic Switch  
8.3.6 Threshold Count  
The THRX_COUNT bits in the ALERT_CONFIG register offer robust noise filtering and immunity against false  
tripping while the TMAG5170D-Q1 implements the ALERT function for a specific magnetic or temperature  
threshold crossing. With THRX_COUNT at default 00b, only one measured value must cross the threshold to be  
considered a valid threshold crossing event. With THRX_COUNT at 11b, four successive measured values must  
cross the threshold to be considered a valid threshold crossing. An internal counter tracks and records the  
number of threshold crossing for a given sensor.  
The counter resets if any of the below events occur:  
The device meets the threshold cross count for the specified number per the THRX_COUNT bits, the  
corresponding *CH_THX bit(s) are set, and the SPI read of the SYS_STATUS register occurred  
If a measured result does not cross the threshold  
When the ALERT pin is configured to work as a magnetic switch, the threshold count is active for both low-to-  
high and high-to-low transitions, offering noise immunity in both directions of the threshold cross.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.3.7 Diagnostics  
The TMAG5170D-Q1 supports several device and system level diagnostics features to detect, monitor, and  
report failures during the device operation.  
In the event of a failure, the TMAG5170D-Q1 reports back to the controller through the following mechanisms:  
ERROR_STAT bit during the SDO read frame  
Direct read of the status registers through the SPI  
ALERT pin response to indicate a failure, if enabled  
No response through SDO line, or CRC error during SPI communication  
The TMAG5170D-Q1 performs the following device and system level checks:  
8.3.7.1 Memory Cyclic Redundancy Check (CRC)  
This diagnostic mechanism checks the content of the internal memory by comparing a calculated CRC of the  
read content against a factory-programmed expected CRC value. During runtime, when the internal memory is  
read again for configuration for different channels, the CRC is checked again, providing detection of memory  
errors even during runtime.  
Run Mode  
Continuous  
Configuration Register(s)  
Fault Register Bit  
Impact if disabled  
N/A  
TRIM_STAT  
N/A. Cannot be disabled  
8.3.7.2 ALERT Integrity Check  
This diagnostic mechanism checks and compares the read back value of the ALERT pin to the value that is  
driven by the device. This will check the presence of an external short on ALERT pin to a higher voltage such as  
VCC which will prevent device to indicate a fault. When the controller is driving the ALERT pin to trigger a  
measurement, the controller can read the ALRT_LVL bit to check if the correct polarity of the ALERT was  
detected by the device, thus checking any failures on the pin.  
Run Mode  
Continuous  
Configuration Register(s) N/A  
Fault Register Bit  
Impact if disabled  
ALRT_DRV and ALRT_LVL  
When driven by device N/A. Cannot be disabled. When driven by controller, device may not detect a new  
measurement command and still report old measurement data.  
8.3.7.3 VCC Check  
This diagnostic mechanism continuously checks the external voltage supply on VCC pin and flags a fault if the  
supply is out of range.  
Run Mode  
Continuous  
Data Sheet Parameters  
Fault Register Bit  
Impact if disabled  
VVCC_UV, VVCC_OV  
VCC_UV and VCC_OV  
N/A. Cannot be disabled.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
20  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.3.7.4 Internal LDO Undervoltage Check  
This diagnostic mechanism continuously monitors the internal regulator that supplies the critical analog blocks  
and Hall sensor biasing, and flags a fault if the internal regulator falls below a threshold after which the accuracy  
of the magnetic field measurement cannot be guaranteed.  
Run Mode  
Continuous  
Data Sheet Parameters  
Fault Register Bit  
Impact if disabled  
N/A  
LDO_STAT  
N/A. Cannot be disabled.  
8.3.7.5 Digital Core Power-On Reset Check  
This diagnostic mechanism continuously monitors the internal regulator that supplies the internal digital core,  
and puts the device in reset if the digital core cannot function reliably. The occurrence of the fault is detected by  
reading the CFG_RESET bit which can only be set at power up or if the digital core was reset.  
Run Mode  
Continuous  
Data Sheet Parameters  
Fault Register Bit  
Impact if disabled  
N/A  
CFG_RESET  
N/A. Cannot be disabled.  
8.3.7.6 SDO Output Check  
This diagnostic mechanism continuously compares the internally driven value by device on the SDO pin to the  
read-back value on SDO pin to detect any shorts to ground or power supply.  
Run Mode  
Continuous, every time a SPI transaction is initiated  
Data Sheet Parameters  
Fault Register Bit  
Impact if disabled  
N/A  
SDO_DRV  
N/A. Cannot be disabled.  
8.3.7.7 Communication Cyclic Redundancy Check (CRC)  
This diagnostic mechanism for every SPI transaction will compute the CRC of the received SPI frame from the  
controller and check the CRC against the CRC value transmitted by the controller, and flag a fault if the values  
do not match. The device also embeds a CRC value as part of the SPI frame in the response for the controller to  
check the integrity of the received data. This check detects faults with the SPI communication block in the digital  
core, the SPI I/O buffers and, and the controller to check for any faults on the SPI external to the device.  
Another check also runs in the background that counts the number of SPI clocks in a SPI frame and flags a fault  
if the number of clocks sent by the controller is not same as the expected value. This can help the controller  
detect any issues with the SPI.  
Run Mode  
Continuous, every time a SPI transaction is initiated  
Configuration Register(s) CRC_DIS to disable CRC in the SPI protocol  
Fault Register Bit  
Impact if disabled  
CRC_STAT, FRAME_STAT  
If CRC is disabled, then any fault with SPI communication will not be detected and incorrect value of measured  
field can be reported.  
8.3.7.8 Oscillator Integrity Check  
This diagnostic mechanism allows the controller to check any hardware fault with the internal oscillator. With this  
check, any drift of internal oscillators can be checked. The high-frequency oscillator is critical for precision  
measurement of the magnetic field and low-power oscillator is critical to control wake-up and sleep mode and  
other state machine control.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
To run this check, external software code on the controller is required. The controller must instate the check by  
setting the OSC_CNT_CTL bits to select a particular oscillator and start the internal count on the device. At the  
same time, the controller also starts a counter using its own timebase. After a predetermined time, the controller  
issues a stop to the oscillator count by setting OSC_CNT_CTL=0x3 and read the OSC_COUNT. The read value  
of the OSC_COUNT should not exceed the value based off maximum fHFOSC, fLFPOSC in the specification  
section. Consider the variation of controller speed and SPI communication when calculating the error margin for  
the OSC_COUNT.  
Run Mode  
On-demand as run by the external controller  
Data Sheet Parameter(s) fHFOSC, fLFPOSC  
Configuration Register(s) OSC_CNT_CTL  
Fault Register Bit  
Impact if disabled  
OSC_COUNT  
If the controller decides not to run this test, then any drift of HF oscillator can impact the accuracy of the reported  
sensor data  
8.3.7.9 Magnetic Field Threshold Check  
This diagnostic mechanism allows the controller to monitor the external applied field. The controller can use this  
check to determine if a magnetic field is present within specified thresholds. This check, though used as check at  
system level, can also indicate any gross problems with the signal path if a field much outside the expected  
range is detected and reported.  
To run this check, the controller must enable the check separately for each axis and also set the thresholds for  
each axis independently. The user can configure the ALERT pin to toggle if the threshold crossed, which is also  
reported in the user register.  
Run Mode  
Every time a magnetic measurement is initiated and completed  
Configuration Register(s) X_HLT_EN, Y_HLT_EN, Z_HLT_EN to enable test. X_THRX_CONFIG, Y_THRX_CONFIG, Z_THRX_CONFIG to  
set threshold  
Fault Register Bit  
Impact if disabled  
XCH_THX, YCH_THX, ZCH_THX  
Disabling this check does not have an impact on device-level failure detection but can impact at system level.  
Examples of system failure would be loss of magnet, magnet too far, or too close to the sensor.  
8.3.7.10 Temperature Alert Check  
This diagnostic mechanism allows the controller to monitor the junction temperature of the die, which is also an  
indication of the ambient temperature as the device does not generate significant self-heating. This is useful to  
monitor the temperature at the system level accurately and alert the controller if the temperature is exceeded.  
The check can also be used to warn the controller if the die temperature due to some internal failure has  
increased beyond the expected range.  
To run this check, the controller must enable the temperature check and set the threshold. The user can  
configure the ALERT pin to toggle if the threshold crossed, which is also reported in the user register.  
Run Mode  
Every time a magnetic measurement is initiated and completed  
Configuration Register(s) T_HLT_EN to enable test. T_THRX_CONFIG to set threshold  
Fault Register Bit  
Impact if disabled  
TEMP_THX  
Disabling this check does not have an impact on device-level failure detection but can impact at system level  
increase or decrease of temperature.  
8.3.7.11 Analog Front-End (AFE) Check  
This diagnostic mechanism allows the controller to check the performance of the analog signal path. In this  
check, the device disconnects the Hall sensor from the signal path and uses an alternate resistance bridge to  
create a known, predetermined signal as an input to the signal path. This mechanism then checks if the  
measured digital value compared to a fixed value from the factory is within a pre-programmed, factory-  
determined value. This mechanism can detect issues with multiplexers, offset cancellation mechanism, the gain  
stages, the low-pass filter, and the ADC as well.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
To run this check, the controller must enable the check and set the scheduling for the run. During this check, the  
AFE is not available for magnetic field conversion. The user can configure the ALERT pin to toggle if an error is  
detected. This error is also reported in the user register.  
Run Mode  
Every time a magnetic measurement is initiated and completed  
DIAG_EN to enable test. DIAG_SEL to schedule when the test is run  
SENS_STAT  
Configuration Register(s)  
Fault Register Bit  
Impact if disabled  
If disabled, any failures or drift with the analog front-end signal path may not be detected.  
8.3.7.12 Hall Resistance and Switch Matrix Check  
This diagnostic mechanism allows the controller to check if the sensitivity of the Hall sensor is within the factory-  
determined limits by checking the resistance of the Hall-effect sensor. In this check, the biasing and multiplexing  
control of all directions of the Hall sensor (X, Y and Z) are also checked.  
To run this check, the controller must enable the check and set the scheduling for the run. During this check, the  
Hall sensor is not available for magnetic field conversion. The user can configure the ALERT pin to toggle if an  
error is detected. This error is also reported in the user register.  
Run Mode  
Every time a magnetic measurement is initiated and completed  
Configuration Register(s) DIAG_EN to enable test. DIAG_SEL to schedule when the test is run  
Fault Register Bit  
Impact if disabled  
ZHS_STAT, YHS_STAT and XHS_STAT  
If disabled, any failures or drift in the Hall-effect sensor properties and biasing will not be detected, leading to  
potentially incorrect magnetic field conversion  
8.3.7.13 Hall Offset Check  
This diagnostic mechanism allows the controller to check if the offset of the Hall sensor is within the factory-  
determined limits and the offset cancellation circuitry is working properly.  
To run this check, the controller must enable the check and set the scheduling for the run. During this check, the  
AFE is not available for magnetic field conversion. The user can configure the ALERT pin to toggle if an error is  
detected. This error is also reported in the user register.  
Run Mode  
Every time a magnetic measurement is initiated and completed  
Configuration Register(s) DIAG_EN to enable test. DIAG_SEL to schedule when the test is run  
Fault Register Bit  
Impact if disabled  
SENS_STAT  
If disabled, any failures with offset cancellation mechanism or large drift of Hall-effect sensor may not be  
detected, leading to potentially incorrect magnetic field conversion.  
8.3.7.14 ADC Check  
This diagnostic mechanism checks ADC functionality and conversion. This check is done by converting a known  
band-gap voltage, which is completely independent of the ADC reference, and comparing the voltage against  
the factory-determined tolerance limits.  
To run this check, the controller must enable the check and set the scheduling for the run. During this check the  
AFE is not available for magnetic field conversion. The user can configure the ALERT pin to toggle if an error is  
detected. This error is also reported in the user register.  
Run Mode  
Every time a magnetic measurement is initiated and completed  
Configuration Register(s) DIAG_EN to enable test. DIAG_SEL to schedule when the test is run  
Fault Register Bit  
Impact if disabled  
TEMP_STAT  
If disabled, any failures with ADC conversion will not be detected, leading to potentially incorrect errors in the  
converted magnetic field values.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Operating Modes  
The TMAG5170D-Q1 supports multiple operating modes for wide array of applications as explained in 8-4.  
The device starts powering up after the VCC supply crosses the minimum threshold as specified in the  
Recommended Operating Conditions table. Any particular operating mode can be selected by setting the  
corresponding OPERATING_MODE register bits.  
Device Startup: (VCC crossing VCC_UV  
)
Deep Sleep Mode  
tstart_power_up  
Wake-up &  
Sleep Mode  
Sleep Mode  
tstart_deep_sleep  
tstart_sleep  
Configuration Mode  
(Default Power-up Mode)  
tstand_by  
Stand-by Mode  
tmeasure  
Active Hall/ Temp Measure  
8-4. TMAG5170D-Q1 Power-Up Sequence  
8-3 shows different power saving modes of the TMAG5170D-Q1.  
8-3. Comparing Operating Modes  
INITIALIZATION TIME TO START  
OPERATING MODE  
Active Conversion  
Standby Mode  
DEVICE FUNCTION  
DATA CONVERSION  
CONVERSION(1)  
Continuously measuring X, Y, Z axis, or  
temperature data  
Supports continuous and trigger  
mode conversion  
10 µs  
Device is ready to accept SPI commands  
and start active conversion  
35 µs  
Supports trigger mode conversion  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
24  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8-3. Comparing Operating Modes (continued)  
INITIALIZATION TIME TO START  
OPERATING MODE  
DEVICE FUNCTION  
CONVERSION(1)  
DATA CONVERSION  
Configuration Mode SPI and user configuration registers active  
tstand_by + 35 µs  
Supports trigger mode conversion  
1, 5, 10, 15, 20, 30, 100, 500, and  
Wake-up & Sleep  
Mode  
Wakes up at a certain interval to measure  
the X, Y, Z axis, or temperature data  
tstart_sleep + tstand_by + 35 µs  
1000-ms intervals supported(1)  
.
The microcontroller can use sleep  
mode to implement other power  
saving intervals not supported by  
wake-up and sleep mode.  
Device retains key configuration settings,  
and last measurement data  
Sleep Mode  
tstart_sleep + tstand_by + 35 µs  
Device does not retain key configuration  
settings, and last measurement data  
No conversion start is supported  
during deep-sleep mode  
Deep-sleep Mode  
tstart_deep_sleep + tstand_by + 35 µs  
(1) The timing numbers are typical parameters. Their value may vary depending on the internal oscillator frequency.  
8.4.1.1 Active Mode  
The TMAG5170D-Q1 converts the magnetic sensor or temperature data during active mode. Active mode  
supports both continuous conversion and trigger mode conversion based off the OPERATING_MODE setting.  
Continuous operation at this mode is useful for applications where the fastest data conversion is required, and  
power budget is not stringent. In the active trigger mode, a controller can trigger a conversion through one of  
several trigger mechanisms as described in the TRIGGER_MODE register bits. When the conversion started,  
the time it takes to finish a conversion is denoted by tmeasure. The conversion time can vary widely based off the  
MAG_CH_EN, CONV_AVG, DIAG_SEL, and DIAG_EN register bits setting. The average current consumption  
during the active conversion is IACT  
.
8.4.1.2 Standby Mode  
In standby mode, the TMAG5170D-Q1 is ready to start sensor conversion with a trigger command from a  
controller. Several trigger methods are supported as defined in the TRIGGER_MODE register bits. During this  
operating mode, the relevant analog and digital support circuitry remain active to enable a faster conversion  
start. The average current consumption during this mode is denoted by ISTDBY. The time it takes for the device to  
go to standby mode from configuration mode is denoted by tstand_by  
.
8.4.1.3 Configuration Mode (DEFAULT)  
At power up, the TMAG5170D-Q1 goes into the default configuration mode. In this mode, the SPI  
communication and user register access are enabled. A controller may configure the device to select the desired  
operating mode, sensor data conversion, enable or disable diagnostic features, and so forth. The average  
current consumption during this mode is denoted by ICFG. Similar to the standby mode, the configuration mode  
also supports sensor conversion start with a trigger. However, the configuration mode takes longer time to start  
the sensor conversion, and consumes approximately ten times less current compared to standby mode.  
8.4.1.4 Sleep Mode  
The TMAG5170D-Q1 supports the sleep mode where the device retains the user configuration settings and  
previous conversion results. A controller can wake up the device from sleep mode through either the SPI  
communication or the ALERT signal. The average power consumption in this mode is denoted by ISLP. The time  
it takes for the device to go to the configuration mode from the sleep mode is denoted by tstart_sleep  
.
8.4.1.5 Wake-Up and Sleep Mode  
The TMAG5170D-Q1 supports the wake-up and sleep mode where the device is configured to wake up at a  
certain time interval, and perform the sensor conversion as defined in the SENSOR_CONFIG register setting.  
When the sensor conversion is complete, an ALERT signal can be generated to notify the controller that the new  
conversion data is ready. It is possible to generate an ALERT signal only in the event a particular magnetic or  
temperature threshold is exceeded. Detail setting on ALERT signal is specified in the ALERT_CONFIG register.  
A controller can wake up the TMAG5170D-Q1 and access the conversion data at any time. The average power  
consumption in the wake-up and sleep mode is denoted by IVCC_DCM. The time it takes for the device to go to  
configuration mode from wake-up and sleep mode is denoted by tstart_sleep  
.
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.4.1.6 Deep-Sleep Mode  
For ultra-low power system, the TMAG5170D-Q1 supports a deep-sleep mode to conserve power. In this mode,  
the TMAG5170D-Q1 does not retain the user configuration or previous result data. The device reverts back to  
factory setting in this mode. The average power consumption in this mode is IDEEP_SLP. The time it takes for the  
device to go to the configuration mode from the deep-sleep mode is denoted by tstart_sleep  
.
8.5 Programming  
8.5.1 Data Definition  
8.5.1.1 Magnetic Sensor Data  
The X, Y, and Z magnetic sensor data are stored in the X_CH_RESULT, Y_CH_RESULT, and Z_CH_RESULT  
registers, respectively. 8-5 shows the 12-bit ADC output stored in 16-bit result registers in 2's complement  
format. With fastest conversion (CONV_AVG = 000b), the ADC output loads the 12 MSB bits of the 16-bit result  
register along with 4 LSB bits as zeros. With CONV_AVG 000b, all the 16 bits are used to store the results.  
With DATA_TYPE = 00b, the 16-bit magnetic sensor data can be accessed through regular 32-bit SPI read. Use  
方程1 to calculate the measured magnetic field.  
14  
i = 0  
15  
− D × 2  
i
+ ∑  
D × 2  
i
15  
B =  
× 2 B  
(1)  
R
16  
2
where  
B is magnetic field in mT.  
Di is the data bit as shown in 8-5.  
BR is the magnetic range in mT for the corresponding channel.  
12-bit data when CONV_AVG = 000b  
Additional 4-bit LSB data when  
CONV_AVG B 000b  
8-5. Magnetic Sensor Data Definition  
With DATA_TYPE 00b, the 12 MSB bits (D04 to D15) from the magnetic result registers can be accessed. In  
this mode, use 方程2 to calculate the measured magnetic field.  
14  
+ ∑  
11  
− D × 2  
i − 4  
D × 2  
15  
i = 4  
12  
i
B =  
× 2 B  
(2)  
R
2
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
26  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
 
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.5.1.2 Temperature Sensor Data  
The TMAG5170D-Q1 temperature sensor will measure temperature from 40°C to 170°C. 8-6 shows the  
temperature stored in the 16-bit TEMP_RESULT register. With DATA_TYPE = 00b, the 16-bit temperature data  
can be accessed through regular 32-bit SPI read. Use 方程3 to calculate the temperature.  
6#&%6 F 6#&%60  
6 = 6  
+
5'05_60  
6#&%4'5  
(3)  
where  
T is the measured temperature in degree Celsius.  
TSENS_T0 is the reference temperature in degree Celsius as listed in the Electrical Characteristics table.  
TADCRES is the change in ADC code per degree Celsius as listed in the Electrical Characteristics table.  
TADCT0 is the TEMP_RESULT decimal value at reference temperature, TSENS_T0 as listed in the Electrical  
Characteristics table.  
TADCT is the measured TEMP_RESULT decimal value for temperature T.  
With DATA_TYPE 00b, the 12 MSB bits from the TEMP_RESULT register can be accessed. In this mode, use  
方程4 to calculate the temperature.  
6#&%  
16  
6#&%4'5  
16 × @6#&%6 F  
60A  
6 = 6  
+
5'05_60  
(4)  
Binary data for temperature  
8-6. Temperature Sensor Data Definition  
8.5.1.3 Magnetic Sensor Offset Correction  
8-7 shows that the TMAG5170D-Q1 can enable offset correction for a pair of magnetic axes. The magnetic  
axes and order are selected based off the ANGLE_EN register bit settings. The MAG_OFFSET_CONFIG  
register stores the offset values to be corrected in 2's complement data format. The selection and order of the  
sensors are defined in the ANGLE_EN register bits setting. The default value of these offset correction registers  
are set as zero.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
ΔOffset  
0mT Reference Axis  
8-7. Magnetic Sensor Data Offset Correction  
Use 方程式 5 and 方程式 6 to calculate the amount of offset for each axis. As an example, with a ±50-mT  
magnetic range for X and Z axes, MAG_OFFSET_CONFIG set at 1110 0000 0011 0000b, ANGLE_EN set at  
11b. With these conditions the offset correction for the X axis is 1.56 mT and Z axis is 1.17 mT. The offset  
values are added to the sensor conversion results before loading into the corresponding result registers.  
5
6
i
− D × 2 + × 2  
D
13  
i = 0 i + 7  
Δ
=
× 2 B  
(5)  
(6)  
Offset_Value1  
R
12  
2
5
6
i
− D × 2 + ∑  
D × 2  
i
6
i = 0  
=
× 2 B  
R
Offset  
Value2  
12  
2
where  
• ΔOffset_Value1 is the amount of offset correction (in mT) to be applied for first axis.  
• ΔOffset_Value2 is the amount of offset correction (in mT) to be applied for second axis.  
Di is the data bit in the offset MAG_OFFSET_CONFIG register.  
BR is the magnetic range in mT for the corresponding channel.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
28  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.5.1.4 Angle and Magnitude Data Definition  
The TMAG5170D-Q1 calculates the angle based off the ANGLE_EN register bit settings. 8-8 shows that the  
ANGLE_RESULT register stores the angle information in the 13-LSB bits. Bits D04-D12 store angle integer  
value from 0 to 360 degree. Bits D00-D03 store fractional angle value. The 3-MSB bits are always populated as  
b000. The TMAG5170D-Q1 CORDIC offers angle resolution of ¼ degree. Less than ¼ degree angle resolution  
can be implemented by performing a CORDIC angle calculation on the system microcontroller using the X, Y,  
and Z axis readings from the TMAG5170. The TMAG170 code example software package has functions that can  
be ported to the system microcontroller for an accurate but computationally inexpensive angle calculation using  
the TMAG5170D-Q1 axes readings. Use 方程7 to calculate the angle.  
3
i
D × 2  
i
12  
i = 4  
i − 4  
i = 0  
16  
A = ∑  
D × 2  
+
(7)  
i
where  
A is the angle measured in degree.  
Di is the data bit as shown in 8-8.  
For example: a 354.50 degree is populated as 0001 0110 0010 1000b and a 17.25 degree is populated as 0000  
0001 0001 0100b.  
With DATA_TYPE 00b, the D01-D12 bits from the ANGLE_RESULT register can be accessed. In this mode,  
the angle fractional value is represented by 3 bit. Use 方程8 to calculate the angle in degree.  
3
i = 1  
i − 1  
D × 2  
12  
i = 4  
i − 4  
i
A = ∑  
D × 2  
+
(8)  
i
8
Reserved bits  
9-bit Angle integer value  
4-bit Angle fraction value  
0
0 0  
8-8. Angle Data Definition  
During the angle calculation, use 方程9 to calculate the resultant vector magnitude.  
2
/ = /#&%%D12 + /#&%%D2  
§
(9)  
where  
MADCCh1, MADCCh2 are the ADC codes of the two magnetic channels selected for the angle calculation.  
8-9 shows the magnitude value stored in the MAGNITUDE_RESULT register. This value should be constant  
during 360 degree angle measurements.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
 
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
Reserved bits  
13-bit Magnitude result data  
0
0 0  
8-9. Magnitude Result Data Definition  
The magnitude result can be accessed through SPI in 16-bit or 12-bit formats. In the 12-bit format, bit D01 to bit  
D12 are sent through the SPI.  
8.5.2 Serial Peripheral Interface (SPI)  
The Serial Peripheral Interface (SPI) is a synchronous serial communication interface used for short distance  
communication, usually between devices on a printed circuit board (PCB) assembly. The TMAG5170D-Q1  
supports a 4-wire SPI interface. The primary communication between the device and the external microcontroller  
is through the SPI bus that provides full-duplex communication. The external microcontroller works as the SPI  
controller that sends command requests on the SDI pin and receives device responses on the SDO pin. The  
TMAG5170D-Q1 device works as the SPI peripheral device that receives command requests and sends  
responses (such as status and measured values) to the external microcontroller over the SDO line. The  
TMAG5170D-Q1 supports a fixed 32-bit frame size to communicate with a controller device. However, the 32-bit  
frame can be configured through DATA_TYPE register bits to support a regular single register read data packet,  
or a special packet to read two-channel data simultaneously.  
8.5.2.1 SCK  
The Serial Clock (SCK) represents the controller clock signal. This clock determines the speed of data transfer  
and all receiving and sending are done synchronously to this clock. The output data on the SDO pin transitions  
on the falling edge of the SCK and input data on the SDI pin is latched on the rising edge of the SC.  
8.5.2.2 CS  
The CS activates the SPI. As long as the CS signal is at high level, the TMAG5170D-Q1 will not accept the SCK  
signal or the Serial-data-in (SDI), and the Serial-data-out (SDO) is in high impedance. Hold CS low for the  
duration of a communication frame without toggling to ensure proper communication. The SPI is disabled each  
time CS is brought from low to high.  
8.5.2.3 SDI  
The Serial-data-in (SDI) line is used by the controller to configure the user access registers, start a new  
conversion, or send a read command. The SDI bits are transmitted with each SCK rising edge when the CS pin  
is low. 8-10 explains the SDI frame details. There are four command bits in the SDI line to select the status bit  
for the next frame or start a new conversion.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
30  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
Read or write command  
Seven bit address to  
access registers  
Sixteen bit data to be wri en,  
don’t care during read command  
Command bits to instruct read  
type and start new conversion  
CRC bits  
SDI: Read or Write  
*
CMD2 & CMD3 are reserved bits  
** SET_COUNT register bits indicate the rolling count of the conversion data set. The counter is reset a er 111b.  
*** DATA_TYPE register bits indicate the type of data being read through the SDO line  
8-10. 32-Bit Frame Definition of the SDI Line  
8.5.2.4 SDO  
The Serial-data-out (SDO) line is used by the controller to read the data from the TMAG5170D-Q1. The  
TMAG5170D-Q1 will shift out command responses and ADC conversion data serially with each rising SCK edge  
when the CS pin is low. This pin assumes a high-impedance state when CS is high. Based off the DATA_TYPE  
bit setting, the TMAG5170D-Q1 supports two different SDO frames:  
Regular 32-Bit SDO Read  
Special 32-Bit SDO Read  
8.5.2.4.1 Regular 32-Bit SDO Read  
With DATA_TYPE = 000b, the TMAG5170D-Q1 supports a regular 16-bit register read during the 32-bit SDO  
frame as explained in 8-11. In this read mode, 12-bit status bits are displayed. All the status bits except for the  
ERROR_STAT bit are directly read from the status registers. The ERROR_STAT bit indicates if any error bit set  
in the device. 8-11 shows how the status bits STAT[2:0] can be changed based off CMD1 value in the  
previous frame.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
Last eight status bits  
Sixteen bit data  
First four status bits  
CRC bits  
SDO: Regular 32-bit Read  
(DATA_TYPE = 000b)  
*
PREV_CRC_STAT indicates if there is any CRC error in the immediate past frame  
** ERROR_STAT indicates if there is any error bit ipped in the part  
*** STAT10 to STAT4 indicate select status bits from the CONV_STATUS and AFE_STATUS registers  
8-11. Regular 32-Bit SDO Read  
8.5.2.4.2 Special 32-Bit SDO Read  
With DATA_TYPE > 000b, the TMAG5170D-Q1 supports a special 32-bit SDO frame for two-channel  
simultaneous data read. Each channel data is limited to 12 bits. This feature is useful for systems requiring faster  
data throughput while performing multi-axis measurements. 8-12 explains the detail construction of the  
special 32-bit SDO frame. When the device is set to special 32-bit read, the device will continue to deliver the 2-  
channel data set through the SDO line during consecutive read or write cycles. DATA_TYPE bits must be reset  
to get back to a regular read cycle. Only four status bits are transmitted in this mode. All the status bits except for  
the ERROR_STAT bit are directly read from the status registers. The ERROR_STAT bit indicates if any error bit  
set in the device. The status bits, STAT[2:0], can be changed based off CMD1 value in the previous frame.  
Eight MSBs for ch2  
Eight MSBs of Ch1  
Four LSBs for Ch2  
Four LSBs for Ch1  
Four status bits  
CRC bits  
SDO: Special 32-bit Read  
(DATA_TYPE 000b)  
* ERROR_STAT indicates if there is any error bit set in the device  
8-12. Special 32-Bit SDO Read  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
32  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.5.2.5 SPI CRC  
The TMAG5170D-Q1 performs mandatory CRC for SPI communication. The data integrity is maintained in both  
directions by a 4-bit CRC covering the content of the incoming and outgoing 32-bit messages. The four LSB bits  
of each 32-bit SPI frame are dedicated for the CRC. The CRC code is generated by the polynomial x4 + x + 1.  
Initialize the CRC bits with b1111.  
During the SDI write frame, the TMAG5170D-Q1 reads for the CRC data before executing a write instruction.  
The write instruction from the controller is ignored if there is any CRC error present in the frame. During the SDI  
regular read frame, the TMAG5170D-Q1 starts to deliver the requested data through SDO line in the same frame  
and notifies the controller of any error occurrence through the ERROR_STAT bit. If the device detects a CRC  
error in the SDI line, the device will invert the last bit of the SDO CRC in the same frame to promptly signal to a  
controller that the SPI communication is compromised. A controller can also determine the presence of a CRC  
error in the SDI frame by checking the Status11 bit in the next regular read frame.  
备注  
The TMAG5170D-Q1 default mode at power up is CRC-enabled. With CRC enabled, the device will  
ignore all the SDI commands if proper CRC codes are not received. To disable the CRC at the SDI  
line, send the SPI SDI command x0F000407.  
d[31]  
d[31]  
.
.
.
.
.
.
.
.
CRC Polynomial  
x4 +x +1  
&
CRC Initialization Bits  
crci[3] = b1  
crci[2] = b1  
crci[1] = b1  
crci[0] = b1  
.
.
.
.
d[4]  
d[4]  
d[3] =b0  
d[2] =b0  
d[1] =b0  
d[0] =b0  
crc[3]  
crc[2]  
crc[1]  
crc[0]  
8-13. 4-Bit CRC Calculation  
Use the following XOR function equations to calculate the 4-bit CRC. 8-13 describes the notations of these  
equations.  
crc 0 = d 30 ^ d 26 ^ d 25 ^ d 24 ^ d 23 ^ d 21 ^ d 19 ^ d 18 ^ d 15 ^ d 11 ^ d 10 ^ d 9 ^ d 8 ^ d 6  
^ d 4 ^ d 3 ^ d 0 ^ crci 2  
(10)  
(11)  
crc 1 = d 31 ^ d 30 ^ d 27 ^ d 23 ^ d 22 ^ d 21 ^ d 20 ^ d 18 ^ d 16 ^ d 15 ^ d 12 ^ d 8 ^ d 7 ^ d 6  
^ d 5 ^ d 3 ^ d 1 ^ d 0 ^ crci 2 ^ crci 3  
crc 2 = d 31 ^ d 28 ^ d 24 ^ d 23 ^ d 22 ^ d 21 ^ d 19 ^ d 17 ^ d 16 ^ d 13 ^ d 9 ^ d 8 ^ d 7 ^ d 6  
^ d 4 ^ d 2 ^ d 1 ^ crci 0 ^ crci 3  
(12)  
crc 3 = d 29 ^ d 25 ^ d 24 ^ d 23 ^ d 22 ^ d 20 ^ d 18 ^ d 17 ^ d 14 ^ d 10 ^ d 9 ^ d 8 ^ d 7 ^ d 5  
^ d 3 ^ d 2 ^ crci 1  
(13)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
The following shows example codes for calculating the 4-bit CRC.  
function logic [3:0] calculate_crc4;  
input logic [27:0] frame;  
logic [31:0]  
logic [3:0]  
logic  
padded_frame;  
frame_crc;  
inv;  
i;  
integer  
padded_frame = {frame, 4'b0000};  
begin  
frame_crc = 4'hf; // initial value  
for (i=31; i >= 0; i=i-1) begin  
inv = padded_frame[i] ^ frame_crc[3];  
frame_crc[3] = frame_crc[2];  
frame_crc[2] = frame_crc[1];  
frame_crc[1] = frame_crc[0] ^ inv;  
frame_crc[0] = inv;  
end  
return frame_crc;  
end  
endfunction  
8.5.2.6 SPI Frame  
With the flexible definition of the 32-bit frames, the TMAG5170D-Q1 supports a wide array of application  
requirements catering to multiple user-specific data throughout. Two different frame examples are shown in this  
section to illustrate the complete SPI bus communication:  
32-Bit Read Frame  
32-Bit Write Frame  
8.5.2.6.1 32-Bit Read Frame  
8-14 shows both regular and special SDO frames during SDI read command. The TMAG5170D-Q1  
implements in-frame communication. When the controller sends a register read command during a regular read  
cycle, the corresponding 16-bit register data is sent through the SDO line in the same frame. During the special  
read cycle, the TMAG5170D-Q1 ignores the address and data bits of the SDI line and sends the two channel  
data set through the SDO line as defined in the DATA_TYPE register bits.  
8-14. 32-Bit SPI Read  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
34  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.5.2.6.2 32-Bit Write Frame  
8-15 shows both regular and special SDO frames during SDI write command. During a regular 32-bit frame  
write command through SDI, the SDO delivers '0's in place of 16-bit data placeholders. During the special frame  
write cycle through SDI line, the TMAG5170D-Q1 will continue to send the two channel data through SDO line  
as defined by the DATA_TYPE register bits.  
8-15. 32-Bit Write Frame  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6 Register Map  
8.6.1 TMAG5170D-Q1 Registers  
8-4 lists the memory-mapped registers for the TMAG5170D-Q1 registers. All register offset addresses not  
listed in 8-4 should be considered as reserved locations and the register contents should not be modified.  
8-4. TMAG5170D-Q1 Registers  
Offset  
Acronym  
Register Name  
Section  
0h  
DEVICE_CONFIG  
Configure Device Operation Modes  
DEVICE_CONFIG  
Register (Offset =  
0h) [Reset = 0000h]  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
SENSOR_CONFIG  
SYSTEM_CONFIG  
ALERT_CONFIG  
X_THRX_CONFIG  
Y_THRX_CONFIG  
Z_THRX_CONFIG  
T_THRX_CONFIG  
CONV_STATUS  
X_CH_RESULT  
Y_CH_RESULT  
Z_CH_RESULT  
TEMP_RESULT  
AFE_STATUS  
Configure Device Operation Modes  
Configure Device Operation Modes  
Configure Device Operation Modes  
Configure Device Operation Modes  
Configure Device Operation Modes  
Configure Device Operation Modes  
Configure Device Operation Modes  
Conversion Status Register  
Conversion Result Register  
Conversion Result Register  
Conversion Result Register  
Conversion Result Register  
Status Register  
SENSOR_CONFIG  
Register (Offset =  
1h) [Reset = 0000h]  
SYSTEM_CONFIG  
Register (Offset =  
2h) [Reset = 0000h]  
ALERT_CONFIG  
Register (Offset =  
3h) [Reset = 0000h]  
X_THRX_CONFIG  
Register (Offset =  
4h) [Reset = 7D83h]  
Y_THRX_CONFIG  
Register (Offset =  
5h) [Reset = 7D83h]  
Z_THRX_CONFIG  
Register (Offset =  
6h) [Reset = 7D83h]  
T_THRX_CONFIG  
Register (Offset =  
7h) [Reset = 6732h]  
CONV_STATUS  
Register (Offset =  
8h) [Reset = 0000h]  
X_CH_RESULT  
Register (Offset =  
9h) [Reset = 0000h]  
Y_CH_RESULT  
Register (Offset =  
Ah) [Reset = 0000h]  
Z_CH_RESULT  
Register (Offset =  
Bh) [Reset = 0000h]  
TEMP_RESULT  
Register (Offset =  
Ch) [Reset = 0000h]  
AFE_STATUS  
Register (Offset =  
Dh) [Reset = 8000h]  
SYS_STATUS  
Status Register  
SYS_STATUS  
Register (Offset =  
Eh) [Reset = 0000h]  
TEST_CONFIG  
Test Configuration Register  
TEST_CONFIG  
Register (Offset =  
Fh) [Reset = X]  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
36  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8-4. TMAG5170D-Q1 Registers (continued)  
Register Name  
Offset  
Acronym  
Section  
10h  
OSC_MONITOR  
Conversion Result Register  
OSC_MONITOR  
Register (Offset =  
10h) [Reset =  
0000h]  
11h  
12h  
MAG_GAIN_CONFIG  
Configure Device Operation Modes  
Configure Device Operation Modes  
MAG_GAIN_CONFI  
G Register (Offset =  
11h) [Reset = 0000h]  
MAG_OFFSET_CONFIG  
MAG_OFFSET_CO  
NFIG Register  
(Offset = 12h) [Reset  
= 0000h]  
13h  
14h  
ANGLE_RESULT  
Conversion Result Register  
Conversion Result Register  
ANGLE_RESULT  
Register (Offset =  
13h) [Reset =  
0000h]  
MAGNITUDE_RESULT  
MAGNITUDE_RES  
ULT Register (Offset  
= 14h) [Reset =  
0000h]  
Complex bit access types are encoded to fit into small table cells. 8-5 shows the codes that are used for  
access types in this section.  
8-5. TMAG5170D-Q1 Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
RC  
R
C
Read  
to Clear  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.1 DEVICE_CONFIG Register (Offset = 0h) [Reset = 0000h]  
DEVICE_CONFIG is shown in 8-6.  
Return to the Summary Table.  
8-6. DEVICE_CONFIG Register Field Descriptions  
Bit  
15  
Field  
Type  
Reset  
Description  
RESERVED  
CONV_AVG  
R
0h  
Reserved  
14-12  
R/W  
0h  
Enables additional sampling of the sensor data to reduce the noise  
effect (or to increase resolution)  
0h = 1x - 10.0 kSPS (3-axes) or 20 kSPS (1 axis)  
1h = 2x - 5.7 kSPS (3-axes) or 13.3 kSPS (1 axis)  
2h = 4x - 3.1 kSPS (3-axes) or 8.0 kSPS (1 axis)  
3h = 8x - 1.6 kSPS (3-axes) or 4.4 kSPS (1 axis)  
4h = 16x - 0.8 kSPS (3-axes) or 2.4 kSPS (1 axis)  
5h = 32x - 0.4 kSPS (3-axes) or 1.2 kSPS (1 axis)  
6h = Code not used, defaults to 000b if selected  
7h = Code not used, defaults to000b if selected  
11-10  
9-8  
RESERVED  
R
0h  
0h  
Reserved  
MAG_TEMPCO  
R/W  
Temperature coefficient of sense magnet  
0h = 0%/ deg C (Current sensor applications)  
1h = 0.12%/deg C (NdBFe)  
2h = 0.03% /deg C (SmCo)  
3h = 0.2%/deg C (Ceramic)  
7
RESERVED  
R
0h  
0h  
Reserved  
6-4  
OPERATING_MODE  
R/W  
Selects operating mode  
0h = Configuration mode, Default (TRIGGER_MODE active)  
1h = Stand-by mode (TRIGGER_MODE active)  
2h = Active measure mode (Continuous conversion)  
3h = Active trigger mode (TRIGGER_MODE active)  
4h = Wake-up and sleep mode (duty-cycled mode)  
5h = Sleep mode  
6h = Deep sleep mode (wakes up at CS signal from controller)  
7h = Code not used, defaults to 000b if selected  
3
T_CH_EN  
R/W  
0h  
Enables temperature compensation of the sensor data. Set this bit to  
'1b' for precision performance. If only temperature channel is  
enabled, the CONV_AVG register bits need to set at 000b.  
0h = Temp channel disabled, Default  
1h = Temp channel enabled  
2
1
0
T_RATE  
R/W  
R/W  
R
0h  
0h  
0h  
Temperature conversion rate. It is linked to the CONV_AVG field  
0h = Same as other sensors per CONV_AVG, Default  
1h = Once per conversion set  
T_HLT_EN  
RESERVED  
Enables temperature limit check  
0h = Temperature limit check off, Default  
1h = Temperature limit check on  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.2 SENSOR_CONFIG Register (Offset = 1h) [Reset = 0000h]  
SENSOR_CONFIG is shown in 8-7.  
Return to the Summary Table.  
8-7. SENSOR_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-14  
ANGLE_EN  
R/W  
0h  
Enable angle calculation using two axis data  
0h = No angle calculation (default)  
1h = X-Y-angle calculation enabled  
2h = Y-Z-angle calculation enabled  
3h = X-Z-angle calculation enabled  
13-10  
SLEEPTIME  
R/W  
0h  
Selects the time spent in low power mode between conversions  
when OPERATING_MODE =010b  
0h = 1 ms  
1h = 5 ms  
2h = 10 ms  
3h = 15 ms  
4h = 20 ms  
5h = 30 ms  
6h = 50 ms  
7h = 100 ms  
8h = 500 ms  
9h = 1000 ms  
Ah = Code not used, defaults to 0000b if selected  
Bh = Code not used, defaults to 0000b if selected  
Ch = Code not used, defaults to 0000b if selected  
Dh = Code not used, defaults to 0000b if selected  
Eh = Code not used, defaults to 0000b if selected  
Fh = Code not used, defaults to 0000b if selected  
9-6  
MAG_CH_EN  
R/W  
0h  
Enables data acquisition of the magnetic axis channel(s)  
0h = All magnetic channels of OFF, DEFAUT  
1h = X channel enabled  
2h = Y channel enabled  
3h = X, Y channels enabled  
4h = Z channel enabled  
5h = Z, X channels enabled  
6h = Y, Z channels enabled  
7h = X, Y, Z channels enabled  
8h = XYX channels enabled  
9h = YXY channels enabled  
Ah = YZY channels enabled  
Bh = ZYZ channels enabled  
Ch = ZXZ channels enabled  
Dh = XZX channels enabled  
Eh = XYZYX channels enabled  
Fh = XYZZYX channels enabled  
5-4  
3-2  
Z_RANGE  
Y_RANGE  
R/W  
R/W  
0h  
0h  
Enables different magnetic ranges to support magnetic fields from  
±25 mT to ±300 mT  
0h = ±50 mT (TMAG5170A1)/ ±150 mT(TMAG5170A2), Default  
1h = ±25 mT (TMAG5170A1)/ ±75 mT(TMAG5170A2)  
2h = ±100 mT (TMAG5170A1)/ ±300 mT(TMAG5170A2)  
3h = Code not used, defaults to 00b if selected  
Enables different magnetic ranges to support magnetic fields from  
±25 mT to ±300 mT  
0h = ±50 mT (TMAG5170A1)/ ±150 mT(TMAG5170A2), Default  
1h = ±25 mT (TMAG5170A1)/ ±75 mT(TMAG5170A2)  
2h = ±100 mT (TMAG5170A1)/ ±300 mT(TMAG5170A2)  
3h = Code not used, defaults to 00b if selected  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8-7. SENSOR_CONFIG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1-0  
X_RANGE  
R/W  
0h  
Enables different magnetic ranges to support magnetic fields from  
±25 mT to ±300 mT  
0h = ±50 mT (TMAG5170A1)/ ±150 mT(TMAG5170A2), Default  
1h = ±25 mT (TMAG5170A1)/ ±75 mT(TMAG5170A2)  
2h = ±100 mT (TMAG5170A1)/ ±300 mT(TMAG5170A2)  
3h = Code not used, defaults to 00b if selected  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.3 SYSTEM_CONFIG Register (Offset = 2h) [Reset = 0000h]  
SYSTEM_CONFIG is shown in 8-8.  
Return to the Summary Table.  
8-8. SYSTEM_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Selects a diagnostic mode run  
15-14  
13-12  
RESERVED  
DIAG_SEL  
R
0h  
R/W  
0h  
0h = Run all data path diagnostics all together, Default  
1h = Run only enabled data path diagnostics all together  
2h = Run all data path diagnostics in sequence  
3h = Run only enabled data path diagnostics in sequence  
11  
RESERVED  
R
0h  
0h  
Reserved  
10-9  
TRIGGER_MODE  
R/W  
Selects a condition which initiates a single conversion based off  
already configured registers. A running conversion completes before  
executing a trigger. Redundant triggers are ignored.  
TRIGGER_MODE is available only during the modes explicitly  
mentioned in OPERATING_MODE.  
0h = Conversion start at SPI command, Default  
1h = Conversion start at CS pulse  
2h = Conversion start at ALERT pulse  
3h = Code not used, defaults to 00b if selected  
8-6  
DATA_TYPE  
R/W  
0h  
Data Type to be accessed from results registers via SPI  
0h = Default 32-bit register access  
1h = 12-Bit XY data access  
2h = 12-Bit XZ data access  
3h = 12-Bit ZY data access  
4h = 12-Bit XT data access  
5h = 12-Bit YT data access  
6h = 12-Bit ZT data access  
7h = 12-Bit AM data access  
5
DIAG_EN  
R/W  
0h  
Enables user controlled AFE diagnostic tests  
0h = Execution of AFE diagnostics is disabled, Default  
1h = Execution of AFE diagnostics is enabled  
4-3  
2
RESERVED  
Z_HLT_EN  
R
0h  
0h  
Reserved  
R/W  
Enables magnetic field limit check on Z axis  
0h = Z axis limit check off, Default  
1h = Z axis limit check on  
1
0
Y_HLT_EN  
X_HLT_EN  
R/W  
R/W  
0h  
0h  
Enables magnetic field limit check on Y axis  
0h = Y axis limit check off, Default  
1h = Y axis limit check on  
Enables magnetic field limit check on X axis  
0h = X axis limit check off, Default  
1h = X axis limit check on  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.4 ALERT_CONFIG Register (Offset = 3h) [Reset = 0000h]  
ALERT_CONFIG is shown in 8-9.  
Return to the Summary Table.  
8-9. ALERT_CONFIG Register Field Descriptions  
Bit  
15-14  
13  
Field  
Type  
Reset  
Description  
Reserved  
Latched ALERT mode select  
RESERVED  
ALERT_LATCH  
R
0h  
R/W  
0h  
0h = ALERT sources are not latched. ALERT is asserted only while  
the source of the ALERT response is present  
1h = ALERT sources are latched. ALERT response is latched when  
the source of the ALERT is asserted until cleared on Read of the  
corresponding status register (AFE_STATUS, SYS_STATUS, or  
result registers)  
12  
11  
ALERT_MODE  
STATUS_ALRT  
R/W  
R/W  
0h  
0h  
ALERT mode select  
0h = Interrupt mode  
1h = Switch mode. This mode overrides any interrupt function  
(ALERT trigger is also disabled), and implements Hall switch function  
based off the *_THRX_ALRT settings. In the switch mode the  
corresponding X_HLT_EN, Y_HLT_EN, Z_HLT_EN need to be set.  
Enable ALERT response when any flag in the AFE_STATUS or  
SYS_STATUS registers are set  
0h = ALERT is not asserted when any of the AFE_STATUS or  
SYS_STATUS bit is set  
1h = ALERT output is asserted when any of the AFE_STATUS or  
SYS_STATUS bit is set  
10-9  
8
RESERVED  
RSLT_ALRT  
R
0h  
0h  
Reserved  
R/W  
Enable ALERT response when the configured set of conversions is  
complete  
0h = ALERT is not used to signal when the configured set of  
conversions are complete  
1h = ALERT output is asserted when the configured set of  
conversions are complete  
7-6  
5-4  
RESERVED  
R
0h  
0h  
Reserved  
THRX_COUNT  
R/W  
Number of conversions above the HIGH threshold or below the LOW  
threshold before the ALERT response is initiated  
0h = 1-Conversion result  
1h = 2-Conversion results  
2h = 3-Conversion results  
3h = 4-Conversion results  
3
2
1
T_THRX_ALRT  
Z_THRX_ALRT  
Y_THRX_ALRT  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Temperature threshold ALERT enable  
0h = ALERT is not used to signal when temperature thresholds are  
crossed  
1h = ALERT output is asserted when temperature thresholds are  
crossed  
Z-Channel threshold ALERT enable  
0h = ALERT is not used to signal when Z-Axis magnetic thresholds  
are crossed  
1h = ALERT output is asserted when Z-Axis magnetic thresholds are  
crossed  
Y-Channel threshold ALERT enable  
0h = ALERT is not used to signal when Y-Axis magnetic thresholds  
are crossed  
1h = ALERT output is asserted when Y-Axis magnetic thresholds are  
crossed  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8-9. ALERT_CONFIG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
X_THRX_ALRT  
R/W  
0h  
X-Channel threshold ALERT enable  
0h = ALERT is not used to signal when X-Axis magnetic thresholds  
are crossed  
1h = ALERT output is asserted when X-Axis magnetic thresholds are  
crossed  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.5 X_THRX_CONFIG Register (Offset = 4h) [Reset = 7D83h]  
X_THRX_CONFIG is shown in 8-10.  
Return to the Summary Table.  
8-10. X_THRX_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
X_HI_THRESHOLD  
R/W  
7Dh  
X-Axis maximum magnetic field threshold. User input as 2's  
complement 8-bit binary number. The threshold in mT can be  
calculated as: (X_RANGE/128)*X_HI_THRESHOLD. Default to 98%  
of the full-scale  
7-0  
X_LO_THRESHOLD  
R/W  
83h  
X-Axis minimum magnetic field threshold. User input as 2's  
complement 8-bit binary number. The threshold in mT can be  
calculated as: (X_RANGE/128)*X_LO_THRESHOLD. Default to  
-98% of the full-scale  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.6 Y_THRX_CONFIG Register (Offset = 5h) [Reset = 7D83h]  
Y_THRX_CONFIG is shown in 8-11.  
Return to the Summary Table.  
8-11. Y_THRX_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
Y_HI_THRESHOLD  
R/W  
7Dh  
Y-Axis maximum magnetic field threshold. User input as 2's  
complement 8-bit binary number. The threshold in mT can be  
calculated as: (Y_RANGE/128)*Y_HI_THRESHOLD. Default to 98%  
of the full-scale.  
7-0  
Y_LO_THRESHOLD  
R/W  
83h  
Y-Axis minimum magnetic field threshold. User input as 2's  
complement 8-bit binary number. The threshold in mT can be  
calculated as: (Y_RANGE/128)*Y_LO_THRESHOLD. Default to  
-98% of the full-scale.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.7 Z_THRX_CONFIG Register (Offset = 6h) [Reset = 7D83h]  
Z_THRX_CONFIG is shown in 8-12.  
Return to the Summary Table.  
8-12. Z_THRX_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
Z_HI_THRESHOLD  
R/W  
7Dh  
Z-Axis maximum magnetic field threshold. User input as 2's  
complement 8-bit binary number. The threshold in mT can be  
calculated as:(Z_RANGE/128)*Z_HI_THRESHOLD. Default to 98%  
of the full-scale  
7-0  
Z_LO_THRESHOLD  
R/W  
83h  
Z-Axis minimum magnetic field threshold. User input as 2's  
complement 8-bit binary number. The threshold in mT can be  
calculated as: (Z_RANGE/128)*X_LO_THRESHOLD. Default to  
-98% of the full-scale  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.8 T_THRX_CONFIG Register (Offset = 7h) [Reset = 6732h]  
T_THRX_CONFIG is shown in 8-13.  
Return to the Summary Table.  
8-13. T_THRX_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
T_HI_THRESHOLD  
R/W  
67h  
Temperature maximum threshold. User input as 2's complement 8-bit  
binary number. Each LSB in this field corresponds to 4.267°C.  
Default value of 67h represents 172°C.  
7-0  
T_LO_THRESHOLD  
R/W  
32h  
Temperature minimum threshold. User input as 2's complement 8-bit  
binary number. Each LSB in this field corresponds to 4.267°C.  
Default value of 32h represents -53°C.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.9 CONV_STATUS Register (Offset = 8h) [Reset = 0000h]  
CONV_STATUS is shown in 8-14.  
Return to the Summary Table.  
8-14. CONV_STATUS Register Field Descriptions  
Bit  
15-14  
13  
Field  
Type  
Reset  
Description  
Reserved  
Conversion data buffer is ready.  
RESERVED  
RDY  
R
0h  
R
0h  
0h = Conversion data not valid (result registers hold previous  
conversion value)  
1h = Conversion data valid  
12  
11  
10  
9
A
T
Z
Y
X
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
Angle/Magnitude data from current conversion  
0h = Data is not current  
1h = Data is current  
Temperature data from current conversion  
0h = Temperature data is not current  
1h = Temperature data is current  
Z-Channel data from current conversion  
0h = Z-Channel data is not current  
1h = Z-Channel data is current  
Y-Channel data from current conversion  
0h = Y-Channel data is not current  
1h = Y-Channel data is current  
8
X-Channel data from current conversion  
0h = X-Channel data is not current  
1h = X-Channel data is current  
7
RESERVED  
SET_COUNT  
RESERVED  
ALRT_STATUS  
R
R
R
R
0h  
0h  
0h  
0h  
Reserved  
6-4  
3-2  
1-0  
Rolling count of conversion data sets  
Reserved  
State of ALERT response  
0h = No ALERT conditions  
1h = AFE status flag set  
2h = SYS status flag set  
3h = Flags set in both AFE and SYS status registers  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.10 X_CH_RESULT Register (Offset = 9h) [Reset = 0000h]  
X_CH_RESULT is shown in 8-15.  
Return to the Summary Table.  
8-15. X_CH_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
X_CH_RESULT  
R
0h  
X-Channel data conversion results  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.11 Y_CH_RESULT Register (Offset = Ah) [Reset = 0000h]  
Y_CH_RESULT is shown in 8-16.  
Return to the Summary Table.  
8-16. Y_CH_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
Y_CH_RESULT  
R
0h  
Y-Channel data conversion results  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
50  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.12 Z_CH_RESULT Register (Offset = Bh) [Reset = 0000h]  
Z_CH_RESULT is shown in 8-17.  
Return to the Summary Table.  
8-17. Z_CH_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
Z_CH_RESULT  
R
0h  
Z-Channel data conversion results  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.13 TEMP_RESULT Register (Offset = Ch) [Reset = 0000h]  
TEMP_RESULT is shown in 8-18.  
Return to the Summary Table.  
8-18. TEMP_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
TEMP_RESULT  
R
0h  
Temperature sensor data conversion results  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
52  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.14 AFE_STATUS Register (Offset = Dh) [Reset = 8000h]  
AFE_STATUS is shown in 8-19.  
Return to the Summary Table.  
8-19. AFE_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
CFG_RESET  
RC  
1h  
Device power up status. This bit is reset when microcontroller reads  
the AFE_STATUS register.  
0h = Device reset has been acknowledged and cleared  
1h = Device has experienced a hardware reset after a power down  
or brown-out  
14-13  
12  
RESERVED  
SENS_STAT  
R
0h  
0h  
Reserved  
RC  
Analog front end sensor diagnostic status  
0h = No error detected  
1h = Analog front end sensor diagnostic test failed  
11  
10  
9
TEMP_STAT  
ZHS_STAT  
YHS_STAT  
XHS_STAT  
RC  
RC  
RC  
RC  
0h  
0h  
0h  
0h  
Temperature sensor diagnostic status  
0h = No error detected  
1h = Analog front end temperature sensor diagnostic test failed  
Z-Axis hall sensor diagnostic status  
0h = No error detected  
1h = Z-Axis hall sensor diagnostic test failed  
Y-Axis hall sensor diagnostic status  
0h = No error detected  
1h = Y-Axis hall sensor diagnostic test failed  
8
X-Axis hall sensor diagnostic status  
0h = No error detected  
1h = X-Axis hall sensor diagnostic test failed  
7-2  
1
RESERVED  
TRIM_STAT  
R
0h  
0h  
Reserved  
RC  
Trim data error  
0h = No trim data errors were detected  
1h = Trim data error was detected  
0
LDO_STAT  
RC  
0h  
LDO error  
0h = No faults in the internal LDO supplied power were detected  
1h = A fault in the internal LDO supplied power was detected  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.15 SYS_STATUS Register (Offset = Eh) [Reset = 0000h]  
SYS_STATUS is shown in 8-20.  
Return to the Summary Table.  
8-20. SYS_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
ALRT_LVL  
R
0h  
Reflects the current state of the ALERT pin feed-back path  
0h = The input ALERT logic level is low  
1h = The input ALERT logic level is high  
14  
ALRT_DRV  
RC  
0h  
Each time the open drain ALERT signal is driven, the feedback  
circuit checks if the ALERT output goes Low. An error flag is  
generated at the ALRT_DRV bit if the output doesn't go Low.  
0h = No ALERT drive error detected  
1h = ALERT drive error detected  
13  
12  
SDO_DRV  
CRC_STAT  
RC  
RC  
0h  
0h  
The Logic value driven output on SDO was not the value of the SDO  
Pin Feed-back path when SDO is being driven by the device  
0h = No SDO drive error detected  
1h = SDO drive error detected  
Cyclic redundancy check error  
0h = No cyclic redundancy check error was detected  
1h = Cyclic redundancy check error was detected for a SPI  
transaction  
11  
FRAME_STAT  
RC  
R
0h  
0h  
Incorrect number of clocks in SPI frame  
0h = No frame error was detected  
1h = Incorrect number of clocks detected for a SPI transaction  
10-8  
OPERATING_STAT  
Reports the status of operating mode  
0h = Config state  
1h = Standby state  
2h = Active measure (Continuous Mode) state  
3h = Active triggered mode state  
4h = DCM active state  
5h = DCM Sleep state  
6h = Sleep state  
7-6  
5
RESERVED  
VCC_OV  
R
0h  
0h  
Reserved  
RC  
VCC over-voltage detection in active or stand-by mode  
0h = No over-voltage detected on VCC  
1h = VCC was detected to be over-voltage  
4
3
2
1
0
VCC_UV  
RC  
RC  
RC  
RC  
RC  
0h  
0h  
0h  
0h  
0h  
VCC under voltage detection in active or stand-by mode  
0h = No under-voltage was detected on VCC  
1h = VCC was detected to be under-voltage  
TEMP_THX  
ZCH_THX  
YCH_THX  
XCH_THX  
Temperature threshold crossing detected  
0h = No temperature threshold crossing detected  
1h = Temperature threshold crossing detected  
Z-Channel threshold crossing detected  
0h = No Z-Axis magnetic field threshold crossing detected  
1h = Z-Axis magnetic field threshold crossing detected  
Y-Channel threshold crossing detected  
0h = No Y-Axis magnetic field threshold crossing detected  
1h = Y-Axis magnetic field threshold crossing detected  
X-Channel threshold crossing detected  
0h = No X-Axis magnetic field threshold crossing detected  
1h = X-Axis magnetic field threshold crossing detected  
Copyright © 2023 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.16 TEST_CONFIG Register (Offset = Fh) [Reset = X]  
TEST_CONFIG is shown in 8-21.  
Return to the Summary Table.  
8-21. TEST_CONFIG Register Field Descriptions  
Bit  
15-6  
5-4  
Field  
Type  
Reset  
Description  
RESERVED  
VER  
R
1h  
Reserved  
R
X
Indicates the version of the device  
0h = A1 rev  
1h = A2 rev  
2h = reserved  
3h = reserved  
3
2
RESERVED  
CRC_DIS  
R
0h  
0h  
Reserved  
R/W  
Enable or disable CRC in SPI communication  
0h = CRC enabled in SPI communication (Default)  
1h = CRC disabled in SPI communication  
1-0  
OSC_CNT_CTL  
R/W  
0h  
Oscillator count control - starts, stops, and resets the counter driven  
by the HFOSC or LFOSC oscillator to facilitate oscillator frequency  
and integrity checks  
0h = Reset OSC counter (default)  
1h = Start OSC counter driven by HFOSC  
2h = Start OSC counter driven by LFOSC  
3h = Stop OSC counter  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.17 OSC_MONITOR Register (Offset = 10h) [Reset = 0000h]  
OSC_MONITOR is shown in 8-22.  
Return to the Summary Table.  
8-22. OSC_MONITOR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
OSC_COUNT  
R
0h  
Oscillator Counter. The number of selected oscillator clock cycles  
that have been counted since Oscillator Counter was started. The  
HFOSC and LFOSC clock roll-over the 16-bit counter once reaching  
the max value.  
Copyright © 2023 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.18 MAG_GAIN_CONFIG Register (Offset = 11h) [Reset = 0000h]  
MAG_GAIN_CONFIG is shown in 8-23.  
Return to the Summary Table.  
8-23. MAG_GAIN_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-14  
GAIN_SELECTION  
R/W  
0h  
Enables the selection of a particular Hall axis for amplitude  
correction to get accurate angle measurement  
0h = No axis is selected (Default)  
1h = X-axis is selected  
2h = Y-axis is selected  
3h = Z-axis is selected  
13-11  
10-0  
RESERVED  
R
0h  
0h  
Reserved  
GAIN_VALUE  
R/W  
11-bit gain value determined by controller to adjust the a particular  
Hall axis value. The gain value is anywhere between 0 and 2. Gain is  
calculated as 'user entered value/1024'.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.19 MAG_OFFSET_CONFIG Register (Offset = 12h) [Reset = 0000h]  
MAG_OFFSET_CONFIG is shown in 8-24.  
Return to the Summary Table.  
8-24. MAG_OFFSET_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-14  
OFFSET_SELECTION  
R/W  
0h  
Enables the selection of a particular Hall axis for offset correction to  
get accurate angle measurement:  
00b = No axis is selected for offset correction (Default).  
01b = Only OFFSET_VALUE1 is used for offset correction. Applied  
to X axis when ANGLE_EN = 01b or 11b, and to Y axis when  
ANGLE_EN =10b. No axis is selected if ANGLE_EN =00b.  
10b = Only OFFSET_VALUE2 is used for offset correction. Applied  
to Y axis when ANGLE_EN = 01b, and to Z axis when ANGLE_EN  
=10b or 11b. No axis is selected if ANGLE_EN =00b.  
11b = Both OFFSET_VALUE1 and OFFSET_VALUE2 are used for  
offset correction. OFFSET_VALUE1 applied to X axis when  
ANGLE_EN = 01b or 11b, and to Y axis when ANGLE_EN =10b.  
OFFSET_VALUE2 applied to Y axis when ANGLE_EN = 01b, and to  
Z axis when ANGLE_EN =10b or 11b. No axis is selected if  
ANGLE_EN =00b.  
13-7  
6-0  
OFFSET_VALUE1  
OFFSET_VALUE2  
R/W  
R/W  
0h  
0h  
7-bit, 2' complement offset value determined by controller to adjust a  
particular Hall axis value. The range of possible offset valid entries  
can be +/-64. The offset value is calculated from the user input as  
the 7 LSB bits of a 11-bit range per SENSOR_CONFIG register  
setting for the corresponding axis. Default offset value is 0.  
7-bit, 2' complement offset value determined by controller to adjust a  
particular Hall axis value. The range of possible offset valid entries  
can be +/-64. The offset value is calculated from the user input as  
the 7 LSB bits of a 11-bit range per SENSOR_CONFIG register  
setting for the corresponding axis. Default offset value is 0.  
Copyright © 2023 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.20 ANGLE_RESULT Register (Offset = 13h) [Reset = 0000h]  
ANGLE_RESULT is shown in 8-25.  
Return to the Summary Table.  
8-25. ANGLE_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
ANGLE_RESULT  
R
0h  
Angle measurement result in degree. The data is displayed from 0 to  
360 degree in 13 LSB bits. The 4 LSB bits allocated for fraction of an  
angle in the format (xxxx/16).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
8.6.1.21 MAGNITUDE_RESULT Register (Offset = 14h) [Reset = 0000h]  
MAGNITUDE_RESULT is shown in 8-26.  
Return to the Summary Table.  
8-26. MAGNITUDE_RESULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
MAGNITUDE_RESULT  
R
0h  
Resultant vector magnitude (during angle measurement) result. This  
value should be constant during 360 degree measurements  
Copyright © 2023 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属于 TI 元件规格TI 不担保其准确性和完整性。TI 的客户负责确定元件是否  
适合其用途以及验证和测试其设计实现以确认系统功能。  
9.1 Application Information  
9.1.1 Selecting the Sensitivity Option  
Select the highest TMAG5170D-Q1 sensitivity option that can measure the required range of magnetic flux  
density so that the ADC output range is maximized.  
Larger-sized magnets and farther sensing distances can generally enable better positional accuracy than very  
small magnets at close distances, because magnetic flux density increases exponentially with the proximity to a  
magnet. TI created an online tool to help with simple magnet calculations under the TMAG5170-Q1 product  
folder on ti.com.  
9.1.2 Temperature Compensation for Magnets  
The TMAG5170D-Q1 temperature compensation is designed to directly compensate the average temperature  
drift of several magnets as specified in the MAG_TEMPCO register bits. The residual induction (Br) of a magnet  
typically reduces by 0.12%/°C for NdFeB, and 0.20%/°C for ferrite magnets as the temperature increases. Set  
the MAG_TEMPCO bit to default 00b if the device temperature compensation is not needed.  
9.1.3 Sensor Conversion  
Multiple conversion schemes can be adopted based off the MAG_CH_EN, CONV_AVG, DIAG_SEL, and  
DIAG_EN register bit settings.  
9.1.3.1 Continuous Conversion  
The TMAG5170D-Q1 can be set in continuous conversion mode when OPERATING_MODE is set to 010b. 图  
9-1 shows few examples of continuous conversion. The input magnetic field is processed in two steps. In the first  
step the device spins the hall sensor elements, and integrates the sampled data. In the second step, the ADC  
block converts the analog signal into digital bits and stores in the corresponding result register. While the ADC  
starts processing the first magnetic sample, the spin block can start processing another magnetic sample. The  
temperature data is taken at the beginning of each new conversion. This temperature data is used to  
compensate for the magnetic thermal drift.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
Ini aliz  
a on  
me  
HALL Spin &  
Integra on  
X-Axis  
Temp  
X-Axis  
Temp  
X-Axis  
X-Axis  
ADC  
Start  
Conv me  
Start next  
Ini ate  
Time  
OPERATING_MODE = 010b, MAG_CH_EN = 0001b, CONV_AVG = 000b  
Ini aliz  
a on  
me  
HALL Spin &  
Integra on  
X-Axis  
Temp  
X-Axis  
X-Axis  
X-Axis  
Temp  
X-Axis  
X-Axis  
X-Axis  
X-Axis  
ADC  
Start next  
Start  
Conv me  
Ini ate  
Time  
OPERATING_MODE = 010b, MAG_CH_EN = 0001b, CONV_AVG = 001b  
Ini aliz  
a on  
me  
HALL Spin &  
Integra on  
X-Axis  
Temp  
Y-Axis  
X-Axis  
X-Axis  
Temp  
Y-Axis  
Z-Axis  
Y-Axis  
Z-Axis  
Y-Axis  
X-Axis  
Z-Axis  
Z-Axis  
ADC  
Start next  
Start  
Conversion me  
Ini ate  
Time  
OPERATING_MODE = 010b, MAG_CH_EN = 0111b, CONV_AVG = 000b  
9-1. Continuous Conversion Examples  
9.1.3.2 Trigger Conversion  
The TMAG5170D-Q1 supports trigger conversion with OPERATING_MODE set to 000b, 001b, or 011b. During  
trigger conversion, the initialization time can vary depending on the operating mode (see 8-3). The trigger  
event can be initiated through a SPI command, ALERT, or CS signal. 9-2 shows an example of trigger  
conversion with X, Y, Z, and temperature sensors activated.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
62  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
Initialization time  
HALL Spin &  
Integration  
X-Axis  
Temp  
Y-Axis  
X-Axis  
Z-Axis  
Y-Axis  
Z-Axis  
ADC  
Conversion  
Conversion  
time  
Conversion  
Trigger  
start  
Time  
9-2. Trigger Conversion for X, Y, Z, and Temperature Sensors  
9.1.3.3 Pseudo-Simultaneous Sampling  
In absolute angle measurement, application sensor data from multiple axes are required to calculate an accurate  
angle. The magnetic field data collected at different times through the same signal chain introduces error in  
angle calculation. The TMAG5170D-Q1 offers pseudo-simultaneous sampling data collection modes to eliminate  
this error. 9-3 shows an example where MAG_CH_EN is set at 1101b to collect XZX data. 方程式 14 shows  
that the time stamps for the X and Z sensor data are the same.  
P:1 + P:2  
P< =  
2
(14)  
where  
tX1, tZ, tX2 are time stamps for X, Z, X sensor data completion as defined in 9-3.  
HALL Spin &  
Integra on  
X-Axis  
Temp  
Z-Axis  
X-Axis  
Z-Axis  
X-Axis  
X-Axis  
ADC  
tX1  
tZ  
tX2  
Time  
9-3. XZX Magnetic Field Conversion  
The vertical X, Y sensors of the TMAG5170D-Q1 exhibit more noise than the horizontal Z sensor. The pseudo-  
simultaneous sampling can be used to equalize the noise floor when two set of vertical sensor data are collected  
against one set of horizontal sensor data, as in examples of XZX or YZY modes.  
9.1.4 Error Calculation During Linear Measurement  
The TMAG5170D-Q1 offers independent configurations to perform linear position measurements in X, Y, and Z  
axes. To calculate the expected error during linear measurement, the contributions from each of the individual  
error sources must be understood. The relevant error sources include sensitivity error, offset, noise, cross axis  
sensitivity, hysteresis, nonlinearity, drift across temperature, drift across life time, and so forth. For a 3-axis Hall  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
solution like the TMAG5170D-Q1, the cross-axis sensitivity and hysteresis error sources are insignificant. Use 方  
15 to estimate the linear measurement error calculation at room temperature.  
2
2
off  
2
B × SENS  
ER  
+ B  
+ N  
RMS_25  
Error  
=
× 100%  
(15)  
LM_25C  
B
where  
ErrorLM_25C is total error in % during linear measurement at 25°C.  
B is input magnetic field.  
SENSER is sensitivity error at 25°C.  
Boff is offset error at 25°C.  
NRMS_25 is RMS noise at 25°C.  
In many applications, system level calibration at room temperature can nullify the offset and sensitivity errors at  
25°C. The noise errors can be reduced by further digital averaging the sensor data in a microcontroller. Use 方程  
15 to estimate the linear measurement error across temperature after calibration at room temperature.  
2
2
2
B × SENS  
DR  
+ B  
+ N  
RMS_Temp  
off_DR  
Error  
=
× 100%  
(16)  
LM_Temp  
B
where  
ErrorLM_Temp is total error in % during linear measurement across temperature after room temperature  
calibration.  
B is input magnetic field.  
SENSDR is sensitivity drift from value at 25°C.  
Boff_DR is offset drift from value at 25°C.  
NRMS_Temp is RMS noise across temperature.  
If room temperature calibration is not performed, sensitivity and offset errors at room temperature must also  
account for total error calculation across temperature (see 方程17).  
2
2
2
2
2
B × SENS  
ER  
+ B × SENS  
DR  
+ B  
off  
+ B  
off_DR  
+ N  
RMS_Temp  
Error  
=
× 100%  
(17)  
LM_Temp_NCal  
B
where  
ErrorLM_Temp_NCal is total error in % during linear measurement across temperature without room temperature  
calibration.  
9.1.5 Error Calculation During Angular Measurement  
The TMAG5170D-Q1 offers on-chip CORDIC to measure angle data from any of the two magnetic axes. The  
linear magnetic axis data can be used to calculate the angle using an external CORDIC as well. To calculate the  
expected error during angular measurement, the contributions from each individual error source must be  
understood. The relevant error sources include sensitivity error, offset, noise, axis-axis mismatch, nonlinearity,  
drift across temperature, drift across life time, and so forth. Use the Angle Error Calculation Tool to estimate the  
total error during angular measurement.  
9.2 Typical Application  
Magnetic angle sensors are very popular due to contactless and reliable measurements, especially in  
applications requiring long-term measurements in rugged environments. The TMAG5170D-Q1 offers an on-chip  
angle calculator that can provide angular measurement based off any two of the magnetic axes. The two axes of  
interest can be selected in the ANGLE_EN register bits. The device offers an angle output in complete 360  
degree scale. Take several error sources into account for angle calculation, including sensitivity error, offset  
error, linearity error, noise, mechanical vibration, temperature drift, and so forth.  
Copyright © 2023 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
2.3V to 5.5V  
VDD/VIO  
VCC  
ALERT  
CS  
SDI  
SDO  
SCK  
TEST  
GND  
9-4. TMAG5170D-Q1 Application Diagram  
9.2.1 Design Requirements  
Use the parameters listed in 9-1 for this design example  
9-1. Design Parameters  
DESIGN PARAMETERS  
ON-AXIS MEASUREMENT  
TMAG5170-A1  
5 V  
OFF-AXIS MEASUREMENT  
Device  
VCC  
TMAG5170-A1  
5 V  
Cylinder: 4.7625-mm diameter, 12.7-mm  
thick, neodymium N52, Br = 1480  
Cylinder: 4.7625-mm diameter, 12.7-mm  
thick, neodymium N52, Br = 1480  
Magnet  
Select the same range for both axes based  
off the highest possible magnetic field seen  
by the sensor  
Select the same range for both axes based  
off the highest possible magnetic field seen  
by the sensor  
Magnetic Range Selection  
RPM  
<600  
<600  
Desired Accuracy  
<1° for 360° rotation  
<1° for 360° rotation  
9.2.1.1 Gain Adjustment for Angle Measurement  
Common measurement topology include angular position measurements in on-axis or off-axis angular  
measurements shown in 9-5. Select the on-axis measurement topology whenever possible, as this offers the  
best optimization of magnetic field and the device measurement ranges. The TMAG5170D-Q1 offers an on-chip  
gain adjustment option to account for mechanical position misalignments.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
On-axis  
Off-axis  
S
S
N
N
9-5. On-Axis vs. Off-Axis Angle Measurements  
9.2.2 Detailed Design Procedure  
For accurate angle measurement, the two axes amplitudes must be normalized by selecting the proper gain  
adjustment value in the MAG_GAN_CONFIG register. The gain adjustment value is a fractional decimal number  
between 0 and 1. The following steps must be followed to calculate this fractional value:  
1. Set the device at 32x average mode and rotate the shaft a full 360 degree.  
2. Record the two axes sensor ADC codes for the full 360 degree rotation.  
3. Measure the maximum peak-peak ADC code delta for each axis, Ax and Ay, as shown in 9-6 or 9-7.  
4. Calculate the gain adjustment value for X axis:  
#
;
): =  
#
:
(18)  
5. If GX>1, apply the gain adjustment value to Y axis:  
1
); =  
)
:
(19)  
(20)  
6. Calculate the target binary gain setting at the GAIN_VALUE register bits:  
GX or GY = GAIN_VALUEdecimal / 1024  
Example 1: If AX = AY = 60,000, the GAIN_SELECTION resister bits can be set as 00b. The GAIN_VALUE  
register bits are don't care bits in this case.  
Example 2: If AX= 60,000, AY = 45,000, the GX = 45,000/60,000 =0.75. Select 01b for the GAIN_SELECTION  
register bits.  
Example 3: If AX= 45,000, AY = 60,000, the GX = (60,000/45,000) =1.33. Since GX >1, the gain adjustment  
needs to be applied to Y axis with GY =1/GX. Select 10b for the GAIN_SELECTION register bits.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
66  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
9.2.3 Application Curves  
Ay  
Ax = Ay  
9-7. X and Y Sensor Data for Full 360 Degree  
9-6. X and Y Sensor Data for Full 360 Degree  
Rotation for Off-Axis Measurement  
Rotation for On-Axis Measurement  
9.3 Best Design Practices  
The TMAG5170D-Q1 updates the result registers at the end of a conversion. SPI read of the result register must  
be synchronized with the conversion update time to ensure reading the updated result data. The conversion  
update time, tmeasure is defined in the Electrical Characteristics table. 9-8 shows examples of correct and  
incorrect SPI read timings for applications with strict timing budgets. Use the ALERT signal to notify the  
controller when a conversion is complete.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
9-8. SPI Read During Continuous Conversion  
9.4 Power Supply Recommendations  
A decoupling capacitor close to the device must be used to provide local energy with minimal inductance. TI  
recommends using a ceramic capacitor with a value of at least 0.01 µF between each VCC and GND pins.  
Connect the TEST pins to the respective ground planes.  
9.5 Layout  
9.5.1 Layout Guidelines  
Magnetic fields pass through most nonferromagnetic materials with no significant disturbance. Embedding Hall-  
effect sensors within plastic or aluminum enclosures and sensing magnets on the outside is common practice.  
Magnetic fields also easily pass through most printed circuit boards (PCBs), which makes placing the magnet on  
the opposite side of the PCB possible.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
68  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
9.5.2 Layout Example  
SDI2  
SCK2  
SDO2  
CS2  
ALERT2  
VCC2  
GND2  
GND2  
µController  
GND1  
VCC1  
ALERT1  
CS1  
SDO1  
SDI1  
SCK1  
9-9. Layout Example With TMAG5170D-Q1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
70  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
 
 
 
 
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
72  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
11.1 Package Option Addendum  
Packaging Information  
Orderable  
Device  
Package  
Drawing  
Lead/Ball  
Finish(6)  
MSL Peak  
Temp(3)  
Device  
Marking(4) (5)  
Status(1)  
Package Type  
Pins  
Package Qty  
Eco Plan(2)  
Op Temp (°C)  
PTMAG5170D ACTIVE  
A2EPWRQ1  
TSSOP  
PW  
16  
2500  
Call TI  
Call TI  
Call TI  
-40 to 150  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by  
weight in homogeneous material).  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on  
information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI  
has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming  
materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
74  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
 
 
 
 
 
 
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
11.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
PTMAG5170DA2EPWR  
Q1  
TSSOP  
PW  
16  
2500  
330  
12.4  
6.85  
5.45  
1.6  
1.3  
12  
Q1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
 
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
PW 16  
SPQ  
Length (mm) Width (mm)  
Height (mm)  
PTMAG5170DA2EPWRQ1  
TSSOP  
2500  
340  
340  
38  
11.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLYS052  
76  
Submit Document Feedback  
Product Folder Links: TMAG5170D-Q1  
TMAG5170D-Q1  
ZHCSQR8 MARCH 2023  
www.ti.com.cn  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
PTMAG5170DA2EPWR  
Q1  
TSSOP  
PW  
16  
2500  
330  
12.4  
6.85  
5.45  
1.6  
1.3  
12  
Q1  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
PW 16  
SPQ  
2500  
Length (mm) Width (mm)  
340 340  
Height (mm)  
PTMAG5170DA2EPWRQ1  
TSSOP  
38  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TMAG5170D-Q1  
English Data Sheet: SLYS052  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTMAG5170DA1EPWRQ1  
PTMAG5170DA2EPWRQ1  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
16  
16  
2500  
2500  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 150  
-40 to 150  
Samples  
Samples  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Jul-2023  
Addendum-Page 2  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMAG5173-Q1

具有 I²C 接口的汽车类高精度、线性 3D 霍尔效应传感器
TI

TMAG5231

低功耗、低压(1.65V 至 5.5V)霍尔效应开关
TI

TMAG5231A1CQDBZR

低功耗、低压(1.65V 至 5.5V)霍尔效应开关 | DBZ | 3 | -40 to 125
TI

TMAG5231A1CQDMRR

低功耗、低压(1.65V 至 5.5V)霍尔效应开关 | DMR | 4 | -40 to 125
TI

TMAG5231A2DQDBZR

低功耗、低压(1.65V 至 5.5V)霍尔效应开关 | DBZ | 3 | -40 to 125
TI

TMAG5231A2DQDMRR

低功耗、低压(1.65V 至 5.5V)霍尔效应开关 | DMR | 4 | -40 to 125
TI

TMAG5231B1DQDBZR

低功耗、低压(1.65V 至 5.5V)霍尔效应开关 | DBZ | 3 | -40 to 125
TI

TMAG5231B1DQDMRR

低功耗、低压(1.65V 至 5.5V)霍尔效应开关 | DMR | 4 | -40 to 125
TI

TMAG5231C1DQDBZR

低功耗、低压(1.65V 至 5.5V)霍尔效应开关 | DBZ | 3 | -40 to 125
TI

TMAG5231C1DQDMRR

低功耗、低压(1.65V 至 5.5V)霍尔效应开关 | DMR | 4 | -40 to 125
TI

TMAG5231C1GQDBZR

低功耗、低压(1.65V 至 5.5V)霍尔效应开关 | DBZ | 3 | -40 to 125
TI

TMAG5231C1GQDMRR

低功耗、低压(1.65V 至 5.5V)霍尔效应开关 | DMR | 4 | -40 to 125
TI